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Abstract

In this thesis we study efficient solvers for space-time discontinuous Galerkin spectral
element methods (DG-SEM). These discretizations result in fully implicit schemes of
variable order in both spatial and temporal directions. The popularity of space-time DG
methods has increased in recent years and entropy stable space-time DG-SEM have been
constructed for conservation laws, making them interesting for these applications.

The size of the nonlinear system resulting from differential equations discretized with
space-time DG-SEM is dependent on the order of the method, and the corresponding
Jacobian is of block form with dense blocks. Thus, the problem arises to efficiently solve
these huge nonlinear systems with regards to CPU time as well as memory consump-
tion. The lack of good solvers for three-dimensional DG applications has been identified
as one of the major obstacles before high order methods can be adapted for industrial
applications.

It has been proven that DG-SEM in time and Lobatto IIIC Runge-Kutta methods are
equivalent, in that both methods lead to the same discrete solution. This allows to imple-
ment space-time DG-SEM in two ways: Either as a full space-time system or by decou-
pling the temporal elements and using implicit time-stepping with Lobatto IIIC meth-
ods. We compare theoretical properties and discuss practical aspects of the respective
implementations.

When considering the full space-time system, multigrid can be used as solver. We analyze
this solver with the local Fourier analysis, which gives more insight into the efficiency of
the space-time multigrid method.

The other option is to decouple the temporal elements and use implicit Runge-Kutta
time-stepping methods. We suggest to use Jacobian-free Newton-Krylov (JFNK) solvers
since they are advantageous memory-wise. An efficient preconditioner for the Krylov
sub-solver is needed to improve the convergence speed. However, we want to avoid
constructing or storing the Jacobian, otherwise the favorable memory consumption of

ix



the JFNK approach would be obsolete. We present a preconditioner based on an auxil-
iary first order finite volume replacement operator. Based on the replacement operator
we construct an agglomeration multigrid preconditioner with efficient smoothers using
pseudo time integrators. Then only the Jacobian of the replacement operator needs to be
constructed and the DG method is still Jacobian-free. Numerical experiments for hyper-
bolic test problems as the advection, advection-diffusion and Euler equations in several
dimensions demonstrate the potential of the new approach.
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Popular Science Summary

Weather forecasting has been of interest for millennia and will be of importance in
the future with increasing extreme weather conditions. Modern forecasting techniques
were developed in the 20th century and have been continuously improved since then.
Weather forecast is one important example of an application in computational fluid dy-
namics (CFD), where problems involving fluid flow are analyzed and solved. Other ex-
amples are the aerodynamic design of airplanes and cars, fire development in tunnels and
blood flow simulations. CFD is based on scientific computing, where complex problems
are studied and solved with the help of advanced computing techniques.

Even though mathematical models of fluid systems have been developed almost 200 years
ago and CFD calculations have been steadily improved over the last 100 years, accurate
fluid simulations are still a challenging research topic. Scientists are continuously increas-
ing the accuracy of CFD simulations. The difference in the scale of magnitude in real
world applications is a big challenge: A weather forecast for a region is done on the scale
of kilometers, while windstorms can consist of wind shears and eddies with sizes rang-
ing in diameter from centimeters to hundreds of kilometers. The goal of this thesis is to
contribute to the improvement of CFD simulations by constructing efficient solvers for
CDF problems.

To express CFD problems mathematically, partial differential equations (PDEs) are very
often used. With the help of PDEs we can describe the change of a quantity in a domain
over time, e.g. the temperature in a city over a day. These PDEs are often very complex
and need to be solved using computers and numerical methods, which are approximation
techniques for solving mathematical problems. It is an ongoing research topic in com-
putational sciences to develop efficient numerical methods adapted to state of the art
computing devices, which have increased computing power and require methods where
many calculations are carried out in parallel. This is especially of interest when large
problems can be divided into smaller ones which can be solved simultaneously.
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The first step to solve PDEs with numerical methods is to choose a discretization method.
These are based on dividing the problem domain into pieces which are small enough to
accurately approximate important quantities of the problem as e.g. eddies. Different
discretization methods exist, having specific advantages and varying accuracy. Methods
with high accuracy are called high order methods and are used in this thesis. These are of
advantage for problems with e.g. turbulence. It is an open problem to construct efficient
solvers to be applicable to large real world problems.

Discretizing PDEs results in a system of linear equations which need to be solved with
an efficient iterative method. In this context, we are interested in efficiency w.r.t. the
number of iterations and the computing time while at the same time giving an accurate
solution. To achieve a precise weather forecast, a lot of measurements need to be taken
into account in the calculations. More measurements and in consequence more data
increase the accuracy of the mathematical model, but also the number of unknowns in
the equation system. It is common to have more than hundreds of million unknowns in
typical CFD applications. Thus, very accurate calculations can take several weeks to run.
This is of course not a reasonable option for weather forecasts and emphasizes the need
for fast solvers for these equation systems.

The solution to this problem are preconditioners, which allow to transform the equation
system to be solved into one more suitable for the iterative method used. The construction
of good preconditioners is not easy since they depend both on the PDE to be solved and
the discretization method applied. One main focus of this thesis is the construction
of good preconditioners. The idea presented here is to use a combination of low order
numerical methods which are simpler to construct, but work well as preconditioners
given several other computational and numerical constraints we restrict ourselves to.

The other main topic of this thesis are so-called space-time problems. The traditional way
to solve time dependent PDEs numerically is the following: for one specific time point,
e.g. each second, the solution is calculated before everything is repeated for the next time
point. The idea of space-time methods is to consider all time steps simultaneously in
the calculations while still following the causality principle that a solution later in time is
depending on a solution earlier in time. The main difference to the traditional methods
is that the equation system becomes even larger. The interest for space-time methods
has increased with the changing development in computer architecture. State of the art
processors do not become faster any longer, instead the number of processors increases.
This motivates to parallelize calculations even more. We compare different ways to im-
plement space-time methods and present a method to analyze space-time solvers using
established frameworks.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) simulations have become central in the design of
for example next generation aerodynamic jet engines, air frames and wind turbines, simu-
lation of tunnel fires and atmospheric boundary layers and many more. These simulations
are based on numerical models for turbulent and wall bounded flows with complex ge-
ometries called large eddy simulation (LES). The resulting complex multi-scale problems
may have on the order of 100 million unknowns, thus a fast low memory parallel solver is
needed. Mathematically, CFD problems are modeled using the Navier-Stokes equations
or simplified versions of them.

Discontinuous Galerkin (DG) methods provide numerical discretizations of differential
equations based on element-wise polynomial approximations. Since it has been shown
that low-order schemes can contribute dramatically to the dissipation of eddies [82] and
high resolution is necessary for LES, high order methods are of interest. High order DG
methods are constructed by increasing the order of the element-wise polynomial approx-
imation. Moreover, DG methods allow for discontinuous element interfaces, which are
connected using numerical fluxes [64, 80]. This is of advantage when simulating prob-
lems which contain shocks. The DG discretization results in local computations on the
elements which are very dense, and the degrees of freedom (DOFs) are coupled across
neighboring faces. Due to their block structure, DG methods are very well suited for
domain-decomposition based parallelization [61, 137].

A specific DG variant is the discontinuous Galerkin spectral element method (DG-SEM),
e.g. [81]. It is based on a Lagrange type nodal polynomial basis with Legendre-Gauss-
Lobatto (LGL) nodes, which are collocated with the discrete integration of the weak form
of the differential equation. The resulting DG-SEM operators satisfy the summation by
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parts (SBP) property [47], which is the discrete analogue to integration by parts (IBP) and
key to construct discretely entropy stable and kinetic energy preserving methods [143].
This ensures that the numerical scheme obeys the second law of thermodynamics since it
provides a bound on the mathematical entropy at any time for given initial and boundary
conditions.

The DG-SEM applied to the spatial direction results in a big system of stiff ordinary
differential equations (ODEs) which are solved using numerical time integration meth-
ods. These can be separated into explicit and implicit schemes, where the latter ones
incorporate unknown data and therefore require solving a (non)linear equation system.
Explicit ODE solvers do not depend on unknown data, but require a condition on the
time step to guarantee stability of the numerical solver. This condition becomes very re-
strictive for stiff problems, for example for the compressible Navier-Stokes equations for
wall bounded and low Mach number flows. To avoid stability restrictions on the time
step, it is therefore of advantage to consider implicit time integrators. For these methods,
the time step only needs to be chosen error based. This comes at the cost of an increased
computational effort when solving the resulting large nonlinear equation systems.

Two important techniques to construct implicit time integrators are considered in this
thesis. Firstly, the method of lines (MOL) ansatz, which is based on applying implicit
Runge-Kutta time-stepping methods to the ODE resulting from the spatial discretization.
Secondly, a fully discrete ansatz which is the result of simultaneously discretizing space
and time, resulting in a space-time DG method.

Space-time methods have gained increased attention in recent years, mostly due to the
possibility to parallelize the temporal direction as well [45]. With state of the art com-
puter architectures reaching a clock speed limit, and a trend towards more rather than
faster processors, parallelization becomes even more important. Moreover, entropy stable
space-time DG-SEMs for hyperbolic conservation laws have been constructed [44].

Efficiency of DG discretizations with implicit time-stepping methods can only be achieved
when the resulting large nonlinear equation systems are solved cheaply w.r.t. memory
consumption and central processing unit (CPU) time. Solvers for linear and nonlinear
equation systems are severely lacking for three-dimensional DG applications and are one
of four major obstacles that need to be solved before industry might adopt high order
methods [138]. However, it is an ongoing research topic how to implement and solve
these fully implicit methods efficiently. Possible solvers are full-approximation schemes
(FAS), multigrid (MG) and preconditioned Jacobian-free Newton-Krylov (JFNK) meth-
ods [78].

The JFNK technology is interesting in the sense of memory minimization. JFNK meth-
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ods are numerical methods to solve non-linear problems with Newton’s method using
Krylov subspace solvers for the linear subproblem. DG systems have a dense block struc-
ture with blocks coupled via the faces. The number of unknowns per element increases
dramatically with increasing polynomial degree and dimension, leading to large dense
Jacobian blocks [12, 15]. For a d-dimensional problem, the block size of a finite vol-
ume (FV) method is d + 2, whereas for a DG-SEM with p-th degree polynomials it is
(d + 2)(p + 1)d. For degree two in three dimensions this already is 135. If a precon-
ditioner requires the storage of the Jacobian of the DG system, the favorable memory
consumption of the JFNK approach is obsolete and the method is not fully Jacobian-free
any longer.

Thus, efficient Jacobian-free preconditioners need to be constructed in order to have
competitive JFNK solvers for DG discretizations. One option to construct precondition-
ers for the Krylov subproblem are multigrid methods [14]. These are a class of iterative
methods originally designed to solve equation systems arising from discretized differen-
tial equations. Multigrid methods are based on a hierarchy of grids for the discretization
and so-called smoothers that damp the high frequency error parts in a few iterations
[124]. Multigrid methods are standard in many academical and industrial codes due to
their textbook multigrid efficiency. This means only a few iterations are needed to solve
a problem. Even though textbook multigrid efficiency is generally not attained in fluid
problems with DG discretizations, multigrid methods provide efficient solvers for these.
This motivates to use well-designed MG methods as preconditioners.

1 State of the Art

Space-time DG methods have been considered for hyperbolic problems in [33, 44], for
advection-diffusion problems in [76, 116], for the Euler equations of gas dynamic in
[128, 130] and for nonlinear wave equations in [129]. Multigrid solvers have been an-
alyzed in the DG context with block smoothers for convection-diffusion problems in
[50, 76, 134] and for elliptic problems in [56, 57]. Space-time MG methods have been
studied mostly for parabolic problems, see for instance [36, 43, 46]. MG solvers for dif-
ferent problems have been investigated in [46, 56, 62, 76, 105]. Analysis of space-time
MG algorithms for DG discretizations of advection dominated flows has been quite lim-
ited but can be found for the advection-diffusion equation or linearized versions of the
compressible Euler equations in [127, 125] and for generalized diffusion problems in [43].

Classical block Jacobi preconditioners have been studied for inviscid and viscous incom-
pressible flows governed by the Euler and Navier–Stokes equations in [8], for direct nu-
merical simulations/implicit LES of turbulent flows in [42], and approximate tensor-
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products of exact block Jacobi preconditioners for the advection and Euler and Navier–
Stokes equations have been studied in [99]. Two-level preconditioners with incomplete
LU smoothers have been considered for the compressible Navier-Stokes equations in
[101, 102] and nonlinear preconditioners based on dual time-stepping for viscous flow
around cylinder and NACA0012 airfoil have been studied in [14].

JFNK solvers for implicit DG-SEM have been studied for parallel time adaptive higher
order solvers with block Jacobi and reduction of the off-block order symmetric Gauss-
Seidel preconditioners for the three-dimensional time dependent Navier–Stokes equa-
tions in [15], for MG preconditioners for the Reynolds-averaged Navier–Stokes equations
equations in [16] and for block Jacobi preconditioners for the compressible Navier-Stokes
equations in [135]. Algebraic multigrid preconditioners for Newton-Krylov solvers of the
fully implicit variational multiscale finite element resistive magnetohydrodynamics for-
mulation have been studied in [88].

Preconditioned space-time DG methods have been studied by several authors. For in-
stance tensor-product preconditioners for space-time DG-SEM matrix-free Newton-Krylov
for the compressible Navier-Stokes equations in [32], lower-upper symmetric Gauss–
Seidel preconditioned generalized minimal residual method (GMRES) solvers for im-
plicit space-time DG solver for the compressible Navier-Stokes equations in [144] and
MG preconditioning with block incomplete LU(0)-preconditioned GMRES smoothers
for a space-time DG-SEM solver in [41].

2 Goals of the Thesis

In this thesis we discuss efficient solvers for space-time DG-SEM. The two main topics
are multigrid based preconditioners for JFNK solvers as well as space-time DG-SEM and
the resulting challenges w.r.t. implementation and solvers.

It has been shown that the temporal DG-SEM is equivalent to fully implicit Lobatto IIIC
Runge-Kutta methods in the sense that they lead to the same discrete solution. This opens
two possibilities to implement space-time DG-SEM: either as a d+1-dimensional prob-
lem or as a spatial DG-SEM combined with Lobatto IIIC Runge-Kutta time-stepping.
However, in practice there are several differences between these two approaches, includ-
ing the terminology used to describe them, the interaction with nonlinear solvers and the
structure of the resulting software. We compare the advantages and disadvantages of these
implementations using the Distributed and Unified Numerics Environment (DUNE)
[30]. It is an open research question how to solve the resulting systems efficiently.

One possibility are space-time multigrid methods. In order to gain more insight, we
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perform a local Fourier analysis (LFA), an important tool to analyze the quality of MG
methods [19]. With the help of the LFA we can predict convergence rates of the MG
solver. The results show that multigrid is a good solver for the space-time DG-SEM as
well as a promising basis to construct space-time preconditioners.

We also present a novel idea for the construction of preconditioners for JFNK solvers,
while retaining the low memory use. A visualization of our concept can be seen in Fig-
ure 1.1. The starting point is a partial differential equation (PDE) which we discretize with
an implicit DG-SEM. We then solve the resulting algebraic system with a JFNK method.
In order to improve the convergence speed of the GMRES sub-solver, we construct a
preconditioner using MG. The core idea is to base this on a lower order FV replacement
operator to avoid constructing the Jacobian of the DG discretization. Moreover, this
replacement operator allows to use available knowledge about fast multigrid methods for
FV discretizations on block structured meshes.

high-order implicit numerical solver

PDE

solver
discretization

DG-SEM

implicit time-stepping

JFNK

linear algebraic system
precond.

preconditioner

FV
approx.

MG

iterative solver

Numerical approximation

Figure 1.1: Work flow to construct a multigrid based preconditioner using a finite volume replacement operator to solve
implicit DG-SEM.

The fundamental question is how to construct a preconditioner for the JFNK solver
without constructing the Jacobian of the DG-SEM discretization. Our idea is to make
use of a simplified replacement operator for the DG operator. One could for instance
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choose a different polynomial order in the element to generate a replacement operator as
presented in [15, 38, 102]. However, we want to keep the number of degrees of freedom
in the replacement operator the same. This can be achieved by introducing a subcell grid
in each DG element. On the subcell-element grid, the simplest replacement operator is
a first order FV discretization. This choice is motivated by the equivalence of DG-SEM
and specific high order FV discretizations [40]. In the resulting approximate Jacobian,
we only have (d + 2)(p + 1)(2d + 1) entries [12]. As smoother we use state of the art
low memory pseudo time-stepping smoothers from [16] which have been shown to work
very efficient for this multigrid setup.

This dissertation thesis is a continuation of the Licentiate thesis [136], where the idea for
the preconditioner has been introduced and the local Fourier analysis has been presented.

3 Organization of the Thesis

In Chapter 2 we present the DG-SEM combined with implicit time-stepping methods
and in Chapter 3 the space-time DG-SEM. We give an overview over Newton-Krylov
solvers for the resulting nonlinear equation systems in Chapter 4. In Chapter 5 we dis-
cuss multigrid methods for linear systems and our idea to construct efficient multigrid
preconditioners for implicit DG solvers using FV replacement operators.

In Chapter 6 numerical examples are presented to show the efficiency of the suggested
preconditioner. More results can be found in Paper I, II and III. Space-time DG-SEM is
the topic of Paper IV and Paper V, which are also summarized in Chapter 6. A compar-
ison of theoretical and practical aspects of two different approaches for the formulation
and implementation of space-time DG-SEM is discussed in Paper IV and a space-time
multigrid solver is analyzed with the help of the local Fourier analysis in Paper V.

Conclusions can be found in Chapter 7.

All publications are presented at the end of the thesis.
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Chapter 2

Discontinuous Galerkin Methods

We are interested in numerically approximating solutions of mathematical models based
on conservation laws, where the amount of a measurable quantity, as for example mass,
momentum or energy, is only changed by transport over the boundaries of the system
or by internal processes. Important models in fluid mechanics are the linear advection
equation, the Euler equations, the shallow water equations and the Navier-Stokes equa-
tions.

A conservation law is mathematically expressed as

ut +∇ · f(u,∇u) = g(u), (x, t) ∈ Ω × (0,T],
u(x, t) = b(t), x ∈ ∂Ω, t ∈ (0,T], (2.1)
u(x, 0) = u0(x), x ∈ Ω,

with space dimension d, typically d = 1, 2, 3, spatial variables x = (x1, . . . , xd), domain
Ω ⊂ Rd, physical flux function f , source term g, boundary condition b and initial
condition u0. In this chapter we present discretization techniques for problems of the
form (2.1).

Discontinuous Galerkin (DG) methods were introduced in 1973 by Reed and Hill to
solve the hyperbolic neutron transport equation [104]. DG schemes can be interpreted
as a combination of finite element (FE) and finite volume (FV) methods since they are
derived from the weak form of PDEs with basis functions on elements similar to the FE
ansatz with elements connected at their discontinuous boundaries by numerical fluxes
as for the FV method. While standard FE methods assume continuity on the interfaces
between two neighboring elements, DG methods allow for discontinuities at the inter-
faces. This is of advantage when solving hyperbolic conservation laws, as their solutions
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might have jumps and discontinuities, and assuming global continuity on the consid-
ered physical domain would cause difficulties when constructing a numerical solution.
Therefore, discontinuous Galerkin methods are more suitable for these problems. As in
the FV method, elements are coupled by defining numerical fluxes which mimic physical
properties of the underlying PDE by taking two adjacent states and a normal vector.

One of the main advantages of DG methods is that the order of accuracy can be quite
easily improved by increasing the number of nodes within each element. DG methods
are an interesting alternative to low-order FV methods which are mostly used in today’s
computational fluid dynamics (CFD) industrial codes [84], since higher order discretiza-
tions reduce dispersion and dissipation errors. Nowadays, a huge variety of different DG
methods exist and a standard has only been partly established. Moreover, there are still
a number of serious issues with DG methods that need to be solved before they are fea-
sible for industrial applications [138], one of them being the lack of fast, efficient solvers
for three-dimensional problems. An overview over many research contributions on DG
methods applied to fluid dynamics can be found in [140]. Good introductions to the DG
methods considered in this thesis can be found in [59] and [80] as well as the references
therein.

In this chapter we discuss a method of lines approach, where we first discretize the prob-
lem in space to transform it into a system of ordinary differential equations (ODEs),
which can then be discretized in time. We give a short overview over FV methods and
numerical fluxes and present the choices that lead to a discontinuous Galerkin spectral
element method (DG-SEM). Next, we discuss properties of DG methods, as stability,
summation by parts, entropy boundaries and convergence order. We finish this chap-
ter by presenting time integration schemes to solve the ordinary differential equation
resulting from the spatial discretization.

1 Space Discretization

This section serves as an introduction to spatial discretizations based on FV and DG
methods for conservation laws in two dimensions.

1.1 Finite Volume Discretization

The easiest DG discretization is of first order with constant element averages, i.e. polyno-
mial approximations of degree px = 0 on each element, usually known as finite volume
methods. These methods are conservative and easy to implement. In this section we only
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give a brief introduction to FV methods, which we use as basis for constructing multigrid
preconditioners in Chapter 5. For a more detailed presentation and discussion of these
methods we refer to [86, 87].

The starting point for an FV discretization is the integral form of the conservation law
(2.1). The computational domain Ω ⊂ R2, which we assume to be rectangular for sim-
plicity, is divided into N x × N y non-overlapping elements

Ωn,m = [xn−1/2, xn+1/2]× [ym−1/2, ym+1/2], n = 1, . . . ,N x, m = 1, . . . ,N y,

with nodes located at the center (xn, ym) of the respective element, see Figure 2.1. These
elements are usually called volumes in the FV context. Then on each volume the integral
form of (2.1) reads∫

Ωn,m

ut dΩn,m +

∫
Ωn,m

∇ · f(u,∇u) dΩn,m = 000.

The divergence theorem yields∫
Ωn,m

ut dΩn,m +
∑
edges

∫
∂Ωn,m

f(u,∇u) · n ds = 000.

The idea of FV methods is to approximate mean values for the control volumes,

unm(t) :=
1

|Ωn,m|

∫
Ωn,m

u(x, t) dΩn,m, n = 1, . . . ,N x, m = 1, . . . ,N y,

on each volume Ωn,m with width |Ωn,m|. Assuming that the volumes do not change with
time, we obtain the element-wise evolution equation for the mean value

u̇nm(t) +
1

|Ωn,m|
∑
edges

∫
∂Ωn,m

f(u,∇u) · nds = 000,

for n = 1, . . . ,N x, m = 1, . . . ,N y. The approximation with volume averages leads
to discontinuities at the volume interfaces. This results in fluxes which are not defined
on the volume interfaces. Thus, numerical flux functions fN are introduced which take
states from both side of the edges and approximate the exact flux based on these states.
We discuss these in more details in the next section.

The FV method as presented is based on piecewise constant approximations and can thus
be at most of first order. However, for many practical applications more accurate methods
are necessary. One possibility to increase the order of convergence is to use a higher order
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Figure 2.1: Finite volume grid in two dimensions.

DG scheme. Another option is linear reconstruction, where a piecewise constant approx-
imation is used to reconstruct a piecewise linear approximation that has the same integral
mean. This is standard in many industrial codes. The MUSCL (Monotonic Upstream-
Centered Scheme for Conservation Laws) scheme [132] is based on this reconstruction
technique. Other higher-order FV schemes are ENO (Essentially Non-Oscillatory) [55]
and WENO (Weighted Essentially Non-Oscillatory) [91]. We refer to [6] for an overview
over these schemes. High-order FV schemes are often used in practice, but require large
stencils which lead to poor parallelization since both the cell coupling and the amount
of information exchanges increases.
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1.2 Numerical Fluxes

To couple the element-wise problems, the boundary terms need to be connected with
their neighboring elements. This is done with the help of numerical flux functions fN.
Let us denote the solution value on the edge inside the element by u− and the value
outside by u+. The latter one is either given by the numerical solution from the neigh-
boring element or the boundary condition from the physical problem. Moreover, the
numerical flux depends on the normal vector n, pointing from the interior value to the
exterior value and thus reading fN(u−,u+;n). To define a reasonable numerical flux,
the physical properties of the underlying PDE need to be taken into account.

A numerical flux needs to be consistent, that is Lipschitz continuous in the first two argu-
ments and

fN(u,u;n) = f(u),

as well as conservative

fN(u−,u+;n) = fN(u+,u−;−n).

The consistency condition implies that the numerical flux has to reproduce the physical
flux, and the finer the discretization, the better the approximation.

We present in the following numerical fluxes of relevance for this thesis, i.e. for hyperbolic
problems. For other problems, the fluxes need to be split up into a sum of convective
and diffusive fluxes. We refer to [87] for the discussion of other numerical fluxes for the
most common problems.

Upwind Flux

The simplest flux is the upwind flux. This flux is suitable for advection problems since it
takes the transportation direction into account. For a one-dimensional advection prob-
lem f(u) = au it is defined as

fN
up(u

−, u+;n) =
au− + au+

2
+

|a|
2
(nu− − nu+). (2.2)

Moreover, the upwind flux is the natural choice for temporal discretizations from a phys-
ical point of view, since time is only moving forward.
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Rusanov Flux

The Rusanov flux, also known as local Lax-Friedrich flux, is defined as

fN
LLF(u

−,u+;n) =
f(u−) + f(u+)

2
− λmax

2
(u+ − u−),

with λmax = max
u−,u+

| ∂f∂u(u)| the local maximum of the directional flux Jacobian, the

maximum wave speed at the interface.

1.3 Boundary Conditions

On the domain boundaries, the numerical fluxes have to be constructed carefully to take
care of boundary conditions of the PDE. Several options exist to handle boundary con-
ditions. Either a solution value on the boundary can be defined or a flux function can be
prescribed. Typical boundary conditions for conservation laws are fixed wall, inflow and
outflow or periodic boundary conditions. We refer to [13] for a more detailed discussion.

FV Discretization of the Linear Advection Equation

To illustrate the FV method we consider the simplest conservation law, the one-dimensional
linear advection equation

ut + aux = 0, (x, t) ∈ Ω × (0,T],
u(x, 0) = u0, u(xL, t) = u(xR, t),

with a > 0. Since information travels from left to right with speed a, is is most natural
to use an upwind flux f Nn−1/2 = un−1. Then an equidistant FV discretization with mesh
width Δx results in an evolution equation for the cell average un in volume n:

u̇n +
a
Δx

(un − un−1) = 0, n = 1, . . . ,N x.

With the vector u = (u1, . . . , uN x)⊤ and the matrix

B =


1 −1
−1 1

−1 1
. . . . . .

−1 1

 ∈ RN x×N x
,
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we obtain the system of ODEs

ut +
a
Δx

Bu = 000. (2.3)

1.4 Discontinuous Galerkin Method

In this section we present the DG discretization in space. For notational simplicity we
derive the DG discretization for the two-dimensional case, i.e. d = 2 in (2.1). This can
be easily extended to the three-dimensional case using a tensor product ansatz.

The first step is to divide the computational domain Ω ⊂ R2 into N x × N y non-
overlapping quadrilaterals Ωn,m such that

Ω =

N x,N y∪
n,m=1

Ωn,m,

with Ωn,m = [xn, xn+1] × [ym, ym+1], i.e. a Cartesian grid. To derive the weak form of
the problem, we multiply (2.1) on each element by a smooth test function ψ(x) from
some test space V and integrate over the spatial domain:∫

Ωn,m

utψ dΩn,m +

∫
Ωn,m

∇ · fψ dΩn,m = 000 ∀ψ ∈ V.

Integration by parts yields∫
Ωn,m

utψ dΩn,m +

∫
∂Ωn,m

f · nψ ds−
∫

Ωn,m

f · ∇ψ dΩn,m = 000 ∀ψ ∈ V. (2.4)

In the next step, the solution u is approximated by a polynomial in each element. To
obtain a specific DG method, a grid, a polynomial basis, a quadrature rule for the integrals
in the scalar products, in particular the nodes and weights, and the approximation of
the physical flux function f(u,∇u) have to be chosen. There exist two different types
of polynomials basis: modal and nodal bases. A nodal basis is defined by a number
of nodes, which are used to define Lagrange polynomials. A modal basis is defined by
functions only, e.g. monomials. Typically, a modal basis is hierarchical, therefore the
term hierarchical basis is used by some authors.

In this thesis we focus on the DG-SEM on quadrilateral, respectively hexahedral cells
in up to three dimensions. It is possible to have hanging nodes and curved boundaries.
The DG-SEM has a Lagrangian basis function evaluated in the Legendre-Gauss-Lobatto
(LGL) nodes, the Gaussian quadrature is based on the LGL nodes and weights as well,
and an element-wise polynomial approximation is used for the flux function.

13



1.5 Mapping to Reference Elements

In order to simplify the implementation of DG methods, it is common to restrict the
possible shapes of the elements. This allows to define the basis a priori on reference
elements and to precompute as many terms as possible. The basis for a specific element
is then obtained by a transformation from the reference element. We demonstrate this
for a curved quadrangle as described in [73, 80].

Let (x, y) denote the coordinates in the physical space Ωn,m and (ξ, η) the coordinates in
the computational space Ω̂ := [−1, 1]2. Consider a mapping X : Ω̂ → Ωn,m such that

(x, y)⊤ = X(ξ, η).

The four corners of Ω̂ are denoted by Xi and the element curves are represented by
polynomials Γi, i = 1, 2, 3, 4, see Figure 2.2. Using these polynomials we can construct
a mapping between curves 1 and 3, denoted by X1,3, as well as between curves 2 and 4,
denoted by X2,4:

X1,3(ξ, η) :=
1 − η

2
Γ1(ξ) +

1 + η

2
Γ3(ξ),

X2,4(ξ, η) :=
1 − ξ

2
Γ4(η) +

1 + ξ

2
Γ2(η).

Note that simply adding X1,3 and X2,4 does not result in the mapping X since the
corners do not match. This is solved by a correction term as derived in [80]:

Xcorr(ξ, η) :=
1
4
(X1(1 − ξ)(1 − η) + X2(1 + ξ)(1 − η)

+X3(1 + ξ)(1 + η) + X4(1 − ξ)(1 + η)).

Then the transformation

X = X1,3 +X2,4 −Xcorr,

defines the isoparametric mapping between the physical and the computational coordi-
nates:

(x, y)⊤ = X(ξ, η). (2.5)

An overview over similar mappings for different reference elements can be found in [73].
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Figure 2.2: Mapping between the reference square Ω̂ and an arbitrary quadrilateral.

1.6 Transformation of Equations Under Mappings

The mapping (2.5) between the computational and the physical space transforms the
equations themselves, as a result of the chain rule. In the following we describe a differen-
tial geometry approach to examine the transformation of equations under such mappings,
see [80]. Since this approach extends well to three dimensions, let us introduce the coor-
dinates x = (x, y, z) = (x1, x2, x3) in the physical space and ξ = (ξ, η, ζ) = (ξ1, ξ2, ξ3)
in the computational space. The mapping from the computational space to the physical
space reads

x = X(ξ).

Next, we introduce the covariant basis ai, i = 1, 2, 3, which varies along a coordinate
line:

ai =
∂x

∂ξi
.

Then the divergence w.r.t. the mapping is given by

∇ · f̃ = 1
J

3∑
i=1

∂

∂ξi

(
f · (aj × ak)

)
, (2.6)

with f̃i =
1
J(aj × ak) · f(i, j, k) and J = ai · (aj × ak), (i, j, k) cyclic. The derivation

of (2.6) can be found in [80]. The two-dimensional case follows with a3 = (0, 0, 1)⊤.

This gives the element-wise counterpart of equation (2.1) in the d-dimensional computa-
tional space Ω̂ ⊂ Rd:

Jut +∇ · f̃(u,∇u) = 000, (ξ, t) ∈ Ω̂ × (0,T].
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In two dimensions, this reduces to

Jut + f̃1
ξ (u,∇u) + f̃ 2

η (u,∇u) = 000, (ξ, η, t) ∈ Ω̂ × (0,T],

with the Jacobian of the transformation J = xξyη − xηyξ and the contravariant fluxes

f̃1(u,∇u) = yηf1(u,∇u)− xηf2(u,∇u),

f̃1(u,∇u) = −yξf1(u,∇u) + xξf2(u,∇u).

In order to simplify the notation we drop in the following the tilde but work on the
reference element Ω̂ unless stated otherwise.

1.7 Discontinuous Galerkin Spectral Element Method

From of the family of DG methods we focus on the DG-SEM in this thesis. The DG-
SEM is based on element-wise approximations by nodal polynomials of degree px in the
x-direction and degree py in the y-direction of the solution u(ξ, η, t)

u(ξ, η, t) ≃ uP(ξ, η, t) =
Nx∑
j=1

Ny∑
k=1

ujk(t)φjk(ξ, η), (2.7)

and the flux function f(u,∇u)

f(u,∇u, ξ, η, t) ≃ fP(u,∇u, ξ, η, t) =
Nx∑
j=1

Ny∑
k=1

fjk(t)φjk(ξ, η), (2.8)

with time dependent coefficients ujk(t) and fjk(t) = f(ujk(t),∇ujk(t)), and a set of basis
functions {φjk}

Nx,Ny
j,k=1 with px = Nx − 1, py = Ny − 1.

The global solution u(ξ, η) is then approximated by a piecewise polynomial

u(ξ, η, t) ≃ unum(ξ, η, t) =
N x,N y⊕
n,m=1

uP|Ωn,m(ξ, η, t).

We only assume continuity of the polynomial approximation on the elements, but not
on the interfaces, i.e. we allow for discontinuous numerical approximations at element
boundaries. A one-dimensional example for such a numerical solution can be seen in
Figure 2.3.
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xn−2 xn−1 xn xn+1Ωn−1 Ωn Ωn+1

un−1 un un+1

u−
u+

Figure 2.3: DG approximations are assumed to be continuous on the elements, but not on the interfaces.

As for FV methods, a numerical flux fN(u−,u+;n) is introduced at the discontinu-
ous element boundaries, which is a function of the interface values of the neighboring
elements, see Figure 2.3. Different choices of numerical fluxes were discussed before.

The test functions ψ are also chosen as polynomials in the reference element with the
same basis,

ψ(ξ, η) =

Nx∑
j=1

Ny∑
k=1

ψjk(t)φjk(ξ, η), (2.9)

with arbitrary coefficients ψjk(t), j = 1, . . . ,Nx, k = 1, . . . ,Ny.

Mapping (2.4) onto the reference element and inserting the numerical approximations
(2.7), (2.8) and the arbitrary test polynomials (2.9), yields the weak form

Nx∑
j=1

Ny∑
k=1

Jjku̇jk(t)
∫

Ω̂
φjkφlm dΩ̂ +

Nx∑
j=1

Ny∑
k=1

fjk(t)
∫
∂Ω̂
φjk · nφlm ds

−
Nx∑
j=1

Ny∑
k=1

fjk(t)
∫

Ω̂
φjk · ∇φlm dΩ̂ = 0,

(2.10)

for each l = 1, . . . ,Nx,m = 1, . . . ,Ny and Jjk = J(ξj, ηk).

The DG-SEM is based on approximating integrals with LGL quadrature on the reference
element using a nodal Lagrange basis based on these nodes [60]. This yields a polynomial
space of dimension (px + 1)(py + 1). The LGL nodes and weights can be defined using
Legendre polynomials.

Definition 2.1 (Legendre-Gauss-Lobatto nodes and weights [80]). The Legendre polyno-
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mials are recursively defined as

Ln+1(x) =
2n+ 1
n+ 1

xLn(x)−
n

n+ 1
Ln−1(x), x ∈ [−1, 1],

with L0(x) = 1, L1(x) = x. Then the Legendre-Gauss-Lobatto nodes ξi include the end-
points of the reference interval,±1, and the interior nodes are the roots of the polynomial

q(x) = Ln+1(x)− Ln−1(x).

The Legendre-Gauss-Lobatto weights for the corresponding quadrature rule are given by

ωi =
2

n(n+ 1)(Ln(ξi))2
.

The LGL nodes and weights for {2, 3, 4, 5} points can be seen in Table 2.1.

Table 2.1: First Legendre-Gauss-Lobatto nodes and weights.

number of points nodes weights

 ±1 1

 ±1, 0 1
3 , 4

3

 ±1, ±
√

1
5

1
6 , 5

6

 ±1, 0 ,±
√

3
7

1
10 , 32

45 , 49
90

Lagrange polynomials based on the LGL nodes are used as basis functions.

Definition 2.2 (Lagrange polynomial). For a given set of points {x1, . . . , xN} the j-th
Lagrange polynomial of degree N− 1 is defined by

ℓj(x) :=
N∏

i=1,i ̸=j

x− xi
xj − xi

, j = 1, . . . ,N.

Lagrange polynomials satisfy the so-called cardinal property

ℓj(xi) = δji :=

{
1, i = j,
0, i ̸= j.

Lagrange polynomials of first, second and third order based on LGL nodes can be seen
in Figure 2.4.
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Figure 2.4: Lagrange polynomials based on LGL nodes on the reference interval [−1, 1].

The basis polynomials in (2.7) are then defined with a tensor product ansatz

φjk(ξ, η) := ℓξj (ξ)ℓ
η
k (η). (2.11)

For the DG-SEM, interpolation and quadrature are collocated. This implies that the
same nodes and weights as for the Lagrangian basis are used for the Gaussian quadrature
of the integral: ∫

Ω̂
u(ξ, η) dΩ̂ ≈

Nx∑
j=1

Ny∑
k=1

ωξ
j ω

η
ku(ξj, ηk). (2.12)

Gaussian quadrature with N LGL nodes is exact for polynomials of degree 2N − 1 or
less. Exact integration increases the cost of the integral approximation, thus we accept
the error in (2.12).

Applying Gaussian quadrature to the first term in (2.10) gives

Nx∑
j=1

Ny∑
k=1

Jjku̇jk(t)
∫

Ω̂
φjkφlm dΩ̂

≈
Nx∑
j=1

Ny∑
k=1

Jjku̇jk(t)

 Nx∑
i=1

Ny∑
s=1

ωξ
i ω

η
s φjk(ξi, ηs)φlm(ξi, ηs)

 = Jlmω
ξ
l ω

η
mu̇lm(t),

(2.13)

for l = 1, . . . ,Nx,m = 1, . . . ,Ny due to the cardinal property of the basis functions.
Defining a vector of coefficients ū(t) ∈ RNxNy and a block diagonal mass matrix

M = Mξ ⊗Mη ∈ RNxNy×NxNy ,
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with the (lumped) mass matrices

Mξ = diag
(
[ωξ

1 , . . . , ω
ξ
Nx
]
)
∈ RNx×Nx , (2.14)

Mη = diag
(
[ωη

1 , . . . , ω
η
Ny
]
)
∈ RNy×Ny , (2.15)

(2.13) can be written more compactly as JMūt on the reference element Ω̂.

Applying Gaussian quadrature to the third term in (2.10) yields

Nx∑
j=1

Ny∑
k=1

fjk(t)
∫

Ω̂
φjk · ∇φlm dΩ̂

≈
Nx∑
j=1

Ny∑
k=1

fjk(t)

 Nx∑
i=1

Ny∑
s=1

ωξ
i ω

η
s φjk(ξi, ηs) · ∇φlm(ξi, ηs)


=

Nx∑
j=1

Ny∑
k=1

ωξ
j ω

η
k fjk(t) · ∇φlm(ξj, ηk)

=

Nx∑
j=1

ωξ
j ω

η
mf

1
jm(t)

∂ℓξl (ξj)

∂ξ
+

Ny∑
k=1

ωξ
l ω

η
k f

2
lk (t)

∂ℓηk (ηm)

∂η
,

(2.16)

for l = 1, . . . ,Nx,m = 1, . . . ,Ny. Let f̄1, f̄ 2 ∈ RNxNy be the vectors of evaluations at
the quadrature nodes for the first and the second component and define the mass matrices
as before. Let Dξ ∈ RNxNy×NxNy be a block diagonal matrix with constant blocks of size
RNx×Nx

(Dξ)jl =
∂ℓξl (ξj)

∂ξ
, l, j = 1, . . . ,Nx, (2.17)

and Dη ∈ RNxNy×NxNy be a block diagonal matrix with constant blocks of size RNy×Ny

(Dη)mk =
∂ℓηk (ηm)

∂η
, k,m = 1, . . . ,Ny. (2.18)

Then (2.16) can be written compactly as (Dξ⊤Mξ)⊗Mη f̄1 +Mξ ⊗ (Dη⊤Mη)f̄2.

The boundary integral in (2.10) is the sum of the four integrals on the edges of the refer-
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ence cell. It can be approximated by

Nx∑
j=1

Ny∑
k=1

fjk(t)
∫
∂Ω̂
φjk · nφlm ds

≈ ωη
m
(
fP(u, (1, ηm), t)

)
1ℓ

ξ
l (1)− ωη

m
(
fP(u, (−1, ηm), t)

)
1ℓ

ξ
l (−1) (2.19)

+ ωξ
l

(
fP(u, (ξl, 1), t)

)
2ℓ

η
m(1)− ωξ

l

(
fP(u, (ξl,−1), t)

)
2ℓ

η
m(−1),

for l = 1, . . . ,Nx,m = 1, . . . ,Ny. Let f̂ 1, f̂2 ∈ RNxNy be the vectors of function
evaluations at the quadrature nodes on the surface for the first and the second component
and

(Sξ)li = −δ1iℓξl (−1) + δNxiℓ
ξ
l (1),

(Sη)jm = −δj1ℓηm(−1) + δjNyℓ
η
m(1),

then (2.19) can be written compactly as Sξ ⊗Mη f̂ 1 +Mξ ⊗ Sη f̂2.

Replacing the boundary fluxes f̂1, f̂2 by numerical fluxes f̂1,N, f̂2,N ∈ RNxNy , we obtain
on each reference element a system of ordinary differential equations

JMūt +
(
Sξ ⊗Mηf 1,N +Mξ ⊗ Sηf 2,N)

−
(
(Dξ⊤Mξ)⊗Mη f̄1 +Mξ ⊗ (Dη⊤Mη)f̄2) = 000,

(2.20)

or equivalently

ūt +
1
J
M−1((Sξ ⊗Mηf 1,N +Mξ ⊗ Sηf 2,N)

−
(
(Dξ⊤Mξ)⊗Mη f̄1 +Mξ ⊗ (Dη⊤Mη)f̄2)

)
= 000.

(2.21)

Collecting the equations for all elements in one big system G, which is of block form
with blocks corresponding to the degrees of freedom in each element, and a vector of
unknowns u, equation (2.21) can be rewritten as an initial value problem (IVP)

ut −G(u) = 000, (2.22)

with initial condition u(t0) = u0 and a possibly nonlinear function G.

2 Properties

In the following we summarize the most important properties of semi-discrete DG schemes
for the context of this thesis. A good overview over the state of the art of the theoretical
results is given in [59, 73, 80] as well as the references therein.
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2.1 Stability

It is still an ongoing task to construct conservative and stable DG methods for nonlinear
problems. For semi-discrete approximations it is not clear that the solution is bounded
in the L2 norm by an amount proportional to the initial energy. Thus, the approximate
solution might blow up over finite time [80]. Non-conservative methods can result in
unphysical solutions, while conservative schemes guarantee that conserved quantities of
the problem only change depending on the fluid flow into or out of the domain. This
is necessary for the numerical scheme to yield a weak solution of the conservation law.
However, it is not clear which of the non-unique weak solutions of the conservative
scheme is physically relevant. It is therefore important to carefully chose a solution. This
can be done by constructing conservative schemes that numerically obey the second law
of thermodynamics and considering entropy.

In the last decades, entropy stable schemes have been developed. Tadmor was the first
one to develop conservative and entropy stable schemes for low order FV methods [119].
Based on this, entropy-conservative and entropy-stable fluxes have been constructed [98,
120, 121]. High-order, conservative and entropy stable schemes for linear conservation
laws have been developed in [23] based on the summation by parts (SBP) simultaneous
approximation term (SAT) framework, which we discuss in more details below. SBP
is the discrete counterpart of integration by parts. Pioneering work from 1974 for the
development of SBP can be found in [83]. With the SBP property, the discrete analysis
can be done in a one-to-one fashion to the continuous analysis. This allows to construct
stable numerical solvers for conservation laws.

It has been proven that DG-SEM methods with LGL nodes satisfy the discrete SBP prop-
erty and the boundary and interface conditions can be weakly imposed by the SAT [47].
This allowed to extend conservative and entropy stable schemes for low order methods
developed by Tadmor to high order schemes with SBP operators using flux difference
schemes [39] and split forms [47].

In the following we give an introduction to the concepts of SBP-SAT schemes as well as
the entropy condition.

Summation by Parts Simultaneous Approximation Term

When applying standard DG methods to systems of conservation laws it is not clear that
discrete solutions remain bounded in time by the initial and boundary conditions. For
instance, L2 stability can not be guaranteed. The SBP-SAT strategy is a successful way
to identify good boundary conditions [117]. The idea is to derive boundary conditions
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using the energy method by requiring stability in the L2 norm for linearized problems,
and implement them using the SAT term.

Definition 2.3 (SBP operator [83]). For a set of N nodes {ξi}Ni=1 on the reference space
Ω̂ = [−1, 1] and with ξk := [ξki , . . . , ξ

k
N]

⊤, k > 0, the matrix DSBP ∈ RN×N is an SBP
operator of degree p approximating ∂

∂ξ on the nodal distribution ξ if

DSBPξk = kξk−1, k = 0, . . . , p,

DSBP = MSBP−1
Q,

MSBP is symmetric and positive definite,

Q+Q⊤ = B = diag
(
[−1, 0, . . . , 0, 1]

)
.

For a hyperbolic conservation law

ut +∇ · f(u) = 000, (x, t) ∈ Ω × (0,T],
u(x, t) = b(t), x ∈ δΩ, t ∈ (0,T],

the SBP-SAT scheme reads, assuming the problem is linear with constant coefficients,

ut +DSBPf = SAT,

with DSBP an operator approximating the spatial derivative of the physical flux f and the
SAT on the right hand side defining a penalty term to weakly incorporate the boundary
condition,

SAT = σ(u− b),

with a penalty parameter σ and the boundary condition b.

In [47] it has been shown that the DG-SEM mass matrices (2.14), (2.15) and the derivative
matrices (2.17), (2.18) satisfy Definition 2.3 with Q = MD and thus define an SBP
operator for the upwind and local Lax Friedrichs flux.

2.2 Entropy Condition

Weak solutions are often not unique and the correct weak solution needs to be identified.
We are only interested in solutions that describe the physical behavior of the problem
properly, i.e. the second law of thermodynamics should be obeyed. This means that the
total entropy of a physical system should not decrease. Since the mathematical entropy
is not built into the system of ODEs, an entropy condition needs to be added.
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Let us consider a one-dimensional system of hyperbolic conservation laws

ut + f(u)x = 000. (2.23)

A scalar function s = s(u) is called an entropy function if it is strongly convex and the
corresponding entropy variables v := ∂s

∂u provide a one-to-one mapping between the
conservative and the entropy space [120]. Contracting (2.23) with v⊤ from the left yields

v⊤(ut + f(u)x
)
= 000,

and by the definition of the entropy variables we get

v⊤ut = st.

An entropy flux f ent can be found by

v⊤∂f

∂x
=

(
∂s
∂u

)⊤ ∂f

∂u

∂u

∂x
=

(
∂f ent

∂u

)⊤ ∂u

∂x
=
∂f ent

∂x
, (2.24)

see [119, 120] for more details. This gives an entropy/entropy-flux pair (s, f ent) as well as
an entropy conservation law:

st + f ent
x = 0. (2.25)

However, (2.25) is only valid for smooth solutions but not for discontinuous ones, e.g.
when shocks develop in finite time. From a physical point of view, entropy can only
increase. Thus, (2.25) needs to be modified for discontinuous solutions and we get an
entropy inequality

st + f ent
x ≤ 0.

An important part in the construction of entropy stable schemes is the chain rule (2.24),
which is difficult to mimic in the discrete case. On the continuous level it holds that

v⊤
x f = vx − f ent

x .

Tadmor considered in [120] a first order FV discretization

(un)t +
1
Δx
(
fn,Nk+1/2 − fn,Nk−1/2

)
= 0,

to recover the chain rule (2.24) by carefully designing the numerical entropy fluxes fN.
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Fisher and Carpenter’s pioneering work [39] extended this to high-order numerical meth-
ods. They showed that if the discrete derivative matrix is an SBP operator, these low order
entropy fluxes can be extended to high order methods. Based on Tadmor’s FV frame-
work, high order entropy constant numerical fluxes can be constructed by satisfying the
Tadmor shuffle conditions [121]

JvK⊤s = JφK,JvK⊤f ent = JψK,
with the jump operator J·K and the entropy flux potentials

φ = v⊤u− s,

ψ = v⊤f − f ent.

The pair (φ,ψ) is called entropy/entropy flux potential.

For the construction of entropy stable DG-SEM schemes for typical problems in fluid
dynamics we refer to [17, 25, 26, 48, 142]. Entropy stable space-time DG-SEM schemes
have been constructed in [44], with an upwind flux in time and an entropy stable flux in
space.

2.3 Order of Convergence

Theoretical and practical error estimates for DG methods have been presented in the
literature. For element-wise polynomial approximations of degree p is was proven for
hyperbolic problems that an optimal convergence rate of p + 1

2 can be measured in the
L2 norm on general grids [70, 145]. On Cartesian grids, an optimal convergence rate of
p+ 1 can be proven [59]. The order of convergence might also depend on the choice of
numerical fluxes, and sometimes on whether p is odd or even.

However, numerical experiments give convergence rates of p+ 1 even for computational
meshes having no particular uniformity [107]. Even super-convergence rates of greater
or equal to 2p+ 1 can be achieved for special problems [4], but these convergence rates
depend on the chosen time-stepping method.
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3 Time Integration

Spatial discretization with DG-SEM results in a system of ordinary differential equations,
see (2.3) and (2.22). The ODE can be rewritten as an IVP

ut(t)−G(u) = 000, u(t0) = u0, (2.26)

with a possibly nonlinear function G. Disretizing first in space and then solving the
resulting ODE is called methods of lines (MOL).

An overview over numerical methods to solve problems of the form (2.26) can be found
in classical textbooks. Most of them are based on approximating un ≈ u(tn) in discrete
time points tn. Numerical time integration schemes are called implicit if they incorporate
unknown data un+1, otherwise they are called explicit.

We consider here Runge-Kutta (RK) time-stepping methods. An s-stage Runge-Kutta
method applied to the IVP (2.26) reads

u(tn+1) ≈ un+1 = un + Δtn
s∑

i=1

biG(u(tn + ciΔtn)),

with u(tn + ciΔtn) = un + Δtn
s∑

j=1

aijG(u(tn + cjΔtn)).
(2.27)

Different choices of the parameters aij, bi and ci lead to different RK methods. These
parameters can be expressed in a so-called Butcher tableau:

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...
cs as1 as2 . . . ass

b1 b2 . . . bs

=
c A

b

The corresponding RK method is explicit if A is lower triangular and implicit otherwise.

The most famous time-stepping schemes are the explicit and implicit Euler methods.
Applied to (2.22) they read

un+1 − un − ΔtG(un) = 000, (explicit Euler), (2.28)

and

un+1 − un − ΔtG(un+1) = 000, (implicit Euler). (2.29)
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Implicit schemes require solving a (non)linear equation system in every step. Explicit
schemes are easier to apply in each time step, but restrictions on the step size need to be
imposed to guarantee stability. These restrictions depend on the order of the temporal
method as well as on the order of spatial discretization.

For hyperbolic problems, the Courant-Friedrichs-Levy (CFL) condition is sufficient to
achieve stability. For a FV method with explicit Euler time integration, we obtain the
constraint

Δt < CFLmax
Δx

max
k,|n|=1

λk(u,n)
, (2.30)

with a dimensionless maximal CFL number and the eigenvalues λk of the Jacobian of the
inviscid flux [86]. For the explicit Euler method it holds CFLmax = 1. Equation (2.30)
is often used to calculate time steps by defining CFL < CFLmax and to compute Δt via
(2.30) .

In this thesis we are interested in implicit methods since we do not want any stability
constraint on the time-stepping width. In the next chapter we present a fully discrete
numerical discretization, a space-time DG-SEM, which also results in implicit schemes.
Methods to efficiently solve (non)linear systems of equations of the form (2.29) are dis-
cussed in Chapters 4 and 5.
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Chapter 3

Space-Time Discontinuous Galerkin
Methods

In the previous chapter we have discussed a semi-discrete method, where the partial
differential equation is first discretized in space, leaving the time variable continuous.
This results in a system of ordinary differential equations, and a numerical time-stepping
method is applied to solve the initial value problem. We presented the DG-SEM in space
and gave an overview over the concept of implicit Runge-Kutta time-stepping methods.

Today, state of the art computer architectures have reached a clock speed limit and the
trend is towards more rather than faster processors. Moreover, the sequential nature of
traditional time-stepping methods imposes limitations on the parallel performance. Pi-
oneering work about parallel time integration methods was published by Nievergelt in
1964 [97]. The philosophy of space-time methods is to treat time as an additional dimen-
sion [96]. This has several advantages, i.e. moving boundaries can be treated more easily
[126] and parallelization in time is possible [45], but also challenges, since the temporal
direction is special. It needs to follow a causality principle, with a solution later in time
only affected and determined by a solution earlier in time, never the other way around.

In this chapter we present a fully-discrete numerical scheme by applying the DG-SEM to
the spatial and temporal direction simultaneously. This results in a space-time method,
where (almost) no distinction is made between the spatial and temporal variables. Thus,
the advantages of discontinuous Galerkin methods, as h/p-adaptivity and excellent per-
formance on parallel computers, can be exploited in the temporal direction as well. We
focus on a space-time DG-SEM developed in [44], which provides an entropy stable
numerical scheme in a fully-discrete space-time domain.
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Figure 3.1: Space-time grid in one spatial dimension with three LGL nodes in the spatial and four LGL nodes in the temporal
direction in each space-time element.

We consider again the conservation law

ut +∇ · f(u,∇u) = g(u), (x, t) ∈ Ω × (0,T],
u(x, t) = b(t), x ∈ ∂Ω, t ∈ (0,T],
u(x, 0) = u0(x), x ∈ Ω,

(3.1)

here in one space dimension Ω ⊂ R, and refer to [44] for an extension to the multi-
dimensional case using a tensor product ansatz. In the following we treat time as an
additional dimension and therefore start by discretizing the two-dimensional space-time
domain Ω × [0,T] into non-overlapping elements. For simplicity we assume that all
elements have width Δx and height Δt. Let N t denote the number of elements in time
and N x the number of elements in space. Then we have space-time elements

Ωn,m := [xn, xn+1]× [tm, tm+1], n = 1, . . . ,N x, m = 1, . . . ,N t.

An example for such a space-time grid can be seen in Figure 3.1.

30



1 Space-Time Discretization

The space-time DG-SEM can be derived as a two-dimensional problem following the
steps in Chapter 2 by interpreting time as the second dimension. However, the DG-
SEM in the temporal direction is special and we discuss several properties connected to it
in this chapter. Thus, we present the derivation of the discretization here in more detail,
writing out the tensor product ansatz.

Similar to the semi-discrete case we first multiply the conservation law (3.1) by a test
function ψ := ψ(x, t) and integrate in space and time over each element Ωn,m:∫

Ωn,m

(
ut + f(u,ux)x

)
ψ dΩn,m = 000, n = 1, . . . ,N x, m = 1, . . . ,N t.

We map all physical elements to the reference element Ω̂ = [−1, 1]2 using the linear
maps

τ(t) = 2
t− tm

Δt
− 1, Δt = tm+1 − tm,

ξ(x) = 2
x− xn

Δx
− 1, Δx = xn+1 − xn.

This gives the conservation law (3.1) on the computational space

2
Δt

ũτ +
2
Δx

f̃(ũ, ũξ)ξ = 000, (ξ, τ) ∈ Ω̂ with Ω̂.

Again, we skip the tilde in the following to simplify the notation.

The change of variables results in

2
Δt

∫ 1

−1

∫ 1

−1
uτψ dξ dτ +

2
Δx

∫ 1

−1

∫ 1

−1
f(u,uξ)ξψ dξ dτ = 000.

Integration by parts in both directions yields the weak form

2
Δt

∫ 1

−1

((
uψ
)
|+1
−1 −

∫ 1

−1
uψτ dτ

)
dξ

+
2
Δx

∫ 1

−1

((
f(u,uξ)ψ

)
|+1
−1 −

∫ 1

−1
f(u,uξ)ψξ dξ

)
dτ = 000.

(3.2)
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Next, we approximate the solution u and the physical flux f on each space-time element
[−1, 1]2 by polynomials of degree pξ in space and pτ in time:

u(ξ, τ) ≃ uP(ξ, τ) =

Nξ∑
j=1

Nτ∑
k=1

ujkℓ
ξ
j (ξ)ℓ

τ
k (τ), (3.3)

f(u,uξ, ξ, τ) ≃ fP(ξ, τ) =

Nξ∑
j=1

Nτ∑
k=1

fjkℓ
ξ
j (ξ)ℓ

τ
k (τ), (3.4)

with ℓτk Lagrange polynomials of degree pτ = Nτ − 1 and ℓξj Lagrange polynomials of

degree pξ = Nξ − 1 based on the LGL nodes {τk}Nτ
k=1 and {ξj}

Nξ

j=1. The test functions ψ
are polynomials with the same Lagrange basis,

ψ(ξ, τ) ≃ ψP(ξ, τ) =

Nξ∑
j=1

Nτ∑
k=1

ψjkℓ
ξ
j (ξ)ℓ

τ
k (τ). (3.5)

In contrast to the spatial DG method discussed in Chapter 2, where the coefficients where
time-dependent, the coefficients in the space-time ansatz are constant on each space-time
element.

Inserting the approximations (3.3), (3.4) and (3.5) in (3.2) we get

2
Δt

∫ 1

−1

((
uPℓτk

)
|+1
−1 −

∫ 1

−1
uP(ℓτk )τ dτ

)
ℓξj dξ

+
2
Δx

∫ 1

−1

((
fP(uP,∇uP)ℓξj

)
|+1
−1 −

∫ 1

−1
fP(uP,uP

ξ )(ℓ
ξ
j )ξ dξ

)
ℓτk dτ = 0,

(3.6)

for j = 1, . . . ,Nξ and k = 1, . . . ,Nτ .

To connect the space-time elements, we introduce numerical surface fluxes in the solution
uN and in the physical flux fN. Special attention has to be given to the temporal flux.
The temporal direction needs to follow a causality principle: the solution later in time is
only depending by the solution earlier in time. This can be described by the upwind flux
(2.2). It has been show that this flux together with a spatial numerical surface flux based
on split-form results in an entropy stable space-time DG-SEM scheme [44].

Replacing the surface fluxes in (3.6) by numerical fluxes and approximating all integrals
with Gaussian quadrature based on the same LGL nodes as the Lagrange polynomials
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yields the implicit weak space-time discretization

2ωξ
j

Δt

((
uN
)
Nτ j
δkNξ

−
(
uN
)
1jδk1 −

Nτ∑
l=1

ωτ
l ℓ

τ
kτ (τl)ulj

)

+
2ωτ

k
Δx

((
fN
)
kNξ
δNτ j −

(
fN
)
k1δ1j −

Nξ∑
m=1

ωξ
mℓ

ξ
jξ(ξm)fkm

)
= 0,

(3.7)

for j = 1, . . . ,Nξ, k = 1, . . . ,Nτ .

Defining the temporal matrices

Mτ = diag
(
[ωτ

1 , . . . , ω
τ
Nτ

]
)
∈ RNτ×Nτ ,

(Dτ )ij = ℓ̇τj (τi) ∈ RNτ×Nτ ,

Sτ = diag
(
[−1, 0, . . . , 0, 1]

)
∈ RNτ×Nτ ,

(3.8)

and the spatial matrices

Mξ = diag
(
[ω1,

ξ . . . , ωξ
Nξ
]
)
∈ RNξ×Nξ ,

(Dξ)ij = ℓ̇ξj (ξi) ∈ RNξ×Nξ ,

Sξ = diag
(
[−1, 0, . . . , 0, 1]

)
∈ RNξ×Nξ ,

(3.9)

we can write (3.7) in compact form on each reference element using the same notation
as in the previous chapter:

2
Δt

(
Mξ ⊗ SτuN −Mξ ⊗

(
(Dτ )⊤Mτ

)
uP
)

+
2
Δx

(
Sξ ⊗Mτ fN −

(
Dξ⊤Mξ

)
⊗Mτ fP

)
= 000.

(3.10)

2 Properties

In this section we present some properties of space-time DG-SEM with focus on the
temporal discretization. We first discuss the equivalence of temporal DG-SEM to certain
implicit Runge-Kutta schemes, followed by some stability results.

2.1 DG-SEM and Lobatto IIIC

DG-SEM applied to the temporal component can be connected to Lobatto IIIC Runge-
Kutta schemes [18, 85].
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Let us consider the initial value problem

ut = f(u, t), t ∈ (0,T],

u(0) = u0.
(3.11)

DG-SEM in Time

Discretizing the ODE (3.11) using a DG-SEM mapped to the reference interval [−1, 1]
leads to a scheme that can be expressed in matrix form as

BuN −D⊤Mu =
Δt
2
Mf(u). (3.12)

The numerical solution in the current time step is obtained by solving (3.12) and choosing
uN as an upwind numerical flux.

Lobatto IIIC Schemes

Given the ODE (3.11), an s-stage Lobatto Runge-Kutta method reads

u(tn+1) ≈ un+1 = un + Δt
s∑

i=1

bi f(un
i , tn + ciΔt),

un
i = un + Δt

s∑
j=1

aij f(un
j , tn + cjΔt), i = 1, . . . , s.

(3.13)

Lobatto methods can be specified via the coefficients aij, bi and cj by the so-called simpli-
fying assumptions [69]:

B(p) :
s∑

j=1

bjck+1
j =

1
k
, k = 1, . . . , p, (3.14)

C(q) :
s∑

j=1

aijck−1
j =

ckj
k
, i = 1, . . . , s, k = 1, . . . , q, (3.15)

D(r) :
s∑

i=1

bick−1
i aij =

bj
k
(1 − ckj ), j = 1, . . . , s, k = 1, . . . , r. (3.16)
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Lobatto IIIC schemes of stage s are given for B(2s− s), C(s−1) and D(s−1). Moreover,
ai1 = bi for i = 1, . . . , s, [5, 27, 34].

The Butcher tableaus for s-stage Lobatto IIIC methods for s ∈ {2, 3, 4} are given below.

0 1
2 −1

2

1 1
2

1
2

1
2

1
2

0 1
6 −1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

0 1
12 −

√
5

12

√
5

12 − 1
12

1
2 −

√
5

10
1
12

1
4

10−7
√

5
60

√
5

60
1
2 +

√
5

10
1
12

10+7
√

5
60

1
4 −

√
5

60

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

Equivalence

In [18] it has been shown that an SBP method defined on the reference interval [−1, 1]
is equivalent to a certain implicit Runge-Kutta method, in the sense that they lead to the
same discrete solution. DG-SEM is known to have the SBP property [47]. With the next
theorem, the algebraic equivalence of DG-SEM in time to Lobatto IIIC schemes follows:

Theorem 3.1 ([85]). The DG-SEM scheme (3.12) is algebraically equivalent to the follow-
ing Nτ -stage implicit Runge-Kutta method:

un+1 = un + Δt
Nt∑
i=1

bi fP(un
i , tn + ciΔt),

un
i = un + Δt

Nt∑
j=1

aij fP(un
j , tn + cjΔt), i = 1, . . . ,Nτ ,

(3.17)
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with

ai1 = b1, i = 1, . . . ,Nτ ,

aij =
∫ ci

0
ℓj(t) dt− b1ℓj(c1), i = 1, . . . ,Nτ , j = 2, . . . ,Nτ ,

and the Lagrange polynomials

ℓi(t) :=
Nt∏

j=2,j̸=i

t− cj
ci − τj

, i = 2, . . . ,Nτ ,

with ℓ2 ≡ 1 if Nt = 2 and the LGL nodes ci and weights bi mapped to [0, 1].

It can be shown that aij, bi and cj satisfy the simplifying assumptions for Lobatto IIIC
methods. Thus, it follows that the Nτ -stage implicit Runge-Kutta method is actually a
Lobatto IIIC method.

2.2 Conversion Between DG Operators and Butcher Tableau

It might be convenient to rewrite the DG-SEM in matrix form (3.12) into a Lobatto IIIC
Butcher tableau or reversely. In the following we denote the elements of the Butcher
tableau by A, b and c and the DG-SEM operators as in (3.8).

Mapping the LGL nodes to the interval [0, 1] gives the nodes b in the Butcher tableau,
see Table 3.1. The LGL weights multiplied by a factor 1

2 give the weights c, see Table 3.2.

Table 3.1: LGL nodes on [−1, 1] and [0, 1].

N 2 3 4

LGL nodes on [−1, 1] −1, 1 −1, 0, 1 −1,- 1√
5 , 1√

5 ,1

LGL nodes mapped to [0, 1] 0, 1 0, 1
2 , 1 0, 1

2 −
√

5
10 , 1

2 +
√

5
10 ,1

In [18, 89] a formula is presented to calculate a Butcher tableau given an SBP operator.
Since the DG-SEM discretization yields an SBP-SAT operator [47], this can be applied,
yielding:

A =
1
2
(
D+M−1e1e

⊤
1
)−1

,

b =
1
2
M111,

c =
τ + 111

2
,
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Table 3.2: LGL weights on [−1, 1] and [0, 1].

N 2 3 4

LGL weights on [−1, 1] 1, 1 1
3 , 4

3 , 1
3

1
6 , 5

6 , 5
6 , 1

6

LGL weights mapped to [0, 1] 1
2 , 1

2
1
6 , 2

3 , 1
6

1
12 , 5

12 , 5
12 , 1

12

with τ = [τ1, . . . , τNt ]
⊤ the vector of LGL nodes and e1 = (1, 0, . . . , 0)⊤ ∈ RNt .

Reversely, given a Lobatto IIIC Butcher tableau the corresponding DG-SEM operators
on the reference interval [−1, 1] can be calculated as

M = 2diag
(
[b]
)
,

D =
1
2
A−1 −M−1e1e

⊤
1 .

2.3 Stability

Lobatto IIIC methods, and hence DG-SEM in time, satisfy several desirable stability
properties that make them suitable for stiff problems. The stability function of Lobatto
IIIC methods is a Padé approximant of the exponential function.

Theorem 3.2 (Padé approximant of ez, [54]). The (k,m)-Padé approximant

rkm(z) =
pkm(z)
qkm(z)

to the exponential function ez is given by

pkm(z) = 1 +

k∑
j=1

(k+ m− j)! k!
(k+ m)! (k− j)!

· z
j

j!
,

qkm(z) = 1 +

m∑
j=1

(k+ m− j)!m!
(k+ m)! (m− j)!

· (−z)j

j!
.

For linear problems, the convergence rate of s-stage Lobatto IIIC methods may be as high
as 2s− 2 if stiff components are sufficiently well resolved:

Theorem 3.3 ([54, 69]). For s ∈ N, the s-stage Lobatto IIIC scheme is of order 2s−2 and
its stability function R(z) is given by the (s−2, s)-Padé approximation of the exponential
function ez.
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From Theorems 3.1 and 3.3 it directly follows that the stability function of the temporal
DG-SEM discretization is given by a Padé approximation of the exponential function.
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Chapter 4

Solving Equation Systems

As described in Chapters 2 and 3, discontinuous Galerkin discretizations with implicit
time-stepping methods, either with a method of lines or a space-time ansatz, result in
(non)linear equation systems. These have block structure, with block sizes depending
on the number of unknowns in each DG element. For high order DG schemes the
block sizes grow with increasing order, resulting in large and dense blocks. It is an on-
going research task to find competitive solvers for implicit DG schemes, especially for
the three-dimensional case [137]. Explicit time-stepping schemes are limited by stability
constraints, which get more restrictive for higher order spatial discretizations. For thin
elements, which occur e.g. in boundary layers of turbulent flows, this stability restric-
tion results in extremely small time steps. Explicit methods, on the other hand, are easy
to implement and do not require solving an equation system in each iteration. For im-
plicit time-stepping methods larger time steps can be chosen, which reduces the total
number of temporal iterations needed to approximate the solution. But each iteration
requires the solution of (non)linear equation systems of the form (2.26). This results in
a more complex implementation, especially in the case of high-order three-dimensional
problems. To be competitive with explicit schemes, these systems have to be solved effi-
ciently. Hence, storage and computational time need to be considered when choosing a
suitable solver.

In particular for three-dimensional problems it is too expensive to use direct solvers and
efficient iterative methods need to be constructed. Several authors have worked on the
construction of such solvers for high order spatial DG discretizations with implicit time-
stepping methods, for instance for the two-dimensional Euler equations [139], for the
two-dimensional compressible Navier-Stokes equations [7], for the three-dimensional
unsteady Navier-Stokes equations [15], for the three-dimensional incompressible Navier-
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Stokes equations [42] as well as for the two- and three-dimensional compressible Navier-
Stokes equations [99, 101, 102]. The aim of these articles is to find efficient techniques to
solve the nonlinear equations systems, mostly with the help of a multigrid approach or by
constructing efficient (standard LU or block Jacobi) preconditioners for the Krylov solver.
High order space-time DG discretizations are considered for the two-dimensional incom-
pressible Navier–Stokes equations [106], for the two-dimensional advection-diffusion
equations [125, 127] and for the three-dimensional incompressible Navier-Stokes equa-
tions [122].

In this chapter we present methods to solve equation systems arising from discretized
partial differential equations. We focus on Newton-Krylov methods since easy to im-
plement matrix-free variants exist and the sparsity of the corresponding Jacobian can
be exploited. We start by presenting Newton’s method and inexact Newton methods.
Then we discuss Krylov subspace methods for the solution of the linear systems within
Newton’s method with focus on GMRES and its convergence properties. We finish this
chapter by presenting Jacobian-free Newton-Krylov methods.

1 Newton’s Method

In this section we give a short overview of the parts of the theory relevant to the needed
methodology in this thesis and refer to [31] and [75] for more details.

Newton’s method is one of the most classical iterative methods in numerical analysis to
solve nonlinear equation systems. The idea is to linearize the corresponding root find-
ing problem by replacing the nonlinear problem with a sequence of linear problems.
Newton’s method is locally convergent, provided the initial guess is close enough to the
unknown zero. However, it is not predictable what happens outside the region of con-
vergence.

Given a root finding problem

F(u) = 000, (4.1)

with a differentiable nonlinear function F, one Newton iteration reads

solve
∂F(u)

∂u

∣∣∣∣
u(k)

Δu = −F(u(k)),

u(k+1) = u(k) + Δu, k = 0, 1, 2, . . .
(4.2)

with an initial guess u(0). (4.2) is terminated if

∥F(u(k+1))∥ ≤ TOL · ∥F(u(0))∥, (4.3)
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for a chosen tolerance TOL.

The so-called standard assumptions are introduced in [75] to prove convergence:

Definition 4.1 (Standard Assumptions, [75]). We make the following standard assump-
tions on F:

1. Equation (4.1) has a solution u∗.

2. F′ : Ω 7→ RN×N is Lipschitz continuous with Lipschitz constant γ.

3. F′(u∗) is nonsingular.

Let B(r) denote the ball of radius r about u∗, i.e. B(r) = {u|∥u−u∗∥ < r}. Then the
following theorem shows convergence of the Newton iteration.

Theorem 4.2 ([75]). Let the standard assumptions hold. Then there exists a δ > 0 such
that if u(0) ∈ B(δ) the Newton iteration (4.2) converges quadratically to u∗.

An illustration of Newton’s method in one dimension can be seen in Figure 4.1.

u

F(u)
F(u)

u(0)u(1)u(2)

u∗

Figure 4.1: Illustration of Newton’s method in one dimension.
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1.1 Inexact Newton Methods

Newton’s method as presented in (4.2)-(4.3) has two drawbacks, which are especially
impractical for large systems, i.e. systems resulting from high order DG discretizations:

1. The Jacobian has to be computed in each iteration.

2. The linear system has to be solved exactly in each iteration.

We discuss a solution for the first problem in the last section of this chapter. For the
second problem, we can use inexact Newton methods. The linear system is solved using
an iterative scheme, for example with some Krylov subspace methods, which are the
subjects of the next section. Any iterative method can be terminated prematurely, based
on the residual of the linear equation system. An approximate solution Δ̃u to the Newton
update Δu in step k is accepted if the relative residual is below a certain tolerance for a
forcing term ηk ∈ R. The inexact Newton method reads∥∥∥∥∥ ∂F(u)∂u

∣∣∣∣
u(k)

Δ̃u+ F(u(k))

∥∥∥∥∥ ≤ ηk∥F(u(k))∥,

u(k+1) = u(k) + Δ̃u, k = 0, 1, 2, . . . .

(4.4)

When choosing the forcing terms ηk ∈ R one has to keep in mind that it is not necessary
to solve the first few linear systems very accurately. While far away from the solution it
is not important to find the optimal search direction. To search in the generally correct
direction is sufficient.

Eisenstat and Walker [35] introduced a method to choose forcing terms which fulfill the
following theorem:

Theorem 4.3 ([75]). Let the standard assumptions hold. Then there exists a δ > 0 such
that if u(0) is in a δ-neighborhood of u∗ and {ηk} ⊂ [0, η] with η < 1, then the
inexact Newton method (4.4) converges linearly. Moreover, if ηk → 0, convergence
is superlinear and if ηk ≤ Kη∥F(u(k))∥p for some Kη > 0 and p ∈ [0, 1], then the
convergence is superlinear with order p+ 1.

Eisenstat and Walker suggested to choose the sequence

ηAk = γ
∥F(u(k))∥2

∥F(u(k−1))∥2 , γ ∈ (0, 1],
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and showed that if this sequence is bounded away from one uniformly, it has the con-
vergence behavior required by Theorem 4.3 and the inexact Newton method converges
quadratically. Thus, one can choose η0 = ηmax for some ηmax < 1 and

ηBk = min(ηmax, η
A
k ), k > 0.

To avoid unexpected decrease in ηk they recommended to refine the definition to

ηCk =


ηmax, k = 0,
ηBk , k > 0, γη2

k−1 ≤ 0.1,
min

(
ηmax,max(ηAk , γη

2
k−1)

)
, k > 0, γη2

k−1 > 0.1.

In order to not oversolve the final stages, Eistenstat and Walker suggested to finally com-
pute

ηk = min

(
ηmax,max

(
ηCk , 0.5

TOL · ∥F(u(0))∥
F(u(k))

))
,

for the tolerance TOL at which the original Newton iteration would terminate, see (4.3).

2 Krylov Subspace Methods

Krylov subspace methods are one of the most important iterative techniques available
for solving large non-symmetric linear systems such as the one in (4.2) [112, 114]. They
approximate the solution x ∈ Rm of a linear system

Ax = b, (4.5)

for a nonsingular matrix A ∈ Rm×m and vectors x,b ∈ Rm using projections onto
Krylov subspaces.

Definition 4.4 (Krylov subspace, [112]). The kth Krylov subspace is defined as

Kk = span{r0,Ar0, . . . ,A
k−1r0} = Kk(A, r0),

with r0 = Ax0 − b for an initial guess x0.

Thus, approximations obtained from Krylov subspace methods are of the form

A−1b ≈ xk = x0 + qk−1(A)r0, (4.6)
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with qk−1 a polynomial of degree k− 1.

A Krylov subspace method is based on computing an orthonormal basis of the space
x0 +Kk(A, r0) and calculating the next iterate using projection. This process needs A
only for matrix-vector multiplications, which can be exploited if A is sparse.

Different Krylov methods to approximate solutions of linear systems (4.5) are suitable
for different properties of the system matrix A and are based on different constraints
to build the approximations (4.6). Some methods put the focus on an optimal method
while having a bigger demand on storage and CPU time. Others are based on a short
recurrence and have constant storage and CPU time per iteration. Moreover, there exist
well-known methods based on the normal equations A⊤Ax = A⊤b.

Some of the most popular Krylov subspace methods are the conjugate gradient (CG)
method by Hestenes and Stiefel [58] for symmetric positive definite matrices, the general-
ized minimum residual (GMRES) method by Saad and Schultz [114] and the biconjugate
gradient stabilized (BiCGSTAB) method by Van der Vorst [131] for nonsymmetric matri-
ces. We refer to [94] for an overview over the current state of the art of Krylov subspace
methods.

2.1 GMRES

The generalized minimal residual method (GMRES) proposed by Saad and Schultz 1986
in [114] is based on computing the optimal iterate w.r.t. the 2-norm of the residual. GM-
RES is an iterative method to find numerical solutions of nonsymmetric linear equation
systems. In every iteration, one matrix-vector product and a few scalar products have to
be computed. Thus, the method is very efficient if only a few iterations are needed to
approximate the solution.

In the ith GMRES iteration the minimization problem

min
x∈x0+Ki

∥Ax− b∥2

has to be solved. An orthonormal basis {v1, . . . ,vi} of the Krylov subspace can be con-
structed using Arnoldi’s method [3], where (modified) Gram-Schmidt is used to construct
the basis. The advantage of Arnoldi’s method is that it can be implemented efficiently
using a Hessenberg matrix. A matrix Vi ∈ Ri×m is constructed with the orthonormal
basis as columns. Then the upper Hessenberg matrix with an additional last row with
one entry H̃i = V⊤

i+1AVi ∈ Ri+1×i is transformed to an upper triangular matrix, for
example using Givens rotations.

44



In Algorithm 4.1 a GMRES pseudocode from [112] can be seen.

1: GMRES(A,b,x):
2: Choose x0 and calculate r0 = Ax0 − b
3: if r0 == 000 then
4: END
5: else
6: v1 =

r0
∥r0∥

7: for j = 1, 2, . . . ,m do
8: wj = Avj
9: for i = 1, . . . , j do

10: hij = w⊤
j vi

11: wj = wj − hijvi
12: end for
13: hj+1,j = ∥wj∥2
14: if hj+1,j == 0 then
15: Set m = j and BREAK
16: else
17: vj+1 =

wj

hj+1,j

18: end if
19: end for
20: Vm := [v1, . . . ,vm], H̃m = {hij}j=1,...,m

i=1,...,m+1

21: Compute ym = argminy∥∥r0∥2 − H̃my∥ and xm = x0 +Vmym
22: end if

Algorithm 4.1: Pseudocode GMRES algorithm [112].

Convergence Properties

The following convergence results are known for GMRES, depending on the properties
of A ∈ Rm×m. We refer to [75] for the proofs of the next five theorems.

Definition 4.5 ([75]). The set of nth degree residual polynomials is defined as

Pn = {p|p is a polynomial of degree n and p(0) = 1}.

In order to gain insight into the efficiency of the GMRES algorithm, the following resid-
ual estimate is useful for diagonalizable A.

Theorem 4.6. Let A = VΛV−1 ∈ Rm×m be a nonsingular diagonalizable matrix. Let
xn be the nth GMRES iterate. Then for all polynomials pn ∈ Pn it holds that

∥rn∥2

∥r0∥2
≤ κ2(V) max

z∈σ(A)
|pn(z)|.
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Moreover, we can estimate the number of GMRES iterations needed to find a solution
depending on the properties of A.

Theorem 4.7. Let A ∈ Rm×m be a nonsingular diagonalizable matrix and assume that
it has n distinct eigenvalues. Then GMRES will terminate in at most n iterations.

Theorem 4.8. Let A ∈ Rm×m be a nonsingular normal matrix. Let b be a linear com-
bination of n eigenvectors ui of A,

b =

n∑
l=1

γluil .

Then the GMRES iteration with x0 = 000 will terminate in at most n iterations.

For more general matrices A, the following result holds:

Theorem 4.9. Let A ∈ Rm×m be nonsingular and let xn be the nth GMRES iterate.
Then for all polynomials pn ∈ Pn it holds that

∥rn∥2 = min
p∈Pn

∥p(A)r0∥.

The estimate of the number of GRMES iterations for general matrices is less exact than
the ones before.

Theorem 4.10. Let A ∈ Rm×m be nonsingular. Then the GMRES algorithm will find
the solution within m iterations.

From Theorem 4.6 it follows that GMRES converges fast if the eigenvalues are clustered.
In this case, the polynomial with zeros at the eigenvalues can be chosen. For nonnormal
matrices, Theorem 4.9 states that the distribution of the eigenvalues is more useful to
make statements about convergence. However, for a strongly nonnormal matrix, this
can fail. A matrix with an arbitrary eigenvalue distribution can be constructed such that
any nonincreasing convergence curve is possible for GMRES [51], i.e. that the residual is
constant until it drops to zero in the very last step.

2.2 Preconditioning

From Theorems 4.6 and 4.9 it follows that the convergence speed of Krylov subspace
methods strongly depends on the system matrix A. Krylov subspace methods applied to
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operators arising from discretized PDEs usually converge slowly since the spectrum of a
discrete operator will not be clustered for any reasonable discretization. The same holds
for stiff problems. Consequently, preconditioners need to be applied to get an efficient
Krylov subspace method.

Preconditioning is the technique of transforming the original linear system

Ax = b

into a linear system with the same solution, but easier to solve with an iterative method
[113].

Let PL ∈ Rm×m and PR ∈ Rm×m be nonsingular matrices. Then

Ax = b ⇔ PLAPRz = PLb, PRz = x. (4.7)

PL is called left preconditioner and PR right preconditioner and we refer to right precondi-
tioning if PL = I and to left preconditioning if PR = I. These precondition techniques
differ in their influence on the iterative method w.r.t. computational effect and imple-
mentation.

Preconditioned GMRES

We summarize here the influence of both preconditioning techniques on the GMRES
algorithm, and refer to [113] for more details.

In the case of left preconditioning, the residual rP0 = PAx−Pb = Pr0 changes. This
influences the termination criteria of the method. The corresponding Krylov subspace is
given by

Kk(PA, r
P
0) = span{rP0 ,PArP0 , . . . , (PA)k−1rP0}.

On the other hand, using right preconditioning leaves the residual rP0 = APz0 − b =
Ax0 − b unchanged. The corresponding Krylov space is given by

Kk(AP, r0) = span{r0,APr0, . . . , (AP)k−1r0}.

In consequence, Ax has to be replaced by APx in the GMRES Algorithm 4.1. This
implies that the preconditioner is applied once in the beginning and once in the end, see
the pseudocode from [112] in Algorithm 4.2. The only changes to Algorithm 4.1 are the
application of the right preconditioner P in lines 8 and 21. Another advantage of right
preconditioning is that the termination criterion does not need to be adapted since the
right hand side is not changed. Therefore, we always refer to right preconditioning when
mentioning preconditioning GMRES in the remainder of this thesis.
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1: GMRES(A,b,x,P):
2: Choose x0 and calculate r0 = Ax0 − b
3: if r0 == 000 then
4: END
5: else
6: v1 =

r0
∥r0∥

7: for j = 1, 2, . . . ,m do
8: wj = APvj
9: for i = 1, . . . , j do

10: hij = w⊤
j vi

11: wj = wj − hijvi
12: end for
13: hj+1,j = ∥wj∥2
14: if hj+1,j == 0 then
15: Set m = j and BREAK
16: else
17: vj+1 =

wj

hj+1,j

18: end if
19: end for
20: Vm := [v1, . . . ,vm], H̃m = {hij}j=1,...,m

i=1,...,m+1

21: Compute ym = argminy∥∥r0∥2 − H̃my∥ and xm = x0 +PVmym
22: end if

Algorithm 4.2: Pseudocode GMRES algorithm with preconditioner from [112].

3 Jacobian-free Newton-GMRES

As mentioned before, Newton’s method (4.2)-(4.3) has two drawbacks:

1. The Jacobian has to be computed in each iteration.

2. The linear system has to be solved exactly in each iteration.

For the latter problem we have already presented methods to terminate the solver prema-
turely using GMRES and Eistenstat and Walker’s termination criteria [35].

Instead of computing the Jacobian, approximations can be used. An extensive overview
of Jacobian-free Newton-Krylov (JFNK) methods is presented in [78]. The idea is to
replace the matrix-vector product in (4.2) by a difference quotient

∂F(u(k))

∂u
Δu ≈ F(u(k) + εΔu)− F(u(k))

ε
, (4.8)
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to get a Jacobian-free Newton-GMRES. The parameter ε has to be chosen carefully. The
approximation improves for very small ε, but cancellation errors occur. A simple choice
for a parameter that is moderately small but avoids cancellation is

ε =

√eps
∥q∥2

, (4.9)

with the machine accuracy eps [103].

GMRES performs better than other iterative methods in the Jacobian-free context since
the vectors in matrix-vector multiplications are normalized. The preconditioned matrix-
vector product is given by

∂F(u(k))

∂u
PΔu ≈ F(u(k) + εPΔu)− F(u(k))

ε
. (4.10)

One drawback of Jacobian-free solvers is the difficulty to construct a preconditioner for
the GMRES solver without constructing the Jacobian. In Chapter 5 we discuss the con-
struction of multigrid preconditioners using a replacement operator in order to avoid
calculating the Jacobian of the original system F.
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Chapter 5

Multigrid Methods

Multigrid (MG) methods are a class of iterative methods specifically designed to solve
equation systems arising from discretized differential equations. Pioneering work dates
back to 1964, where a multigrid algorithm for the Poisson equation on a square was for-
mulated [37]. MG methods are linearly convergent and it has been demonstrated for a
large class of partial differential equations, amongst others for the Navier-Stokes equa-
tions, that so-called textbook multigrid efficiency can be achieved. This means that the
convergence rate is independent of the mesh size and the solution can be approximated
in only a few iterations. Multigrid solvers are a standard tool in many codes to solve
differential equations, even though the theory is established only for elliptic problems
in most cases. Good introductions to the basic principles of multigrid methods can be
found in [22, 52, 124, 141].

For many differential operators with periodic boundary conditions it has been noticed
that the eigenvectors of the discretized problem are discrete evaluations of the eigenfunc-
tions of the analytic problem, which happen to be periodic. The fundamental idea of
multigrid methods is to divide the error of the current iteration into low and high fre-
quency parts. A so-called smoother damps the high frequency parts in a few iterations.
The low frequency parts can be approximated on a coarser grid, where the transformed
problem is taken care of in a space with fewer unknowns using the same smoother. This
leads to a recursive method on multiple grids. Applying this procedure iteratively results
in a multigrid method.

In this chapter we first explain the concept of basic iterative methods before we describe in
more details the elements of geometric multigrid methods for linear problems. We then
summarize the basic methodology of the local Fourier analysis, a technique to analyze
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multigrid methods and finish this chapter by discussing multigrid preconditioners.

1 Stationary Iterative Methods

As we have seen in previous chapters, solving differential equations numerically results in
linear equation systems

Ax = b, (5.1)

with A ∈ Rm×m and x,b ∈ Rm. Classical stationary iterative schemes are fixed-point
methods to solve (5.1). We refer to [113] for a good overview over the history of iterative
methods from Gauss to modern techniques.

Assume that we have an approximation x̃ of the solution x. The algebraic error

e := x̃− x (5.2)

is not necessarily accessible since x is unknown. On the other hand, the residual

r := Ax̃− b (5.3)

is easy to compute. These two quantities are connected via the residual equation

Ae = r. (5.4)

We can solve (5.4) for the unknown algebraic error e and with the use of (5.2) and (5.3)
we are able to calculate the solution x:

x = (I−A−1A)x̃+A−1b. (5.5)

However, (5.5) uses the exact inverse A−1 of the system matrix A. Thus, we could just
solve (5.1) directly. The idea is to replace A−1 by some non-singular approximation N−1

to get

x ≈ (I−N−1A)x̃+N−1b.

Doing this approximation iteratively yields in the kth step a linear fixed point iteration

x(k) = Mx(k−1) +N−1b, (5.6)

with M := I−N−1A, i.e. A = N−NM, for an initial guess x(0). Moreover, M as
well as N−1 are independent of the iteration count k. Nx = NMx + b is consistent
with Ax = b and if x is a fixed point of (5.6), it solves the original problem (5.1).
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Several choices of N correspond to well-known iterative methods, see for instance [141].
We want to mention for example Richardson, Gauss-Seidel, Jacobi and successive over-
relaxation (SOR), which are given by

NR = I,

NGS = D,

NJA = L+D,

NSOR =
1

ω(2 − ω)
(D+U)−1D(D+ L),

(5.7)

with L the strict lower left, D the diagonal and U the strict upper right part of A and a
relaxation factor ω [112, 124, 141].

The convergence of iterative methods (5.6) depends on the spectral radius of the system
matrix M:

Theorem 5.1 ([141]). A linear iterative scheme (5.6) converges for any b ∈ Rm to the so-
lution of (5.1) if and only if ρ(M) < 1. The spectral radius ρ(M) is called the asymptotic
convergence factor.

The asymptotic convergence factor can be interpreted as the the worst factor by which the
error is reduced in each iteration. It is called asymptotic since it predicts the worst-case
error reduction over many iterations, but might in general not predict the behavior of
the error for a single iteration [22].

From Theorem 5.1 it is clear that small values of ρ(M) result in a fast convergence rate.
However, for the methods presented so far, we usually get ρ(M) ≈ 1 for a fine dis-
cretization, which results in slow convergence, i.e. deteriorating convergence after a few
iterations [22]. This behavior is caused by the fact that high frequency error modes are
damped efficiently in the first iterations, but not low frequency error components [52].
However, these components can be mapped onto a coarser grid, where their frequency
changes and they can be damped efficiently. This method is called multigrid due to the
multilevel grid hierarchy the problem is considered on, and is presented in the next sec-
tion.

2 Geometric Multigrid

The pioneering multigrid method was designed 1964 in [37] for the Poisson equation,

−uxx = f(x), x ∈ (0, 1), f ∈ C((0, 1),R),
u(0) = u(1) = 0.

(5.8)
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Later it was generalized to other problems [141]. These methods are referred to as geomet-
ric multigrid methods, since they are based on discretizations and meshing the compu-
tational domain. An important extension of geometric methods are algebraic multigrid
(AMG) methods, which are designed for problems where no partial differential equa-
tion or geometrical problem background is used to construct the multilevel hierarchy.
We consider in the following only geometric multigrid methods and call them simply
multigrid methods. For more information about AMG we refer to [115, 124].

Discretizing (5.8) with a second order finite difference discretization withm+1 discretiza-
tion points and fixed mesh width Δx = 1

m+1 results in the system

Au = b,

with

A =
1

Δx2


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ∈ Rm−1×m−1,

b =

 f(x1)
...

f(xm−1)

 ∈ Rm−1.

The eigenvalues of A are given by

λk =
4

Δx2 sin2
(
θk
2

)
, θk =

kπ
m
, k = 1, . . . ,m− 1,

and the corresponding eigenvectors by

ωk =
(
sin(θk), sin(2θk), . . . , sin((m− 1)θk)

)⊤
, k = 1, . . . ,m− 1. (5.9)

For Δx → 0 they are the discrete evaluations of the eigenfunctions

ϕ(x) = sin(kπx), k ∈ N,

of −uxx, which are sine functions of increasing oscillation satisfying the boundary con-
ditions. The eigenvectors can be divided into low frequency, also called smooth, and
high frequency, also called oscillatory, vectors. This can be seen in Figure 5.1 for m = 10,
where the upper five plots show low frequencies and the lower four plots high frequencies.
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In general, we can classify the frequency of the eigenvectors (5.9) in the following way:

ωk is a mode of

{
low frequency, if k = 1, . . . , m2 ,
high frequency, if k = m+1

2 , . . . ,m− 1.
(5.10)

Figure 5.1: Eigenvectors of the one-dimensional discretized Poisson equation for m = 10 on the fine grid: low frequencies
top, high frequencies bottom.

For a coarse grid defined by dropping every other grid point, only the smooth eigenvectors
can be represented without loosing information about some frequencies, see Figure 5.2.
In fact, the high frequency vectors are not distinguishable from the low frequency ones on
the coarse grid. In other words, only low frequency modes are visible on the coarse grid.
Moreover, some of the low frequencies are classified as high frequencies on the coarser
grid since this grid only consists of half of the nodes.

This observation leads to the simple idea behind multigrid algorithms: Classical iterative
methods as (5.7) damp high frequency error modes in a few iterations, while working
poorly on low frequency modes [52]. The latter ones can without loss of information be
represented on a coarser grid, where some of them appear as high frequencies and can
be damped using the same iterative method as on the fine grid. Due to their property
to smoothen high frequency error modes, these iterative methods are called smoothers in
this context.

Multigrid methods usually consist of the following steps: On the fine level, the high
frequency error parts are smoothed. On the coarse level, the residual equation (5.4) is
solved for the error. Then the fine level solution is corrected by the prolongated error
from the coarse level. This can be done iteratively on a hierarchy of grids Ωℓ, where
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Figure 5.2: Eigenvectors of the one-dimensional discretized Poisson equation for m = 10 displayed on every other grid point.

each grid is denoted by its level ℓ, with a smaller index corresponding to a coarser grid.
A restriction operator Rℓ

ℓ−1 is used to transfer a grid function from level ℓ to the next
coarser level ℓ− 1 and a prolongation operator Pℓ−1

ℓ for the reverse operation.

There exist several options on the coarsest grid: either the problem is solved using an
iterative method, or it is solved directly. Another option is to not solve the coarse grid
problem but to apply the smoother, possibly several times.

Multigrid methods are tailored to the differential equation to be solved. When consid-
ering a different PDE, the steps described above have to be repeated: The eigenfunctions
of the continuous operator and their discrete counterparts have to be calculated. Next,
the coarse space has to be defined and it has to be determined which eigenvectors can be
represented on this space. With this information at hand, a smoother can be chosen to
take care of the high frequency error components. Thus, the classification of high and low
frequency error components depends on both the equation to be solved and the numer-
ical discretization method applied to the PDE. Moreover, all multigrid components, i.e.
smoother, restriction and prolongation, need to be chosen accordingly. For space-time
discretizations, a space-time multigrid method can be applied, which includes coarsening
in the temporal direction.

2.1 Elements of Multigrid

Algorithm 5.1 shows the pseudo code for one multigrid iteration to approximate the so-
lution of a linear system Ax = b. Here, we denote the smoothing operators of the form
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(5.6) on grid level ℓ by MS,ℓ and NS,ℓ and the system matrix and right hand side by
Aℓ and bℓ. These operators are discussed in more details in the following subsection.
Algorithm 5.1 gives rise to an iterative method of the form

xk+1
ℓ = MMGx

k
ℓ +N−1

MGbℓ. (5.11)

1: MG(xℓ,bℓ, ℓ):
2: xℓ = MS,ℓxℓ +N−1

S,ℓbℓ (pre-smoothing)
3: if ℓ > 0 then
4: rℓ−1 = Rℓ

ℓ−1(Aℓxℓ − bℓ) (restriction)
5: vℓ−1 = 000
6: for j = 1, . . . , γ do
7: vℓ−1 = MG(vℓ−1, rℓ−1, ℓ− 1) (coarse-grid iteration)
8: end for
9: xℓ = xℓ −Pℓ−1

ℓ vℓ−1 (fine-grid correction)
10: xℓ = MS,ℓxℓ +N−1

S,ℓbℓ (post-smoothing)
11: end if

Algorithm 5.1: Pseudocode multigrid algorithm.

In the case of an ℓmax-level multigrid cycle with γ = 1 and presmoothing on the coarsest
level we can define the system matrix recursively

M0,MG = 0, and for ℓ = 1, . . . , ℓmax :

Mℓ,MG = MS,ℓ
(
I−Pℓ−1

ℓ N−1
ℓ−1,MGR

ℓ
ℓ−1Aℓ

)
M−1

S,ℓ ,
(5.12)

and

N0,MG = N−1
S,0 , and for ℓ = 1, . . . , ℓmax : (5.13)

N−1
ℓ,MG = MS,ℓ

(
N−1

S,ℓ −Pℓ−1
ℓ N−1

ℓ−1,MGR
ℓ
ℓ−1AℓN

−1
S,ℓ +Pℓ−1

ℓ N−1
ℓ−1,MGR

ℓ
ℓ−1
)
+N−1

S,ℓ .

In Figure 5.3 a 4-grid iteration with γ = 1 can be seen. Due to its shape, it is called a
V-cycle. Figure 5.4 shows a 4-grid iteration with γ = 2, referred to as W-cycle.

A multigrid method consists of several components: Aℓ,R
ℓ
ℓ−1,P

ℓ−1
ℓ ,MS,ℓ,N

−1
S,ℓ . The

first choice is the coarsening strategy. The simplest and frequently used strategy is stan-
dard coarsening, where the mesh size is doubled in each direction. In the case of several
dimensions, semi-coarsening refers to doubling the mesh size in some directions only.
There exist further coarsening strategies which we do not use in this thesis and thus refer
to [22, 124] for more details.
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Figure 5.3: V-Multigrid cycle, γ = 1.

Next, the coarse grid operatorAℓ−1 has to be constructed. One possibility is to discretize
the problem on each grid level. Another option is to use a so-called Galerkin approxima-
tion [124, 141]

Aℓ−1 = Rℓ
ℓ−1AℓP

ℓ−1
ℓ .

The choice of transfer operators Rℓ
ℓ−1 and Pℓ−1

ℓ is connected to the coarsening strategy.
For standard coarsening, typical restriction operators are given by injection, full weighting
and half weighting. Typical prolongation operators are linear or bilinear interpolation
and projection [124, 141].

2.2 Agglomeration Multigrid

In the case of conservation and balance laws, restriction and prolongation operators
should be conservative. The corresponding MG method is called agglomeration multigrid
since the coarse grid is obtained by agglomerating a number of neighboring cells. The fine
grid values are summed up, weighted by the volumes of the respective cells and divided
by the total volume. This corresponds to an injection operator. For the one-dimensional
case, restriction and prolongation are visualized in Figure 5.5 for a non-equidistant grid.

Restriction and prolongation parameters are defined as

xℓ−1
k =

Δxi xℓi + Δxj xℓj
Δxi + Δxj

,

xℓi = xℓ−1
k , xℓj = xℓ−1

k .
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Figure 5.4: W-Multigrid cycle, γ = 2.

This corresponds to the grid transfer operators

Rℓ
ℓ−1 =


Δx1

Δx1+Δx1
Δx2

Δx1+Δx1
Δx3

Δx3+Δx4
Δx4

Δx3+Δx4
. . . . . .

ΔxN−1
ΔxN−1+ΔxN

ΔxN
ΔxN−1+ΔxN

 ,

Pℓ−1
ℓ =



1
1

1
1

. . .
1
1


.

For an equidistant grid in one dimension, the restriction and prolongation operator sim-
plify to

Rℓ
ℓ−1 =

1
2


1 1

1 1
. . . . . .

1 1

 , Pℓ−1
ℓ = 2

(
Rℓ

ℓ−1
)⊤
.

The corresponding multi-dimensional restriction and prolongation operators can be con-
structed using a tensor product.
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Figure 5.5: Restriction based on agglomeration (left) and prolongation based on injection (right) for a nonequidistant one-
dimensional grid.

2.3 Smoothers

Another key aspect of efficient multigrid algorithms is the choice of good smoothers.
Classical smoothers are given in (5.7), e.g. Jacobi or Gauss-Seidel. They can also be
considered in block form, where the diagonal matrix is replaced by a block-diagonal one
with blocks corresponding to some discretization properties. These classical smoothers do
not perform well for all problems, e.g. for convection dominated flows [95]. Successful
smothers for these problems were constructed using explicit Runge-Kutta schemes, ex-
plicit additive Runge-Kutta methods, point implicit smoothers, line implicit smoothers,
symmetric Gauss-Seidel and additive W methods [9, 16, 66, 72, 76, 133].

Pseudo Time Iterations

In order to understand the efficiency of smoothers based on time integrating schemes,
we first discuss how these schemes can be interpreted as iterative methods in the MG
context. They are based on a dual time-stepping approach developed in [65].

Let us consider the linear equation

Aℓxℓ = bℓ, (5.14)

on multigrid level ℓ. The idea is to add a pseudo time dependence on t∗ to the variable
xℓ. With a pseudo time derivative for an initial guess x0

ℓ we get an initial value problem

∂xℓ

∂t∗
+Aℓxℓ(t∗)− bℓ = 000,

xℓ(t∗0) = x0
ℓ .

(5.15)

Any convergent numerical time integration method can now be interpreted as an iterative
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method to compute the solution of (5.14) as long as the IVP has a steady state with

x∗
ℓ = lim

t∗→∞
xℓ(t∗). (5.16)

The matrixAℓ is based on a numerical discretization in space and a time-stepping method,
e.g. Aℓ = Iℓ+

aΔt
Δx Bℓ, when discretizing the linear advection equation with FV and im-

plicit Euler, see (2.3). It can be guaranteed that (5.16) has a steady state when constructing
a
ΔxBℓ such the numerical scheme is stable.

An s-stage Runge-Kutta scheme for (5.15) reads

x
(0)
ℓ = x0

ℓ ,

x
(j)
ℓ = x

(0)
ℓ − αjΔt∗(Aℓx

(j−1)
ℓ − bℓ), j = 1, . . . , s, (5.17)

xn+1
ℓ = x

(s)
ℓ ,

with pseudo time step width Δt∗ and problem dependent parameters αj.

Efficient MG schemes to solve the one-dimensional steady Euler equations around an air-
foil were developed in [68], with smoothers based on the symmetric Gauss-Seidel method.
Unfortunately, these methods do not perform well for the Navier-Stokes equations on
high aspect grids. For these equations, additive W smoothers were shown to be efficient
[16]. They are a special choice of Rosenbrock methods where the Jacobian is replaced by
an approximation. The scheme is given by

x
(0)
ℓ = x0

ℓ ,

x
(j)
ℓ = x

(0)
ℓ − αjΔt∗W−1(Aℓx

(j−1)
ℓ − bℓ), j = 1, . . . , s, (5.18)

xn+1
ℓ = x

(s)
ℓ ,

with W ≈ I+ηΔt∗Aℓ, pseudo time step width Δt∗ and problem dependent parameters
αj and η.

The specific approximation to define W is based on a symmetric Gauss-Seidel approach,
as suggested in [118] and modified in [67]. The first step is to approximate the Jacobian
using a different first order discretization, based on a splitting

A = A+ +A−

of the flux Jacobian A. This is evaluated in the average of the values on both sides of the
interface. The split Jacobians A+ and A− correspond to positive and negative eigenval-
ues and can be written in terms of the matrix of right eigenvectors Q as

A+ = QΛ+Q−1, A− = QΛ−Q−1,
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where Λ± are diagonal matrices containing only the positive and negative eigenvalues,
respectively. The values λ in Λ are then bounded away from zero using a parabolic func-
tion which takes care of the modulus of the eigenvalue λ, if it is smaller or equal to a
fraction ad of the speed of sound a with free parameter d ∈ [0, 1]:

|λ| = 1
2

(
ad+

|λ|2

ad

)
, |λ| ≤ ad.

With this, the upwind discretization of the split Jacobian in element i is given by

xit∗ + xi +
Δt
Δxi

(
(A+

i,i+1xi +A−
i,i+1xi+1)− (A+

i−1,ixi−1 +A−
i−1,ixi)

)
= 0,

with the flux Jacobian between elements evaluated at the center of the common edge.

The corresponding approximation of the Jacobian is then used to construct a precondi-
tioner, i.e. the choice of the W matrix in (5.18). In [16] a block SGS preconditioner

W−1 = (D+ L)−1D(D+U)−1,

is considered with block matrices L, D and U with 3 × 3 blocks.

For L+D+U = I+ ηΔt∗J one obtains

Lij = −ηΔtΔt
∗
i

Δxi
A+

ij ,

Uij =
ηΔtΔt∗i

Δxi
A−

ij ,

Dii = I+ ηΔt∗I+
ηΔtΔt∗i

Δxi
(A+

i,i+1 −A−
i−1,i).

Applying this preconditioner requires in the one-dimensional case solving 3× 3 systems
coming from the diagonal. This can be done directly without much computational effort.

To improve the efficiency of these smoothers, an optimization process can be applied. Ei-
ther the parameters in the smoother itself are optimized in order to damp high frequency
error components more efficiently or the spectral radius of the MG iteration matrix is
minimized. Both methods are discussed in [11].

3 Properties

In this section we present a formal tool to analyze multigrid methods and explain how
multigrid can be used to construct preconditioners.
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3.1 Local Fourier Analysis

Iterative methods converge if and only if ρ(M) < 1 for the iteration matrix M, see
Theorem 5.1. Due to the size of the iteration matrix it can be quite difficult to calculate
the eigenvalues for multigrid methods, thus analytical tools have been established to ap-
proximate them. Brandt introduced in [19] the so-called local Fourier analysis (LFA), also
referred to as local mode analysis or discrete Fourier analysis (DFA) [53]. This is a tool to
analyze the asymptotic smoothing and convergence behavior of multigrid methods. The
technique is called local since it is based on the operator in the interior of its domain,
where it is assumed to be represented by a constant discretization stencil. The problem
has to be considered on regular infinite grids, therefore boundary conditions are neglected
or assumed to be periodic. Nonlinear problems need to to be linearized in a point before
applying the LFA. Under these reasonable assumptions the LFA gives an approximation
of multigrid convergence factors by connecting the discrete and the frequency space via
a Fourier transform.

For operators based on discretized PDEs, the Fourier transform yields so-called symbols,
which are of much smaller size than the operators in the discrete space. With the help
of this method, smoothing properties of relaxation methods and convergence properties
of two-grid methods can be approximated more easily by assessing the spectral radius of
the Fourier symbols [124].

As discussed before, multigrid methods have originally been developed for elliptic prob-
lems. The LFA was also constructed for these [53, 92], and extended to other problems in
[20] and by many others, see e.g. the references in [21]. For many applications the LFA is
a good prediction, i.e. theoretical and experimentally measured convergence factors coin-
cide [124]. But there are problems for which the application of the boundary conditions
are crucial to the observed performance and neglecting these in the analysis will decrease
the accuracy of the analysis. This is for example the case for convection-dominated and
parabolic problems [20, 43]. However, since the LFA is an asymptotic theory, the theo-
retical results will eventually coincide with the numerical ones when considering a very
fine grid.

The fundamental quantities of the LFA are Fourier modes and frequencies:

Definition 5.2 (Fourier modes and frequencies [141]). The function

φ(θk) := [φ1(θk), . . . , φN(θk)]
⊤,

with φj(θk) := eijθk , j = 1, . . . ,N ∈ N, is called a Fourier mode with frequency

θk ∈ Θ :=

{
2kπ
N

: k = 1 − N
2
, . . . ,

N
2

}
⊂ (−π, π].
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The frequencies Θ can be separated into high and low frequencies

Θlow := Θ ∩
(
−π

2
,
π
2

]
, (5.19)

Θhigh := Θ ∩
((

−π,−π
2

]
∪
(π

2
, π
]]
. (5.20)

We recall that the notation of low and high frequencies is of importance when analyzing
smoothing properties.

Theorem 5.3 (One-dimensional discrete Fourier transform [141]). Let u ∈ RN for
N ∈ N. Then the vector u can be represented as

u =

N/2∑
k=1−N/2

ûkψ(θk),

with Fourier modes ψ(θk) = φ(θk) ∈ RN and frequencies θk ∈ Θ from Definition 5.2,
and

ûk :=
1
N

N−1∑
j=0

ujφj(−θk).

The discrete Fourier transform can be extended to the multi-dimensional case:

Theorem 5.4 (d-dimensional discrete Fourier transform [141]). Let u ∈ RN1···Nd for
N1, . . . ,Nd ∈ N. Then each subvector uj1,...,jd of u can be represented as

uj1,...,jd =

N1/2∑
k1=1−N1/2

· · ·
Nd/2∑

kd=1−Nd/2

ûk1,...,kdψj1,...,jd(θk1 , . . . , θkd),

with ψj1,...,jd(θk1 , . . . , θkd) = φj1(θk1) · · ·φjd(θkd) and

ûk1,...,kd :=
1

N1 · · ·Nd

N1−1∑
j=0

· · ·
Nd−1∑
j=0

uj1,...,jdφj1(−θk1) · · ·φjd(−θkd).

For the proofs of the previous two theorems we refer to [141].

One key property of the LFA is the shifting equality. In the following Lemma we consider
the case d = 2.
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Lemma 5.5 (Shifting equality [141]). Let θx ∈ Θx, θy ∈ Θy. Then the shifting equalities
read

ψi−1,j(θx, θy) = e−iθyψi,j(θx, θy), i = 2, . . . ,Nx,

ψi,j−1(θx, θy) = e−iθxψi,j(θx, θy), j = 2, . . . ,Ny.

Applying the shifting equality to the discrete Fourier transform of a discretization oper-
ator results in a block diagonalized operator which is called Fourier symbol. Instead of
computing the spectral radius of a discrete operator, the spectral radius of the smaller
Fourier symbol can be calculated by taking the maximum of the spectral radius over all
phase angles θi between −π and π.

Usually, two-grid schemes are considered when applying the LFA. In order to calculate
two-grid convergence factors for a multigrid method using the LFA, the Fourier symbols
of the multigrid operator (5.12) need to be determined. This is done by calculating the
Fourier symbols of the respective operator, namely the smoother, the restriction and pro-
longation as well as the discretization operator on the fine and coarse grid. The smooth-
ing factor can be calculated in a similar way. The result of the analysis is then used as
an approximation of the asymptotic convergence and smoothing factors of the original
operator.

4 Linear Multigrid Preconditioners

We recall that linear MG methods are iterative methods of the form

xk+1 = MMGx
k +N−1

MGb, (5.21)

where the matrices are defined recursively

M0,MG = 0, and for ℓ = 1, . . . , ℓmax :

Mℓ,MG = MS,ℓ
(
I−Pℓ−1

ℓ N−1
ℓ−1,MGR

ℓ
ℓ−1Aℓ

)
M−1

S,ℓ ,

and

N0,MG = N−1
S,0 , and for ℓ = 1, . . . , ℓmax :

N−1
ℓ,MG = MS,ℓ

(
N−1

S,ℓ −Pℓ−1
ℓ N−1

ℓ−1,MGR
ℓ
ℓ−1AℓN

−1
S,ℓ +Pℓ−1

ℓ N−1
ℓ−1,MGR

ℓ
ℓ−1
)
+N−1

S,ℓ .

If N−1
MG = A−1, we would only need one iteration to solve (5.21). The better a MG

method is designed, the better is the approximation A−1 ≈ N−1
MG. Thus, multigrid
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methods can not only be used as iterative solvers but also to construct preconditioners
for an external iterative solver. We refer to [19] and [53] for more details about multigrid
preconditioners. In the following we present our idea to construct such preconditioners
for JFNK solvers for DG-SEM based on a FV replacement operator.

4.1 Finite Volume Based Multigrid Preconditioners

A general overview over different preconditioning options for JFNK solvers is given in
[78]. Multigrid preconditioners can be applied to the finite difference approximation as
described in (4.10). The preconditioner can be implemented Jacobian free as well, this
depends on the choice of the smoother. Unfortunately, more advanced smoothers as the
W3 method cannot be implemented fully Jacobian free. This is still an open problem in
the construction of these smoothers. Besides that, multigrid is an interesting option to
construct efficient low storage preconditioners. For JFNK solvers these preconditioners
have been used for the Navier-Stokes equations [14, 79, 77, 100], for the Fokker–Planck
transport equation [24], for flow simulations [71] and for multi material equilibrium
radiation diffusion problems [108]. In the context of DG methods this has been studied
for instance in [93, 102].

Our core idea for constructing a preconditioner is to replace the Jacobian of the DG
discretization by the Jacobian of a first order FV replacement operator, i.e. a DG dis-
cretization of order zero. This choice is motivated by the equivalence of the DG-SEM
and high order FV discretizations [40]. It has been shown that efficient preconditioners
for JFNK can be based on simpler operators than the Jacobian of the system [78]. More-
over, this replacement operator allows to use available knowledge about fast multigrid
methods for FV discretizations on block structured meshes.

An overview over the work flow in the construction process of the preconditioned solver
can be seen in Figure 5.6. First, the PDE is discretized using a DG-SEM, yielding in an
initial value problem

u̇ = G(u), u0 = u(000). (5.22)

Applying an implicit time-stepping method to (5.22) results in a nonlinear system

F(un+1) = 000. (5.23)

With implicit Euler time-stepping we have for instance F(un+1) = un+1 − un −
ΔtG(un+1), see Chapters 2 and 3 for more details.
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Figure 5.6: Work flow to construct a MG based preconditioner using a FV replacement operator to solve implicit DG-SEM
discretizations.

A Jacobian-free Newton method

F(u(k) + εΔu)− F(u(k))

ε
= −F(u(k)),

u(k+1) = u(k) + Δu, k = 0, 1, 2, . . .
(5.24)

is used to solve the nonlinear system (5.23), as discussed in Chapter 4.
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The linear system in (5.24) is solved using a preconditioned GMRES method. In order
to avoid constructing the Jacobian of the DG discretization in (5.22), we construct a first
order FV replacement discretization:

u̇ = G̃(u), u0 = u(000).

To this end, we introduce subcells in each DG element, such that the number of DOFs
is retained, i.e. the number of subcells corresponds to the number of nodes in each
element. Moreover, the DOFs of both discretizations need to be transferred between the
corresponding grids.

For the FV discretization, the Jacobian can be computed more easily and a right precon-
ditioner for the GMRES sub-solver can be constructed using multigrid methods with
smoothers based on the dual time-stepping ansatz.

The construction of such preconditioners raises several difficulties:

1. How to transfer the problem between the DG and the FV space?

2. How should the multigrid method be constructed?

3. How can the suggested preconditioner be improved?

We consider several strategies for the transfer between the DG and the FV space. It is
not obvious how to assign the DOFs when comparing the FV and DG discretizations.
The simplest and most intuitive option is an ad-hoc assignment. The idea is to assign
DOFs in the DG-SEM and FV discretization based on their location in the grid, after
a possible permutation, since these should correspond to similar values. Examples for
two-dimensional DG-SEM grids with inlaid equidistant FV subgrids with 4 respective
8 LGL nodes can be seen in Figure 5.7. As it can be noticed, this only gives a reasonable
assignment if each FV element contains exactly one LGL node, which is more likely
the case of lower order DG discretizations. For higher order discretizations, DOFs are
assigned that do not have good approximations to their actual value in the respective
space.

The advantage of the ad-hoc assignment is its computational simplicity. But it is difficult
to motivate this ansatz for higher order DG approximations when it is not trivial to
assign an LGL node to a specific volume. In order to avoid this, the FV subgrid can be
adapted to be non-equidistant, such that each volume contains exactly one quadrature
node, which is located in the center of the FV element. However, this option increases
the work in the multigrid method.
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Figure 5.7: Two DG-SEM grid reference elements with LGL nodes (blue nodes), and an inlaid finite volume subgrid (black
lines).

Since errors of DG methods are measured in the L2 norm, another possibility is to con-
struct transfer functions using L2 projections based on either the FV or the DG-SEM
basis functions.

Definition 5.6 (L2 projection). Let V be a subspace of L2(Ω) and let S be a finite di-
mensional subspace of V. The L2 projection of a function f ∈ V onto S is defined by the
unique Pf ∈ V that satisfies

(f− Pf, v)L2 = 0 ∀s ∈ S.

Given a basis {φi}Ni=1 of S, this corresponds to

N∑
j=1

αj(φi, φj)L2 = (f, φi)L2 , i = 1 . . . ,N.

By solving the linear system Ax = b with aij = (φi, φj)L2 , xj = αj and bi = (f, φi)L2 ,
the L2 projection can be written

Pf(x) =
N∑
j=1

αjφj(x).

The two function spaces we consider correspond to the FV space and the DG-SEM space.
Let us from now on denote the basis functions in the FV space by {φFV

i }Ni=1 and the basis
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functions in the DG space by {φDG
i }Ni=1. To simplify the notation, we assume that the

d-dimensional basis functions are stored in a long vector of length N =
∏d

i=1 Nxi with
Nxi the length in dimension i.

We define the basis functions of the FV space using the d-dimensional indicator function

χeFVi
(x) =

{
1, x ∈ eFVi ,
0, x /∈ eFVi ,

with volumes eFVi , i = 1, . . . ,N, defined via the subgrid on the reference element [−1, 1]d.
To get an orthonormal basis, we need to normalize the basis functions. Since the volume
of each element on the subgrid on the reference element is 2

N , the value of the constant
FV basis function is N

2 in one dimension.

The DG-SEM basis is defined by the Lagrange functions evaluated at the LGL nodes. In
the d-dimensional case, the basis functions are given by

φk1,...,kd(x) :=
d∏

i=1

φki(x
i),

based on the LGL nodes {xDGj }Nxi
j=1, i = 1, . . . , d, in all d directions and x = [x1, . . . , xd].

Projection Onto the FV Space

Since the FV basis functions are orthonormal, we can define a projection matrix via the
inner L2 product of the DG-SEM Lagrange basis and the FV basis:

PFVφDG
i (x) =

Nj∑
j=1

(φDG
i ,φFV

j )L2

(φFV
j ,φ

FV
j )L2

φFV
j (x), i = 1, . . . ,Ni.

This can be used to construct a projection matrix PFV for the DOFs on each reference
element Ω̂ with

(PFV)ij =
(φDG

i ,φFV
j )L2

(φFV
j ,φ

FV
j )L2

.

The transfer matrix for all DOFs is then defined as a block diagonal matrix with blocks
PFV. To transfer the DOFs back from the FV space to the DG space, either the recon-
struction P−1

FV can be used or an L2 projection onto the DG space.
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Projection Onto the DG Space

In order to construct the L2 projection onto the DG space, we first need to orthogonal-
ize the LGL basis polynomials {φDG

i }Ni=1. This can be done using the Gram-Schmidt
process, see for instance [123], which can be expressed with a triangular matrix L s.t.
LφDG = φ̃DG.

We define a projection matrix via the inner L2 product of the orthogonal DG-SEM
Lagrange basis and the FV basis functions:

P̃DGφFV
i (x) =

Nj∑
j=1

(φFV
i , φ̃

DG
j )L2

(φ̃DG
j , φ̃DG

j )L2

φ̃DG
j (x), i = 1, . . . ,Ni.

Then the projection matrix P̃DG for the DOFs on each reference element is given by

(P̃DG)ij =
(φFV

i , φ̃
DG
j )L2

(φ̃DG
j , φ̃DG

j )L2

.

Again, the transfer matrix for all DOFs is the block diagonal matrix with blocks P̃DG.

We note that

P̃DG = (φFV, φ̃DG)L2 = (φFV,LφDG)L2 = L(φFV,φDG)L2 = LP⊤
FV.

The coefficients ũ = [ũ1, . . . , ũN]⊤ in the orthogonal polynomial basis {φ̃DG} can be
mapped to coefficients u = [u1, . . . , uN]⊤in the original LGL basis {φDG} using L⊤,
since

ũ⊤φ̃DG = ũ⊤LL−1
φ̃DG = (L⊤ũ)TφDG = u⊤φDG.

Thus, the L2 projection matrix mapping coefficients from the FV to the DG space is
given by

PDG = L⊤P̃DG = L⊤LPFV.

It holds

(L⊤L)−1 = L−1(φ̃DG, φ̃DG)L2(L
⊤)−1 = (φDG,φDG)L2 = M,

with the mass matrix M defined as (M)ij = (φDG
i ,φDG

j )L2 . Hence, the projection
matrix onto the DG space can be calculated as

PDG = M−1PFV.
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As before, two options exist to transfer the DOFs back from the FV space to the DG
space: either the reconstruction P−1

DG can be used or an L2 projection onto the FV space.

In Chapter 6 we present numerical results for this FV based MG preconditioner with
different transfer strategies.
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Chapter 6

Numerical Results

In this chapter we present numerical results for the two main topics of this thesis: the con-
struction of efficient multigrid preconditioners for Jacobian-free Newton-Krylov solvers
for high-order DG discretizations and the implementation and analysis of space-time
DG-SEM. More detailed discussions of the results can be found in the publications at
the end of this thesis.

1 Finite Volume Based Multigrid Preconditioners

In the following we give a summary of the numerical results for the suggested precondi-
tioner presented in Chapter 5. Moreover, we present new numerical experiments from
an ongoing collaboration which are not published yet.

1.1 One-Dimensional Advection and Euler Equations

In Paper I the idea of the suggested FV based MG preconditioner is tested for the one-
dimensional linear advection equation

ut + aux = 0.

Pseudo time-stepping Runge-Kutta smoothers of stage 2, 3 and 4 are used for the multi-
grid preconditioner. The numerical results show a relatively large dependence on the
choice of the smoother, which motivates to use more advanced smoothers.
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This is done in Paper II, where we tested a W3 smoother with a symmetric Gauss-Seidel
approximation of the Jacobian, see Chapter 5. Numerical tests are performed for the
one-dimensional compressible Euler equations for perfect gas

∂

∂t

 ρ
m
ρE

+
∂

∂x

 m
mv+ p
Hm

 =

0
0
0

 ,

with density ρ, momentum m = ρv, pressure p, energy E and enthalpy H = E+
p
ρ .

The results for a subsonic test case

(ρ0, v0, p0) = (1 + sin(2πx/10), 1, 28)

with Mach number 0.16 are shown in Figure 6.1. The FV reference preconditioner gives
fast initial convergence, which is crucial to get fast termination within an inexact New-
ton’s method. There is almost no loss in performance when increasing the order of the
DG method. The MG preconditioners approximate the reference preconditioner very
well, especially in the first 20 GMRES iterations. We refer to Section 6 in Paper II for
more details on the numerical experiments and results.

1.2 Two-Dimensional Advection-Diffusion Equations

Paper III is based on the Master’s thesis [74]. The preconditioner is applied to the advec-
tion dominated linear advection diffusion equation in two dimensions

ut + b · ∇u− εΔu = g(u), (x, t) ∈ Ω × [0,T], (6.1)

with advection speed b and diffusion constant ε ∈ R+.

The preconditioner is implemented in the Distributed and Unified Numerics Environ-
ment (DUNE) [10, 29]. This is a free and open source software for grid-based numerical
solvers for PDEs providing FV and DG discretizations. DUNE has Python bindings for
central components, which allow to use the software without touching any of the C++
code [30, 28]. This is of advantage for rapid prototyping of new methods, which can be
done in Python by expressing the weak form of the PDE symbolically using the domain
specific unified form language (UFL) [1].

We discretize problem (6.1) with DG-SEM in space and implicit Euler time-stepping. An
upwind flux is used for the convective numerical fluxes and an interior penalty Galerkin
flux for the diffusive part. As before, we construct a FV based MG preconditioner for
the GMRES solver, with 3-stage Runge-Kutta pseudo time-stepping smoothers.
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Figure 6.1: Convergence history for GMRES for one Newton iteration, subsonic case, DG order 4 (top) and 8 (bottom), 240
DOFs (left) and 480 DOFs (right).

We tested the preconditioners for a pulse-like initial guess

uy|ΩSN = 000, u|∂ΩWE = 000,

u(x, 0) = exp(−10∥x∥2),

with (x, t) ∈ Ω × (0,T], Ω = [−1, 1]2, b = 1
2(
√

3, 1) and ε = 1.e−4.

The focus of Paper III is the use of different transfer options discussed in Chapter 5. New
transfer functions between the FV and the DG-SEM grid are introduced and tested. A
comparison of their influence on the reference preconditioner can be seen in Figure 6.2.
The L2 projections yield a better mapping of the DOFs than the ad hoc assignment, with
the projection onto the FV grid slightly outperforming the projection onto the DG-SEM
grid.

We refer to Section 4 in Paper III for more details on the numerical experiments and
results of the MG preconditioner for the different transfer strategies.
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Figure 6.2: GMRES convergence rate for the reference FV preconditioner for different transfer strategies, 16384 DOFs for DG
order 4 (left) and DG order 8 (right).

1.3 Two-Dimensional Euler Equations

The following numerical experiments are the result of an ongoing collaboration with
Stéphane Gaudreault and Vincent Magnoux at Environment and Climate Change Canada
and part of their project GEF (French acronym for GEM en Éléments Finis). The Global
Environmental Multiscale Model (GEM) is an integrated forecasting and data assimila-
tion system.

We consider the two-dimensional Euler equations with gravity in the atmosphere

∂

∂t


ρ
ρu
ρw
ρθ

+
∂

∂x


ρu

ρu2 + p
ρuw
ρθu

+
∂

∂z


ρw
ρuw

ρw2 + p
ρθw

 =


0
0

−ρg
0

 , (6.2)

with density ρ, velocities u,w in x- and z-direction, pressure p, potential temperature θ
and the gravitational constant g.

The system (6.2) is discretized in space using the direct flux reconstruction (DFR) scheme,
which is equivalent to the weak form of the nodal discontinuous Galerkin method based
on Gauss-Legendre nodes in one dimension and tensor product bases for multidimen-
sional elements [63, 110]. We refer to [49] for more details about the discretization. The
advection upstream splitting method (AUSM) developed in [90] is used as numerical flux
function on a square grid.

The spatial discretization results in an ODE

u̇ = G(u),
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and is solved using the second order integrator RAT2, which for the nth timestep reads(
I− Δt

2
∂G

∂u

∣∣∣∣
un

)
xn = G(un), (6.3)

un+1 = un + Δtxn.

The Jacobian is replaced by its complex step matrix-vector product approximation

∂G

∂u

∣∣∣∣
un

v ≈ Im
G(un + iεv)

ε
,

with ε ≈ 10−8.

Finally, the nonlinear system in (6.3) is solved using flexible GMRES (FGMRES) [111].

We construct a preconditioner for FGMRES based on a FV replacement operator as
described before. The mapping of the DOFs between the DG and FV grids is based
on an evaluation of the DG Lagrange polynomials at the position of the FV points. An
agglomeration multigrid preconditioner for this operator is constructed using 3-stage
Runge-Kutta smoothers with one pre- and one post-smoothing step on each grid level.
Moreover, we test a p-MG preconditioner: Instead of using a FV replacement operator,
a p-MG coarsening is applied on the DG operator.

As initial numerical test we studied a rising cold bubble, which models the evolution of a
bubble in a constant potential temperature environment. The initial conditions are sim-
ilar to [109] and result in a bubble with Gaussian profile. On a rectangle computational
domain Ω with zero flux boundary conditions we have a distribution of the potential
temperature within the bubble given by

θ =

θ0 + A1 exp
(
− r21

s21

)
, r1 ≤ a2,

θ0 + A1 exp
(
− r21

s21

)
+ A2 exp

(
− (r2−a2)2

s22

)
, r2 > a2,

with θ0 = 30 ◦C, A1 = −0.15 ◦C, s1 = 50m, r21 = (x − 500)2 + (z − 640)2,
A2 = 0.5 ◦C, a2 = 150m, s2 = 50m, r22 = (x − 500)2 + (z − 300)2, reference
pressure p0 = 105 Pa, gravity constant g = 9.80616 m

s2
, specific gas constant for dry

air Rspecific = 287.05 J · K−1 · kg−1 and the specific heat constant at constant pressure
cp = 1005.46 J ·K−1 · kg−1 and constant volume cv = cp − Rspecific. Then we get

ρ =
p0

Rθ0
π(z)

cv
R ,
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with the exner pressure function π(z) = 1 − g
cpθ0

z.

The results are produced on an 8-core AMD processor with 16GB of RAM. The plots
for FGMRES iterations and work over time to reach a residual of 10−5 can be seen in
Figure 6.3 for DG order 2 and in Figure 6.4 for DG order 4. In the legend, p-MG
denotes the p-multigrid preconditioner, RK3 denotes the FV multigrid preconditioner,
FV denotes the FV reference preconditioner and the number corresponds to the number
of the FV elements respectively the order of the DG approximation on the coarsest level.

First of all it can be noted that all tested preconditioners beat the unpreconditioned case
w.r.t. FGMRES iterations. The reference preconditioner gives very promising conver-
gence results. The p-multigrid and the FV multigrid preconditioners give similar results
w.r.t. FGRMES iterations, but there is up to a factor of 1000 iterations difference between
the reference and the multigrid preconditioners. This difference increases with increasing
DG order. It is of advantage to apply more coarsening steps in both multigrid methods
to get a better convergence rate which mimics the one of the reference preconditioner.

As expected, the reference preconditioner is very expensive w.r.t. run time. The same
holds for the multigrid preconditioners, all of them being more expensive than the un-
preconditioned case except for the p-multigrid preconditioner with several coarsening
steps for DG order 4. However, when increasing the DG order we notice that some
preconditioners, i.e. those with more coarsening steps, mimic the work of the unprecon-
ditioned case in the beginning before getting slightly more expensive. Hence we are not
fully competitive yet w.r.t. CPU time.

We expect that optimizing the multigrid preconditioners such that they mimic the FGM-
RES convergence rate of the reference preconditioner better should result in a decreasing
runtime and thus give a well-working preconditioner. As in the numerical tests presented
in the previous sections, the choice of the smoothers is of importance for the quality of
the preconditioner. We are therefore currently extending the preconditioner with theW3
smoother.

2 Space-Time DG-SEM

The other main topic of this thesis are space-time DG-SEM. We studied both implemen-
tation aspects of space-time discretizations as well as solvers for the resulting space-time
system.
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Figure 6.3: Convergence history for the rising bubble test, DG order 2: residual evolution (left) and work in clock time (right).

2.1 Comparison of Space-Time DG-SEM Implementations

In Paper IV we discuss theoretical and practical aspects of space-time DG-SEM imple-
mentations. The DG-SEM in time is equivalent to Lobatto IIIC methods, in the sense
that they lead to the same discrete solution, see the discussion in Chapter 3 as well as Sec-
tion 5 in the article. This gives different options to implement a space-time DG-SEM:
Either the DG-SEM in space is combined with Lobatto IIIC time-stepping, which we re-
fer to as LoDG, or time is considered as an additional dimension and a d+1 dimensional
space-time DG-SEM problem is considered, which we refer to as STDG. For the latter
one we use the Python based front-end for DUNE-FEM [29]. The Lobatto IIIC method
has been implemented in Assimulo [2], a Python package that can be readily used to-
gether with DUNE-FEM for the spatial discretization. However, there are differences in
certain key aspects in the respective implementation and interaction with approximate
nonlinear solvers, which we highlight and discuss in the article.

Both LoDG and STDG result in nonlinear systems to be solved on each space-time
element, see Chapter 2 and 3. This can be done with Newton’s method. For the nonlinear
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Figure 6.4: Convergence history for the rising bubble test, DG order 4: residual evolution (left) and work in clock time (right).

LoDG system, the Jacobian is given by

I− Δt(A⊗ Iξ)J (F),

where J (F) contains the Jacobian of the spatial discretization and A is defined by the
Butcher tableau. The Lobatto solver we implemented, as well as many other codes for
implicit Runge-Kutta methods, are based on the ideas presented in [54] and instead use
the mathematically equivalent Jacobian

(ΔtA)−1 ⊗ Iξ − J (F).

For the nonlinear STDG system the Jacobian is given by(
D⊤

τ Mτ − eNτe
⊤
Nτ

)
⊗ Iξ +

Δt
2
(Mτ ⊗ Iξ)J (F).

In Figure 6.5 the sparsity patterns of the Jacobians for the one-dimensional linear advec-
tion equation discretized using a single element in space and time for order 1, 2 and 3 are
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presented. While the LoDG formulation results in a dense Jacobian, the STDG and the
modified LoDG Jacobians have the same number on nonzero elements and a reordering
of the unknowns results in the same sparsity pattern. This shows that the efficiency of
solvers and preconditioners for the respective discretizations must be deduced through
careful testing and depends on the underlying implementation.
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Figure 6.5: Sparsity patterns Jacobian of the advection problem for STDG and LoDG. Node order for one space-time element
(p = 3) for STDG as generated by DUNE-FEM (bottom right).

We refer to Section 6 in the article for more details and a discussion about practical aspects
of the respective space-time DG-SEM implementations.

To compare the two implementations, we considered the Euler equations of gas dynamics

∂

∂t


ρ
ρu
ρv
ρw
ε

+
∂

∂x


ρu

ρu2 + P
ρuv
ρuw

(ε+ P)u

+
∂

∂y


ρv
ρvu

ρv2 + P
ρvw

(ε+ P)v

+
∂

∂z


ρw
ρwu
ρwv

ρw2 + P
(ε+ P)w

 =


0
0
0
0
0

 ,

(6.4)
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with ρ the density of the fluid, u, v,w the velocities in x-, y- and z-direction and ε the
internal energy.

We studied the two- and three-dimensional Euler equations with periodic boundary con-
ditions and vortex initial condition

ρ =

(
1 − S2(γ − 1)M2 exp(f)

(8π2)

) 1
γ−1

,

v1 = 1 − Sx1

exp
(

f
2

)
2π

, v2 = Sx0

exp
(

f
2

)
2π

, v3 = Sx2

exp
(

f
2

)
2π

,

ε =
P

γ − 1
+ 0.5

v2
1 + v2

2 + v2
3

ρ
, P =

ργ

γM2 ,

with vortex strength S = 5, Mach number M = 0.5, γ = 1.4 and f = 1− x2 − y2 − z2.

The numerical solutions obtained by the STDG and the LoDG implementation for the
two-dimensional Euler test case can be seen in Figure 6.6. A uniform mesh on the space-
time domain [−10, 10]2 × (0, 2.5] is used in space with Δx = Δy = 0.04 and time steps
of uniform size Δt = 0.01 throughout the simulation. The problem is under-resolved
for order 1, leading to a smeared solution. As the DG order in space-time is increased,
this phenomenon is reduced. Some differences can be noted in the numerical results for
the two implementations. This is likely caused by the fact that two different solvers are
used for the nonlinear systems arising from the discretizations. Due to the differences
between these solvers we can in general not expect identical numerical solutions despite
the mathematical equivalence of the two algorithms.

To show the potential of our STDG code we present a three-dimensional Euler test case.
We modify the problem slightly and consider the space-time domain [−5, 5]3 × (0, 2],
with the initial vortex placed slightly to the left of the center. A uniform mesh is used
in space with Δx = Δy = Δz = 1 and time steps of uniform size Δt = 0.5 are used
throughout the simulation. The initial condition and the final time element of the density
can be seen in Figure 6.7. These results show the potential of the STDG code even for
four-dimensional problems in space-time. To the best of our knowledge, this is the first
four-dimensional DG-SEM implementation available publicly.

For convergence tests and further numerical results we refer to Section 7 in the article.
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Figure 6.6: Solution of ρ for a vortex problem subject to the two-dimensional Euler equations, exact solution (top), DG order
1 (middle) and DG order 2 (bottom), LoDG solution (left), STDG solution (right).
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Figure 6.7: Density ρ for a vortex problem subject to the 3D Euler equations using STDG, exact solution (left), STDG solution
(right).

2.2 Space-Time Local Fourier Analysis

Finally, in Paper V a local Fourier analysis of a space-time multigrid solver is performed.
The linear advection equation

ut + aux = 0

is discretized with a space-time DG method using a FV discretization in space and a DG-
SEM in time. The resulting linear system is of block form with bocks corresponding to
the space-time discretization and solved with a space-time multigrid method. A weighted
block Jacobi smoother is used and two different coarsening strategies are applied: coars-
ening in space-time as well as coarsening in the temporal direction only.

We performed a smoothing as well as a two-grid analysis and refer to the article for a de-
tailed discussion of the analysis. For large CFL numbers we found an asymptotic smooth-
ing factor of around 1√

2
for sufficiently high CFL numbers µ.

Since it was not possible to find analytical expressions for the complex eigenvalues of
the two-grid operators, we calculated them numerically for Nx volumes in space and N
temporal elements. The results are shown in Figure 6.8, giving asymptotic convergence
factors of about 0.5 for first order temporal DG-SEM, which can be improved to asymp-
totic convergence factors of about 0.375 by increasing the DG-SEM in time to second
order. We refer to Section 6 in the article for more details.
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Figure 6.8: Results of the LFA for the test problem: Nx = 25, N = 23 (left), Nx = 210, N = 23 (right).

We also compared the results of the analysis to numerical experiments using the two-
grid method as solver. The assumption of periodic boundary conditions in space and
time needed for the LFA cannot be used for the numerical tests since this will result
in singular systems and iteration matrices. We therefore considered advection problems
with nonperiodic boundary conditions discretized with space-time DG-SEM in one and
two dimensions.

The asymptotic convergence results for the space-time multigrid solver can be seen in
Figure 6.9, giving rates of approximately 0.25 for pt = px = 0 and approximately 0.3 for
pt = px = 1 in the one-dimensional case and approximately 0.25 in the two-dimensional
case. We refer to Section 7 in the article for a more detailed discussed of the results.

Figure 6.9: Numerical convergence results: one spatial dimension with N = 23, Nx = 210 (left), two spatial dimensions with
N = 23, Nx = 25 (right).
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Chapter 7

Conclusions and Outlook

1 Summary and Conclusions

Multigrid Preconditioner

In this thesis we have presented a method to construct preconditioners for implicit DG-
SEM based on a multigrid method applied to a FV replacement operator. It is an on-
going research topic to find efficient solvers for the nonlinear systems resulting from im-
plicit high order discretizations. Since the number of unknowns increases with increasing
polynomial degree and dimension, leading to large dense Jacobian blocks, Jacobian-free
solvers are needed. This increases the difficulty to construct good preconditioners.

We use a Jacobian-free Newton-Krylov solver, which is favorable with regards to memory
consumption. To improve the convergence speed of the GMRES sub-solver, a precondi-
tioner is needed. Thus the problem arises how to construct a good and efficient precondi-
tioner without using the DG-SEM Jacobian. We suggested to make use of a simple first
order FV replacement operator. The choice of this replacement operator is motivated
by the equivalence of DG-SEM and a high order FV discretization. Based on this, an
agglomeration multigrid preconditioner can be constructed for the GMRES sub-solver.
This ansatz allows to avoid constructing the Jacobian of the original DG discretization
while keeping the number of DOFs in the replacement operator constant.

Numerical experiments showed the efficiency of the suggested preconditioner, both for
linear and nonlinear hyperbolic test problems. For nonlinear problems and problems
of higher dimension, the choice of the smoother in the MG preconditioner becomes
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more relevant. Since classical smoothers as Jacobi or Gauss-Seidel do not perform well,
we constructed smoothers based on pseudo time iterations. However, even with these
smoothers more advanced ones need to be used for more complex problems to obtain a
good preconditioner.

Moreover, the efficiency of the suggested preconditioner is influenced by the mapping of
the DOFs between the FV and the DG-SEM grid. This has to be done carefully, with
an L2 projection improving the performance of the preconditioner compared to a simple
adhoc assignment, where the DOFs are assigned based on location.

Space-Time DG-SEM

In recent years, interest in space-time DG methods has increased, mostly due to the pos-
sibility of parallelization in the temporal direction. Space-time discretizations are based
on discretizing space and time simultaneously, resulting in implicit schemes.

An algebraic equivalence between DG-SEM in time and Lobatto IIIC Runge-Kutta
methods has been proven, yielding two approaches for the formulation and implemen-
tation of space-time DG-SEM: Either time is treated as an additional coordinate direc-
tion and the DG-SEM is applied to the entire problem, or the method of lines ansatz is
used with DG-SEM in space and the fully implicit Lobatto IIIC method in time. We
compared theoretical properties of the resulting space-time DG-SEM as well as prac-
tical aspects as for instance algorithmic and implementation details. Our open source
implementations are based on DUNE-FEM and Assimulo with the aim to provide a user-
friendly baseline for further testing.

Depending on the existing code as well as the application in mind, each implementation
has its advantages and disadvantages. The advantage of the Lobatto ansatz are its flexibil-
ity and the reuse of existing simulation workflows, but this approach might cause several
challenges as interfaces, parallelization and more depending on the codes. The space-time
DG-SEM code is relatively easy to implement given an existing Galerkin code. Moreover,
this approach allows to reuse existing code and provides full control over the implemen-
tation. However, it might not be easy to extend existing codes to the d+ 1-dimensional
case w.r.t. mesh generation, solvers and visualization for d = 3.

One possibility to solve the systems resulting from space-time DG-SEM are multigrid
methods. We performed a local Fourier analysis to gain insight into these solvers. The
LFA becomes challenging for the advection test problem discretized with DG methods
since the resulting Fourier symbols are complex. However, we could find promising
asymptotic convergence factors for large CFL numbers. The numerical tests confirmed
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the theoretical convergence results, showing that multigrid is a good solver for the space-
time DG-SEM as well as a promising basis to construct space-time preconditioners.

2 Future work

Multigrid Preconditioner

We are currently working on extending the suggested preconditioner to three-dimensional
problems and in parallel. The challenge here is to parallelize specific pseudo time itera-
tion based smoothers as for instance the W3 smoother. Moreover, it is work in progress
to add our preconditioner to the open-source software DUNE such that it becomes one
of the default preconditioning options for users.

One potential topic for future research could be to further focus on the construction
of new numerical methods by optimizing the preconditioner w.r.t. the smoother, the
replacement operator or the mapping between the different discretization grids.

Space-Time DG-SEM

With our work on space-time DG-SEM we have laid the background for further de-
velopment. One of the main topics for future work are efficient solvers for space-time
DG-SEM, and of course extending our preconditioner to the space-time setting. The
option of coarsening in some directions only could be investigated with regards to the
efficiency of the multigrid preconditioner. Again, it would be necessary to parallelize the
solver.
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Our aim is to construct efficient preconditioners for high order discontinuous Galerkin (DG) methods. We consider the DG
spectral element method with Gauss-Lobatto-Legendre nodes (DGSEM-GL) for the 1D linear advection equation. It has been
shown in [4] that DGSEM-GL has the summation-by-parts (SBP) property and an equivalent finite volume (FV) discretization
is presented in [3]. Thus we present a multigrid (MG) preconditioner based on a simplified FV discretization.

c© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

An efficient implicit DG variant is DGSEM, where the interpolation of the flux is collocated with the numerical quadrature
used for the inner products, [4]. Key to an efficient algorithm is a fast solver with low memory footprint. Our aim is to
constuct a matrix-free preconditioner using approximations to the FV discretization. We solve the 1D advection equation with
DGSEM using a right preconditioner based on an agglomeration multigrid method. We show first results for 2-, 3- and 4-stage
Runge-Kutta (RK) smoothers with optimized parameters from [1].

2 Discontinuous Galerkin Spectral Element Method

To introduce the DGSEM method, we consider the one-dimensional linear scalar advection equation

ut + aux = 0 (1)

with a > 0, periodic boundary and suitable initial conditions. We construct a grid with M elements and introduce a nodal
polynomial approximation of N + 1 degrees of freedom {uj}Nj=0 located at the element grid nodes xn0 , . . . , x

n
N

un(x, t) ≈ uh(x, t) =

N∑

j=0

uj(t)`j(x), (2)

in each element. We choose GL grid nodes and Lagrange basis functions `j(x) of degree N . Multiplying with a test function
` ∈ {`j}Ni=0 and integrating over the element transformed to [−1, 1] gives the weak form of (1). Inserting the numerical
approximation (2) and integration by parts yields

∫ 1

−1

u̇h`jdx+ [u∗`j ]|1−1 −
∫ 1

−1

uh`
′
jdx = 0, j = 0, . . . , N (3)

with u̇h the time derivative of (2), (.)′ the spatial derivative w.r.t x and u∗ the numerical upwind flux between elements.
Integration by numerical quadrature with GL nodes and Lagrange basis yields a matrix vector formulation on each element:

∆xn
2

Mu̇−DTMu = Bu∗, (4)

Dki = `i(xk), i, k = 0, . . . , N and B = diag([−1, 0, . . . , 0, 1]).

3 Finite Volume Based Agglomeration Multigrid Preconditioner

We construct a preconditioner for (2) based on an MG method applied to a simple FV discretization of (1). The grid points of
the FV cells coincide with the DGSEM elements plus additional N equidistant points inside of each element. An equidistant
FV discretization for (1) with mesh width ∆x̃ reads

u̇i +
a

∆x̃
(ui − ui−1) = 0, (5)

∗ Corresponding author: e-mail lea_miko.versbach@math.lu.se, phone +46 46 222 6811
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for the cell average ui on cell i = 1, . . . ,K. Implicit Euler time stepping yields a linear system to be solved in each time step:

un+1 − un +
a∆t

∆x̃
Cun+1 = 0 ⇔ Aun+1 = un, (6)

for A = I + ν
∆x̃C ∈ RK×K and ν = a∆t. The two-grid preconditioner for a smoother xk+1 = MSx

k +N−1
S b reads

(I − P 0
1A
−1
0 R1

0A1)N−1
S + P 0

1A
−1
0 R1

0A1. (7)

We consider s-stage RK schemes with initial condition u0 = un as smoothers:

uj = un + αj∆t
∗(un −Auj−1), j = 1, . . . , s− 1,

un+1 = un + ∆t∗(un −Aus−1).

On each grid level l, the explicit pseudo time step is defined by ∆t∗l = c∆xl/ν for mesh width ∆xl. We use optimized s-stage
RK parameters from [1].

4 Numerical Results

We test the preconditioner on (1) with a = 2 on the interval [0, 2] with periodic boundary conditions and initial condition
sin(πx). We keep the number of unknowns constant 300 and perform one time step with CFL = 1. In figure 1 we see

Fig. 1: Performance of preconditioned DGSEM for different optimized smoothers

the effect of the preconditioner. As expected, using the FV method itself results in the best preconditioner. FV MG based
preconditioners perform also well, with a visible influence of the smoother. In this setting, the optimized RK2 smoother gives
the best results. While unpreconditioned GMRES does not terminate in 70 iterations, using the FV based MG preconditioner
with RK2 smoother GMRES terminates in less that 70 iterations. It is moreover noticeable that the preconditioner performs
better for smaller N , namely in the left figure. This might be caused by the optimized smoothing parameters, which are
constructed for the case N = 1.

5 Conclusions and Outlook

We suggested an FV based MG preconditioner for DGSEM to solve the advection equation in 1D. Using explicit 2-, 3- and
4-stage RK smoothers we have achieved an improved performance compared to the unpreconditioned case. The relatively
large influence of the smoother choice suggests to consider more advanced smoothers, such as W-smoothers [2], and to find
new optimal parameters for higher order DGSEM discretizations.
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ABSTRACT
We suggest a newmultigrid preconditioning strategy for use in Jacobian-free Newton–Krylov (JFNK)
methods for the solution of algebraic equation systems arising from implicit Discontinuous Galerkin
(DG) discretisations. To define the new preconditioner, use is made of an auxiliary first-order finite
volume discretisation that refines the original DG mesh, but can still be implemented algebraically.
As smoother,we consider thepseudo-time iterationW3with a symmetricGauss–Seidel-typeapprox-
imation of the Jacobian. As a proof of concept numerical tests are presented for the one-dimensional
Euler equations, demonstrating the potential of the new approach.
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1. Introduction

The goal of our research is the construction of e!cient
Jacobian-free preconditioners for high order Discon-
tinuous Galerkin (DG) discretisations with implicit
time integration. One of our main interests is three-
dimensional unsteady compressible "ow. High-order
DG methods (and related methods such as Flux
Reconstruction (FR) discretisations) o#er great poten-
tial for Large Eddy Simulation (LES) of turbulent "ows
with geometries, such as jet engines. The idea of DG
(or FR) is to approximate the solution element-wise
using a polynomial, which is allowed to be discon-
tinuous across element interfaces, see Kopriva (2009)
and Huynh (2007). Communication and coupling of
degrees of freedom (DOF) is only across faces, whereas
the element-local computations are very dense. As a
result, DG methods are very well suited for domain-
decomposition-based parallelisation (see, e.g. Hin-
denlang et al. 2012; Vincent et al. 2016). The spe-
ci$c variant we consider is the DG Spectral Element
Method (DG-SEM), e.g. Kopriva, Woodru#, and Hus-
saini (2002). We use a Lagrange-type (nodal) basis
with Gauss–Lobatto (GL) quadrature nodes with the
collocation of the discrete integration. These choices
yield DG operators that satisfy the summation-by-
parts (SBP) property (see Gassner 2013), which is the
discrete analogue to integration-by-parts. SBP is key

CONTACT Lea M. Versbach lea@maths.lth.se, lea_miko.versbach@math.lu.se

to construct methods that are discretely entropy stable
and/or kinetic energy preserving.

DG discretisation in space results in a big system
of ODEs. Due to geometry features and thin bound-
ary layers that occur in challenging compressible tur-
bulent "ow applications as the design of jet engines,
aeroplanes and wind turbines, the resulting large sys-
tem of ODEs is sti#. Implicit time integrators can
overcome the de$ciency of explicit time integrators
with restrictive CFL conditions. However, e!ciency
can only be restored when the arising large non-linear
systems are solved e!ciently in terms of CPU time,
but also regardingmemory consumption. Vincent and
Jameson mention that solvers for linear and non-
linear equation systems are severely lacking for 3D
DG applications as one of four major obstacles that
need to be solved if high-order methods are to be
widely adopted by, e.g. industry, Vincent and Jame-
son (2011). Candidates for solvers are FAS-Multigrid
(full-approximation multigrid scheme) and precondi-
tioned Jacobian-Free Newton–Krylov methods (JFNK)
(Knoll andKeyes 2004) wheremultigrid can be used as
a preconditioner (see Birken and Jameson 2010). The
JFNK technology is in general interesting, as themem-
ory use is minimised. Although DG systems have a
weakly coupled block structure, the blocks themselves
can be large. In particular, the problem for high-order

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
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DG methods is that the number of unknowns per
element increases dramatically with increasing poly-
nomial degree and dimension, leading to large dense
Jacobian blocks (see Birken et al. 2013; Birken 2012).
For a $nite volume method, the block size is 2+d
with dimension d, whereas for a DG-SEM with pth
degree polynomials, it is (d + 2)(p + 1)d. For degree
2 in 3D, this is already 135. The favourable memory
consumption of the JFNK approach is obsolete if the
preconditioner requires the storage of (parts of) the
DG system Jacobian.

Hence in this article, we present a novel idea for
the construction of a well-performing preconditioner
for the JFNK approach, while retaining the low mem-
ory use, i.e. a Jacobian-free preconditioner. The main
ingredient consists in the construction of a simpli-
$ed replacement operator. A motivation for this is
a previously proved equivalence between a DG-SEM
discretisation and a high order FV discretisation, see
Fisher et al. (2013). One could, for instance, choose a
di#erent polynomial order in the element to generate
a replacement operator as in Fidkowski et al. (2005)
and Birken et al. (2013). However, we aim to retain
the number of DOFs in our replacement operator by
introducing subcells in each element, namely p+1 in
each spatial direction. On this subcell-element grid,
the simplest replacement operator is a $rst-order $nite
volume (FV) discretisation. In some sense, we reinter-
pret the nodal values as input for an FV method. This
gives a semi-structured–unstructured approximation,
where the elements are unstructured, but inside the
element the subcells are structured (Versbach, Birken,
and Gassner 2018). We extend the idea of this paper to
the Euler equations. In the resulting approximate Jaco-
bian, we now only have (d + 2)(p + 1)(2d + 1) entries
(Birken 2012). Furthermore, it allows to use the avail-
able knowledge about fastmultigrid (MG)methods for
FV discretisations on (block-)structured meshes. As a
smoother for our FV discretisation, we use a state of
the art low memory W3 smoother from Birken, Bull,
and Jameson (2018).

A related approach was proposed in Allaneau, Li,
and Jameson (2012) for spectral di#erence (SD) meth-
ods, where the replacement operator is also an FV
discretisation on a potentially $ne grid.However, there
the FV grid is not embedded in the high-order grid,
but overlayed. Thus, it is necessary to interpolate the
solution (and the residual) in-between di#erent grids
(with di#erent topologies), which needs interpolation

and reconstruction operators similar to Chimera tech-
niques. In contrast, we want to harness in particu-
lar the semi-unstructured–structured mesh-topology:
our FV discretisation basically lives on the same DOFs
as the nodal high-order DG method.

In the remainder of the paper, we $rst describe our
prototype problem, the one-dimensional compressible
Euler equations. We then present the DG-SEM and
the FV subcell discretisations as well as the multigrid
solver. In the last part of the paper, we show numeri-
cal experiments to validate the approach and draw our
conclusions.

2. One-dimensional Euler equations

As a prototype problem for our novel idea, we consider
the one-dimensional compressible Euler equations for
a perfect gas




ρ

m
ρE





t

+




m

mv + p
Hm





x

= 0, (1)

with appropriate initial and boundary conditions.
Here ρ is the density, m = ρv the momentum,
p the pressure, E the energy and H = E + p/ρ
the enthalpy. De$ning U = (ρ,m, ρE)T and f (U) =
(m,mv + p,Hm)T, we can write the Euler equations in
vector form:

Ut + f (U)x = 0. (2)

3. Spatial discretisation

3.1. DG-SEM

For the spatial discretisation, we introduce a grid with
K elements ek of width "xk, k = 1, . . . ,K. Each ele-
ment is transformed to the reference element [−1, 1]
by a linear mapping with Jacobian Jk := "xk/2. The
solution is approximated by a nodal polynomial in
reference space with degree p in each element ek

U(ξ , t)|ek ≈ Uk(ξ , t) =
p+1∑

j=1
Uk
j (t)ψj(ξ), (3)

where the interpolation nodes are the GL nodes
{ξj}

p+1
j=1 . We use the element mapping to transform the

Euler equations into reference space

JkUt + f (U)ξ = 0, (4)
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and insert our ansatz (3). Next, we integrate over the
reference element, use integration-by-parts for the "ux
term and replace the "uxes at the element interfaces
with so-called numerical "ux functions f ∗ to arrive at

∫ 1

−1
JkUk

t ψ(ξ) dξ + [f ∗ψ(ξ)]1−1

−
∫ 1

−1
f (Uk)ψξ (ξ) dξ = 0. (5)

As a numerical "ux function, we choose the Rusanov
"ux (or local Lax–Friedrich "ux)

f ∗(U−,U+) = f (U−) + f (U+)

2

− λmax
2

(
U+ − U−)

, (6)

where U−,U+ are the values left and right at an ele-
ment interface and λmax is an estimate of the maxi-
mum wave speed at the interface.

As stated above, the main idea of the DG-SEM is
collocation. We use collocation for our discrete inte-
gration, i.e. we replace the integrals in (5) with GL
quadrature rules at the same location as our inter-
polation, which can be interpreted as a collocation
of the non-linear "uxes f (U). With this choice, the
DG-SEM operators simplify a lot: we get the diagonal
massmatrixMij = δijωi, i, j = 1, . . . , p + 1, the diago-
nal boundarymatrixB = diag(−1, 0, . . . , 0, 1) and the
derivative matrix Dij := (ψj)ξ (ξi), i, j = 1, . . . , p + 1.
Replacing the integrals in (5) and using the de$ni-
tions of the DG-SEM operators, we arrive at the DG-
SEMmethod in thematrix–vector formulation for one
cell ek

U̇k = − 1
Jk

(M−1Bf ∗ − M−1DTMf ). (7)

The elemental residuals are coupled through the
numerical "ux f ∗ withDOFs fromother elements con-
nected via the interfaces. Collecting the equations for
all elements in one big system with unknown u and
applying implicit Euler in time gives

un+1 − un −"tG(un+1) =: F(un+1) = 0, (8)

where G(un+1) collects the DG-SEM residuals, i.e. the
right-hand side of (7).

3.2. Finite volume d iscretisation

Based on the DG-SEM discretisation, we de$ne an
FV discretisation on a subcell mesh with p+1 cells

Figure 1. Two DG cells with 6 GL nodes each. An equidistant FV
mesh is shown in the right cell.

(see Figure 1). The discretisation on this semi-
structured–unstructured grid is used to de$ne the pre-
conditioner and to construct the multigrid method.
An FV method is based on approximating the cell
averages in a subcell i in an element ek

1
"xi

∫ xi+1/2

xi−1/2

U(x, tn) dx ≈ Uk,n
i (9)

at each time level tn. For a subcell in the element ekwith
subcell size"xi, the subcell FV discretisation reads

U̇k
i + 1

"xi
(f ∗i+1/2 − f ∗i−1/2) = 0,

i = 1, . . . , p + 1; k = 1, . . . ,K. (10)

The numerical "ux function f ∗i+1/2 is again Rusanov
"ux (6), with the values left and right being not
the polynomial values, but the subcell average values
instead.

4. Preconditioned Jacobian-free
Newton-GMRES

The resulting system of nonlinear equations (8)
is solved using Newton’s method, written for the
equation F(u) = 0:

solve
∂F(u)

∂u
|u(k)s = −F(u(k)),

u(k+1) = u(k) + s, k = 0, 1, . . .
(11)

for a given initial guess u(0). The linear system in (11)
is solved using right preconditioned GMRES with a
relative tolerance.

In order to not compute the Jacobian in each iter-
ation (11), we replace the matrix–vector products
appearing in GMRES by a di#erence quotient:

∂F(u)

∂u
q ≈

F(u + εq) − F(u)

ε
, with ε = 1e−7

‖q‖
.

(12)
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5. Finite volumemultigrid preconditioner

The basis for the preconditioner is an agglomera-
tion multigrid method on the $nite volume grid. The
coarse grid problems are given by applying the FV
discretisation on the coarse grid. To restrict $ne grid
values, they are summed, weighted by the volumes
of the respective cells and divided by the total vol-
ume. For an equidistant grid in one dimension, the
corresponding restriction operator is given by

Rl
l−1 = 1

2





1 1
1 1

. . . . . .
1 1




. (13)

As prolongation we use the injection, where the value
in the coarse cell is taken for all corresponding $ne
cells:

Pl−1
l = 2RlT

l−1. (14)

A generic smoother is an iterative method for the
solution of Alsl = bl and is given by sk+1

l = MS,lskl +
N−1

S,l bl. The index l speci$es the multigrid level, while
S denotes that this iterative method represents the
smoother. It is possible to construct an MG pre-
conditioner based on a V- or a W-cycle, as well as
several consecutive cycles. The number of pre- and
postsmoothing steps is also "exible. We now write
down a V-cycle multigrid algorithm with one step of
pre- and postsmoothing, which corresponds to γ = 1
in the following pseudo-code:
function MG(sl, bl, l):

• sl = MS,lsl + N−1
S,l bl (presmoothing)

if(l>0)

• rl−1 = Rl
l−1(Alsl − bl) (restriction)

• vl−1 = 0
◦ for j = 1, . . . , γ : vl−1 = MG(vl−1, rl−1,

l − 1)
• sl = sl − Pl−1

l vl−1 ($ne grid correction)
• sl = MS,lsl + N−1

S,l bl (postsmoothing)

This gives rise to an iterative method of the form
sk+1
l = MMGskl + N−1

MGbl. In the case of an lmax-level
multigrid cycle with presmoothing on the coars-
est level, the preconditioner N−1

+,MG ≈ A−1 is de$ned

recursively by

N−1
0,MG = N−1

S,0 , and for l = 1, . . . , lmax :

N−1
l,MG = MS,l(N

−1
S,l − Pl−1

l N−1
l−1,MGR

l
l−1AlN

−1
S,l

+ Pl−1
l N−1

l−1,MGR
l
l−1) + N−1

S,l . (15)

5.1. Smoothers: pseudo-time iterations

As smoothers for the multigrid preconditioner, we
consider W schemes (see Birken, Bull, and Jame-
son 2018). A pseudo-time derivative is added to
Equation (11) to yield

∂s
∂t∗

+ As − b = 0. (16)

A W smoother is given by

s0 = sn,

sj = sn − αj"t∗W−1(Asj−1 − b), j = 1, . . . , s,

sn+1 = ss,
(17)

where W ≈ I + η"t∗A. The free parameters are η,
usually taken from the range [0.25, 1.5], as well as αj ∈
[0, 1] and a local "t∗, given by a pseudo-CFL num-
ber c∗ depending on the maximal eigenvalue of the
Jacobian λmax:

"t∗ = c∗
"xi

|λmax|
. (18)

Smoothers of form (17) can be written as a linear
iterative scheme

sn+1 = MSsn + N−1
S b, (19)

where for a 3-stage W smoother, we obtain

N−1
S = α3"t∗W−1 − α3α2"t∗2W−1AW−1

+ α3α2α1"t∗3(W−1A)2W−1. (20)

The approximation of W−1 will be explained in
the next section. The coe!cients are given by
[α1,α2,α3] = [0.1481, 2/5, 1].

5.1.1. SGS preconditioner
The speci$c approximation to de$ne W is based on
a symmetric Gauss–Seidel (SGS) approach. Such a
method was originally suggested in Swanson, Turkel,
and Rossow (2007) and further developed by several
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authors. We follow a recent version from Birken, Bull,
and Jameson (2018).

The$rst step is to approximate the Jacobian by using
a di#erent $rst-order discretisation of the linearised
Euler equation. It is based on a splittingA = A+ + A−

of the "ux Jacobian. This is evaluated in the average
of the values on both sides of the interface. The split
Jacobians correspond to positive and negative eigen-
values and can bewritten in terms of thematrix of right
eigenvectorsQ as

A+ = Q.+Q−1, A− = Q.−Q−1,

where .± are diagonal matrices containing the pos-
itive and negative eigenvalues, respectively. These are
then bounded away from zero using a parabolic func-
tion which takes care when the modulus of the eigen-
value λ is smaller or equal to a fraction ad of the speed
of sound a with free parameter d ∈ [0, 1]:

|λ| = 1
2

(
ad + |λ|2

ad

)
, |λ| ≤ ad. (21)

With this, an upwind discretisation of the split Jaco-
bian is given in cell i by

uit∗ + ui +
"t
"xi

((A+
ii ui + A−

i,i+1ui+1)

− (A+
i−1,iui−1 + A−

ii ui)) = 0. (22)

The corresponding approximation of the Jacobian is
then used to construct a preconditioner. Speci$cally,
we consider the block SGS preconditioner

W−1 = (D + L)−1D(D + U)−1, (23)

where L,D andU are blockmatrices with 3 × 3 blocks.
We have L + D + U = I + η"t∗J and obtain

Li−1,i = −
η"t"t∗i
"xi

A+
i−1,i, Ui,i+1 =

η"t"t∗i
"xi

A−
i,i+1,

(24)

Dii = I + η"t∗I +
η"t"t∗i
"xi

(A+
ii − A−

ii ).

Applying this preconditioner requires solving 3 × 3
systems coming from the diagonal, which can be done
directly. A fast implementation is obtained by trans-
forming $rst to a certain set of symmetrising variables
(see Swanson, Turkel, and Rossow 2007).

6. Numerical results

We consider the one-dimensional Euler equations on
the interval [0, 10] and study one step of implicit Euler
where we look at the convergence rate of GMRES with
maximal 100 iterations in the $rst Newton step. All
results are produced in Python. Measuring the CPU
time will not give a great insight into performance
in the one-dimensional case and is therefore not dis-
cussed in the following, but is important to consider
in higher dimensions.

We equip the Euler equations with periodic bound-
ary conditions and consider two di#erent initial condi-
tions: A subsonic case (ρ0, v0, p0) = (1 + 0.1 sin(2πx/
10), 1, 28)withMachnumber 0.16 and a transonic case
(ρ0, v0, p0) = (1 + 0.1 sin(2πx/10), 1, 1) with Mach
number 0.85.We choose a CFL number of 100 and test
the discussed MG preconditioner with W3 smoother
for a V cycle, see (15). A simple block Jacobi precondi-
tioner with blocks corresponding to the 3 × 3 systems
does not improve the convergence rate of the GMRES
cycle compared to no preconditioner. This motivates
to consider more sophisticated peconditioners for the
given problem. We also note that applying the W3
presmoothing step several times gives almost no con-
vergence improvement while being very expensive in
terms of computational costs. The sameholds for using
a W cycle or two consecutive V cycles, as well as for
the method of nonsymmetric Restriction Aggregation
(NSR) from Sala and Tuminaro (2008).

We test the framework for 4th- and 8th-order DG
methodswith 240 and 480DOFs, respectively. In order
to have a reference for e!ciency, we construct a pre-
conditioner based on the Jacobian of FV discretisation
(12). The new multigrid preconditioner approximates
the inverse of the FV Jacobian and thus cannot be
expected to behave superior to the reference precon-
ditioner. The reference preconditioner is applied by
using GMRES with tolerance 1e-14 and maximal 300
iterations. This is very expensive in terms of computa-
tions and only suggested to compare how well the pro-
posed MG preconditioner approximates the inverse of
the FV Jacobian.

6.1. Subsonic case

In the subsonic case, the pseudo-CFL number for the
W3 smoother is c∗ = 10, η = 1.4 and d=0.1.We con-
sider two di#erent MG preconditioners: one with only
one presmoothing step on each level and one with one

117



358 P. BIRKEN ET AL.

Figure 2. Convergence history for GMRES for one Newton iteration, subsonic case, DG order 4 (top) and 8 (bottom), 240 DOFs (left) and
480 DOFs (right).

pre- and one postsmoothing step on each level. The
convergence results are shown in Figure 2.

We see that the reference preconditioner (FV) gives
very good results for all four test cases, butworks better
for 4th order. In particular, there is fast initial conver-
gence, which is crucial to get fast termination within
an inexact Newton’s method. The suggested MG pre-
conditioners yield a very good approximation to the
reference preconditioner, especially within the $rst 20
GMRES iterations. The MG preconditioner with pre-
and postsmoothing gives the best results, outperform-
ing the MG preconditioner equipped with only pres-
moothing slightly. This holds forDG solvers of 4th and
8th order as well as for DOFs 240 and 480. Increasing
theDOFs does not have a visible impact on the conver-
gence rate of the reference preconditioner for both 4th
and 8th order while we can notice small di#erences in

the behaviour of theMGpreconditioners. The residual
after 100GMRES iterations di#ers slightlymore for the
two MG preconditioners when increasing the DOFs
for both 4th and 8th order. Since the FV replacement
operator is of the $rst order, the question arises how
it behaves for the increased order of the DG method.
When going from 4th to 8th order for 240 DOFs, there
are two orders of magnitude decrease of the refer-
ence preconditioner, whereas the decrease for the W3
preconditioners is very small and they behave very
similarly. For 480 DOFs, there is a 1.5 order of magni-
tude decrease of the reference preconditioner and the
MG preconditioners behave similarly. It is noticeable
that the MG preconditioners mimic the FV precon-
ditioner better when increasing the order of the DG
discretisation. We expect a performance improvement
of the smoother for optimised c∗, η and d.
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Figure 3. Convergence history for GMRES for one Newton iteration, transonic case, DG order 4 (top) and 8 (bottom), 240 DOFs (left) and
480 DOFs (right).

6.2. Transonic case

In the transonic case, the pseudo-CFL number for the
W3 smoother is c∗ = 2, η = 0.7 and d=0.1. We con-
sider the same two di#erent MG preconditioners as in
the transonic case. The convergence results are shown
in Figure 3.

Both reference FV and MG preconditioners per-
form worse than in the subsonic case. Such a loss
of performance has been reported for a p-multigrid
method in Premasuthan et al. (2009). In the transonic
case, the reference preconditioner works very similar
for 4th and 8th order and di#erent DOFs. We notice
only a slight decrease in performance when increas-
ing the order as well as when increasing the DOF.
For 240 DOFs, the $rst MG preconditioner mimics
the performance of the reference preconditioner with
approximately 0.5 order ofmagnitude degradation and
works slightly better for the 4th order. The second

MG preconditioner does not work well for 240 DOFs
and the 4th and 8th order, respectively. When increas-
ing the DOFs, the MG preconditioner with pre- and
postsmoothing slightly outperforms the onewith pres-
moothing only. In the case of 480 DOFs, the second
MG preconditioner works around 1 order of magni-
tude worse than the reference preconditioner, giving
for both 4th and 8th order methods a result approxi-
mately 0.5 order of magnitude degradation compared
to 240 DOFs. Again the order a#ects the performance
only slightly for di#erent DOFs.

7. Conclusions

We presented a new multigrid preconditioning strat-
egy for use in JFNK methods for the solution of
equation systems arising fromDG discretisations. The
core idea is to make use of an auxiliary $rst-order FV
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discretisation that re$nes the original DG mesh, but
can still be implemented algebraically. As smoother,
we consider W3. Numerical results show the potential
of the approach as a proof of concept for the one-
dimensional Euler equations. A simple block Jacobi
preconditioner does not improve the convergence rate
compared to no preconditioner at all, which justi$es
the necessity of using this more sophisticated pre-
conditioner. The convergence results of the proposed
preconditioner are promising, being close to a quasi-
exact preconditioner in the subsonic case. Our results
indicate that the performance of the preconditioner
is only weakly in"uenced by the order of the DG
discretisation. A possible extension of the precondi-
tioner to multiple spatial dimensions could be based
on a tensor product strategy, which is also the nat-
ural approach for the extension of DG-SEM to mul-
tiple spatial dimensions. It should be noted that W3
smoothers are designed for high aspect ratio grids and
have been shown to achieve even better performance
on those compared to equidistant meshes (Birken,
Bull, and Jameson 2018). This is of special interest for
Navier–Stokes equations with a boundary layer.
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∗ Lund University
Centre for Mathematical Sciences, Box 118, 221 00 Lund, Sweden

1 johannes.kasimir.418@student.lu.se

2 lea miko.versbach@math.lu.se, http://www.maths.lu.se/staff/lea-miko-versbach/

3 philipp.birken@math.lu.se, http://www.maths.lu.se/staff/philipp-birken/

4 University of Cologne
Division of Mathematics/Center for Data and Simulation Science, Weyertal 86 90,50931 Köln,
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Abstract. The goal of our research is the construction of efficient Jacobian-free preconditioners for

high order Discontinuous Galerkin (DG) discretizations with implicit time integration. We are motivated

by three-dimensional unsteady compressible flow applications, which often result in large stiff systems.

Implicit time integrators overcome the impact upon restrictive CFL conditions on explicit ones but leave

the problem to solve huge nonlinear systems. In this paper we consider a multigrid preconditioning

strategy for Jacobian-free Newton-Krylov (JFNK) methods for the solution of algebraic equation systems

arising from implicit Discontinuous Galerkin (DG) discretizations. The preconditioner is defined by an

auxiliary first order Finite Volume (FV) discretization that refines the original DG mesh, but can still be

implemented algebraically. Different options exist to define the grid transfer between DG and FV. We

suggest an ad hoc assignment of the unknowns as well as L2 projections. We present new numerical

results for the two-dimensional convection-diffusion equation in combination with the different transfer

options, which demonstrate the quality and efficiency of the suggested preconditioner with regards to

convergence speed up and CPU time. The suggested L2 projection from this paper result in the best

convergence speed up.

1 INTRODUCTION

In our research we are motivated by three-dimensional unsteady compressible flow applications. Our

goal is the construction of efficient Jacobian-free preconditioners for high order Discontinuous Galerkin

(DG) discretizations with implicit time integration. High order methods such as DG or Flux Recon-

struction discretizations offer great potential for Large Eddy Simulation (LES) of turbulent flows with

complex geometries, e.g. jet engines. The idea of these discretizations is an element-wise polynomial

1
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approximation, with possible discontinuities across element interfaces [1, 2]. The degrees of freedom

are coupled across faces and inside each element, resulting in dense element-wise computation. Thus,

these methods are very well suited for high performance computing [3, 4]. We consider a specific DG

variant, the DG Spectral Element Method (DG-SEM), see e.g. [5]. This discretization is based on a

Lagrange type (nodal) basis with Legendre-Gauss-Lobatto (LGL) quadrature nodes, with collocation of

the discrete integration. Moreover, the same Lagrange basis is used for ansatz and test space. These

choices yield DG operators that satisfy the summation-by-parts (SBP) property [6], which is the discrete

analogue to integration-by-parts. This property is key to construct methods that are discretely entropy

stable and/or kinetic energy preserving.

Discontinuous Galerkin discretization in space results in a big system of ODEs. In a lot of challenging

compressible turbulent flow applications as e.g. the design of jet engines, airplanes and windturbines,

these systems are stiff due to geometry features and thin boundary layers. It is therefore of advantage to

use implicit time integrators to overcome the deficiency of explicit ones with restrictive CFL conditions.

However, this causes challenges in terms of CPU time and memory consumption. In [7], Vincent and

Jameson mention that solvers for linear and nonlinear equation systems are severely lacking for 3D DG

applications, and are therefore one of four major obstacles that need to be solved if high order methods

are to be widely adopted by e.g. industry. Full-Approximation multigrid (FAS-Multigrid) schemes and

preconditioned Jacobian-Free Newton-Krylov methods (JFNK) combined with multigrid preconditioners

are candidates for such efficients solvers [8, 9]. We focus on the latter one and the construction of efficient

preconditioners. DG systems have a block structure with weakly coupled blocks at the faces. The blocks

can be of very large size depending on the order of the DG method: the number of unknowns per element

increases dramatically with increasing polynomial degree and dimension, leading to large dense Jacobian

blocks [10, 11]. While for Euler or Navier-Stokes equations the block size of a Finite Volume method is

2+d with dimension d, it is (d+2)(p+1)d for DG-SEM with p-th degree polynomials on quadrilateral

grids. For degree 2 polynomials in 3D this results in dense blocks of size 135×135. Thus, the favorable

memory consumption of the JFNK approach is obsolete if the preconditioner requires the storage of the

DG system Jacobian.

In this article we extend the idea for the construction of a well-performing low storage precondi-

tioner for the JFNK approach, i.e. a Jacobian-free preconditioner as suggested in [12, 13], to the two-

dimensional case and consider a convection-diffusion problem. This extension is straightforward using

a tensor product ansatz for the DG-SEM discretization. The main ingredient is the construction of a sim-

plified replacement operator. While it is possible to choose a different polynomial order in the element

to generate a replacement operator as in [14, 10], we aim to retain the number of DOFs in our replace-

ment operator by introducing subcells in each element, namely p+1 in each spatial direction. A related

approach was proposed in [15] for spectral difference (SD) methods. The simplest replacement operator

is a first order Finite Volume (FV) discretization defined on this subcell grid. To do so, the nodal DOFs

from the DG method need to be reinterpreted as unknowns for the FV method. In extension to previous

work, we consider different transfer operators between the DG-SEM and FV discretization based on L2

projections.

We measure the quality and efficiency of the suggested preconditioners by considering the conver-

gence rate of the Krylov subsolver as well as the CPU time. Moreover, the FV discretization itself can be

interpreted as a reference preconditioner. This is motivated by the fact that a well constructed multigrid

method should approximate the FV method as well as possible. All results presented in this paper are

produced using the Python bindings in the Distributed and Unified Numerics Environment (DUNE) [16].
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This is a modular toolbox for solving partial differential equations with grid-based methods, ensuring ef-

ficiency in scientific computations and supporting high-performance computing applications. Numerical

methods can be developed and tested in Python, before they are transferred to C++ to improve perfor-

mance efficiency.

In the remainder of this paper, we first describe the here considered problem, the two-dimensional

convection diffusion-equation. We then present the DG-SEM discretization and the FV subcell dis-

cretization. In section 3 we describe how to construct an agglomeration multigrid preconditioner and

present the different transfer operators between DG and FV. In the last part of the paper, we show nu-

merical experiments to validate the approach and draw our conclusions.

2 PROBLEM DESCRIPTION AND DISCRETIZATION

In this paper we consider the two-dimensional linear convection-diffusion equation

ut +b ·∇u− ε∆u = g(u), (1)

uy|ΩSN
= 0, u|∂ΩWE

= 0,

u(X,0) = exp(−10‖x‖2),

with (X, t) ∈ Ω× [0,T ], Ω = [−1,1]2, b = 1
2(
√

3,1) and ε ∈ R+.

2.1 Discontinuous Galerkin Spectral Element Method

We discretize the spatial components of (1) using a discontinuous Galerkin method and rewrite prob-

lem (1) as

ut +∇ · f(u,∇u) = 0, (X, t) ∈ Ω× [0,T ] with Ω ⊂ R
d . (2)

To derive the discretization we consider the weak form of the conservation law∫
Ω

utψdΩ+
∫

Ω
∇ · fψdΩ = 0, (3)

using test functions ψ from some test space. Integration by parts yields∫
Ω

utψdΩ+
∫

∂Ω
f ·nψds−

∫
Ω

f ·∇ψdΩ = 0. (4)

In the next step, the domain Ω is subdivided into cells Ωi. In each cell the solution u and the flux

function f(u,∇u) are approximated by a polynomial. In the following we assume that Ω ⊂ R2, which

simplifies the notation. Moreover, we map all cells Ωi onto the unit cell Ω̂ := [−1,1]2 as described in

[1, 17]. Then the numerical approximation on the unit cell is given by

u(x, t)|Ω̂ ≈ uP(x, t) = ∑
Nx

j=1 ∑
Ny

k=1 u jk(t)ϕ jk(x). (5)

The choice of the basis functions gives rise to different DG methods. We consider here the DG

spectral element method (DG-SEM), where the same Lagrange basis is used for ansatz and test space.

Moreover, the flux function is approximated by

f(u,∇u)|Ω̂ ≈ fP(u,x, t) =
Nx

∑
j=1

Ny

∑
k=1

f jk(t)ϕ jk(x), (6)

3
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with polynomial basis functions ϕ jk(x) = ϕ j(x)ϕk(y) of degree p and f jk(t) = f(u jk(t),∇u jk(t)). The

global solution is then approximated by a piecewise polynomial. We only have continuity inside the

elements, but not on the interfaces, i.e. we allow for discontinuous polynomial approximations. The test

functions are also chosen to be polynomials of degree up to p. Then (4) becomes on the reference cell

J

∫
Ω̂

uP
t ϕ jk dΩ̂+

∫
∂Ω̂

fP ·nϕ jk ds−
∫

Ω̂
fP ·∇ϕ jk dΩ̂ = 0, j = 1, . . . ,Nx,k = 1, . . . ,Ny, (7)

with J = ∆x∆y
4 . As polynomial basis for the DG-SEM method we choose a Lagrange basis with a nodal

basis based on Legendre-Gauss-Lobatto (LGL) nodes, which are defined on the unit cell Ω̂. Next we

apply a Gaussian quadrature to approximate the integrals. For the DG-SEM method, interpolation and

quadrature are collocated. Thus polynomials up to degree 2p−1 can be approximated exactly.

This gives for the mass integral

J

∫
Ω̂

uP
t ϕ jk dΩ̂ = J

Nx

∑
l=1

Ny

∑
m=1

u̇lm(t)
∫

Ω̂
ϕlmϕ jk dΩ̂ ≈ Ju̇ jk(t)ω jωk, j = 1, . . . ,Nx,k = 1, . . . ,Ny. (8)

Defining a vector of coefficients ũ and a diagonal mass matrix M with diagonal elements given by the

quadrature weights, equation (8) can be written more compactly as JMũ.

Applying Gaussian quadrature to the volume integral yields

∫
Ω̂

fP ·∇ϕ jk dΩ̂ =
∫

Ω̂

Nx

∑
l=1

Ny

∑
m=1

flm(t)ϕlm ·∇ϕ jk dΩ̂ (9)

≈
Nx

∑
l=1

ωlωk(flk)1ϕ′
j(xl)+

Ny

∑
m=1

ω jωm(f jm)2ϕ′
k(xm), j = 1, . . . ,Nx,k = 1, . . . ,Ny.

With f̃ the vector of evaluations at the quadrature nodes and S such that

(S jk)1 = ωlωkϕ′
j(xl), j = 1, . . . ,Nx,k = 1, . . . ,Ny, (10)

(S jk)2 = ω jωmϕ′
k(xm), j = 1, . . . ,Nx,k = 1, . . . ,Ny,

equation (9) can be written compactly as ∑2
i=1 Si(f̃)i.

The boundary integral is the sum of the four integrals on the edges of the reference cell. Then the

integral can be calculated as∫
∂Ωi

fP ·nϕ jk ds ≈ ωk(f
P(u,(1,yk), t))1ϕ j(1)−ωk(f

P(u,(−1,yk), t))1ϕ j(−1) (11)

+ ω j(f
P(u,(x j,1), t))2ϕk(1)−ω j(f

P(u,(x j,−1), t))2ϕk(−1),

j = 1, . . . ,Nx,k = 1, . . . ,Ny.

We define the vector of function evaluations at the quadrature nodes on the surface as f̂ and Ms
jk =

ω jϕk(x f ace), then equation (11) can be written compactly as ∑4
i=1(M

s
jk)i(f̂)i. Next, the boundary terms

need to be coupled with the neighboring cells and since we allow for discontinuities at the cell boundaries

for numerical solution, numerical flux functions are needed. We approximate

fP(x, t) ≈ fN
c (u

P(x, t), ûP(x, t);n)+ fN
d (u

P(x, t),∇uP(x, t), ûP(x, t),∇ûP(x, t);n), (12)

4
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where we write the numerical flux as a sum of the convective and the diffusive numerical fluxes, ûP is

the polynomial in the neighboring cell and n the normal.

In this paper we use the upwind flux for the convective numerical fluxes and an interior penalty

Galerkin flux in the diffusive part, see [18]:

fN
IP(u

P(x, t),∇uP(x, t); ûP(x, t),∇ûP(x, t);n) := {{ε∇uP}}−
η

h
ε!uP", (13)

with the classic average {{·}} and jump !·", local mesh width h and a stability coefficient η which we set

η =

{

10×order2, if order > 0,

1, else.
(14)

On the reference cell we obtain a system of ordinary differential equations:

JMũt +
4

∑
j=1

MS
j(f

N) j −
2

∑
i=1

Si(f̃) j = 0. (15)

Collecting the equations for all elements in one big system with vector of unknowns u and applying

implicit Euler time stepping gives

un+1 −un −∆tGun+1 = 0, (16)

⇔ (I−∆tG)un+1 = un,

where G is a matrix since we have a linear problem. This linear system of equations can be solved using

a preconditioned Jacobian-free GMRES method. Matrix-vector products with the Jacobian are replaced

by a finite difference approximation to get a Jacobian-free variant.

In the next section we describe how to construct a preconditioner for this linear system based on a

multigrid (MG) method for a Finite Volume replacement operator.

3 MULTIGRID BASED PRECONDITIONER

In order to construct a preconditioner for the linear system (16), we replace the DG-SEM problem

by a lower order FV problem. This ansatz should not be confused with a p-multigrid method. It is mo-

tivated by the equivalence of the DG-SEM discretization to specific FV discretizations [19]. Instead of

constructing the equivalent FV operator, we construct a first order FV replacement operator. This sim-

plifies the construction of the Jacobian and allows us to use the available knowledge about fast multigrid

methods for FV discretizations. The question arises how to transfer the degrees of freedom (DOFs) back

and forth in these two discretizations inside each DG element. We present different transfer strategies

later in this section and explain first the construction of FV agglomeration multigrid preconditioners.

In the multigrid method considered in this paper, the coarse grid problems are given by the FV dis-

cretization on the corresponding grid. The grid transfer is based on agglomeration: to restrict fine grid

values, they are summed, weighted by the volumes of the respective cells and divided by the total vol-

ume. This is denoted by the restriction operator Rl
l−1, where l indicates the grid level s.t. l = 0 is the

coarsest level. The corresponding prolongation operator Pl−1
l is defined via injection, where the value in

the coarse cell is taken for all corresponding fine cells.

A generic smoother is an iterative method for the solution of a linear system Alxl = bl given by

xk+1
l = MS,lx

k
l +N−1

S,l bl, (17)

5
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with an iteration matrix MS,l and a nonsingular matrix N−1
S,l . As before, the index l specifies the multigrid

level and S denotes that this iterative method represents a smoother. It is possible to construct an MG

preconditioner based on a V- or a W-cycle, as well as several consecutive cycles. The number of pre-

and postsmoothing steps is also flexible. A multigrid algorithm to solve the linear problem Ax = b is

presented in the following pseudo-code:

function MG(xl,bl, l):
if(l = 0) solve Alxl = bl

else:

• for pre = 1, . . . ,Npre: xl = MS,lxl +N−1
S,l bl (presmoothing)

if(l > 0)

• rl−1 = Rl
l−1(Alxl −bl) (restriction)

• vl−1 = 0

– for j = 1, . . . ,γ : vl−1 = MG(vl−1,rl−1, l −1)
• sl = sl −Pl−1

l vl−1 (fine grid correction)

• for post = 1, . . . ,Npost : sl = MS,lxl +N−1
S,l bl (postsmoothing)

This gives rise to an iterative method of the form

xk+1
l = MMGxk

l +N−1
MGbl. (18)

The multigrid preconditioner is then given by N−1
MG.

3.1 Smoothers: Pseudo time stepping methods

As smoothers for the multigrid preconditioner we consider Runge-Kutta schemes. Adding a pseudo

time derivative to an initial value problem Ax = b, x(0) = x0 yields

∂x

∂t∗
+Ax−b = 0. (19)

Then any time-stepping method becomes a smoother. In this paper we consider low storage explicit

s-stage Runge-Kutta schemes of the form

x j = xn +∆t∗α jc(b−Axn), j = 1, . . . ,s (20)

xn+1 = xn +∆t∗c∗(b−Axs),

with ∆t∗ = c∗

CFLadv+CFLdi f f
, CFLadv =:= |b|∆t∗

∆x , CFLdi f f := 2ε∆t∗
∆x2 and parameters α j and c∗.

3.2 Transfer between DG and FV discretizations

In order to construct an FV replacement operator, the DG-SEM DOFs need to be reinterpreted as FV

DOFs. In the following we discuss three different options to transfer the vector of unknowns between

these two discretizations inside each DG element. The vector of unknowns in the DG-SEM discretization

in one element is given by ũ and we define the corresponding vector in the FV discretization by û, where

the number of volumes corresponds to the number of LGL nodes.

The first transfer option is referred to as ad hoc assignment of LGL nodes and FV cells in this paper

and corresponds to the grid transfer presented in [13]. The idea is to assign the values of ũ to the values

6
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Figure 1: Two DG-SEM grid reference elements with LGL nodes (blue nodes), and an inlaid finite volume subgrid
(black lines)

of û based on the location of the DOF, i.e. each DG-SEM DOF is assigned to the closest FV DOF. A

permutation matrix might be needed to take care of possible differences in the ordering of the DOFs. The

distribution of 4 respective 8 LGL nodes and an overlaid equidistant FV grid is visualized in Figure 1. If

every subgrid volume contains exactly one LGL node, a sufficient ad hoc assignment of DOFs between

the two discretizations is provided, while for high order DG-SEM discretizations the FV subgrid may

have volumes which do not contain any LGL node. Thus, some FV DOFs are assigned wrong values

for their location. This could be improved by modifying the FV subgrid such that each volume contains

exactly one LGL node.

Since the natural norm for DG methods is the L2 norm, another idea for the space transfer is to

consider an L2 projection. To define it, either the basis functions of the FV space or the DG-SEM space

can be used.

The basis functions in the FV space are already orthonormalized, and we define a projection matrix

via PFV ũ= û, defined as the inner L2 product of the DG-SEM Lagrange basis and the FV basis functions.

To transfer the DOFs from the FV grid to the DG grid, the reconstruction P−1
FV can be used. This is not

an L2 projection, but gives good results in the numerical tests presented in the next section.

Another option is to define the L2 projection matrix based on the DG-SEM space. To this end, the

LGL basis has to be orthonormalized. Then the projection PDGû = ũ can be defined as PDG := M−1PT
FV

with the DG mass matrix M and the reverse transfer as P−1
DG.

4 NUMERICAL RESULTS

We test the efficiency of the presented preconditioner for the two-dimensional convection diffusion

equation with b = 1
2(
√

3,1) and ε = 1.e− 4. We show 40 iterations of the GMRES convergence rate

using different FV based multigrid preconditioners. The number of multigrid levels is chosen such

that the coarsest grid in the FV space corresponds to one DG cell. On the coarsest grid, the system is

solved exactly using the sparse python solver spsolve which is based on an LU decomposition. For

smoothing we use a 3-stage Runge-Kutta scheme with parameters α = [0.145,0.395] and c∗ = 1.1 [20].

We discretized the convection diffusion problem with a 4th and 8th order DG discretization and consider

a 27×27 grid on the finest level. The time stepping width is set to be ∆t = 0.75, which gives a hyperbolic

CFL-like ratio of ∆t/∆x = 48.

As a first numerical test we examine how accurate the replacement operator approximates the original

7
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problem and how efficient the different transfer operators are. The convergence results for the reference

preconditioner based on the replacement first order FV operator can be seen in Figure 2, on the left side

for a 4th order DG method, in the following referred to as DG4, and on the right side for a 8th order DG

method referred to as DG8. In both cases, L2 projection gives better results than the ad hoc assignment.

Since the L2 norm is used for DG discretizations, these are the results we expected. L2 projection on

the FV space gives slightly better results, with a difference in residual of approximately 1.e−1 after 40

GMRES iterations both for DG4 and DG8. Increasing the order of the DG method gives results with

a more similar convergence rate for all transfer options while the overall quality of the FV reference

preconditioner decreases from between 1e− 7 and 1e− 11 to between 1e− 3 and 1e− 5. Since the

reference operator is of first order, it had to be expected that the reference preconditioner works better

for lower DG discretizations.

Next, we test the suggested multigrid preconditioners. A good multigrid method should approximate

the reference operator as good as possible. We construct a 3-level preconditioner based on the FV

replacement operator and test different combinations of pre- and postsmoothing for one V-cycle for DG4

and a 4-level preconditioner for DG8. In the legend of the plots, the first two numbers specify the pre-

and postsmoothing steps on the finest grid and the last two numbers the pre- and postsmoothing steps

on the coarser grids. On the coarsest grid we solve the system directly without any smoothing steps.

As before, on the left side we show the results for the 4th and on the right side for the 8th order DG

discretization.

In Figure 3 the convergence results can be seen using the ad hoc transfer between the DG and FV

space. We notice that the suggested multigrid preconditioners give convergence rates which mimic the

FV reference preconditioner to some extent and the preconditioner works better than an RK3 precon-

ditioner. Nevertheless, the overall convergence improvement is not very good when increasing the DG

order, for the reference preconditioner we decrease the relative residual by 1e− 7 in 40 iterations for a

4th order method compared to decreasing the relative residual by 1e− 3 in 40 iterations for a 8th order

method. Moreover, the efficiency of the multigrid preconditioner is highly influenced by the number of

smoothing steps on the finer grid levels.

In Figure 4 we consider interpolation by an L2 projection on the FV grid. This transfer gives overall

better results than the previous one, for the reference preconditioner we get a decrease the relative residual

by 1e− 11 in 40 iterations for a 4th order method compared to decreasing the in relative residual by

1e−5 for a 8th order method. With the suggested multigrid preconditioners we can decrease the relative

residual between 1e−5 and 1e−9 for the 4th order DG method and between 1e−1 and 1e−4 for the

8th order DG method. Again it is of benefit to apply the smoother several times on the finest grid in order

to get a convergence rate close to the one of the reference preconditioner. Moreover, postsmoothing on

the finest grid improves the convergence rate. In comparison to the ad hoc transfer, the influence of the

smoother on the multigrid preconditioner is more visible in this case and results in convergence rates

with a difference of approximately one order of magnitude. The RK3 preconditioner does not perform

well.

The results using an L2 projection on the DG grid can be seen in Figure 5. The overall convergence

improvement is about one order of magnitude worse than for the other L2 projection both for the 4th

and 8th order method. But we notice that the reference preconditioner is better approximated by the

suggested multigrid preconditioners and the difference between the tested smoothing strategies in the

multigrid preconditioners decreases. For the 4th order method, the relative residual can be decreased

between 1e−7 and 1e−9 and for the 8th order method between 1e−3 and 1e−3. Again, presmoothing
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Figure 2: GMRES convergence rate for the reference FV preconditioner for different transfer strategies, 16384
DOFs for DG4 (left) and DG8 (right)

on the finest grid results in the best preconditioner. As before, the RK3 preconditioner is beaten by the

multigrid preconditioners.

4.1 CPU time

Since the efficiency of the preconditioners is also influenced by their computational effort, we con-

sider the corresponding CPU times. The results can be seen in Tables 1 and 2. As expected, applying

the smoother on different levels has a direct impact on the CPU time. The multigrid based precondition-

ers are of very similar cost for different pre- and postsmoothing strategies, with more smoothing on the

finest grid being more expensive. While the convergence rates are highly influenced by the choice of the

transfer functions, this has not a huge impact on the measured CPU time. The same holds for increasing

the order of the DG method. Setting the CPU times in relation to the convergence plots discussed before

shows that the multigrid based preconditioner with L2 projection on DG-SEM is most efficient.

Table 1: CPU time in seconds for 40 GMRES iterations, DG4 and 16384 DOFs

ad hoc assignment L2 on DG-SEM L2 on FV

no prec. 6.39e-1 5.74e-1 6.69e-1

4× smoother 6.66e0 6.99e0 6.72e0

10,11 1.08e1 1.10e1 1.12e1

01, 11 1.13e1 1.11e1 1.09e1

22, 11 3.10e1 2.78e1 2.72e1

exact FV 4.90e0 4.82e0 5.06e0

5 CONCLUSIONS

In this paper we extended a multigrid preconditioning strategy for use in Jacobian-free Newton-

Krylov methods for the solution of equation systems arising from implicit DG discretizations as pre-

sented in [13] to the two-dimensional case. The core idea is to make use of an auxiliary first order
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Figure 3: GMRES convergence rate for transfer via ad hoc assignment, 16384 DOFs for DG4 (left) and DG8
(right)

Table 2: CPU time in seconds for 40 GMRES iterations, DG8 and 16384 DOFs

ad hoc assignment L2 on DG-SEM L2 on FV

no prec. 5.11e-1 5.47e-1 5.78e-1

4× smoother 6.22e0 6.82e0 7.17e0

10,11 1.48e1 1.52e1 1.53e1

01, 11 1.49e1 1.48e1 1.62e1

22, 11 3.27e1 3.17e1 3.32e1

exact FV 5.14e0 5.51e0 5.10e0

FV discretization that refines the original DG mesh, but can still be implemented algebraically. As

smoother, we considered a 3-stage Runge-Kutta method. Numerical results for the two-dimensional

convection-diffusion equation were presented. The convergence results of the proposed preconditioner

are promising, being close to a quasi-exact preconditioner. Our results indicate that the performance of

the preconditioner is highly influenced by the choice of grid transfer between DG and FV as well as

on the order of the DG method. An L2 projection improves the convergence rate compared to a simple

ad hoc assignment. The projection can be precomputed for a given DG order, either based on the DG

space or the FV space. For the presented problem, the L2 projection on the FV grid is slightly more

efficient than an L2 projection on the DG-SEM grid. With both strategies we can decrease the GMRES

residual from not even 1.e− 1 without preconditioner to approximately 1.e− 5-1.e− 11 for a 4th order

DG method and approximately 1.e−1-1.e−5 for a 8th order DG method with the suggested multigrid

preconditioners for the here presented L2 grid transfer operators. Furthermore, our numerical experi-

ments show the importance of the smoothing strategy in the multigrid method, both for the convergence

rate and the CPU time. In order to improve the convergence results without increasing the CPU time

drastically, more efficient and advanced smoothers can be used, for example a W3 smoother as presented

in [13].
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Figure 4: GMRES convergence rate for transfer via L2 projection on FV grid, 16384 DOFs for DG4 (left) and
DG8 (right)
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Abstract

In this paper we discuss two approaches for the formulation and implementation
of space-time discontinuous Galerkin spectral element methods (DG-SEM). In one,
time is treated as an additional coordinate direction and a Galerkin procedure is ap-
plied to the entire problem. In the other, the method of lines is used with DG-SEM
in space and the fully implicit Runge-Kutta method Lobatto IIIC in time. The two
approaches are mathematically equivalent in the sense that they lead to the same
discrete solution. However, in practice they differ in several important respects,
including the terminology used to describe them, the structure of the resulting soft-
ware, and the interaction with nonlinear solvers. Challenges and merits of the two
approaches are discussed with the goal of providing the practitioner with sufficient
consideration to choose which path to follow. Additionally, implementations of the
two methods are provided as a starting point for further development. Numerical
experiments validate the theoretical accuracy of these codes and demonstrate their
utility, even for 4D problems.

1 Introduction

Typically, partial differential equations are numerically treated with a method of lines
ansatz; the spatial directions are discretized first, leaving the time variable continuous.
The resulting system of ordinary differential equations is then solved using a numerical
method for initial value problems.

An alternative ansatz is to treat the time dimension simply as another coordinate
direction, and discretize the whole space-time problem simultaneously, resulting in a fully
discrete numerical scheme [55]. This approach has several advantages: Moving boundaries
can be treated more easily [70] and parallelization in time is made possible [28]. However,
it also imposes new challenges since the temporal direction is special and needs to follow
a causality principle: The solution at a given time is affected and determined only by
the solution at earlier times, never the other way around. An overview of space-time
computations in practical engineering applications during the last 25 years can be found
in [69].
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In this paper we consider the discontinuous Galerkin spectral element method (DG-
SEM); see e.g. [6] for an overview and [44] for a detailed exposition. These methods have
been very successful for spatial discretizations as they are unstructured, of high order and
are very suitable for high performance computing [47]. Further, DG-SEM fits the so-called
Summation-By-Parts Simultaneous-Approximation-Term (SBP-SAT) framework [14, 30],
implying L2 stability for linear problems. Further, in the last decade, work within this
framework has resulted in the development of entropy stable (i.e. nonlinearly stable)
discretizations of arbitrarily high order [24, 23].

Our motivation to consider DG-SEM in a space-time formulation is twofold: Firstly,
with a specific choice of numerical fluxes, entropy stability can be extended to incorporate
the temporal discretization for hyperbolic conservation laws [26], thereby resulting in a
nonlinearly stable, fully discrete scheme. Secondly, the formulation naturally allows for
perfectly scaling parallelization in time, with a speedup equal to the number of discretiza-
tion points within a time element. There are other approaches for parallelization in time
that allow for much larger speedups, but need an initial factor of additional processors
before giving any speedup at all [56].

There is a strong connection between DG discretizations in time and fully implicit
Runge-Kutta (RK) methods: DG-SEM in time using an upwind numerical flux is equiv-
alent to the Lobatto IIIC family of RK methods, in the sense that the two methods give
yield the same numerical solution [8, 61]. This observation lends itself to two very different
strategies for implementing DG-SEM in space and time. We can either use the method of
lines with DG-SEM in space and Lobatto IIIC in time, or we can use space-time DG-SEM.

While mathematically equivalent, there are important differences between these two
approaches:

• The theories of DG and RK methods have been developed largely independently.
Hence, there is a language barrier between these communities, where different ter-
minology is used to describe equivalent mathematical concepts.

• The two approaches lead to different algebraic systems of linear or nonlinear equa-
tion. If solved exactly, these systems have the same solutions. However, in practice
these solutions must be approximated, typically using iterative solvers. The inter-
play between iterative methods and the algebraic systems will in general be different,
thus the two methods yield unequal numerical solutions.

• Implementing the two approaches lead to very different software structure, in par-
ticular if we wish to reuse pre-existing software. This implies that various numerical
tools and techniques may be more readily accessible in one implementation than the
other, depending on whether the DG or the RK approach is chosen.

In this paper, we discuss these differences in detail so that practitioners can make
an educated choice about which path to follow. Further, we present a code base for the
two approaches that may be used as a basis for further development of the methods.
In particular, we make use of the open source softwares Dune, the Distributed and
Unified Numerics Environment, which is a modular toolbox for solving partial differential
equations (PDEs) with grid-based methods [18]. We also make use of Assimulo [2], a
solver package for initial value problems.

This paper is organized as follows: Following a brief literature review below, our target
equation and choice of software is introduced in Section 2. In Section 3 we introduce the
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method of lines approach using DG-SEM with Lobatto IIIC for time stepping. In Section 4
the space-time DG-SEM is described. Throughout, code snippets are included to illustrate
the details of the implementations. Theoretical aspects of the two approaches are included
in Section 5. In particular, we demonstrate the mathematical equivalence of DG-SEM
in time and Lobatto IIIC methods, and relate the terminology employed by the DG and
RK communities. Practical aspects of the respective implementations are the subject of
Section 6. Here we compare algorithmic and implementation specific requirements and
merits of the two approaches. In Section 7 we present numerical experiments that validate
some of our discussion points before we finish the article with some concluding remarks
in Section 8. The Appendix A contains instructions on how to install the code discussed
in this paper.

1.1 Further reading

For the practitioner who wishes to delve deeper into various aspects of the topics discussed
in this paper, we here suggest a few places to start for further reading.

The book [44] provides much background material on spatial DG-SEM as well as a
guide to its implementation. An overview of entropy stable DG-SEM is given in [31]
and full mathematical detail is provided in [13]. The theory builds upon the SBP-SAT
framework, reviews of which are found in [22, 68].

For a broad background on implicit Runge-Kutta methods, the book [35] is a good
starting point. An overview of the properties of DG-SEM and other SBP-SAT methods for
time integration viewed from the Runge-Kutta perspective is given in [51]. An evaluation
of fully implicit RK methods for use in computational fluid dynamics is given in [38],
including discussions of how to solve the nonlinear algebraic systems.

Several nonlinear solvers with application to RK and DG methods have recently been
presented in the literature. For solver options based on Newton-type methods, see e.g.
[60, 21] and the references therein. Solvers utilizing multigrid techniques are introduced
and analyzed in [29, 71, 25].

The implementation of space-time methods with a focus on the challenge of 4D prob-
lems has been studied in [27], and the generation of different 4D space-time meshes have
been presented in [4, 12].

2 Governing Equations and Simulation Software

We consider a general class of time dependent nonlinear advection-diffusion-reaction prob-
lems

∂tu = L(u) ∶= −∇ ⋅ (Fc(u) − Fv(u,∇u)) + S(u) in Ω × (0, T ) (1)

for a vector valued function u∶Ω × (0, T ) → Rr with r ∈ N+ components. Here, Ω ⊂ Rd,
d = 1,2,3. Suitable initial and boundary conditions are assumed to be available. Fc and
Fv describe the convective and viscous fluxes respectively, and S is a source term. We
allow for the possibility that any of the coefficients in the partial differential equation
(PDE) (1) depend explicitly on the spatial variable x and on time t, but to simplify the
presentation we suppress this dependency in our notation. Further, any of the terms are
allowed to be zero.
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For the discretization of (1) we consider two approaches: The first is a method of
lines approach, in which the spatial differential operator is discretized using a DG-SEM
approximation, yielding a system of ordinary differential equations (ODEs). This system
is then solved using a time stepping scheme. In particular, we consider the Lobatto IIIC
family of implicit Runge-Kutta methods.

The second approach is to apply the DG-SEM methodology to the entire equation (1),
thereby obtaining a fully implicit DG space-time discretization.

In the following we will include code snippets to clarify the overall structure of the
mathematical formulations at hand and to illustrate how the two approaches can be
implemented in an existing code base. We utilize Dune [3], which is a free and open source
software framework for the grid-based numerical solution of PDEs. Dune provides one
of the most flexible and comprehensive grid interfaces available, allowing n-dimensional
grids, which we will use in this paper. Additionally, standard state-of-the-art features such
as parallelization, grid adaptivity and load balancing, and moving grids are supported.
From the variety of Dune modules available we will make use of the Python based front-
end for Dune-Fem [19] and Dune-Fem-DG [17], which is able to handle weak forms of
PDEs described in the Unified Form Language (UFL) [1]. As shown in the next section,
the description of weak forms with UFL is straight forward and easy to use. Internally,
PDEs described in UFL are translated into C++ code just-in-time, to ensure that the
resulting simulation code is performant. For a more detailed description we refer to [19, 17]
and the tutorial1.

The implementation of the Lobatto IIIC method (see [49]) has been done in Assimulo
[2], which is also a Python package that can be readily used together with Dune-Fem.

Comments on how to install Dune-Fem-DG and Assimulo are found in Appendix
A.

3 Method of Lines DG-SEM

In this section we describe the method of lines (MOL) approach to discretizing (1). A
generic DG method is first presented, followed by the specifications needed to obtain the
DG-SEM. Finally, the Lobatto IIIC time stepping method is specified.

3.1 DG-SEM in Space

Given a tessellation Th of the computational domain Ω into elements E with ⋃E∈Th E = Ω,
consider the piecewise polynomial space

Vh = {v ∈ L2(Ω,Rr) ∶v∣E ∈ [Pp(E)]r, E ∈ Th}, p ∈N, (2)

where Pp(E) is the space of polynomials whose degree do not exceed p. We let Γi denote
the set of intersections between all pairs of elements in Th and accordingly Γ the set of all
intersections including the boundary of Ω. In Dune, the following commands generate
the tessellation Th and the space Vh:

1https://dune-project.org/sphinx/content/sphinx/dune-fem/
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1 d = 2 # 1,2,3
2 from dune.grid import cartesianDomain, structuredGrid as leafGrid
3 # create grid that tessellates [0,1]d with 10 elements in each coordinate direction
4 T_h = leafGrid(cartesianDomain([0]*d, [1]*d, [10]*d))
5

6 from dune.fem.space import dglagrangelobatto
7 p = 3 # polynomial degree
8 # create DG space with Lagrange basis and Gauss-Lobatto interpolation points
9 V_h = dglagrangelobatto( T_h, order=p )

We seek an approximate solution uh ∈ Vh by discretizing the spatial operator L(u) in
(1). To this end we define for all test functions ψ ∈ Vh,

⟨ψ,Lh(uh)⟩ ∶= ⟨ψ,Kh(uh)⟩ + ⟨ψ, Ih(uh)⟩. (3)

Here, the element integrals are given by

⟨ψ,Kh(uh)⟩ ∶= ∑
E∈Th

∫
E
((Fc(uh) − Fv(uh,∇uh)) ∶ ∇ψ + S(uh) ⋅ψ)dx, (4)

where ∶ denotes the inner product of two second order tensors. In the code this looks as
follows:

1 from ufl import TrialFunction, TestFunction, inner, grad, dx
2 # trial and test function
3 u = TrialFunction(V_h)
4 psi = TestFunction(V_h)
5 # element integral from equation (4)
6 K_h = inner(F_c(u) - F_v(u)*grad(u)), grad(psi)) * dx \ # fluxes
7 + inner(S(u), psi) * dx # source term

The surface integrals are given by

⟨ψ, Ih(uh)⟩ ∶= ∑
e∈Γi

∫
e
({{Fv(uh, [[uh]]e)T ∶ ∇ψ}}e + {{Fv(uh,∇uh)}}e ∶ [[ψ]]e)dS

−∑
e∈Γ
∫
e
(Hc(uh) −Hv(uh,∇uh)) ∶ [[ψ]]e dS. (5)

The corresponding code reads:

1 from ufl import FacetNormal, FacetArea, CellVolume, avg, jump, dS, ds
2 # normal and mesh width
3 n = FacetNormal(V_h)
4 h_e = avg( CellVolume(V_h) ) / FacetArea(V_h)
5 # penalty parameter for Symmetric Interior Penalty scheme
6 from dune.ufl import Constant
7 eta = Constant( 10*V_h.order**2 if V_h.order > 0 else 1, "penalty" )
8 # surface integral from equation (5)
9 I_h = inner(jump(H_c(u), jump(psi)) * dS \ # interior skeleton for convective part

10 + H_cb(u)*psi*ds \ # domain boundary for convective part
11 - inner(jump(F_v(u),n),avg(grad(psi))) * dS \ # symmetry term
12 - inner(avg(F_v(u)*grad(u)),jump(psi,n)) * dS \ # consistency term
13 + eta/h_e*inner(jump(u, avg(F_v(u))*n),jump(psi,n)) * dS # penalty term

This formulation arises from considering the weak form of the problem: Replace u by
uh in (1), multiply by the test function ψ and integrate the spatial terms by parts. Here,
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Hc and Hv are suitable numerical fluxes, imposed at the element interface e. Further,
{{u}}e and [[u]]e denote the average and jump of u over e,

{{u}}e ∶=
1

2
(uE + uK) and [[u]]e ∶= ne ⋅ (uE − uK) (6)

where E and K are neighboring elements over intersection e and ne is outward pointing
from element E. Note, for readability ne is simply called n in the code.

To obtain the DG-SEM we follow [46, 45]. First, we restrict our focus to cuboid
meshes and map each E ∈ Th to a reference element using an affine mapping. In the Dune
implementation, the reference element is [0,1]d. This is due to a generic construction of
reference element of different shapes in arbitrary dimensions in Dune; see [20] for details.

In each spatial dimension, a set of p+ 1 Legendre-Gauss-Lobatto (LGL) nodes are in-
troduced and a corresponding set of Lagrange basis polynomials are defined. The discrete
solution uh(t) ∈ Vh takes the form

uh(t, x) =∑
i

ui(t)ψi(x),

where the sum is taken over all tensor product LGL nodes in d dimensions and ψi(x)
is constructed as the product of Lagrange basis polynomials along each dimension. In
practice, this is achieved through the command

1 # create discrete function given a discrete space
2 u_h = V_h.function(name="u_h")

The convective and viscous fluxes are approximated using the interpolation

F h(t, x) ≈∑
i=1

F (ui(t))ψi(x),

where F is either Fc or Fv.
Finally, the element and surface integrals in (4) and (5) are approximated using Gauss-

Lobatto quadrature rules. The collocation of the quadrature with the LGL nodes results
in a diagonal positive definite local mass matrix. The choice of a cuboid mesh and a tensor
product formulation of the basis functions ensures that the global mass matrix remains
diagonal positive definite and is consequently trivially invertible.

The convective numerical flux Hc can be any appropriate numerical flux known for
standard finite volume methods. We use the local Lax-Friedrichs (Rusanov) flux function

Hc
LLF (uh)∣e ∶= {{Fc(uh)}}e +

λe
2
[[uh]]e (7)

where λe is an estimate of the maximum wave speed on the interface e. Other options are
implemented in Dune-Fem-DG (cf. [16, 17]) as well.

A wide range of diffusion fluxes Hv can be found in the literature (cf. [9] and references
therein), however, of those only the fluxes from the Interior Penalty family can currently
be described in UFL due to the missing description and implementation in UFL of lifting
terms needed for the other fluxes. For the Interior Penalty method the flux is chosen to
be Hv(u,∇u) = {{∇u}}e − η

he
{{Fv(u,∇u)}}e[[u]]e with η being the penalty parameter.
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3.2 Temporal Discretization

After spatial discretization, we obtain a system of ODEs for the coefficient functions
u(t) = (u1(t), u2(t), . . . )⊺, which reads

u′(t) = F (t,u(t)), t ∈ (0, T ], u(0) = u0. (8)

Here, F (t,u(t)) = M−1Lh(uh(t)), where Lh is defined in (3) and M is the (diagonal)
global mass matrix of the DG-SEM discretization. The initial data u0 for (8) is given by
the projection of u0 onto Vh.

Any Runge-Kutta method can in principle be used to solve (8). Explicit methods are
easy to implement but suffer from severe time step restrictions for stiff systems.

Consider instead an implicit RK method with Butcher tableau

c A

b⊺

The stage equations of the RK method take the form

u = 1⊗un +∆tn(A⊗ Iξ)F , (9)

where the vector u⊺ = (u1, . . . ,uNτ ) contains the Nτ intermediate solution stages and
F ⊺ = (F (tn +∆tnc1,u1), . . . ,F (tn +∆tncNτ ,u

Nτ ))⊺. Here, un denotes the RK solution in
the previous time step. The new solution is given by

un+1 = un +∆tn(b⊺ ⊗ Iξ)F . (10)

Herein we consider a particular family of implicit RK methods, namely Lobatto IIIC
[39, 49]. These methods are A-, L- and B-stable and are thus suitable for stiff and
nonlinear problems. The order of the Nτ -stage Lobatto IIIC method is 2(Nτ − 1) and the
order of the individual stages is Nτ − 1. However, this choice of method is also motivated
by its equivalence to a space-time DG-SEM formulation, which is described in the next
section. The Butcher tableaus for the 2-, 3- and 4-stage Lobatto IIIC methods are found
in Appendix B.

The following code is an example how to use the Lobatto IIIC solvers in Assimulo:

1 # import solver form assimulo
2 import assimulo.ode as aode
3 import assimulo.solvers as aso
4 # import Lobatto IIIC solvers
5 from Lobatto_IIIC_2s import Lobatto2ODE
6 from Lobatto_IIIC_3s import Lobatto3ODE
7 from Lobatto_IIIC_4s import Lobatto4ODE
8

9 # set up explicit problem, user-defined rhs
10 prob = aode.Explicit_Problem(rhs, y0, t0)
11 # user-defined Jacobian
12 prob.jac = jacobian
13 # choose solver
14 solver = Lobatto2ODE(prob)
15 # run solver until endTime
16 t, y = solver.simulate(endTime)
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4 Space-Time DG-SEM

We now consider DG-SEM applied to (1) with the time variable t treated simply as an
additional dimension. The result is space-time DG-SEM.

Defining the gradient ∇ ∶= (∇, ∂∂t) and the new convective and viscous fluxes

F c = [Fc u] , F v = [Fv 0] ,

we can rewrite (1) as a d + 1-dimensional problem over the space-time domain Ω ∶= Ω ×
(0, T ) ⊂Rd+1 as

∇ ⋅ (F c(u) − F v(u,∇u)) = S(u) in Ω. (11)

Given a tessellation Th of Ω we introduce the piecewise polynomial space

Vh = {v ∈ L2(Ω,Rr) ∶v∣E ∈ [Pp(E)]r, E ∈ Th}, p ∈N. (12)

Then the space-time DG-SEM discretization of (11) follows analogously to (4) and (5):

⟨ψ,Lh(uh)⟩ ∶= ⟨ψ,Kh(uh)⟩ + ⟨ψ, Ih(uh)⟩, (13)

with the element integrals

⟨ψ,Kh(uh)⟩ ∶= ∑
E∈Th

∫
E
((F c(uh) − F v(uh,∇uh)) ∶ ∇ψ + S(uh) ⋅ψ)dx, (14)

and the surface integrals

⟨ψ, Ih(uh)⟩ ∶= ∑
e∈Γi

∫
e
({{F v(uh, [[uh]]e)⊺ ∶ ∇ψ}}e + {{F v(uh,∇uh)}}e ∶ [[ψ]]e)dS

−∑
e∈Γ
∫
e
(Hc(uh) −Hv(uh,∇uh)) ∶ [[ψ]]e dS. (15)

Here, Γi and Γ have analogous meanings to their spatial counterparts Γi and Γ. The
numerical fluxes are given by

Hc = [Hc u∗] , Hv = [Hv 0] ,

where u∗ is a simple upwind flux in time.
In our considered framework, (13) can be implemented quite nicely by increasing the

dimension and applying the above discussed modifications2.

1 d = 2 # 1,2,3 is the spatial dimension
2 from dune.grid import cartesianDomain, structuredGrid as leafGrid
3 t_end, timeSteps = 1.0, 10
4 dt = t_end / timeSteps
5 # create grid that tessellates [0,1]d × [0,∆t] with 10 elements in spatial directions and 1 element in time
6 T_h = leafGrid(cartesianDomain([0]*d + [0], [1]*d + [dt], [10]*d + [1])) # create a space-time grid
7 p = 3 # polynomial degree
8 # create DG space with Lagrange basis and Gauss-Lobatto interpolation points
9 V_h = dglagrangelobatto( T_h, order=p )

2Note that for the 4D version (3d + time) a UFL patch (see Appendix C) was added to introduce the
4D reference elements to UFL code.
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10

11 def appendTime( F, u ):
12 return ufl.as_tensor([ *[[F[k,i] if i<d else u[k] for i in range(d+1)] for k in range(len(u))] ])
13

14 def F_c( u ):
15 from molspacediscr import F_c # import Fc used in MOL discretization
16 F_spc = F_c(u) # compute spatial fluxes
17 # append time derivative as last column
18 return appendTime( F_spc, u )
19

20 def F_v( u ):
21 from molspacediscr import F_v # import Fv used in MOL discretization
22 F_spc = F_v(u) # compute spatial fluxes
23 # append column of zeros since there is no diffusion in time
24 return appendTime( F_spc, [0.]*len(u) )
25

26 # trial and test function
27 u = TrialFunction(V_h)
28 psi = TestFunction(V_h)
29 # element integral from equation (14)
30 K_h = inner(F_c(u) - F_v(u)*grad(u)), grad(psi)) * dx \ # fluxes
31 + inner(S(u), psi) * dx # source term
32

33 # normal and mesh width
34 n = FacetNormal(V_h)
35 h_e = avg( CellVolume(V_h) ) / FacetArea(V_h)
36 # penalty parameter for Symmetric Interior Penalty scheme
37 eta = Constant( 10*V_h.order**2 if V_h.order > 0 else 1, "penalty" )
38 # surface integral from equation (15)
39 I_h = inner(jump(H_c(u), jump(psi)) * dS \ # interior skeleton for convective part
40 + H_cb(u)*psi*ds \ # domain boundary for convective part
41 - inner(jump(F_v(u),n),avg(grad(psi))) * dS \ # symmetry term
42 - inner(avg(F_v(u)*grad(u)),jump(psi,n)) * dS \ # consistency term
43 + eta/h_e*inner(jump(u, avg(F_v(u))*n),jump(psi,n)) * dS # penalty term

Remark 4.1. It is of practical interest to generalize the space Vh so that the time dimen-
sion may be discretized by polynomials of a different order than the spatial dimensions.
We will henceforth refer to the number of temporal nodes in each element as Nτ so that
the polynomial degree in time is Nτ −1. This notation contrasts standard DG terminology,
where nodes are typically indexed from 0 to p. Additionally, note that this is the same
notation used for the number of stages of the Lobatto IIIC method in Section 3. Stages
are typically indexed from 1 to s. However, to minimize the use of notation and to make
the connection between the two viewpoints clearer, we write Nτ to count the degrees of
freedom within a time element, whether this pertains to the DG or RK interpretation.

After space-time discretization, the discrete solution uh ∈ Vh takes the form uh(t, x) =
∑i,n u

n
i ψi(x)ψn(t). Here, the sum is taken over all tensor product LGL nodes in d + 1

dimensions. The vector of coefficients is now given by

u = (u1, . . . ,uNτ )⊺, (16)

where ui contains all the spatial unknowns in the ith time element.
The space-time discretization (13) can alternatively be derived by starting from (8) and

discretizing in time with DG-SEM. Multiplying (8) by a test function ψ(t) and integrating
over the nth time element results in

∫
tn+1

tn
utψdt = ∫

tn+1

tn
F (t,u(t))ψdt.
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We transform this equation to the reference element [−1,1] using the mapping t = tn +
∆tn

2 (1 + τ), where ∆tn = tn+1 − tn. After integration by parts the resulting equation reads

[uψ]1
−1 − ∫

1

−1
uψτdτ =

2

∆tn
∫

1

−1
F (τ,u(τ))ψdτ.

We now follow the steps of DG-SEM, i.e. approximating u and F by interpolants

u ≈
Nτ

∑
j=1

ujψj(τ),

F ≈
Nτ

∑
j=1

F jψj(τ),

and the integrals by Gauss-Lobatto quadrature with nodes τj and weights ωj. Using the
cardinal property of the Lagrange basis polynomials ψ, the resulting DG-SEM discretiza-
tion becomes

δiNτu
∗ − δi1u∗ −

Nτ

∑
j=1

ωju
j dψi

dτ
∣
τj

= 2

∆tn
ωiF

i, i = 1, . . . ,Nτ . (17)

Here, we have replaced the boundary terms with numerical fluxes u∗. With DG-SEM in
time, the numerical flux u∗ is always chosen as the upwind flux

u∗ = (un,0, . . . ,0,uNτ )⊺, (18)

where un is the numerical solution from the previous time element. This choice leads to
an entropy stable numerical scheme if the spatial terms are handled appropriately [26].
It also has the advantage of decoupling the temporal elements. Thus, (19) can be solved
as a stand-alone nonlinear system on the nth time element.

Defining the boundary, mass and differentiation matrices

Bτ = diag([−1,0, . . . ,0,1]) ∈RNτ×Nτ ,
M τ = diag([ω1, . . . , ωNτ ]) ∈RNτ×Nτ ,

(Dτ)ji =
dψi
dτ

∣
τj

∈RNτ×Nτ ,

we can write (17) in matrix form on each reference element as

(Bτ ⊗ Iξ)u∗ − (D⊺
τM τ ⊗ Iξ)u = ∆tn

2
(M τ ⊗ Iξ)F (u), (19)

where M τ is the local temporal mass matrix and M τDτ defines the corresponding stiff-
ness matrix. Here, F ⊺(u) = (F ⊺(tn + ∆tn

2 (1 + τ1),u1), . . . ,F ⊺(tn + ∆tn
2 (1 + τNτ ),uNτ )),

where u is given by (16) and τk is the kth LGL node; see [30] for details. The operation
⊗ denotes the Kronecker product and Iξ is the identity matrix whose dimension is given
by the number of spatial nodes.

We finish this section by remarking that while (13) describes the global space-time
DG-SEM discretization, the alternative formulation (19) pertains to a single time element.
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5 Theoretical Aspects of Space-Time DG-SEM

In this section we discuss important properties of the space-time DG-SEM, in particular
the equivalence of the temporal discretization and the Lobatto IIIC family of Runge-Kutta
methods. To make the connection between DG-SEM and Runge-Kutta methods clear in
the following sections, we consider the solution at the final point in the time element, i.e.

uNτ ≡ (e⊺Nτ ⊗ Iξ)u, (20)

where e⊺Nτ = (0, . . . ,0,1) ∈ RNτ . Following [8], we set out to show that uNτ = un+1, where
un+1 is the numerical solution arising from the Lobatto IIIC method in (10). To achieve
this, we assume that this equality holds in the previous (i.e. in the (n−1)st) time element
and show that it then also holds in the current (i.e. in the nth) element. In the sequel we
will also make use of the vector e⊺1 = (1,0, . . . ,0) ∈RNτ .

The DG-SEM discretization (19) constitutes a so called Summation-By-Parts (SBP)
method [30], meaning that the following conditions are satisfied:

M τ =M⊺
τ > 0, M τDτ + (M τDτ)⊺ =Bτ . (21)

The SBP property (21) is at the heart of the connection of DG-SEM in time to implicit
Runge-Kutta methods, which is detailed in the following section.

5.1 DG-SEM and Lobatto IIIC

SBP methods were historically developed to be used as spatial discretizations [48, 66]. For
an overview of these techniques, see [68, 22]. In recent years, their use as time stepping
schemes has been explored [58] and connections to implicit Runge-Kutta methods have
been discovered [8]. Here we summarize the steps showing that (19) can be reformulated
as an implicit RK method applied to the system of ODEs (8).

We begin by using the SBP property (21) in the second term of (19) and then multi-
plying by (M−1

τ ⊗ Iξ) to obtain the so called strong form,

(Dτ ⊗ Iξ)u = (M−1
τ Bτ ⊗ Iξ)(u −u∗) +

∆tn
2
F . (22)

Note that we may write Bτ = eNτe⊺Nτ −e1e
⊺
1 and that (e⊺Nτ ⊗Iξ)(u−u∗) = (uNτ −uNτ ) = 0.

Using (18), the second term in (22) can therefore be expressed as

(M−1
τ Bτ ⊗ Iξ)(u −u∗) = −(M−1

τ ⊗ Iξ)[(e1e
⊺
1 ⊗ Iξ)u − (e1 ⊗un)].

Grouping together terms that multiply the solution u, we may rewrite (22) as

((Dτ +M−1
τ e1e

⊺
1)⊗ Iξ)u = (M−1

τ e1 ⊗un) +
∆tn

2
F . (23)

Next, we multiply (23) by ((Dτ +M−1
τ e1e

⊺
1)⊗ Iξ)−1. Upon doing this, first note that

(Dτ +M−1
τ e1e

⊺
1)−1M−1

τ e1 = 1 ∶= (1, . . . ,1)⊺ ∈RNτ ,
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which follows from observing that (Dτ +M−1
τ e1e

⊺
1)1 =M−1

τ e1 since Dτ1 = 0 by consis-
tency. Thus, the following system arises:

u = 1⊗un +∆tn
1

2
((Dτ +M−1

τ e1e
⊺
1)⊗ Iξ)−1F

= 1⊗un +∆tn
1

2
((Dτ +M−1

τ e1e
⊺
1)−1 ⊗ Iξ)F .

(24)

The equation system (24) should be compared with the stage equations (9) that arose
from the MOL discretization using implicit RK. We see that the temporal DG-SEM
discretization defines an RK method with coefficient matrix A = 1

2(Dτ +M−1
τ e1e

⊺
1)−1 and

nodes c = (1 + τ )/2, where τ = (τ1, . . . , τNτ )⊺ is the vector of LGL nodes. Further, the
vector u, which in the DG-SEM context contains the interpolation coefficients uni , has
adopted the role of the stages of the RK method.

To complete the transition from DG-SEM to RK, we compute the numerical solution
at the final time node, uNτ = (e⊺Nτ ⊗ Iξ)u. To this end we observe that the SBP property
(21) gives the relation

1⊺M τ(Dτ +M−1
τ e1e

⊺
1) = 1⊺(eNτe⊺Nτ −D

⊺
τM τ) = e⊺Nτ ,

so that
e⊺Nτ (Dτ +M−1

τ e1e
⊺
1)−1 = 1⊺M τ .

Consequently, multiplying (24) by (e⊺Nτ ⊗ Iξ)u yields

uNτ = un +∆tn
1

2
(1⊺M τ ⊗ Iξ)F . (25)

Comparing (25) with the solution (10) of the implicit RK method, we see that the vector
b in the Butcher tableau is related to the DG-SEM discretization by b⊺ = 1⊺M τ/2, and
that the RK solution is simply the Nτ th component of the DG solution u.

To summarize, a DG-SEM time discretization is equivalent to an implicit RK method
whose Butcher tableau is defined in terms of the DG method as

A = 1

2
(Dτ +M−1

τ e1e
⊺
1)−1, b = 1

2
M τ1, c = 1 + τ

2
. (26)

The two methods yield two different nonlinear systems; for DG-SEM and RK they are
respectively given by

(Bτ ⊗ Iξ)u∗ − (D⊺
τM τ ⊗ Iξ)u = ∆tn

2
(M τ ⊗ Iξ)F , (27a)

u = 1⊗un +∆tn(A⊗ Iξ)F . (27b)

These systems have the same solution u since we can transition from (27a) to (27b) in
a series of algebraic steps. More precisely, the connection is made by rewriting (27a) in
strong form, then multiplying by (Dτ +M−1

τ e1e
⊺
1 ⊗ Iξ)−1.

Note that the latter step demands that Dτ +M−1
τ e1e

⊺
1 is invertible. This is the case

if and only if Dτ is null-space consistent, i.e. if ker(Dτ) = span(1) [51]. This is known to
hold for all Nτ > 1 [63, 50].

Finally, the Butcher tableau formed from (26) coincides with that of the Lobatto
IIIC family of implicit Runge-Kutta methods. This follows from the use of LGL nodes
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and quadrature weights, together with a set of accuracy conditions satisfied by the two
formulations [61]. We will detail these in the next section. The derivation above therefore
shows that DG-SEM in time and the Lobatto IIIC methods are mathematically equivalent,
and that we in fact have uNτ = un+1. The coefficients for the DG-SEM matrices with
Nτ ∈ {2,3,4} are listed in Appendix D.

5.2 Comparison of terminology

While DG-SEM in time and Lobatto IIIC are algebraically equivalent methods, they have
been developed in different research communities and disparities have consequently arisen
in terms of the terminology used to describe these methods. This pertains in particular
to the notions of order and stability.

Beginning with RK methods, we take as our starting point the system of ODEs (8).
The (classical) notion of order is defined as follows:

Definition 5.1. A Runge-Kutta method is of order p if the estimate

∥un+1 −u(tn+1)∥ ≤K∆tp+1

holds with some constant K independent of ∆t, whenever problem (8) is sufficiently
smooth.

In Definition 5.1, we may take ∆t = maxn ∆tn. The norm can be any vector norm.
The classical order of RK methods is determined by certain order conditions. To make

the connection with DG-SEM as clear as possible, we present here a set of simplified
conditions that are sufficient for the method to be of order p [10]:

Theorem 5.2. Suppose that an implicit Runge-Kutta method satisfies the conditions

B(pB): b⊺cj−1 = 1
j , j = 1, . . . , pB,

C(pC): Acj−1 = cj

j , j = 1, . . . , pC ,

D(pD): A⊺diag(b)cj−1 = 1
jdiag(b)(1 − cj), j = 1, . . . , pD,

where pB ≤ 2(pC + 1) and pB ≤ pC + pD + 1. Then the method is of order p = pB.

The conditions C(pC) play a particularly important role in the context of stiff problems
and have its own moniker:

Definition 5.3. A Runge-Kutta method that satisfies the order conditions C(pC) is said
to have stage order pC .

The stage order of the RK method describes the accuracy with which the intermediate
stages are approximated. We will delve into the meanings of the conditions B, C and D
shortly. However, first we summarize the various order concepts for Lobatto IIIC; see [33,
Chapter IV.5].

Theorem 5.4. The Lobatto IIIC method with Nτ stages satisfies B(2Nτ − 2), C(Nτ − 1)
and D(Nτ − 1). Consequently it has stage order Nτ − 1 and is of order 2Nτ − 2.
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We momentarily leave the RK viewpoint and focus on DG methods. DG-SEM was
developed for spatial discretizations of time-dependent PDEs. Thus, errors are measured
in an L2 norm over a spatial domain. This norm of a discrete solution uh can be computed
via the quadrature rule exactly:

∥uh∥L2(Ω) =∑
i

(u⊺hiM ξiuhi)
1
2 . (28)

The sum is taken over all elements and M ξi is the local spatial mass matrix on element i.
Assuming vanishingly small errors from the time discretization, the order of convergence
measured in this norm is typically p+ 1 or p+ 1

2 , depending on the nature of problem (1),
the choice of numerical fluxes, and sometimes on whether p is odd or even [36, 73].

Conversely, when using DG-SEM as a time integration method, one works in the
space L2([0, T ]) with a corresponding discrete norm. With an upwind flux in time, for
sufficiently smooth and nonstiff problems, the order of convergence in this norm is Nτ

[52]. This order is much smaller than the one of the Lobatto IIIC method, which requires
some discussion.

There are several other order concepts in the DG literature. Here we follow [8] and
relate these to the corresponding concepts in the RK framework.

• The order of the operator is the highest degree q for which Dττ q = qτ q−1. The
exponentiation should be interpreted elementwise, and we take τ 0 = 1 as a definition.
For DG-SEM we have q = Nτ − 1.

Multiplying C(pC) by A−1 as given in (26) and utilizing the fact that the first
element in c is zero, we see that the RK order condition C(pC) actually describes
precisely the order of the operator Dτ . A transformation of the reference element
to [0,1] is necessary in this step. In other words, the order of the operator is a
concept identical to the stage order of the corresponding Lobatto IIIC method.

• The order of the norm/quadrature/mass matrix is the highest degree m such that
(m + 1)1⊺M ττm = 1 − (−1)m+1, i.e. for which M τ exactly integrates polynomials.
For DG-SEM, 1⊺M τ is a row vector with the Nτ weights of the Gauss-Lobatto
quadrature rule and we consequently have m = 2(Nτ − 1).
Using (26) we note that the condition B(pB) simply describes the order of the
quadrature, although applied to c rather than τ . Again, this amounts to a trans-
formation from τ ∈ [−1,1] to [0,1].

• Pertinently, it turns out that the order of accuracy of the final component uNτ ≡ un+1

is 2(Nτ − 1) [52], at least for smooth nonstiff problems. This superconvergence can
be proven using the theory of dual consistent SBP methods [37]. Here it suffices to
say that it is a consequence of the order of the quadrature and choosing the upwind
numerical flux (18).

The superconvergence result pertaining to DG-SEM corresponds to the classical
order of Lobatto IIIC as introduced in Definition 5.1. Note that this is a consequence
of considering the pointwise error in time rather than ∥ ⋅ ∥L2([0,T ]).

To the best of our knowledge, conditions D(pD) have no clear interpretation in the
language of DG. Nevertheless, using the SBP property (21) and the diagonality of M τ it
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is shown in [8] that C(pC) is satisfied with pC = Nτ − 1, which is consistent with Theorem
5.4.

The convergence thery for RK methods rely on certain regularity properties of the
problem being solved. In particular, they assume that the right-hand side of the system
of ODEs (8) satisfies a one-sided Lipschitz condition,

⟨u − v,F (t,u) −F (t,v)⟩ ≤ β∥u − v∥2, (29)

where ⟨⋅, ⋅⟩ denotes some inner product and ∥ ⋅ ∥ the corresponding norm. If β ≤ 0, the
problem is contractive. DG-SEM in time, and hence Lobatto IIIC, is stable for contrac-
tive problems, i.e. they are B-stable methods. Convergence for contractive problems is
correspondingly known as B-convergence. B-convergence can be shown for Lobatto IIIC
if β < 0, but in general not if β = 0 if Nτ > 2; see [64] for details.

Regularity of the type (29) is not standard in the literature on spatial discretization
using high order DG methods. Rather, estimates of the form ⟨u,F (t,u)⟩ ≤ 0 are common.
Such discretizations are referred to as semi-bounded, or in Runge-Kutta parlance, as
monotonic. They arise particularly for discretizations of linear, homogeneous hyperbolic
or parabolic problems, but also e.g. for the velocity components of the incompressible
Navier-Stokes equations [57].

If F (t,0) = 0, then semi-boundedness is a special case of contractivity and results
on B-stability and B-convergence apply. However, for e.g. the equations of compressible
flow, semi-boundedness must typically be replaced by entropy stability, i.e. regularity of
the form ⟨η′(u),F (t,u)⟩ ≤ 0. Here, η is some convex function of u referred to as an
entropy [24, 23]. A convergence theory for implicit RK methods applied to entropy stable
problems is desirable but currently appears to be missing from the literature.

6 Practical Aspects of Space-Time DG-SEM

In this section we discuss two archetypal implementations: On the one hand, the method
of lines approach with Lobatto IIIC as discussed in Section 3 and on the other hand the
space-time DG approach, as discussed in Section 4. We will refer to these as LoDG and
STDG, respectively.

It is of course possible to produce a code that uses elements from both the LoDG and
STDG formulation and thereby falls somewhere in between these approaches. However,
here we adopt the point of view of a user who seeks to use an already available code base
rather than producing a brand new solver.

Even though STDG and LoDG are mathematically equivalent methods, their respec-
tive implementations differ in several key aspects, each with particular requirements and
accompanying merits. Here we will outline several such differences, and the choices a user
will inevitable face when deciding on which implementation to select.

Several multi-dimensional DG-SEM solvers exist, such as Nektar++ [41], Fluxo, Flexi
and the latest iteration Trixi [62] and others. In particular, this approach is popular for
weather and climate prediction and has been used e.g. in NUMA [53] and HOMAM [54].
Thus, in the following discussion we assume that the user has access to a multi-dimensional
DG solver for spatial discretization.

Our work here is based on the solver from the Dune-Fem framework, hence the chal-
lenges outlined below are flavoured by this choice. Depending on the software framework
at hand, a user may find that one approach is easier to implement than the other.
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6.1 STDG

As described in Section 4, the defining feature of STDG is the treatment of the d-
dimensional time-dependent problem as a d + 1-dimensional stationary problem.

Requirements: The problem description in the code must be extended to a d + 1-
dimensional stationary PDE, which requires the software to be able to handle such prob-
lems. In particular, this includes the assembly of mass and stiffness matrices as well as
having access to appropriate solvers for the resulting nonlinear system.

This new stationary PDE requires the use of different numerical fluxes in space and
time; the temporal direction follows a causality principle, enforced by the upwind flux,
which may not be the best choice for the spatial directions.

It is desirable to be able to choose different orders of accuracy in space and time,
which then needs to be made possible in the DG code. In Dune this is implemented for
certain DG spaces [32] but not yet available for the Lagrange basis used in this work.

The numerical solution should be accessible at specific time steps in order for the user
to effectively visualize intermediate results and the final solution. For d = 3, this includes
extracting 3-dimensional slices from 4-dimensional data sets. Related to this issue is the
problem of 4-dimensional mesh generation. An example of how to handle this for the
STDG ansatz in Dune-Fem is found in Section 4.

Merits: If the requirements above are met, then existing software can be reused to solve
the problem, which implies full control over the code. Moreover, only one code is needed.
This code closely follows the mathematical derivation of the space-time method and may
therefore be more intuitive than alternatives.

Due to the relatively simple adaption of an existing code for spatial problems of di-
mension d < 3, the STDG approach is fast for preliminary testing. An existing DG code is
most likely optimized for computational resources and might even allow for parallelization
in time by solving for several time steps at once.

In summary, this technique allows re-usability and full control over the code.

6.2 LoDG

The defining feature of LoDG is the method of lines approach outlined in Section 3. In
this DG-SEM solver, each time step is solved individually.

Requirements: The (spatial) DG-SEM code needs to be coupled with an ODE solver
with an implementation of a Lobatto IIIC method, most likely coming from another code.
Difficulties may arise from the particular requirements of the two codes, such as interfaces
for time and space adaptivity, parallelization etc.

The ODE solver might require input in a specific format not native to the DG code.
Further, an efficient solution procedure may require information from the DG-SEM solver
not directly available, such as the Jacobian of the spatial discretization.

An example of a Lobatto IIIC solver implemented in Assimulo [2] is found at the
end of Section 3.
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Merits: No adaption of the DG code with respect to the PDE or its dimension is neces-
sary. There are no additional difficulies arising in the treatment of 3-dimensional problems,
and the resulting solution can be visualized in a straightforward way.

Most existing ODE solvers are optimized and equipped with several options, for in-
stance adaptive time stepping. Intermediate results are easy to access and the order of
accuracy in space and time can be chosen independently.

In summary, this technique provides flexibility and allows reuse of existing simulation
workflows.

6.3 Algorithmic Aspects

In the following we suppose that we have overcome the most important challenges of the
two approaches presented in the previous subsections. Thus we now have access to

(a) a code that generates a d-dimensional spatial DG-SEM discretization by following
the steps in Section 3, and a code for time marching using Lobatto IIIC (LoDG),

(b) a code that generates a d + 1-dimensional space-time DG-SEM discretization by
following the steps in Section 4 (STDG).

In each time step, the LoDG code (approximately) solves (27b) while the STDG code
solves (27a), or equivalently solves Lh(uh) = 0 from (13). Depending on the nature of
the problem (1), solving these systems accurately and efficiently will require a variety of
algorithmic capabilities, some of which are likely to be more readily available in one code
than the other. A selection of such capabilities is discussed in the following.

Accessing time steps and stages: Accessing the numerical solution at a particular
time is straightforward in most ODE solvers using Runge-Kutta methods. The times of
interest are predefined and the solution is computed either by aligning the step sizes with
the target times or through accurate interpolation.

While it is in principle possible to implement such techniques with STDG, it is unlikely
to be available in a pre-existing DG code. Further, the code will return the numerical
solution at all points in one (or several) time elements simultaneously. In fact, it is not
obvious that the STDG code will be able to return un+1 in a simple way since this requires
the extraction of a specific subset of coefficients from the numerical solution vector u. Yet,
this may be necessary e.g. for visualization, to use adaptive time stepping, or in case the
solution needs to be filtered or otherwise modified between time steps. The solution can
in principle be constructed using un+1 = (e⊺Nτ ⊗ Iξ)u with e⊺Nτ = (0, . . . ,0,1), as was done
in Section 5. However, this assumes that the ordering of the unknowns in u is identical
to the one used in that analysis. If not, (e⊺Nτ ⊗ Iξ) must be suitably permuted into some
matrix ENτ before application. Finding the appropriate permutation matrix may be a
nontrivial task, in particular in 4D.

On the other hand, with STDG we have access too all the intermediate time stages by
default, something that may be challenging with LoDG. This may be useful to compute
L2 errors of the numerical solution and has the additional advantage of allowing visual-
ization of the solution away from the main time steps.
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Adaptive time-stepping: The availability of adaptive time-stepping for Runge-Kutta
methods is standard in modern software. Adaptivity generally requires a way of estimating
the numerical error in the next time step. This information is used to adapt the time step
to fit a predefined tolerance. Embedding techniques use a vector b̂ to compute a second
numerical solution ûn+1 from (10) whose accuracy is one order lower than that of un+1.
The difference un+1 − ûn+1 can be used to estimate the local error without the need to
solve the nonlinear system (27b) more than once. A detailed strategy for estimating the
error and choosing the time step based on the embedding technique is available in [35,
Chapter IV.8] for the Radau IIA method, but can be easily adapted to Lobatto IIIC [49].
This type of adaptivity will almost certainly be available in an implementation of LoDG.

An STDG code that follows the steps outlined in Section 4 will not automatically
generate an embedded method. However, if the matrix ENτ can be found that extracts
un+1, then it is also possible to construct a matrix ÊNτ that extracts ûn+1 such that an
embedding technique can be used. However, depending on the space-time code, the user
and the intended application, this procedure may be more invasive than desirable.

Alternatively, the numerical error may be estimated using Richardson extrapolation
[34, Chapter II.4]. This procedure requires solving the nonlinear system (27a) three times;
once with a step size 2∆t and twice with a step size ∆t. The difference between the two
solutions yields an error estimate. However, due to its expense, this approach hardly
seems feasible for a 4D problem.

Adaptive Mesh Refinement (AMR): It seems to be challenging to effectively imple-
ment adaptive time stepping with STDG, at least when we sequentially solve for single
time steps. However, since STDG uses a 4D mesh it is straightforward to set up a system
that accounts for multiple temporal elements at once, which is not possible with LoDG.
This introduces the possibility of using AMR in time in addition to space; see [40, 15] and
the references therein. Like with Richardson extrapolation, using AMR forces us to solve
the nonlinear system multiple times. Additionally, the system now consists of multiple
coupled time steps. However, the additional cost may be offset by two factors: Firstly,
we expect that the number of degrees of freedom necessary to achieve a given accuracy is
significantly reduced by the AMR. Secondly, parallelism can be employed in the temporal
direction.

Space-time AMR is not likely to be simple to set up with commercially available soft-
ware. However, if the initial hurdles can be circumvented, then it is in principle possible
to use completely unstructured space-time grids with h/p-refinement. The technique re-
quires a generator for unstructured cuboid meshes in 4D (tesseracts) [12] and a way of
estimating the numerical error in the final time. Such tools have been developed for 4D
simplex meshes in [72, 12], but appear to be missing for other mesh types.

Shock capturing and limiting: The DG spatial discretizations used with Runge-Kutta
time stepping are stable when applied to linear problems such as linear hyperbolic systems.
However, for nonlinear problems spurious oscillations occur near strong shocks or steep
gradients. In this case the DG method requires some extra stabilization unless a first order
scheme (p = 0) is used that produces a monotonic structure in the shock region. For higher
order schemes many approaches have been suggested to make this property available
without introducing an excessive amount of numerical viscosity, which is a characteristic
feature of first order schemes. Several approaches exist, including slope limiters, artificial
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diffusion (viscosity) techniques, and even a posteriori techniques and order reduction
methods. A comprehensive literature list is presented in [65].

In Dune-Fem-DG [17], both limiter based approaches and artificial diffusion are
available to stabilize a DG scheme. The slope limiter based approach implemented in
Dune-Fem-DG is coupled with a troubled cell indicator which makes the overall scheme
highly non-linear and therefore not suitable for implicit methods, since the selection of
troubled cells could change between linear iterations and lead to divergence of the lin-
ear solver. On the other hand, artificial diffusion approaches require a discretization of
a diffusion term. This may result in severe time step restrictions and is thus a more
suitable approach for fully implicit DG discretizations, in particular since stabilization
diffusion coefficients only need to be re-computed every time step. A standard approach
is available in Dune-Fem-DG. Since both LoDG and STDG are fully implicit schemes,
it seems more suitable to apply artificial diffusion techniques for problems where strong
shocks occur.

Nonlinear solvers and preconditioning: The solutions to the nonlinear systems (27a)
and (27b) that appear in STDG and LoDG must be approximated in some way. It is
natural to consider iterative methods for large systems. There have been a multitude
of suggestions for how to design such methods; early solvers for implicit Runge-Kutta
methods based on modified Newton iterations were introduced in [11] and [5]. A more
optimized algorithm is described in [35], and many later developments use this as a starting
point. These can be considered black box solvers in the sense that they do not utilize
information about the spatial terms in the solution process.

Methods designed specifically for spatial DG discretizations and implicit Runge-Kutta
methods are found in e.g. [59, 60]. Likewise, nonlinear sovlers designed for space-time
DG and FEM discretizations have been developed [43, 67].

Unless the user is willing to make the (possibly considerable) effort to develop and/or
implement a nonlinear solver specifically designed for LoDG or STDG, the natural re-
course is to use a black box solver. Efficiency gains can possibly be made by introducing
a preconditioner designed for DG discretizations; see e.g. [7, 60, 42] for recent develop-
ments. However, attention must be payed to the fact that the systems (27a) and (27b)
have different algebraic properties and therefore likely will respond differently to precon-
ditioners and nonlinear solvers.

For the nonlinear LoDG system (27b), the Jacobian is given by

I −∆t0(A⊗ Iξ)J (F ), (30)

where J (F ) contains the Jacobian of the spatial discretization. The solver in [35], and
many recent developments that build upon it, instead use the mathematically equivalent

(∆t0A)−1 ⊗ Iξ −J (F ). (31)

For the nonlinear STDG system (27a), the Jacobian is given by

(D⊺
τM τ − eNτe⊺Nτ )⊗ Iξ +

∆t0
2

(M τ ⊗ Iξ)J (F ). (32)

Note from (26) that (31) arises by multiplying (30) by (Dτ +M−1
τ e1e

⊺
1) ⊗ Iξ. This

formulation is therefore very closely related to the STDG Jacobian (32). In fact, they
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only differ by an application of the SBP property (21) and a multiplication by the temporal
mass matrix.

Consider the 1D linear advection equation ut+ux = 0 discretized using a single element
in space and time. With STDG, the discretization is generated using Dune. With
LoDG, the spatial terms are generated with Dune whereas the temporal terms are set
up manually as in Section 5. Figure 1 shows the sparsity patterns of the Jacobians using
order 1,2 and 3 in space and time. In each figure quadruplet, the Jacobian (32) of STDG
is shown in the top left and the Jacobian (30) of LoDG in the top right. In the bottom
right, the alternative formulation (31) is shown.

The first thing to note is that the LoDG formulation leads to a dense discretization
whereas STDG is sparse. The formulation using A−1 is also sparse. It has the same
number of nonzero elements as STDG, although their distribution is different. The ex-
planation for this lies in the ordering of the unknowns. With LoDG, the node order is
lexicographic in the temporal direction. However, the space-time element generated by
Dune is as shown in the bottom right of Figure 1, here with Nτ = 4. This ordering is the
result of a generic construction of the reference elements, which is based on a recursion
over the spatial dimension d starting at the 0-dimensional reference element, i.e. a point.
This recursion is also generating a natural ordering for the basis functions, starting with
the basis functions located at points in an element and recursively down to the basis
functions located inside the element. A detailed description of this construction is found
in [20]. With a suitable permutation of the unknowns, the sparsity pattern of LoDG using
A−1 coincides with STDG as seen in the bottom left of each figure quadruplet.

These observations suggest that the LoDG system (27b) may be more expensive to
work with than the STDG system (27a), and that the A−1 formulation (31) may be a
better choice. However, the interaction of particular preconditioners and solvers with these
systems may also depend on the node ordering in ways that must be deduced through
careful testing.

7 Experiments

In this section we perform a series of numerical tests to verify that the implementations
of LoDG and STDG behave as expected. This entails a validation that the two codes give
similar numerical solutions, and that the convergence rates of the temporal parts of the
discretizations are as outlined in Section 5.

We start with solving the linear test equation to validate the convergence rates of the
two solvers. A two-dimensional advection-diffusion test case follows, with the purpose of
highlighting slight differences in the numerical solutions and particular challenges with
respect to visualizing the solutions. Finally, the two and three dimensional Euler equa-
tions of gas dynamics are solved to demonstrate that both codes are capable of handling
nonlinear space-time dynamics in multiple dimensions.

As mentioned previously, the spatial parts of both LoDG and STDG are generated
using Dune-Fem. The temporal part of LoDG is implemented in Assimulo whereas
Dune-Fem is used for the entire space-time discretization in STDG.
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Figure 1: Sparsity patterns Jacobian of the advection problem for STDG and LoDG.
Node order for one space-time element (p = 3) for STDG as generated by Dune-Fem
(bottom right).

7.1 Validation of Convergence Rates

To verify that the temporal discretizations converge as expected we perform a simple test
on the linear test equation,

ut = −u, t ∈ (0,1],
u(0) = 4.

(33)

For both methods, Python’s sparse linear solver is used to solve the algebraic systems
arising from the discretizations. The experimental order of convergence (EOC) of the
pointwise error ∣un+1 − u(1)∣ is shown for LoDG and STDG in Table 1. Here, N denotes
the number of time steps/time elements and Nτ ∈ {2,3,4}. Recall from Section 5 that the
order of LoDG, and correspondingly the superconvergence of STDG, is 2(Nτ − 1). This
is indeed what we observe in Table 1. With Nτ = 3, the errors are approaching machine
precision when N = 29, hence a drop in the convergence rate is seen in Table 1b. The
STDG appears to be more sensitive in this respect than LoDG. The same thing happens
when Nτ = 4 and N = 25, as seen in Table 1c.

We now repeat the experiment but measure the EOC via the L2 norm ∥ ⋅ ∥L2[0,1]. This
type of error measurement is straightforward to perform with the STDG code. However,
the LoDG implementation does not by default save the intermediate RK stages necessary
to perform the computation of the L2 error. We expect the EOC to be given by Nτ .
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Table 1: EOC of pointwise error for LoDG and STDG applied to the test equation (33).

(a) Nτ = 2

N Lobatto DG-SEM

24 1.93 1.93

25 1.97 1.97

26 1.98 1.98

27 1.99 1.99

28 1.99 1.99

29 1.99 1.99

(b) Nτ = 3

N Lobatto DG-SEM

24 3.96 3.96

25 3.98 3.98

26 3.99 3.99

27 3.99 4.01

28 3.99 4.28

29 4.05 0.47

(c) Nτ = 4

N Lobatto DG-SEM

24 5.98 5.96

25 6.64 4.22

Table 2 shows that this indeed is observed. For Nτ = 4 with N = 28 time elements the
convergence rate drops due to very small errors, as seen in Table 2c. Again, STDG appears
to be more sensitive to this phenomenon than LoDG.

Table 2: EOC of L2 error for LoDG and STDG applied to the test equation (33).

(a) Nτ = 2

N Lobatto DG-SEM

24 1.96 1.96

25 1.98 1.98

26 1.99 1.99

27 2.0 2.0

28 2.0 2.0

29 2.0 2.0

(b) Nτ = 3

N Lobatto DG-SEM

24 2.98 2.98

25 2.99 2.99

26 2.99 2.99

27 3.0 3.0

28 3.0 3.0

29 3.0 3.0

(c) Nτ = 4

N Lobatto DG-SEM

24 3.99 3.99

25 4.0 4.0

26 4.0 4.0

27 4.0 4.0

28 4.0 3.6

7.2 Advection-Diffusion

The next test case is the linear advection-diffusion problem in two dimensions;

∂tu + b ⋅ ∇u − ε∆u = 0 in (Ω × (0, T ]), Ω ⊂ R2,

u(0) = u0 in Ω.
(34)

We test both implementations for the rotating pulse problem with analytic solution

u(t,x) = 0.004

0.004 + 4εt
exp(−

x2
q + y2

q

0.004 + 4εt
) ,

xq = x0 cos(4t) + y0 sin(4t) + 0.25,

yq = −x0 sin(4t) + y0 cos(4t).

Here, x0 = x − 0.5, y0 = y − 0.5, b = [−4y0,4x0], ε = 0.001, and (t,x) ∈ [0,1] × [0,1]2. The
initial condition is given by u(0,x) and we apply periodic boundary conditions in space.
The linear systems arising from the discretizations are solved using built-in routines in

22

160



Dune and Assimulo. Thus, despite the mathematical equivalence of LoDG and STDG,
we do not expect the two codes to yield identical solutions.

The numerical solutions obtained by the two codes with Nτ ∈ {2,3,4} are shown in
Figure 2. Here, a uniform mesh is used in space with ∆x = ∆y = 0.04. Time steps of
uniform size ∆t = 0.1 are used throughout the simulation. With Nτ = 2 the problem
is significantly under-resolved, leading to a smeared solution. As Nτ is increased, this
phenomenon is reduced. To the eye, the numerical solutions using the two codes are
barely distinguishable.

(a) LoDG, Nτ = 2 (b) LoDG, Nτ = 3 (c) LoDG, Nτ = 4

(d) STDG, Nτ = 2 (e) STDG, Nτ = 3 (f) STDG, Nτ = 4

Figure 2: Numerical solution of a rotating pulse subject to the advection-diffusion equa-
tion (34) using LoDG (top) and STDG (bottom).

To get a more detailed comparison of the numerical results obtained by the two im-
plementations we compare their spatial L2 error in the final time point, t = 1. This time
we vary the space-time grid with ∆x = ∆y = ∆t = 1/N . The errors and the EOC are
shown in Table 3. Notice that the L2 errors are very similar, although not identical, tes-
tifying to the influence of the different solvers of the algebraic equations. Note also that
the behaviour of the EOC is less clear than it was for the linear test equation. In this
experiment we have refined space and time simultaneously, and therefore do not have a
theoretical convergence result to rely on. The results indicate a convergence rate higher
than Nτ , although not quite as high as 2(Nτ − 1).

Finally, we highlight a feature of the STDG code that may be of use in certain sit-
uations. Since this code returns all points in a given time element (or equivalently, all
intermediate RK stages in each time step), these can be visualized using a 3D plotting
software, thereby obtaining a space-time visualization of the solution. These stages are
usually discarded by ODE solvers for efficiency reasons. The visualization is done for a
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Table 3: Errors and EOC for the advection-diffusion problem (34).

Nτ = 2 Nτ = 3 Nτ = 4

N LoDG STDG LoDG STDG LoDG STDG

22 8.94E-2 7.28E-2 4.45E-2 4.37E-2 2.68E-2 2.69E-2

23 4.66E-2 4.46E-2 2.42E-2 2.41E-2 6.05E-3 6.04E-3

24 3.49E-2 3.39E-2 5.36E-3 5.38E-3 4.92E-4 4.93E-4

25 1.86E-2 1.84E-2 5.85E-4 5.94E-4 1.06E-5 9.88E-6

(a) Error

Nτ = 2 Nτ = 3 Nτ = 4

N LoDG STDG LoDG STDG LoDG STDG

23 0.9 0.7 0.9 0.9 2.1 2.2

24 0.4 0.4 2.2 2.2 3.6 3.6

25 0.9 0.9 3.2 3.2 5.5 5.6

(b) EOC

single time step in Figure 3. Here, the exact solution over the whole space-time domain
is also shown for reference.

The same technique is of course considerably more challenging to use in a 4D set-
ting. Nevertheless, this feature may be useful for prototyping and testing code in simpler
contexts.

7.3 Euler Equations

A prime example for evolution equations are the Euler equations of gas dynamics. They
are derived from the conservation of mass, momentum, and energy of a compressible
inviscid fluid. In Eulerian coordinates they have the form:

∂tu +∇ ⋅ Fc(u) = 0 in (Ω × (0, T ]), Ω ⊂ Rd, d ∈ {1,2,3},
u(0) = u0 in Ω,

(35)

where the vector of the conservative variables has the form

u =
⎛
⎜
⎝

ρ
ρv
ε

⎞
⎟
⎠
, ρv = (ρv1, . . . , ρvd)T , ε = ρE , (36)

augmented with suitable boundary conditions (which are discussed in detail in [6]). Here,
ρ denotes the density of the fluid, v the velocity, ε the internal energy, and E the total
energy. The convective flux function Fc(u) ∶= (f 1(u), . . . ,f d(u)) has for i = 1, ..., d the
form

f i(u) ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

ui+1

ui+1u2/u1 + δi,1P (u)
⋮

ui+1ud+1/u1 + δi,dP (u)
(ud+2 + P (u))ui+1/u1

⎞
⎟⎟⎟⎟⎟⎟
⎠

,
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(a) Nτ = 2 (b) Nτ = 3

(c) Nτ = 4 (d) Exact solution in space-time

Figure 3: 3D space-time visualization of the rotating pulse produced with the STDG code.

where δi,j is the Kronecker delta. For example, choosing d = 3 and directly using u from
(36) we obtain the three flux functions

f 1(u) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

ρv1

ρv2
1 + P
ρv1v2

ρv1v3

(ε + P )v1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, f 2(u) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

ρv2

ρv2v1

ρv2
2 + P
ρv2v3

(ε + P )v2

⎞
⎟⎟⎟⎟⎟⎟
⎠

, f 3(u) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

ρv3

ρv3v1

ρv3v2

ρv2
3 + P

(ε + P )v3

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

We consider the two- and three-dimensional Euler equations with periodic boundary
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conditions and vortex initial condition

ρ = (1 − S2(γ − 1)M2 exp(f)
(8π2) )

1
γ−1

,

v1 = 1 − Sx1

exp (f
2
)

2π
,

v2 = Sx0

exp (f
2
)

2π
,

v3 = Sx2

exp (f
2
)

2π
,

ε = P

γ − 1
+ 0.5

v2
1 + v2

2 + v2
3

ρ
, P = ργ

γM2
,

with vortex strength S = 5, Mach number M = 0.5, γ = 1.4 and f = 1 − x2
0 − x2

1 − x2
2.

The numerical solutions obtained by the two codes with Nτ ∈ {2,3} are shown in
Figure 4. Here, a uniform mesh on the space-time domain [−10,10]2 × (0,2.5] is used in
space with ∆x = ∆y = 0.04. Time steps of uniform size ∆t = 0.01 are used throughout
the simulation. Again, the problem is significantly under-resolved with Nτ = 2, leading
to a smeared solution. As Nτ is increased, this phenomenon is reduced. Some differences
can be seen in the numerical results for the two implementations. This is likely caused
by the fact that two different solvers, inherent to Assimulo and Dune respectively, are
used for the nonlinear systems arising from the discretizations. Due to the differences
between these solvers we can in general not expect identical numerical solutions despite
the mathematical equivalence of the two algorithms.

To show the potential of our STDG code we present a 3D Euler test case with Nτ = 3.
We modify the problem slightly and consider the space-time domain [−5,5]3 × (0,2] and
place the initial vortex slightly to the left of the centre. A uniform mesh is used in space
with ∆x = ∆y = ∆z = 1 and time steps of uniform size ∆t = 0.5 are used throughout the
simulation. The initial condition and the final time element of the density can be seen
in Figure 5. These results show the potential of the Dune code even for 4D problems.
Recently, 4D problems have been taken into consideration [27], but to the best of our
knowledge this is the first 4D DG-SEM implementation available publicly.

8 Conclusions

In this paper we have presented a comparison of the theoretical and practical aspects of
two different space-time DG-SEM implementations. DG-SEM in time using an upwind
numerical flux is equivalent to the Lobatto IIIC family of Runge-Kutta methods in the
sense that the two methods yield the same numerical solution when solved exactly. Thus
two strategies for implementing DG-SEM in space-time exist: Either the method of lines
with DG-SEM in space and Lobatto IIIC in time, which we refer to as LoDG, or a space-
time DG-SEM, which we refer to as STDG.

Despite the mathematical equivalence, there are important differences between the
approaches. They are described by different terminology, each originating in its respective
community. We have related these terminologies of the DG and RK methods. Moreover,
the approaches lead to different algebraic systems of linear or nonlinear equations. When
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(a) Exact, Nτ = 2 (b) LoDG, Nτ = 2 (c) STDG, Nτ = 2

(d) Exact, Nτ = 3 (e) LoDG, Nτ = 3 (f) STDG, Nτ = 3

Figure 4: Numerical solution of ρ for a vortex problem subject to the 2D Euler equations
(35) using LoDG and STDG.

(a) Initial condition (b) Exact solution (c) STDG solution, Nτ = 3

Figure 5: Numerical solution of ρ for a vortex problem subject to the 3D Euler equations
(35) using STDG.

approximating their solution numerically, different challenges and possibilities arise with
respect to algorithmic aspects.

We have compared the two implementations using an STDG code in Dune and an
LoDG code with a spatial DG-SEM in Dune combined with Lobatto IIIC time stepping
in Assimulo. The two approaches lead to very different software structure. An overview
of the algorithmic capabilities have been given, some of which are likely to be more readily
available, depending on which approach is chosen.

The choice of an appropriate space-time DG-SEM implementation depends on the
needs of the user as well as on the codes available. For prototype testing of space-time
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simulations of dimension d ≤ 2 the STDG is a good alternative that allows to reuse
optimized code. For larger simulations the LoDG ansatz is preferable since it provides
more flexibility.

We are currently extending the STDG code in Dune such that the DG orders in space
and time can be chosen independently. Moreover, the code needs to be parallelized. We
are also interested in considering problems with shocks, adaptive time stepping as well
as unstructured grids in space and to combine the spatial DG-SEM with other implicit
Runge-Kutta time stepping methods to yield a space-time DG implementation.

Appendix A

There exist different ways to install Dune and Assimulo. Here, we only describe the
simplest and most straight forward way to install both, Dune and Assimulo, which is
to use a conda environment. Then the installation is done in the following way:

1 conda create -n duneproject # create a new conda environment
2

3 conda activate duneproject # activate the conda environment
4

5 conda install -c conda-forge assimulo # install assimulo
6

7 pip install -U dune-fem-dg # install dune using pip, no conda package yet
8

9 conda install -c conda-forge scipy # install scipy

The space-time DG-SEM code is available online at https://gitlab.maths.lth.se/dune/
spacetimelobattocode.

Appendix B

The Butcher tableaus for the Nτ -stage Lobatto IIIC methods with Nτ = 2,3,4 can be seen
in Table 4.

Appendix C

This patch adds 4D simplex and cuboid reference elements to UFL needed for the 3D+t
simulations. This patch is currently implemented in Dune-Fem and will be discussed
with the UFL community.

1 # 4d patching of reference elements
2 def _patchufl4d():
3 from ufl.sobolevspace import H1
4 from ufl.finiteelement.elementlist import ufl_elements, any_cell, register_element
5 from ufl.cell import num_cell_entities, cellname2facetname,
6 from ufl.cell import _simplex_dim2cellname, _hypercube_dim2cellname
7

8 # check if this has been added before
9 if not ’pentatope’ in ufl.cell.num_cell_entities:

10 # 4d-simplex
11 ufl.cell.num_cell_entities["pentatope"] = (5, 10, 10, 5, 1)
12 # 4d-cube
13 ufl.cell.num_cell_entities["tesseract"] = (16, 32, 24, 8, 1)
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2

1
2

1
2

(a) Nτ = 2

0 1
6 −1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

(b) Nτ = 3

0 1
12 −

√
5

12

√
5

12 − 1
12

1
2 −

√
5

10
1
12

1
4

10−7
√

5
60

√
5

60
1
2 +

√
5

10
1
12

10+7
√

5
60

1
4 −

√
5

60

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

(c) Nτ = 4

Table 4: Butcher Tableaus for Lobatto IIIC methods

14

15 # recompute cell name to dimension mapping
16 ufl.cell.cellname2dim = dict((k, len(v) - 1) for k, v \
17 in ufl.cell.num_cell_entities.items())
18

19 ufl.cell.cellname2facetname["pentatope"] = "tetrahedron"
20 ufl.cell.cellname2facetname["tesseract"] = "hexahedron"
21

22 ufl.cell._simplex_dim2cellname[4] = "pentatope"
23 ufl.cell._hypercube_dim2cellname[4] = "tesseract"
24

25 # add types to element lists
26 ufl.finiteelement.elementlist.simplices =\
27 ufl.finiteelement.elementlist.simplices + ("pentatope",)
28 ufl.finiteelement.elementlist.cubes = \
29 ufl.finiteelement.elementlist.cubes + ("tesseract",)
30 ufl.finiteelement.elementlist.any_cell =\
31 ufl.finiteelement.elementlist.any_cell + ("pentatope", "tesseract", )
32

33 # register Lagrange again with new element type list
34 ufl_elements.pop("Lagrange")
35 ufl_elements.pop("CG")
36 register_element("Lagrange", "CG", 0, H1, "identity", (1, None), \
37 ufl.finiteelement.elementlist.any_cell)

1 # selecting a cell based on the dimension of the domain and or grid
2 def cell(dimDomainOrGrid):
3 if isinstance(dimDomainOrGrid,ufl.Cell):
4 return dimDomainOrGrid
5 try:
6 dimWorld = int(dimDomainOrGrid.dimWorld)
7 dimDomain = int(dimDomainOrGrid.dimGrid)
8 except:
9 dimDomain = dimDomainOrGrid

10 if isinstance(dimDomain, tuple):
11 if len(dimDomain) != 2:
12 raise Exception(’dimDomain tuple must contain exactly two elements.’)
13 dimWorld = int(dimDomain[1])
14 dimDomain = dimDomain[0]
15 else:
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16 dimWorld = int(dimDomain)
17 if dimDomain == 1:
18 return ufl.Cell("interval", dimWorld)
19 elif dimDomain == 2:
20 return ufl.Cell("triangle", dimWorld)
21 elif dimDomain == 3:
22 return ufl.Cell("tetrahedron", dimWorld)
23 elif dimDomain == 4:
24 # add 4d cell types to ufl data structures
25 _patchufl4d()
26 return ufl.Cell("pentatope", dimWorld)
27 else:
28 raise NotImplementedError(’UFL cell not implemented for dimension ’\
29 + str(dimDomain) + ’.’)

Appendix D

For Nτ = 2 we get

Bτ = (−1 0
0 1

) , M τ = (1 0
0 1

) , Dτ = (−
1
2

1
2

−1
2

1
2

) . (37)

For Nτ = 3 we get

Bτ =
⎛
⎜
⎝

−1 0 0
0 0 0
0 0 1

⎞
⎟
⎠
, Mτ =

⎛
⎜
⎝

1
3 0 0
0 4

3 0
0 0 1

3

⎞
⎟
⎠
, Dτ =

⎛
⎜
⎝

−3
2 2 −1

2

−1
2 0 1

2
1
2 −2 3

2

⎞
⎟
⎠
. (38)

For Nτ = 4 we get

Bτ =
⎛
⎜⎜⎜
⎝

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟
⎠
, M τ =

⎛
⎜⎜⎜
⎝

1
6 0 0 0
0 5

6 0 0
0 0 5

6 0
0 0 0 1

6

⎞
⎟⎟⎟
⎠
, Dτ =

⎛
⎜⎜⎜⎜⎜
⎝

−3 5+5
√

5
4

5−5
√

5
4

1
2

−1−√5
4 0 −√5

2
1−√5

4
−1+√5

4
−√5

2 0 1+√5
4

−1
2

5
√

5−5
4

−5−5
√

5
4 3

⎞
⎟⎟⎟⎟⎟
⎠

. (39)
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[18] A. Dedner, R. Klöfkorn, and M. Nolte. Python bindings for the dune-fem module.
Zenodo (Mar 2020), 2020.
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[26] L. Friedrich, G. Schnücke, A. R. Winters, D. C. R. Fernández, G. J. Gassner, and
M. H. Carpenter. Entropy Stable Space–Time Discontinuous Galerkin Schemes with
Summation-by-Parts Property for Hyperbolic Conservation Laws. J. Sci. Comput.,
80(1):175–222, 2019.

[27] C. V. Frontin, G. S. Walters, F. D. Witherden, C. W. Lee, D. M. Williams, and D. L.
Darmofal. Foundations of space-time finite element methods: Polytopes, interpola-
tion, and integration. Appl. Numer. Math., 166:92–113, 2021.

[28] M. J. Gander. 50 Years of Time Parallel Time Integration. In T. Carraro, M. Geiger,
S. Körkel, and R. Rannacher, editors, Multiple Shooting and Time Domain Decom-
position Methods, pages 69–113, Cham, 2015. Springer.

[29] M. J. Gander and M. Neumüller. Analysis of a new space-time parallel multigrid
algorithm for parabolic problems. SIAM J. Sci. Comput., 38(4):A2173–A2208, 2016.

[30] G. J. Gassner. A skew-symmetric discontinuous Galerkin spectral element discretiza-
tion and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput.,
35(3):A1233–A1253, 2013.

[31] G. J. Gassner and A. R. Winters. A novel robust strategy for discontinuous Galerkin
methods in computational fluid mechanics: Why? When? What? Where? Front.
Phys., page 612, 2021.

[32] C. Gersbacher. Higher-order discontinuous finite element methods and dynamic model
adaptation for hyperbolic systems of conservation laws. Phd thesis, University of
Freiburg, 2017.

32

170



[33] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations, volume 31. Springer,
Berlin, Heidelberg, 2006.

[34] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I.
Springer, Berlin, Heidelberg, 2009.

[35] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, volume 14 of
Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg, 2010.

[36] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods: algo-
rithms, analysis, and applications. Springer-Verlag New York, 2008.

[37] J. E. Hicken and D. W. Zingg. Superconvergent functional estimates from summation-
by-parts finite-difference discretizations. SIAM J. Sci. Comput., 33(2):893–922, 2011.

[38] A. Jameson. Evaluation of fully implicit Runge Kutta schemes for unsteady flow
calculations. J. Sci. Comput., 73(2-3):819–852, 2017.

[39] L. O. Jay. Lobatto methods. In B. Engquist, editor, Encyclopedia of Applied and
Computational Mathematics, pages 817–826. Springer, Berlin, Heidelberg, 2015.

[40] S. Jayasinghe, D. L. Darmofal, N. K. Burgess, M. C. Galbraith, and S. R. Allmaras.
A space-time adaptive method for reservoir flows: formulation and one-dimensional
application. Computat. Geosci., 22(1):107–123, 2018.

[41] G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computational
Fluid Dynamics. Oxford University Press, Oxford, 2013.

[42] J. Kasimir, L. M. Versbach, P. Birken, G. J. Gassner, and R. Klöfkorn. An Finite
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Abstract

In this paper we present a local Fourier analysis of a space-time multigrid solver
for a hyperbolic test problem. The space-time discretization is based on arbitrar-
ily high order discontinuous Galerkin spectral element methods in time and a first
order finite volume method in space. We apply a block Jacobi smoother and con-
sider coarsening in space-time, as well as temporal coarsening only. Asymptotic
convergence factors for the smoother and the two-grid method for both coarsen-
ing strategies are presented. For high CFL numbers, the convergence factors for
both strategies are 0.5 for first order, and 0.375 for second order accurate tempo-
ral approximations. Numerical experiments in one and two spatial dimensions for
space-time DG-SEM discretizations of varying order give even better convergence
rates of around 0.3 and 0.25 for sufficiently high CFL numbers.

Keywords: Local Fourier Analysis, Space-Time, Multigrid, Discontinuous
Galerkin Spectral Element Method, Linear Advection Equation
Mathematics Subject Classification 2020: 65M55,65M22,65M60,65T99

1 Introduction

Space-time discontinuous Galerkin (DG) discretizations have received increased attention
in recent years. One reason is that they allow for high order implicit discretizations and
parallelization in time [12]. Moreover, new space-time DG spectral element methods have
been constructed [11]. These are provably entropy stable for hyperbolic conservation laws
which is of great interest in that community. Several authors have studied space-time DG
methods for different equations, for instance hyperbolic problems in [8, 11], advection-
diffusion problems in [23, 25], the Euler equations of gas dynamics in [30, 32] and nonlinear
wave equations in [31].
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The philosophy of space-time methods is to treat time as just an additional dimension
[24]. This has several advantages, i.e. moving boundaries can be treated more easily [27]
and parallelization in time is possible [12]. However, the technique also has challenges,
since the temporal direction has a special role. Time always needs to follow a causality
principle: a solution later in time is only determined by a solution earlier in time, never
the other way around.

Several time parallel numerical methods exist, and can be divided into four groups
[12]: Methods based on multiple shooting, methods based on domain decomposition and
waveform relaxation, space-time multigrid methods and direct time parallel methods. In
this article we focus on space-time multigrid methods, which often scale linearly with the
number of unknowns [26].

An analysis tool for multigrid methods is the Local Fourier Analysis (LFA), introduced
in [4]. It can be used to study smoothers and two-grid algorithms. The technique is
based on assuming periodic boundary conditions and transforming the given problem
into the frequency domain using a discrete Fourier transform. Thus, the LFA can be used
as a predictor for asymptotic convergence rates when considering problems with non-
periodic boundary conditions [10]. The smoothing and asymptotic convergence are both
related to the eigenvalues of the operators for the smoother and the two-grid algorithm.
These operators are very large for space-time discretizations, since the effective dimension
becomes d + 1 for a d-dimensional problem. It is therefore not feasible to calculate the
eigenvalues. When performing an LFA, the operators are of block diagonal form in the
Fourier space, which reduces the problem to an analysis of so-called Fourier symbols.
These are of much smaller size and make calculations feasible. Multigrid solvers have
been analyzed in the DG context with block smoothers for convection-diffusion problems
in [14, 23, 33] and for elliptic problems in [19, 20]. Space-time MG methods have been
analyzed mostly for parabolic problems [9, 10, 13]. Analysis of space-time MG algorithms
for DG discretizations of advection dominated flows has been quite limited but can be
found for the advection-diffusion equation or linearized versions of the compressible Euler
equations [29, 28] and for generalized diffusion problems [10].

In this article we use the LFA to analyze a space-time multigrid solver for a hy-
perbolic model problem. The analysis is similar to [13], where the authors considered
a one-dimensional heat equation discretized with a finite element method in space and
DG in time. Instead we study the one-dimensional linear advection equation discretized
with a first order finite volume (FV) method in space and a discontinuous Galerkin spec-
tral element method (DG-SEM) in time. This results in a fully discrete space-time DG
discretization.

Due to the choice of the test problem as well as the spatial discretization we get
complex Fourier symbols, making the analysis more difficult. However, for large CFL
numbers we are able to determine asymptotic smoothing factors analytically. We use
a block Jacobi smoother and compare two different coarsening strategies: coarsening in
both temporal and spatial directions as well as coarsening in the temporal direction only.
The two-grid convergence factors need to be calculated numerically based on the complex
Fourier symbols. We compare the results of the analysis to numerical convergence rates
for multi-dimensional advection problems with more general boundary conditions. These
experiments are produced using the the Distributed and Unified Numerics Environment
(DUNE), an open source modular toolbox for solving partial differential equations with
grid-based methods as DG, finite element and finite differences [1, 5, 6, 7].
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In section 2 we describe the model problem and the DG space-time discretization.
Moreover, we introduce the multigrid solver and its components. In section 3 we discuss
some preliminaries: the equivalence of temporal DG-SEM discretizations with upwind
flux and Lobatto IIIC Runge-Kutta methods, stability results, as well as the basic tools
needed for the LFA. In section 4 we derive the Fourier symbols for all elements of the
multigrid iteration: discretization operator, smoother, restriction and prolongation. In
section 5 we analyze the smoothing properties for a block Jacobi smoother to find an
optimal damping parameter. The two-grid asymptotic convergence factors are calculated
in section 6. Numerical results for the advection equation in one and two dimensions are
presented in section 7 and serve as a comparison to the theoretical results obtained from
the LFA. Conclusions are drawn in section 8.

2 Problem Description

The goal of this paper is to analyze a space-time multigrid solver for a discretized hyper-
bolic model problem. We consider the one-dimensional linear advection equation

ut + aux = 0, (x, t) ∈ [L,R] × [0, T ] =∶ Ω ⊂ R2 (1)

with a > 0. For the analysis, we need periodic boundary conditions in space and time.

2.1 Discretization

For the analysis we discretize (1) with a space-time DG method with a FV method in
space (which corresponds to one a DG method of order px = 0 with one Legendre-Gauss
node, i.e., the midpoint) and variable temporal polynomial degree pt. For the temporal
direction, we use a DG-SEM. This is a specific DG discretization based on the following
choices: The solution and the physical flux function are approximated element-wise by
nodal polynomials using a Lagrangian basis based on Legendre-Gauss-Lobatto (LGL)
nodes. Moreover, integrals are approximated by Gaussian quadrature, which is collocated
with the nodes of the polynomial approximation [21].

To discretize equation (1), we start by dividing Ω into space-time elements [xn, xn+1]×

[tm, tm+1], n = 1, . . . ,Nx, m = 1, . . . ,N . A weak form on each space-time element
[xn, xn+1] × [tm, tm+1] is

∫

xn+1

xn
∫

tm+1

tm
(ut + aux)ψdxdt = 0,

for test functions ψ in a test space C1(Ω).
It is of advantage for the DG-SEM discretization to map the temporal elements to the

reference element [−1,1] using the linear map τ(t) = 2 t−tm∆t with ∆t = tm+1 − tm. Then we
get the modified weak form

2

∆t ∫
xn+1

xn
∫

+1

−1
uτψdxdτ + ∫

xn+1

xn
∫

1

−1
auxψdxdτ = 0.

Integration by parts in both direction yields

2

∆t ∫
xn+1

xn
(uψ∣1−1 − ∫

+1

−1
uψτdτ)dx + a∫

1

−1
(uψ∣xn+1xn − ∫

xn+1

xn
uψξdx)dτ = 0.
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We now approximate u on each space-time element [xn, xn+1]× [−1,1] by polynomials
of variable degree pt in time and constant degree px = 0 in space:

u(x, τ) =
Nt

∑
i=1

uij`i(τ),

with Nt = pt + 1 and j = 1, . . . ,Nx volumes in space. For the DG-SEM discretization, the
basis functions `i are Lagrange polynomials of degree pt based on the Legendre-Gauss-
Lobatto (LGL) nodes {τj}

Nt
i=1 in [−1,1]. We choose ψ from the same space, thus

ψ(x, τ) =
Nt

∑
i=1

ψij`i(τ), j = 1, . . . ,Nx.

Inserting the polynomial approximations gives

2

∆t ∫
xn+1

xn
(uψ∣1−1 − ∫

+1

−1
uψτdτ)dx + a∫

1

−1
(u(xn+1, τ)ψ(xn+1, τ) − u(xn, τ))ψ(xn, τ)dτ = 0.

Next, we approximate the integrals in time with Gaussian quadrature using the same
LGL nodes {τi}

Nτ
i=1 and weights {ωi}

Nt
i=1 as for the basis functions

∫

1

−1
f(τ)dτ ≈

Nt

∑
i=1

ωif(τi),

and consider mean values in the spatial direction. This yields

2

∆t
(u∗NtjδiNx − u

∗
1jδi1 −

Nt

∑
l=1

ωl`
′
i(τl)ulj) +

aωi
∆x

(u∗i,j − u
∗
i,j−1) = 0, i = 1, . . . ,Nt, j = 2, . . . ,Nx,

where we have replaced the boundary terms by numerical flux functions u∗. Here, we
choose the upwind flux in the spatial and the temporal direction.

We can combine the temporal and spatial discretizations with a tensor product ansatz.
Let us denote the spatial discretization operators by the index ξ and the temporal dis-
cretization operators by τ . With the temporal DG-SEM operators

Mτ =
∆t

2

⎛
⎜
⎝

ω1

⋱

ωNt

⎞
⎟
⎠
∈ RNt×Nt , Cτ =

⎛
⎜
⎝

0 1
⋱

0

⎞
⎟
⎠
∈ RNt×Nt , ENt =

⎛
⎜
⎜
⎜
⎝

0
⋱

0
1

⎞
⎟
⎟
⎟
⎠

∈ RNt×Nt ,

Kτ = ENt −DT
τ Mτ ∈ RNt×Nt , (Dτ)ij =

2

∆t
`′j(τi), i, j = 1 . . . ,Nt, (2)

and the spatial operator

Kξ =
a

∆x

⎛
⎜
⎜
⎜
⎝

1 −1
−1 1

⋱ ⋱

−1 1

⎞
⎟
⎟
⎟
⎠

∈ RNx×Nx , Iξ ∈ RNx×Nx , (3)

the following linear space-time system has to be solved on each so-called space-time slab
n:

(Iξ ⊗Kτ +Kξ ⊗Mτ)u
n+1 = (Iξ ⊗Cτ)u

n, (4)

4
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space − time slab

x

t

∆t

∆t

∆t

∆t

∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x ∆x

Figure 1: Equidistant space-time grid in one spatial dimension.

Here, the spatial matrices correspond to the whole domain in space while the temporal
matrices correspond to one DG element in time.

An example for an equidistant space-time grid can be seen in Figure 1. Then all Nx

spatial elements and one temporal element n represent one space-time slab n = 1, . . . ,N ,
as highlighted gray in the figure.

Let us write the vector of unknowns for the space-time problem as u = [u1, . . . ,uN]T ∈

RNNxNt . The components of un ∈ RNxNt are given by unj,k ∈ R, where n denotes the space-
time slab, j is the index for the unknowns in space and k the index for the unknowns in
one time element, i.e. unj ∈ RNt . This index notation is used throughout this paper for
vectors in the space RNNxNt .

The full space-time system for N space-time slabs on [0, T ] can then be written in
block form

Lτ,ξu ∶=

⎛
⎜
⎜
⎜
⎝

Aτ,ξ Bτ,ξ

Bτ,ξ Aτ,ξ

⋱ ⋱

Bτ,ξ Aτ,ξ

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

u1

u2

⋮

uN

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

0
0
⋮

0

⎞
⎟
⎟
⎟
⎠

=∶ b (5)

with

Aτ,ξ ∶= Iξ ⊗Kτ +Kξ ⊗Mτ ∈ RNxNt×NxNt , (6)

Bτ,ξ ∶= −Iξ ⊗Cτ ∈ RNxNt×NxNt . (7)

and the space-time operator Lτ,ξ ∈ RNNtNx×NNtNx and space-time vectors u,b ∈ RNNxNt .

2.2 Multigrid Solver

In the next step, the linear system (5) has to be solved. One method is to apply a forward
substitution w.r.t. the time blocks. This involves inverting the diagonal blocks in each

5
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time step and results in a sequential process. Instead, we use a space-time multigrid
method to solve (5). Multigrid algorithms consist of three main components: a smoother,
intergrid transfer operators, i.e. prolongation and restriction, and a coarse grid solver.
It is of advantage to study the intergrid transfer operators in space and time separately
due to the special causality principle in the temporal direction. We consider a geometric
multigrid method in space and time. We choose block Jacobi smoothers with blocks
corresponding to one space-time slab since it has been shown in the case of space-time
multigrid methods that pointwise or line-smoothers, when not chosen carefully, can result
in divergent methods [16, 24, 26]. The choice of these blocks follows from the block form
of the full space-time system (5).

Let Ω` ⊂ R2 be the grid on level ` = 0, . . . ,M with ` = 0 the coarsest and ` = M the
finest level. We denote the number of time slabs on multigrid level ` by N`t ∈ N and the
number of spatial elements by N`x ∈ N. In consequence, on each space-time grid level `
the system matrix Lτ`,ξ`

is defined by (3) with N`x volumes and the space-time system
(5) with N`t time steps.

For the temporal component, restriction and prolongation matrices are defined using
L2 projections,

R`t
`t−1 ∶=

⎛
⎜
⎜
⎜
⎝

R1 R2

R1 R2

⋱ ⋱

R1 R2

⎞
⎟
⎟
⎟
⎠

∈ RNtN`t−1×NtN`t ,

P`t−1
`t

∶= (R`t
`t−1)

T ∈ RNtN`t×NtN`t−1 ,

(8)

with local prolongation matrices RT
1 ∶= M−1

τ`
M̃1

τ`
and RT

2 ∶= M−1
τ`

M̃2
τ`

, see [13], [23]. For

basis functions {`k}
Nt
k=1 ⊂ Ppt(0, τ`) on the fine grid and {˜̀

k}
Nt
k=1 ⊂ Ppt(0,2τ`) on the coarse

grid, the local projection matrices from the coarse to the fine grid are defined by

M̃1
τ`
(k, l) ∶= ∫

τ`

0

˜̀
l(t)`k(t)dt, M̃2

τ`
(k, l) ∶= ∫

2τ`

τ`

˜̀
l(t)`k(t − τ)dt, k, l = 1, . . . ,Nt. (9)

Restriction and prolongation matrices in space are given by agglomeration

R`x
`x−1 ∶=

1

2

⎛
⎜
⎜
⎜
⎝

1 1
1 1

⋱ ⋱

1 1

⎞
⎟
⎟
⎟
⎠

∈ RN`x−1×N`x ,

P`x−1
`x

∶= (2R`x
`x−1)

T ∈ RN`x×N`x−1 .

(10)

We study two different coarsening strategies: coarsening in space and time, referred
to as full-coarsening and denoted by index f , and coarsening in the temporal direction
only, which we refer to as semi-coarsening with index s. Since we are especially interested
in the efficiency of the multigrid method in time, we study a semi-coarsening strategy in
this direction.

For the space-time system, restriction and prolongation operators can then be defined
with a tensor product

(R`
`−1)

s ∶= IN`x ⊗R`t
`t−1, (R`

`−1)
f ∶= R`x

`x−1 ⊗R`t
`t−1, (11)

(P`−1
` )s ∶= IN`x ⊗P`t−1

`t
, (P`−1

` )f ∶= P`x−1
`x

⊗P`t−1
`t

. (12)
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As smoother we choose a damped block Jacobi method

u(k+1) = ωt(Dτ`,ξ`
)−1b + (Iτ`,ξ` − ωt(Dτ`,ξ`

)−1Lτ`,ξ`
)u(k), (13)

with damping factor ωt and block diagonal matrix

Dτ`,ξ`
∶= diag([Aτ`,ξ` , . . . ,Aτ`,ξ`]). (14)

Here, the blocks correspond to a space-time slab on the given grid level due to the block
form of the full space-time system (5). The block Jacobi iteration matrix reads

Sτ`,ξ` ∶= I − ωt(Dτ`,ξ`
)−1Lτ`,ξ`

. (15)

With this, the iteration matrices for a two-grid V-cycle with ν1 pre- and ν2 post-
smoothing steps on the fine grid are given by

Ms
τ`,ξ`

∶= Sν2τ`,ξ` [I − (P`−1
` )s(L2τ`,ξ`

)−1(R`
`−1)

sLτ`,ξ`
]Sν1τ`,ξ` , (16)

Mf
τ`,ξ`

∶= Sν2τ`,ξ` [I − (P`−1
` )f(L2τ`,2ξ`

)−1(R`
`−1)

fLτ`,ξ`
]Sν1τ`,ξ` , (17)

for semi-coarsening and full-coarsening respectively. Here, it is assumed that the systems
are solved exactly on the coarse grid.

3 Preliminaries

In this section we discuss some preliminaries which are needed for the local Fourier analysis
presented in the following sections.

3.1 DG-SEM and Lobatto IIIC Methods

We start with the temporal DG-SEM discretization (2). Using an upwind flux, which is
a flux to fulfill the temporal causality principle, the DG-SEM discretization in time for
the linear test equation

ut + λu = 0, t ∈ [0, T ], u(0) = u0, λ ≥ 0, (18)

reads

(Kτ + λMτ)u
n+1 = Cτu

n. (19)

One can show that the scheme is equivalent to a specific Runge-Kutta time-stepping
method:

Theorem 3.1 ([3, 17]). The DG-SEM (19) with pt + 1 Legendre-Gauss-Lobatto nodes is
equivalent to the (pt + 1)-stage Runge-Kutta scheme Lobatto IIIC.

Here, equivalence is referred to the solution of the unknowns in the end of each element
assuming the resulting systems are solved exactly.

With the help of Theorem 3.1 some stability results for the temporal discretization
can be drawn.

7
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Theorem 3.2 ([18, 22]). For s ∈ N the s-stage Lobatto IIIC scheme is of order 2s−1 and
its stability function R(z) is given by the (s−2, s)-Padé approximation of the exponential
function ez. The method is L-stable and furthermore algebraically stable, thus B-stable
and A-stable.

Corollary 3.3. The stability function R(z) of the DG-SEM (19) with pt+1 ∈ N Legendre-
Gauss-Lobatto nodes, pt ≥ 1, is given by the (pt − 1, pt + 1)-Padé approximation to the
exponential function ez.

Proof. By Theorem 3.1 DG-SEM is equivalent to the Lobatto IIIC method. Thus, both
methods have the same stability function R(z). By Theorem 3.2 the stability function is
given by the (pt − 1, pt + 1)-Padé approximation to the exponential function ez.

The Padé approximant for the exponential function can be calculated directly.

Theorem 3.4 ([18]). The (k,m)-Padé approximant

rkm(z) =
pkm(z)

qkm(z)

of the exponential function ez is given by

pkm(z) = 1 +
k

∑
j=1

(k +m − j)!k!

(k +m)! (k − j)!
⋅
zj

j!
,

qkm(z) = 1 +
m

∑
j=1

(k +m − j)!m!

(k +m)! (m − j)!
⋅
(−z)j

j!
.

With the help of the stability function R, the eigenvalues of the discretization matrix
(19) can be calculated.

Lemma 3.5 ([13]). For λ ∈ C the spectrum of the matrix (Kτ + λMτ)
−1Cτ ∈ CNt×Nt is

given by

σ((Kτ + λMτ)
−1Cτ) = {0,R(−λτ)}

where R(z) is the stability function of the DG time stepping scheme, see Corollary 3.3.

These results are used for the smoothing analysis in section 5.

3.2 Definitions and Notation for the Local Fourier Analysis

In this section we present the basic tools needed to perform a local Fourier analysis for
the multigrid solver as presented in section 2.2. For a more detailed description of this
technique we refer to [2, 15].

First we define the Fourier modes and frequencies.

Definition 3.6 ([34]). The function

ϕ(θk) ∶= [ϕ1(θk), . . . , ϕN(θk)]
T , ϕj(θk) ∶= e

ijθk , j = 1, . . . ,N, N ∈ N,

8
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Figure 2: Low and high frequencies for semi coarsening (left) and full coarsening (right)

is called Fourier mode with frequencies

θk ∈ Θ ∶= {
2kπ

N
∶ k = 1 −

N

2
, . . . ,

N

2
} ⊂ (−π,π].

The frequencies can be separated into low and high frequencies

Θlow ∶= Θ ∩ (−
π

2
,
π

2
] , Θhigh ∶= Θ ∩ ((−π,−

π

2
] ∪ (

π

2
, π]] .

In this paper we consider frequencies on a two-dimensional space-time domain. Given
the set of space-time frequencies

Θ`x,`t ∶= {(θx, θt) ∶ θx ∈ Θ`x , θt ∈ Θ`t} ⊂ (−π,π]2,

low and high frequencies are defined as

Θhigh,s
`x,`t

∶= Θ`x,`t ∖Θlow,s
`x,`t

for Θlow,s
`x,`t

∶= Θ`x,`t ∩ (−π,π] × (−
π

2
,
π

2
] , (20)

Θhigh,f
`x,`t

∶= Θ`x,`t ∖Θlow,f
`x,`t

for Θlow,f
`x,`t

∶= Θ`x,`t ∩ (−
π

2
,
π

2
]

2

, (21)

for semi-coarsening in time and full space-time coarsening respectively. In Figure 2 the
ranges for the frequencies in the space-time domain are visualized for both coarsening
strategies.

With this, the discrete Fourier transform reads:

Theorem 3.7 (Discrete Fourier transform [34]). Let u ∈ RNtN`xN`t for Nt,N`x ,N`t ∈ N,
and assume that N`x and N`t are even. The vector u can be represented as

u = ∑
θx∈Θ`x

∑
θt∈Θ`t

ψ(θx, θt),

where ψ(θx, θt) ∈ CNtN`xN`t consists of the vectors

ψn
j (θx, θt) ∶= U(θx, θt)Φ

n
j (θx, θt) ∈ CNt , n = 1, . . . ,N`t , j = 1, . . . ,N`x ,

and the vector Φn
j (θx, θt) ∈ CNt has elements

Φn
j,l(θx, θt) ∶= ϕn(θt)ϕj(θx), l = 1, . . . ,Nt.

9
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Moreover, we define the coefficient matrix as

U(θx, θt) ∶= diag(û1, . . . , ûNt) ∈ CNt×Nt ,

with coefficients

ûl ∶=
1

N`x

1

N`t

N`x

∑
j=1

N`t

∑
n=1

unj,lϕj(−θx)ϕn(−θt), l = 1, . . . ,Nt.

Then, the linear space of Fourier modes can be defined.

Definition 3.8. Consider the frequencies θx ∈ Θ`x and θt ∈ Θ`t and the vector Φn
j (θx, θt)

as in Theorem 3.7. Then the linear space of Fourier modes with frequencies (θx, θt) is
defined as

Ψ`x,`t(θx, θt) ∶= span{Φ(θx, θt)}

∶= {ψ(θx, θt) ∈ CNt⋅N`x ⋅N`t ∶ ψn
j (θx, θt) ∶= UΦn

j (θx, θl),

for n = 1, . . . ,N`t , j = 1, . . . ,N`x and U ∈ CNt×Nt}.

With the result from the next theorem it suffices to consider low frequencies.

Theorem 3.9 ([26]). Let u = [u1, . . . ,uN`t ]T ∈ RNtN`xN`t and assume that N`x and N`t

are even numbers. Then the vector u can be written as

u = ∑

(θx,θt)∈Θ
low,f
`x,`t

(ψ(θx, θt) +ψ(γ(θx), θt) +ψ(θx, γ(θt)) +ψ(γ(θx), γ(θt))) ,

with the shifting operator

γ(θ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

θ + π, θ < 0,

θ − π, θ ≥ 0,

and ψ(θx, θt) ∈ CNtN`xN`t as in Lemma 3.7.

Since ψ(θx, θt) consists of the vectors ψn
j (θx, θt) = UΦn

j (θx, θt), which itself build the

vector Φ(θx, θt), the previous theorem implies that u = [u1, . . . ,uN`t ]T can be written as
a linear combination of the low frequency vectors

{Φ(θx, θt),Φ(γ(θx), θt),Φ(θx, γ(θt)),Φ(γ(θx), γ(θt))}.

Thus, four fine grid modes get aliased to one coarse grid mode. In the following it suffices
therefore to only consider low frequencies and use the shifting operator γ ∶ Θlow

` → Θhigh
` .

We can therefore define a new Fourier space, based on low frequencies only:

Definition 3.10. For Nt,N`x ,N`t consider the vector ψ(θx, θt) ∈ CNtN`xN`t for (θx, θt) ∈

Θlow,f
`x,`t

as in Lemma 3.7. The linear space of low frequency harmonics is defined as

E`x,`t(θx, θt) ∶= span{Φ(θx, θt),Φ(γ(θx), θt),Φ(θx, γ(θt)),Φ(γ(θx), γ(θt))}

= {ψ(θx, θt) ∈ CNt⋅N`x ⋅N`t ∶ ψn
j (θx, θt) = U1Φ

n
j (θx, θt)

+U2Φ
n
j (γ(θx), θt) +U3Φ

n
j (θx, γ(θt)) +U4Φ

n
j (γ(θx), γ(θt)),

n = 1, . . . ,N`t , j = 1, . . . ,N`x and U1,U2,U3,U4 ∈ CNt×Nt}.

10
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Moreover, we can define the Fourier space for the semi-coarsening strategy.

Definition 3.11 (Fourier space, semi-coarsening). For Nt,N`x ,N`t−1 ∈ N and (θx, θt) ∈

Θlow,f
`x,`t

consider Φ(θx, θt) ∈ CNtN`xN`t−1 as in Lemma 3.7. We define the linear space with
frequencies (θx,2θt) as

Ψ`x,`t−1(θx,2θt) ∶= span{Φ`x,`t−1
(θx,2θt),Φ

`x,`t−1
(γ(θx),2θt)}

= {ψ`x,`t−1
(θx,2θt) ∈ CNt,N`x ,N`t−1 ∶

ψn,`x,`t−1
j (θx,2θt) = U1Φ

n,`x,`t−1
j (θx,2θt)

+U2Φ
n,`x,`t−1
j (γ(θx),2θt) for n = 1, . . . ,N`t − 1,

j = 1, . . . ,N`x , U1,U2 ∈ CNt×Nt}.

One key property of the LFA is the shifting equality, which is used extensively when
deriving the Fourier symbols of the operators in the next section.

Lemma 3.12 ([24]). Let θx ∈ Θ`x , θt ∈ Θ`t andψ(θx, θt) ∈ Ψ`x,`t(θx, θt). Then the following
shifting equalities hold:

ψn−1
j (θx, θt) = e

−iθtψn
j (θx, θt), n = 2, . . . ,N`t

ψn
j−1(θx, θt) = e

−iθxψn
j (θx, θt), j = 2, . . . ,N`x .

4 Fourier Symbols

The first step of the local Fourier analysis is to derive the Fourier symbols of all operators
in the MG iteration (17) and (16), i.e. of the system matrix, smoother, restriction and
prolongation. These symbols are also referred to as formal eigenvalues [26] since they are
derived by multiplying the operators by the vector ψ(θx, θt) from Theorem 3.7.

We start with the Fourier symbol of the system matrix (5).

Lemma 4.1 (Fourier symbol of Lτ`,ξ`
). For θx ∈ Θ`x and θt ∈ Θ`t we consider the vector

ψ(θx, θt) ∈ Ψ`x,`t(θx, θt). For

Lτ`,ξ`(θx, θt) ∶= −e−iθtCτ` +Kτ` +
a

∆x
(−e−iθx + 1)Mτ` ∈ CNt×Nt

it holds that

(Lτ`,ξ`
ψ(θx, θt))

n
j = Lτ`,ξ`(θx, θt)ψ

n
j (θx, θt),

for n = 2, . . . ,N`t , j = 2, . . . ,N`x − 1 and we call Lτ`,ξ`(θx, θt) ∈ CNt×Nt the Fourier symbol
of Lτ`,ξ`

∈ CN`tNtN`x×N`tNtN`x .

Proof. With Lemma 3.12 we get for ψ(θx, θt) ∈ Ψ`x,`t(θx, θt)

(Lτ`,ξ`
ψ(θx, θt))

n = Bτ`,ξ`ψ
n−1

(θx, θt) +Aτ`,ξ`ψ
n
(θx, θt)

= (e−iθtBτ`,ξ` +Aτ`,ξ`)ψ
n
(θx, θt), n = 2, . . . ,N`t .

11
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Thus, we have to study the product of Aτ`,ξ` = Iξ` ⊗Kτ` +Kξ` ⊗Mτ` and Bτ`,ξ` = −Iξ` ⊗Cτ`

with the vector ψn
(θx, θt):

(Aτ`,ξ`ψ
n
(θx, θt))j,l =

N`x

∑
i=1

Nt

∑
k=1

Iξ`(j, i)Kτ`(l, k)ψ
n
i,k(θx, θt)

+

Nh`

∑
i=1

Nt

∑
k=1

Kξ`(j, i)Mτ`(l, k)ψ
n
i,k(θx, θt)

= (Kτ`ψ
n
j (θx, θt))l +

a

∆x
(−e−iθx + 1)(Mτ`ψ

n
j (θx, θt))l

= (Kτ` +
a

∆x
(−e−iθx + 1)Mτ`)ψ

n
j (θx, θt))l,

and

(Bτ`,ξ`ψ
n
(θx, θt))j,l = −

N`x

∑
i=1

Nt

∑
k=1

Iξ`(j, i)Cτ`(l, k)ψ
n
i,k(θx, θt)

= −
Nt

∑
k=1

Cτ`(l, k)ψ
n
j,k(θx, θt) = −(Cτ`ψ

n
j (θx, θt))l,

for j = 2, . . . ,N`x − 1 and l = 1, . . . ,Nt. Then

(Lτ`,ξ`
ψ(θx, θt))

n
j = (−e−iθtCτ` +Kτ` +

a

∆x
(−e−iθx + 1)Mτ`)ψ

n
j (θx, θt),

and thus

Lτ`,ξ` = −e−iθtCτ` +Kτ` +
a

∆x
(−e−iθx + 1)Mτ` ∈ CNt×Nt .

With this result we can derive the symbol of the the block Jacobi smother (13).

Lemma 4.2 (Fourier symbol of Sτ`,ξ`). For θx ∈ Θ`x and θt ∈ Θ`t we consider the vector
ψ(θx, θt) ∈ Ψ`x,`t(θx, θt). For

Sτ`,ξ`(θx, θt) ∶= (1 − ωt)INt + ωte
−iθt(Kτ` +

a

∆x
(−e−iθx + 1)Mτ`)

−1Cτ` ∈ CNt×Nt

it holds that

(Sτ`,ξ`ψ(θx, θt))
n
j = Sτ`,ξ`(θx, θt)ψ

n
j (θx, θt)

for n = 1, . . . ,N`t , j = 1, . . . ,N`x and we call Sτ`,ξ`(θx, θt) ∈ CNt×Nt the Fourier symbol of
Sτ`,ξ` ∈ C

N`tNtN`x×N`tNtN`x .

Proof. Let ψ(θx, θt) ∈ Ψ`x,`t(θx, θt). For fixed n = 1, . . . ,N`t and j = 1, . . . ,N`x it holds

(Sτ`,ξ`ψ(θx, θt))
n
j = ((INtN`xN`t

− ωt(Dτ`,ξ`
)−1Lτ`,ξ`

)ψ(θx, θt))
n
j

= (INt − ωt(Âτ`,ξ`(θx))
−1Lτ`,ξ`(θx, θt))ψ

n
j (θx, θt)

= Sτ`,ξ`(θx, θt)ψ
n
j (θx, θt),
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with Âτ`,ξ`(θx) ∶= Kτ` +
a

∆x(−e
−iθx + 1)Mτ` derived as in the previous proof. Moreover,

(Âτ`,ξ`(θx))
−1Lτ`,ξ`(θx, θt) = (Kτ` +

a

∆x
(−e−iθx + 1)Mτ`)

−1

(−e−iθtCτ` +Kτ` +
a

∆x
(−e−iθx + 1)Mτ`)

= INt − e
−iθt(Kτ` +

a

∆x
(−e−iθx + 1)Mτ`)

−1Cτ` .

Thus,

Sτ`,ξ`(θx, θt) = INt − ωt(INt − e
−iθt(Kτ` +

a

∆x
(−e−iθx + 1)Mτ`)

−1Cτ`)

= (1 − ωt)INt + ωte
−iθt(Kτ` +

a

∆x
(−e−iθx + 1)Mτ`)

−1Cτ` ∈ CNt×Nt .

With Theorems 3.7 and 3.9 and Lemma 4.1 we get for the system matrix Lτ`,ξ`
and

(θx, θt) ∈ Θlow,f
`x,`t

the following mapping property:

Lτ`,ξ`
∶E`x,`t(θx, θt)→ E`x,`t(θx, θt),

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎝

Lτ`,ξ`(θx, θt)U1

Lτ`,ξ`(γ(θx), θt)U2

Lτ`,ξ`(θx, γ(θt))U3

Lτ`,ξ`(γ(θx), γ(θt))U4

⎞
⎟
⎟
⎟
⎠

=∶ L̃τ`,ξ`(θx, θt)
⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

,
(22)

with a block diagonal matrix L̃τ`,ξ`(θx, θt) ∈ C4Nt×4Nt , Lτ`,ξ` ∈ CNt×Nt as defined in Lemma
4.1 and the space of low frequencies E`x,`t as defined in 3.10. Accordingly, we obtain with

Lemma 4.2 for the smoother Sτ`,ξ` and (θx, θt) ∈ Θlow,f
`x,`t

Sτ`,ξ` ∶E`x,`t(θx, θt)→ E`x,`t(θx, θt),

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎝

Sτ`,ξ`(θx, θt)U1

Sτ`,ξ`(γ(θx), θt)U2

Sτ`,ξ`(θx, γ(θt))U3

Sτ`,ξ`(γ(θx), γ(θt))U4

⎞
⎟
⎟
⎟
⎠

=∶ S̃τ`,ξ`(θx, θt)
⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

,
(23)

with a block diagonal matrix S̃τ`,ξ`(θx, θt) ∈ C4Nt×4Nt and Sτ`,ξ` ∈ CNt×Nt as defined in
Lemma 4.2.

Next, we derive the Fourier symbols of the restriction and prolongation operators.

Lemma 4.3 (Fourier symbols of spatial prolongation and restriction). Consider the spa-
tial restriction and prolongation operators R`x

`x−1 ∈ CN`x−1×N`x and P`x−1
`x

∈ CN`x×N`x−1 de-
fined in (10). Let ϕ`x(θx) ∈ CN`x be a fine Fourier mode and ϕ`x−1(2θx) ∈ CN`x−1 a coarse
Fourier mode for θx ∈ Θlow

`x
. Then for R`x`x−1(θx) ∶=

1
2(e

−iθx + 1) it holds

(R`x
`x−1ϕ

`x(θx))j =R
`x
`x−1(θx)ϕ

`x−1
j (2θx), j = 1, . . . ,N`x−1,

and we call R`x`x−1(θx) ∈ C the Fourier symbol of the restriction operator in space.

For P`x−1
`x

(θx) ∶=
1
2(e

iθx + 1) it holds

(P`x−1
`x
ϕ`x−1(2θx))i = P

`x−1
`x

(θx)ϕ
`x
i (θx) +P

`x−1
`x

(γ(θx))ϕ
`x
i (γ(θx)), i = 1, . . . ,N`x

and we call P`x−1
`x

(θx) ∈ C the Fourier symbol of the prolongation operator in space.
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Proof. For the restriction operator we get

(R`x
`x−1ϕ

`x(θx))j =
1

2
(ϕ`x2j−1(θx) + ϕ

`x
2j(θx)) =

1

2
(e−iθx + 1)ϕ`x2j(θx)

=
1

2
(e−iθx + 1)ϕ`x−1

j (2θx) =R
`x
`x−1(θx)ϕ

`x−1
j (2θx), j = 1, . . . ,N`x−1,

using the shifting Lemma 3.12 and ϕ`x2j(θx) = ϕ
`x−1
j (2θx).

For the prolongation operator it holds

(P`x−1
`x
ϕ`x−1(2θx))2j−1 = ϕ

`x−1
j (2θx) = ϕ

`x
2j(θx) = e

iθxϕ`x2j−1(θx),

and

(P`x−1
`x
ϕ`x−1(2θx))2j = ϕ

`x−1
j (2θx) = ϕ

`x
2j(θx),

for j = 1, . . . ,N`x−1, with the same arguments as before. Then

(P`x−1
`x
ϕ`x−1(2θx))j =

⎧⎪⎪
⎨
⎪⎪⎩

eiθxϕ`xj (θx), j odd,

ϕ`xj (θx), j even,

for j = 1, . . . ,N`x . Moreover,

ϕ`xj (γ(θx)) = e
ijγ(θx) =

⎧⎪⎪
⎨
⎪⎪⎩

eijπeijθx , θx < 0,

e−ijπeijθx , θx ≥ 0,
=

⎧⎪⎪
⎨
⎪⎪⎩

−ϕ`xj (θx), j odd,

ϕ`xj (θx), j even,

and

P`x−1
`x

(γ(θx)) =
1

2
(eiγ(θx) + 1) =

1

2
(−eiθx + 1),

for j = 1, . . . ,N`x . This implies

P`x−1
`x

(θx)ϕ
`x
j (θx) +P

`x−1
`x

(γ(θx))ϕ
`x
j (γ(θx))

=
1

2
(eiθx + 1)ϕ`xj (θx) +

1

2
(−eiθx + 1)

⎧⎪⎪
⎨
⎪⎪⎩

−ϕ`xj (θx), j odd,

ϕ`xj (θx), j even

=

⎧⎪⎪
⎨
⎪⎪⎩

eiθxϕ`xj (θx), j odd,

ϕ`xj (θx), j even,
= (P`x−1

`x
ϕ`x−1(2θx))j,

for j = 1, . . . ,N`x .

The following five Lemmata from [13] give us the Fourier symbols of the restriction
and prolongation operators for the different coarsening strategies.

Lemma 4.4 (Fourier symbols for temporal prolongation and restriction). Consider tem-
poral restriction and prolongation operators R`t

`t−1 ∈ CNtN`t−1×NtN`t and P`t−1
`t

∈ CNtN`t×NtN`t−1

as defined in (8). Let Φ`t(θt) ∈ CNtN`t be a fine Fourier mode and Φ`t−1
(θt) ∈ CNtN`t−1 a

coarse Fourier mode for θt ∈ Θlow
`t

with elements

Φn,`t
l (θt) ∶= ϕn(θt), l = 1, . . . ,Nt, n = 1, . . . ,N`t ,

Φn,`t−1
l (θt) ∶= ϕn(θt), l = 1, . . . ,Nt, n = 1, . . . ,N`t−1.
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Then for R`t
`t−1(θt) ∶= e

−iθtR1 +R2 ∈ CNt×Nt , with R1 and R2 defined in (8), it holds

(R`t
`t−1Φ

`t(θt))
n =R`t

`t−1(θt)Φ
n,`t−1

(2θt), n = 1, . . . ,N`t−1,

and we call R`t
`t−1(θt) ∈ CNt×Nt the Fourier symbol for the restriction operator in time.

Moreover, for P`t−1
`t

(θt) ∶=
1
2(e

iθtRT
1 +RT

2 ) ∈ CNt×Nt it holds

(P`t−1
`t

Φ`t−1
(2θt))

n = P`t−1
`t

(θt)Φ
n,`t(θt) +P`t−1

`t
(γ(θt))Φ

n,`t(γ(θt)), n = 1, . . . ,N`t ,

and we call P`t−1
`t

(θt) ∈ CNt×Nt the Fourier symbol for the prolongation in time.

With these results we can get the mapping properties for the semi-restriction and
semi-prolongation operators.

Lemma 4.5 (Fourier symbol for restriction, semi-coarsening). The following mapping
property holds for the restriction operator (R`

`−1)
s:

(R`
`−1)

s ∶ E`x,`t(θx, θt)→ Ψ`x,`t−1(θx,2θt),

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ (R̃`

`−1)
s(θt)

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

,

with

(R̃`

`−1)
s(θt) ∶= (

R`t
`t−1(θt) 0 R`t

`t−1(γ(θt)) 0

0 R`t
`t−1(θt) 0 R`t

`t−1(γ(θt))
) ∈ C2Nt×4Nt

and the Fourier symbol R`t
`t−1(θt) ∈ CNt×Nt as defined in Lemma 4.4.

Lemma 4.6 (Fourier symbol of prolongation, semi-coarsening). The following mapping
property holds for the prolongation operator (P`−1

` )s:

(P`−1
` )s ∶ Ψ`x,`t−1(θx,2θt)→ E`x,`t(θx, θt),

(
U1

U2
)↦ (P̃`−1

` )s(θt)(
U1

U2
) ,

with

(P̃`−1

` )s(θt) ∶=

⎛
⎜
⎜
⎜
⎜
⎝

P`t−1
`t

(θt) 0

0 P`t−1
`t

(θt)

P`t−1
`t

(γ(θt)) 0

0 P`t−1
`t

(γ(θt))

⎞
⎟
⎟
⎟
⎟
⎠

∈ C4Nt×2Nt

and the Fourier symbol P`t−1
`t

(θt) ∈ CNt×Nt as defined in Lemma 4.4.

Analogously to the semi-coarsening case we can get the mapping properties for the
full-restriction and full-prolongation operators.
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Lemma 4.7 (Fourier symbol of restriction, full-coarsening). The following mapping prop-
erty holds for the restriction operator (R`

`−1)
f :

(R`
`−1)

f ∶ E`x,`t(θx, θt)→ Ψ`x−1,`t−1(2θx,2θt),

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ (R̃`

`−1)
f(θx, θt)

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

,

with

(R̃`

`−1)
f(θx, θt) ∶=

(R̂
`

`−1(θx, θt) R̂
`

`−1(γ(θx), θt) R̂
`

`t(θx, γ(θt)) R̂
`

`−1(γ(θx), γ(θt))) ∈ C
Nt×4Nt ,

and the Fourier symbol

R̂
`

`−1(θx, θt) ∶=R
`x
`x−1(θx)R

`t
`t−1(θt) ∈ C

Nt×Nt ,

with R`x`x−1(θx) ∈ C from Lemma 4.3 and R`t
`t−1(θt) ∈ CNt×Nt from Lemma 4.4.

Lemma 4.8 (Fourier symbol of prolongation, full-coarsening). The following mapping
property holds for the prolongation operator (P`−1

` )f :

(P`−1
` )f ∶ Ψ`x−1,`t−1(2θx,2θt)→ E`x,`t(θx, θt),

U↦ (P̃`−1

` )f(θt, θx)U,

with

(P̃`−1

` )f(θt, θx) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P̂
`−1

` (θx, θt)

P̂
`−1

` (γ(θx), θt)

P̂
`−1

` (θx, γ(θt))

P̂
`−1

` (γ(θx), γ(θt))

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ C4Nt×Nt ,

and the Fourier symbol

P̂
`−1

` (θx, θt) ∶= P
`x−1
`x

(θx)P`t−1
`t

(θt) ∈ CNt×Nt ,

with P`x−1
`x

∈ C from Lemma 4.3 and P`t−1
`t

∈ CNt×Nt from Lemma 4.4.

With Lemma 4.1 we obtain the mapping property for coarse grid correction when
semi-coarsening in time is applied:

(L2τ`,ξ`
)−1 ∶ Ψ`x,`t−1(θx,2θt)→ Ψ`x,`t−1(θx,2θt),

(
U1

U2
)↦ (L̂

s

2τ`,ξ`
(θx,2θt))

−1 (
U1

U2
) ,

(24)

with

(L̂
s

2τ`,ξ`
(θx,2θt))

−1 ∶= (
(L2τ`,ξ`(θx,2θt))

−1 0
0 (L2τ`,ξ`(γ(θx),2θt))

−1) ∈ C2Nt×2Nt .
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A complication arises for frequencies (θx, θt) such that L2τ`,ξ`(θx,2θt) = 0. For some
more discussion of the reasons for this formal complication we refer to [26]. In order to

make sure that L̂
s

exists, we exclude the set of frequencies

Λs ∶= {(θx, θt) ∈ (−π,π] × (−
π

2
,
π

2
] ∶ Lτ`,ξ`(θx, θt) = 0 or L2τ`,ξ`(θx,2θt) = 0} . (25)

For the full-coarsening case we obtain the mapping property

(L2τ`,2ξ`
)−1 ∶ Ψ`x−1,`t−1(2θx,2θt)→ Ψ`x−1,`t−1(2θx,2θt),

U↦ (L̂
f

2τ`,2ξ`
(2θx,2θt))

−1U,
(26)

with

(L̂
f

2τ`,2ξ`
(2θx,2θt))

−1 ∶= (L2τ`,2ξ`(2θx,2θt))
−1 ∈ CNt×Nt . (27)

As before, a complication arises for frequencies (θx, θt) such that L2τ`,2ξ`(2θx,2θt) = 0.

In order to make sure that L̂
f

exists, we exclude the set of frequencies

Λf ∶= {(θx, θt) ∈ (−
π

2
,
π

2
]

2

∶ Lτ`,ξ`(θx, θt) = 0 or L2τ`,2ξ`(2θx,2θt) = 0} .

We are now able to get the Fourier symbol of the two-grid operators and calculate the
asymptotic convergence factors.

Theorem 4.9 (Fourier symbol of two-grid operator, semi-coarsening). For (θx, θt) ∈ Θlow,f
`x,`t

the following mapping property holds for the two-grid operator Ms
τ`,ξ`

in (17) with semi-
coarsening in time:

Ms
τ`,ξ`

∶ E`x,`t(θx, θt)→ E`x,`t(θx, θt),

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦Ms
(θx, θt)

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

,

with

Ms
(θx, θt) ∶= S̃

ν2
τ`,ξ`

(θx, θt)(I4Nt − (P̃`−1

` )s(θt)(L̂
s

2τ`,ξ`
(θx,2θt))

−1

(R̃`

`−1)
s(θt)L̃τ`,ξ`(θx, θt))S̃

ν1
τ`,ξ`

(θx, θt) ∈ C4Nt×4Nt .
(28)

Proof. The two-grid operator for semi-coarsening is given by

Ms
τ`,ξ`

= Sν2τ`,ξ`(I − (P`−1
` )s(L2τ`,ξ`

)−1(R`
`−1)sLτ`,ξ`

)Sν1τ`,ξ` .

By previous results we obtain

Ms
τ`,ξ`

∶E`x,`t
(23)
ÐÐ→ E`x,`t

(22)
ÐÐ→ E`x,`t

4.5
Ð→ Ψ`x,`t−1(θx,2θt)

(24)
ÐÐ→ Ψ`x,`t−1(θx,2θt)

4.6
Ð→ E`x,`t

(23)
ÐÐ→ E`x,`t ,

17

193



with the mapping

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ S̃ν1τ`,ξ`

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ L̃τ`,ξ`S̃
ν1
τ`,ξ`

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ (R̃`

`−1)
sL̃τ`,ξ`S̃

ν1
τ`,ξ`

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ (L̂
s

2τ`,ξ`
)−1(R̃`

`−1)
sL̃τ`,ξ`S̃

ν1
τ`,ξ`

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ (P̃`−1

` )s(L̂
s

2τ`,ξ`
)−1(R̃`

`−1)
sL̃τ`,ξ`S̃

ν1
τ`,ξ`

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ (I4Nt − (P̃`−1

` )s(L̂
s

2τ`,ξ`
)−1(R̃`

`−1)
sL̃τ`,ξ`)S̃

ν1
τ`,ξ`

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦ S̃ν2τ`,ξ`(I4Nt − (P̃`−1

` )s(L̂
s

2τ`,ξ`
)−1(R̃`

`−1)
sL̃τ`,ξ`)S̃

ν1
τ`,ξ`

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

.

Theorem 4.10 (Fourier symbol of two-grid operator, full-coarsening). For (θx, θt) ∈ Θlow,f
`x,`t

the following mapping property holds for the two-grid operator Mf
τ`,ξ`

in (16) with space-
time coarsening:

Mf
τ`,ξ`

∶ E`x,`t(θx, θt)→ E`x,`t(θx, θt),

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

↦Mf
(θx, θt)

⎛
⎜
⎜
⎜
⎝

U1

U2

U3

U4

⎞
⎟
⎟
⎟
⎠

,

with

Mf
(θx, θt) ∶= S̃

ν2
τ`,ξ`

(θx, θt)(I4Nt − (P̃`−1

` )f(θx, θt)(L̂
f

2τ`,2ξ`
(2θx,2θt))

−1

(R̃`

`−1)
f(θx, θt)L̃τ`,ξ`(θx, θt))S̃

ν1
τ`,ξ`

(θx, θt) ∈ C4Nt×4Nt .
(29)

Proof. The proof follows analogous to the previous one.

5 Smoothing Analysis

We now have all tools at hand to analyze the elements of the multigrid iteration. We start
with the smoother. The asymptotic smoothing factor of the damped block Jacobi method
(15) can be measured by computing the spectral radius of its symbol Sτ`,ξ`(θx, θt), which
is of much smaller size and thus makes the calculations feasible.
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Definition 5.1 ([34]). We define the asymptotic smoothing factors for semi- and full-
coarsening as

%(Ss) ∶= max{%(Sτ`,ξ`(θx, θt)) ∶ (θx, θt) ∈ Θhigh,s
`x,`t

},

%(Sf) ∶= max{%(Sτ`,ξ`(θx, θt)) ∶ (θx, θt) ∈ Θhigh,f
`x,`t

},

with Sτ`,ξ`(θx, θt) the Fourier symbol of the smoother and the set of frequencies defined
in (20) and (21).

Lemma 5.2. The spectral radius of the Fourier symbol of the smoother Sτ`,ξ`(θx, θt) is
given by

ρ(Sτ`,ξ`(θx, θt)) = max{∣1 − ωt∣, S(ωt, θx, θt)}

with

S(ωt, θx, θt) ∶= ∣1 − ωt + e
−iθtωtR(−µβ(θx))∣, (30)

R the stability function of the DG-SEM time stepping scheme, β(θx) ∶= 1− e−iθx and CFL
number µ ∶= a∆τ`

∆x`
.

Proof. The eigenvalues of Sτ`,ξ`(θx, θt) are given by

σ(Sτ`,ξ`(θx, θt)) = 1 − ωt + e
−iθtωtσ ((Kτ` +

a

∆x
(−e−iθx + 1)Mτ`)

−1

Cτ`) .

With Lemma 3.5 we can compute the spectrum as

σ(Sτ`,ξ`(θx, θt)) = {1 − ωt,1 − ωt + e
−iθtωtR(−µβ(θx))}.

Therefore it follows that

ρ(Sτ`,ξ`(θx, θt)) = max{∣1 − ωt∣, ∣1 − ωt + e
−iθkωtR(−µβ(θx))∣}.

5.1 Optimal Damping Parameter

The goal is to find a smoother with optimal smoothing behavior, i.e. to find a damping
parameter ωt for the block Jacobi smoother such that the high frequencies frequencies
are smoothed as efficiently as possible. We analyze the Fourier symbol Sτ`,ξ` to find
the optimal damping parameter ωt ∈ (0,1] in (15). In order to do so, the frequencies
which are damped less efficiently need to be determined. These are also called worst case
frequencies:

Definition 5.3. The worst case frequencies for the Fourier symbol Sτ`,ξ` of the smoother
are defined as those high frequencies that are damped least efficiently.
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This can be done by calculating the maximum of ∣1 − ωt∣ and

(θ∗x(ωt, µ), θ
∗
t (ωt, µ)) ∶= arg sup

(θx,θt)∈Θhigh
S(ωt, θx, θt), (31)

with the function S defined in Lemma 5.2, see equation (30).
Straightforward calculations give

S(ωt, θx, θt)
2 = ∣1 − ωt + e

−iθtωtR(−µβ(θx))∣
2

= (1 − ωt)
2 + 2ωt(1 − ωt)(cos(θt)Re(R(−µβ(θx))) + sin(θt)Im(R(−µβ(θx))))

+ ω2
t ∣R(−µβ(θx))∣

2.

When considering implicit time integration, large CFL numbers µ≫ 0 are of interest.
Then

cos(θt)Re(R(−µβ(θx))) + sin(θt)Im(R(−µβ(θx)))ÐÐ→
µ→∞

0,

since cos(θt), sin(θt) ∈ [−1,1], and the method is L-stable, see Corollary 3.3, thus R(−z)→
0 for z →∞ and Re(−µβ(θx)) ≤ 0 for θx ∈ [−π,π].

To find the worst case frequencies in space for large CFL numbers µ we thus need to
maximize ∣R(−µβ(θx))∣2. From L-stability it follows that ∣R(−µβ(θx))∣2 ≤ 1 and moreover
we have by definition of the Padé approximant that R(0) = 1. Thus we have found the
worst case frequency in space:

θ∗x = arg sup
θx∈(−π,π]

S(ωt, θx, θt) = 0.

Evaluating (30) at θx = θ∗x = 0 gives

S(ωt,0, θt) = ∣1 − ωt + e
−iθtωtR(−µβ(θx))∣

=
√

(1 − ωt)2 + 2ωt(1 − ωt) cos(θt) + ω2
t .

With this, it follows that the worst case frequencies in time are given by

θ∗t = arg sup
θt∈[π/2,π]

S(ωt, θ
∗
x, θt) =

π

2
,

θ∗t = arg sup
θt∈[−π,−π/2]

S(ωt, θ
∗
x, θt) = −

π

2
.

Thus, we have found worst case frequencies (θ∗x, θ
∗
t ) ∈ Θhigh,s

`x,`t
for the semi-coarsening

strategy as well as (θ∗x, θ
∗
t ) ∈ Θhigh,f

`x,`t
for the full-coarsening strategy. The optimal damping

parameter can then be calculated by

ω∗t = arg inf
ωt∈(0,1]

S(ωt, θ
∗
x, θ

∗
t ) = 0.5.

5.2 Asymptotic Smoothing Factor

With the optimal damping parameter ω∗t = 0.5 and the worst case frequencies (θ∗x, θ
∗
t ) at

hand we can calculate the asymptotic smoothing factor from Definition 5.1.
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In the case of full space-time coarsening we get for µ large enough

%(S) = ρ(Sτ`,ξ`(θ∗x, θ∗t )) = max{∣0.5∣, S(0.5,0,
π

2
)} = max{0.5,

√
0.5} =

1
√

2
,

and for semi-coarsening in time

%(S) = ρ(Sτ`,ξ`(θ∗x, θ∗t )) = max{∣0.5∣, S(0.5,0,−
π

2
)} = max{0.5,

√
0.5} =

1
√

2
.

6 Two-Grid Analysis

In this section we analyze the two-grid iteration for full- and semi-coarsening by studying
the corresponding iteration matrices Mf

τ`,ξ`
and Ms

τ`,ξ`
, see equations (16) and (17). With

Theorems 4.9 and 4.10 we can analyze the asymptotic convergence behavior of the two-
grid cycle by computing the maximal spectral radius of the Fourier symbols Ms

µ(θx, θt)

and Mf
µ(θx, θt) for (θx, θt) ∈ Θlow,f

`x,`t
, see (29) and (28).

Definition 6.1. We define the asymptotic two-grid convergence factors as

%(Ms
) ∶= max{%(Ms

(θx, θt)) ∶ (θx, θt) ∈ Θlow,f
`x,`t

∖Λs},

%(Mf
) ∶= max{%(Mf

(θx, θt)) ∶ (θx, θt) ∈ Θlow,f
`x,`t

∖Λf},

with Ms
(θx, θt) and Mf

(θx, θt) the symbols of the two-grid iteration matrices and Λs

defined in (25) and Λf defined in (27).

To derive %(Ms
) and %(Mf

) for a given CFL number µ ∈ R+ and a given polynomial
degree pt ∈ N, it is necessary to compute the eigenvalues of

Ms
(θx, θt) ∈ C4Nt×4Nt and Mf

(θx, θt) ∈ C4Nt×4Nt ,

with Nt = pt + 1 for all low frequencies (θx, θt) ∈ Θlow,s
`x,`t

respectively (θx, θt) ∈ Θlow,f
`x,`t

.
It is difficult to find analytical expressions for the eigenvalues of the two-grid operators

Mf
(θx, θt) and Ms

(θx, θt) since they are the product of several Fourier symbols which
itself are complex functions. We therefore compute the eigenvalues numerically for all
frequencies (θx, θt) ∈ Θlow,f

`x,`t
and (θx, θt) ∈ Θlow,s

`x,`t
. We consider a space-time discretization

with Nx volumes in space and N space-time slabs on the domain [0,1]× [0, T ], where we
adapt T via the CFL number µ = ∆t

∆x ∈ [1,800].
The results for the LFA can be seen in Figure 3 for Nx = 25, N = 23 to the left and

for Nx = 210, N = 23 to the right, µ ∈ [1,10,50,100,200,400,600,800] for both coarsening
strategies, referred to as semi and full, and pt = 0 and pt = 1, respectively.

They show that for high CFL numbers the multigrid solver has excellent asymptotic
convergence rates about 0.5 for pt = 0 which can be improved to 0.375 by increasing the
polynomial degree in time to pt = 1. Moreover, these convergence rates are independent
of the coarsening strategy.
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Figure 3: Results of the LFA for the test problem: left for Nx = 25, N = 23, right for
Nx = 210, N = 23.

7 Numerical Examples

We now solve the system (5) using this two-grid method. Periodic boundary conditions in
space and time, needed to perform the LFA, cannot be used for the numerical tests since
this results in singular iteration matrices. We therefore adjust test case (1) and consider
the following problems in one respectively two spatial dimensions:

ut + aux = 0, a = 1, (x, t) ∈ (0,1] × (0, T ], (32)

with solution u(x, t) = sin(π(x − t)), and

ut + a ⋅ ux = 0, a = (1,1], (x, t) ∈ (0,1]2 × [0, T ], (33)

with solution u(x, t) = sin(π(x1−t)) sin(π(x2−t)). Moreover, we consider a full space-time
DG-SEM, i.e. a DG-SEM in space and time. As before, the time interval is determined
via T = Nµ∆x.

All numerical tests in this section are performed using the Python interface of DUNE
[6] on an Intel Xeon E5-2650 v3 processor (Haswell) on the LUNARC Aurora cluster at
Lund University.

We calculate the asymptotic convergence rate from 60 multigrid iterations by

max
i=1,...,59

∥ri+1∥2

∥ri∥2

, ri = Lτ,ξu
i − b.

The results for one spatial dimension can be seen in Figure 4 to the left, with N = 23 and
Nx = 210. The convergence rates converge for both coarsening strategies to approximately
0.25 for pt = px = 0 and to approximately 0.3 for pt = px = 1. The CFL number to
achieve these convergence rates increases when increasing the order of the polynomial
approximation. Moreover, we get slightly higher convergence rates for small CFL numbers
when using the semi-coarsening strategy.

Increasing the number of spatial dimensions we measure the numerical convergence
rates for N = 23 and Nx = Ny = 25. The results can be seen in Figure 4 to the right.
Here, the convergence rates for both coarsening strategies and different DG orders are
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very similar, converging to approximately 0.25. However, we notice some oscillations for
the semi-coarsening ansatz with pt = px = 1. This might vanish when increasing the CFL
number. While the numerical convergence rates are similar to the one-dimensional case
for pt = px = 0, they improve slightly for px = pt = 1 when increasing the number of spatial
dimensions.

Figure 4: Numerical convergence results: left for one spatial dimension, right for two
spatial dimensions.

We now fix CFL = 600 and vary the number of spatial elements to study the grid
independence of the multigrid solver. The results can be seen in Figure 5. For pt = px = 1
we can conclude a grid independence, while the convergence rate increases slightly when
increasing the order of the DG approximation.

Figure 5: Numerical convergence results two spatial dimension, µ = 600, N = 25

8 Conclusions

In this article we have applied the LFA to a space-time multigrid solver for the advection
equation discretized with a space-time DG method. With the help of the analysis we cal-
culated asymptotic convergence factors for the smoother and the two-grid method. The
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resulting Fourier symbols are complex since the spatial FV discretization with upwind
flux results in a non-symmetric operator. For large CFL numbers we could analytically
find promising asymptotic smoothing factors converging to 1√

2
with increasing CFL num-

ber for both coarsening strategies independent of the temporal DG-SEM order. As for
the smoother, it was difficult to find analytical expressions for the two-grid asymptotic
convergence rates since they are based on the product of several complex Fourier symbols.
We therefore calculated these numerically. The LFA gave excellent asymptotic conver-
gence rates converging to 0.5 for pt = 0 and decreasing to 0.375 for pt = 1 for higher CFL
numbers after some oscillations for small CFL numbers. The influence of the coarsening
strategies on the convergence rates is minimal, with semi-coarsening in time resulting in
slightly better asymptotic convergence rates for smaller CFL numbers.

For the numerical tests we considered non-periodic advection problems in one and two
spatial dimensions with a space-time DG-SEM approximations and executed the numer-
ical experiments in DUNE. We obtained asymptotic convergence rates of approximately
0.25 for pt = px = 0 and 0.3 for pt = px = 1 and high CFL numbers, independent of the
coarsening strategy in the one-dimensional case. For two dimensions, asymptotic conver-
gence rates of approximately 0.25 were measured for high CFL numbers, independent of
the DG-SEM order and the coarsening strategy

The tests showed that the theoretical asymptotic convergence rates from the LFA were
slightly larger than the convergence rates obtained in the numerical experiments. This
can be explained by the different boundary conditions and more dimensions considered
for in numerical experiments. Moreover, the coarsening strategy does not influence the
results very much and simple block Jacobi smoothers can be used to get smoothing factors
of 1√

2
.

However, solving the resulting space-time system at once results in large systems and
it is thus advisable to either parallelize the solver or use a block multigrid solver for each
space-time block.
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[11] L. Friedrich, G. Schnücke, A. R. Winters, D. C. R. Fernández, G. J. Gassner, and
M. H. Carpenter. Entropy Stable Space–Time Discontinuous Galerkin Schemes with
Summation-by-Parts Property for Hyperbolic Conservation Laws. J. Sci. Comput.,
80(1):175–222, 2019.

[12] M. J. Gander. 50 Years of Time Parallel Time Integration. In T. Carraro, M. Geiger,
S. Körkel, and R. Rannacher, editors, Multiple Shooting and Time Domain Decom-
position Methods, pages 69–113, Cham, 2015. Springer International Publishing.

[13] M. J. Gander and M. Neumüller. Analysis of a new space-time parallel multigrid
algorithm for parabolic problems. SIAM J. Sci. Comput., 38(4):A2173–A2208, 2016.

[14] J. Gopalakrishnan and G. Kanschat. A multilevel discontinuous Galerkin method.
Numer. Math., 95(3):527–550, 2003.

[15] B. Gustafsson. High order difference methods for time dependent PDE, volume 38.
Springer Science & Business Media, 2007.

[16] W. Hackbusch. Parabolic multigrid methods. In R. Glowinski and J.-L. Lions,
editors, Computing Methods in Applied Sciences and Engineering IV, pages 189–197.
Elsevier Science Publisher B.V., Noth-Holland, 1984.

[17] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-
preserving algorithms for ordinary differential equations, volume 31. Springer Science
& Business Media, 2006.

25

201



[18] E. Hairer and G. Wanner. Solving ordinary differential equations II, volume 14 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2010.

[19] P. W. Hemker, W. Hoffmann, and M. Van Raalte. Two-level Fourier analysis of a
multigrid approach for discontinuous Galerkin discretization. SIAM J. Sci. Comput.,
25(3):1018–1041, 2003.

[20] P. W. Hemker, W. Hoffmann, and M. Van Raalte. Fourier two-level analysis for
discontinuous Galerkin discretization with linear elements. Numer. Linear Algebra
Appl., 11(5-6):473–491, 2004.

[21] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods for time-dependent
problems, volume 21. Cambridge University Press, 2007.

[22] L. O. Jay. Lobatto methods. In B. Engquist, editor, Encyclopedia of Applied and
Computational Mathematics, pages 817–826. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2015.

[23] C. M. Klaij, M. H. van Raalte, H. van der Ven, and J. J. van der Vegt. h-Multigrid for
space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes
equations. J. Comput. Phys., 227(2):1024–1045, 2007.

[24] M. Neumüller. Space-Time Methods, volume 20 of Monograph Series TU Graz: Com-
putation in Engineering and Science. TU Graz, 2013.

[25] J. J. Sudirham, J. J. W. van der Vegt, and R. M. J. van Damme. Space-time
discontinuous Galerkin method for advection-diffusion problems on time-dependent
domains. Appl. Numer. Math., 56(12):1491–1518, 2006.

[26] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Elsevier Ldt., 2001.

[27] J. Van der Vegt. Space-time discontinuous Galerkin finite element methods, pages 1–
37. VKI Lecture Series. Von Karman Institute for Fluid Dynamics, 2006. Conference
date: 14-11-2005 Through 18-11-2005.

[28] J. van der Vegt and S. Rhebergen. hp-Multigrid as Smoother algorithm for higher
order discontinuous Galerkin discretizations of advection dominated flows. Part II:
Optimization of the Runge–Kutta smoother. J. Comput. Phys., 231:7564–7583, 2012.

[29] J. J. van der Vegt and S. Rhebergen. hp-multigrid as smoother algorithm for higher
order discontinuous Galerkin discretizations of advection dominated flows: Part I.
Multilevel analysis. J. Comput. Phys., 231(22):7537–7563, 2012.

[30] J. J. van der Vegt and H. van der Ven. Space-time discontinuous Galerkin finite
element method with dynamic grid motion for inviscid compressible flows. I. General
formulation. J. Comput. Phys., 182(2):546–585, 2002.

[31] J. J. van der Vegt and Y. Xu. Space–time discontinuous Galerkin method for non-
linear water waves. J. Comput. Phys., 224(1):17–39, 2007.

26

202



[32] H. Van der Ven and J. J. van der Vegt. Space–time discontinuous Galerkin finite ele-
ment method with dynamic grid motion for inviscid compressible flows: II. Efficient
flux quadrature. Comput. Methods Appl. Mech. Engrg., 191(41-42):4747–4780, 2002.

[33] M. Van Raalte and P. W. Hemker. Two-level multigrid analysis for the convection–
diffusion equation discretized by a discontinuous Galerkin method. Numer. Linear
Algebra Appl., 12(5-6):563–584, 2005.

[34] P. Wesseling. An Introduction to Multigrid Methods. An Introduction to Multigrid
Methods. R.T. Edwards, 2004.

27

203



LEA
 M

IK
O

 V
ER

SB
A

C
H 

 
Effi

cient Solvers for Space-T
im

e D
iscontinuous G

alerkin Spectral Elem
ent M

ethods 
2022

Doctoral Theses in Mathematical Sciences 2022:1
ISBN 978-91-8039-154-2

ISSN 1404-0034
LUNFNA-1010-2022

Efficient Solvers for Space-Time 
Discontinuous Galerkin Spectral 
Element Methods
LEA MIKO VERSBACH

Lund University
Faculty of Science
Centre for Mathematical Sciences
Numerical Analysis

 –  CE N T R U M  S C I E N T I A R U M  M AT H E M AT I C A R U M  –

N
O

RD
IC

 S
W

A
N

 E
C

O
LA

BE
L 

30
41

 0
90

3
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

22


	Abstract
	Popular Science Summary
	Scientific Publications
	Abbreviations
	Introduction
	State of the Art
	Goals of the Thesis
	Organization of the Thesis

	Discontinuous Galerkin Methods
	Space Discretization
	Finite Volume Discretization
	Numerical Fluxes
	Boundary Conditions
	Discontinuous Galerkin Method
	Mapping to Reference Elements
	Transformation of Equations Under Mappings
	Discontinuous Galerkin Spectral Element Method

	Properties
	Stability
	Entropy Condition
	Order of Convergence

	Time Integration

	Space-Time Discontinuous Galerkin Methods
	Space-Time Discretization
	Properties
	DG-SEM and Lobatto IIIC
	Conversion Between DG Operators and Butcher Tableau
	Stability


	Solving Equation Systems
	Newton's Method
	Inexact Newton Methods

	Krylov Subspace Methods
	GMRES
	Preconditioning

	Jacobian-free Newton-GMRES

	Multigrid Methods
	Stationary Iterative Methods
	Geometric Multigrid
	Elements of Multigrid
	Agglomeration Multigrid
	Smoothers

	Properties
	Local Fourier Analysis

	Linear Multigrid Preconditioners
	Finite Volume Based Multigrid Preconditioners


	Numerical Results
	Finite Volume Based Multigrid Preconditioners
	One-Dimensional Advection and Euler Equations
	Two-Dimensional Advection-Diffusion Equations
	Two-Dimensional Euler Equations

	Space-Time DG-SEM
	Comparison of Space-Time DG-SEM Implementations
	Space-Time Local Fourier Analysis


	Conclusions and Outlook
	Summary and Conclusions
	Future work

	Bibliography
	Scientific Publications
	Paper i: Finite volume based multigrid preconditioners for discontinuous Galerkin methods
	Paper ii: Subcell finite volume multigrid preconditioning for high-order discontinuous Galerkin methods
	Paper iii: An Finite Volume Based Multigrid Preconditioner for DG-SEM for Convection-Diffusion
	Paper iv: Theoretical and Practical Aspects of Space-Time DG-SEM Implementations
	Paper v: Local Fourier Analysis of a Space-Time Multigrid Method for DG-SEM for the Linear Advection Equation




