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Abstract

Discontinuous Galerkin (DG) methods offer a great potential for simulations of turbu-
lent and wall bounded flows with complex geometries since these high-order schemes
offer a great potential in handling eddies. Recently, space-time DG methods have be-
come more popular. These discretizations result in implicit schemes of high order in
both spatial and temporal directions. In particular, we consider a specific DG variant,
the DG Spectral ElementMethod (DG-SEM), which is suitable to construct entropy sta-
ble solvers for conservation laws. Since the size of the corresponding nonlinear systems
is dependent on the order of the method in all dimensions, the problem arises to effi-
ciently solve these huge nonlinear systems with regards to CPU time as well as memory
consumption.

Currently, there is a lack of good solvers for three-dimensional DG applications, which
is one of the major obstacles why these high order methods are not used in e.g. industry.
We suggest to use Jacobian-free Newton-Krylov (JFNK) solvers, which are advantageous
in memory minimization. In order to improve the convergence speed of these solvers, an
efficient preconditioner needs to be constructed for the Krylov sub-solver. However, if
the preconditioner requires the storage of the DG system Jacobian, the favorable memory
consumption of the JFNK approach is obsolete.

We therefore present a multigrid based preconditioner for the Krylov sub-method which
retains the low memory consumption, i.e. a Jacobian-free preconditioner. To achieve
this, we make use of an auxiliary first order finite volume replacement operator. With
this idea, the original DG mesh is refined but can still be implemented algebraically.
As smoother, we consider the pseudo time iteration W3 with a symmetric Gauss-Seidel
type approximation of the Jacobian. Numerical results are presented demonstrating the
potential of the new approach.

In order to analyze multigrid preconditioners, a common tool is the Local Fourier Anal-
ysis (LFA). For a space-time model problem we present this analysis and its benefits for
calculating smoothing and two-grid convergence factors, which give more insight into
the efficiency of the multigrid method.
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Chapter 1

Introduction

The goal of our research are Large Eddy Simulation (LES) of turbulent and wall bounded
flows with complex geometries, which are needed for example for the design of next gen-
eration jet engines, air frames and wind turbines. These complex multi-scale problems
may have on the order of 100 million unknowns, thus a fast low memory parallel solver
is needed. Furthermore, the problems are of such a nature that stable time integration
requires efficient solvers for linear and nonlinear equation systems. In this thesis we
focus on different aspects in the construction of efficient Jacobian-free multigrid precon-
ditioners for high order Discontinuous Galerkin (DG) discretizations with implicit time
integration.

DG methods are high order methods offering a great potential for LES since it has been
shown that low-order schemes can contribute dramatically to the dissipation of eddies
[41]. The idea of DG methods is to approximate the solution element-wise by a polyno-
mial and, in contrast to the finite element method, allow discontinuities across element
interfaces [32], [39]. The local computations on the elements are very dense and commu-
nication as well as coupling of the degrees of freedom (DOF) is done both across faces
and within the elements. It has been shown that DG methods are very well suited for
domain-decomposition-based parallelization due to its structure [30], [60]. In this thesis
we consider a specific DG variant called DG Spectral Element Method (DG-SEM), see
e.g. [40]. Here, a Lagrange type nodal basis with Gauss-Lobatto (GL) quadrature nodes
is collocated with the discrete integration of the weak form. This gives DG operators
that satisfy the summation-by-parts (SBP) property [23]. SBP is the discrete analogue to
integration-by-parts and is key to construct discretely entropy stable and kinetic energy
preserving methods [20], [63]. This ensures that the numerical scheme obeys the second
law of thermodynamics since it provides a bound on the mathematical entropy at any
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time according to the given initial and boundary conditions.

DG-SEM discretizations in the spatial directions result in big systems of stiff ODEs. In
order to avoid time integration with very restrictive CFL conditions, we only consider
implicit time integrators. This can be done either with a methods of lines (MOL) ansatz
using standard implicit time stepping methods or a full discretization ansatz resulting in
a space-time DG method.

Efficiency can only be achieved when the arising large non-linear systems are solved
cheaply. Besides CPU time, the memory consumption should be minimized. Solvers
for linear and nonlinear equation systems are severely lacking for 3D DG applications
and are one of four major obstacles that need to be solved before industry adopts high
order methods [61]. Possible solvers are Full-Approximation (FAS) multigrid schemes
(MG) and preconditioned Jacobian-free Newton-Krylov methods (JFNK) [38]. The lat-
ter one are numerical methods to solve non-linear problems using Krylov subspace linear
solvers in order to solve a linear sub-problem which includes the Jacobian of the system.
For these solvers, multigrid can be used as preconditioner for the linear sub-problem [5].
MG methods are iterative methods designed for solving differential equations using a
hierarchy of grids for the discretization, [58]. Moreover, these methods can be used as
preconditioners, i.e. operators to transform a given problem into a form that is more suit-
able for the Krylov subspace solver and therefore improve convergence speed. Multigrid
preconditioned JFNK methods have been analyzed for the RANS equations in [7].

The JFNK technology is interesting in the sense of memory minimization. Although DG
systems have a block structure which are coupled via the faces, the blocks themselves can
be very large. In particular, the number of unknowns per element increases dramatically
with increasing polynomial degree and dimension, leading to large dense Jacobian blocks,
see [4], [6]. For a d-dimensional problem, the block size of a finite volume method is
2+d, whereas for a DG-SEMmethod with p-th degree polynomials, it is (d+2)(p+1)d.
For degree 2 in 3D, this already increases to 135. If the preconditioner requires the storage
of the DG system Jacobian the favorable memory consumption of the JFNK approach
is obsolete and the method is not fully Jacobian-free any longer.

In this thesis we present a novel idea for the construction of a well-performing precondi-
tioner for the JFNK approach, while retaining the low memory use, i.e. a Jacobian free
multigrid based preconditioner [59], [8]. In Figure 1.1 we show a visualization of our idea
to construct MG based implicit space(-time) preconditioners for DG solvers. We start by
discretizing the PDE with an implicit DG method (either MOL or space-time DG) and
solve the resulting algebraic system with a JFNK method. In order to improve conver-
gence speed we construct a multigrid preconditioner based on a lower order replacement
operator for the GMRES sub-solver.

2



DG-SEM

PDE

FV

Linear algebraic
system

MG

discretization (implicit method)

Jacobian-free Newton-Krylov iterative solver

approximate discretization

preconditioner

Figure 1.1: Work flow to construct a MG based preconditioner using a FV replacement operator to solve implicit DG-SEM
discretizations.

Thus, the core idea is to construct a simplified replacement operator in order to avoid
calculating the Jacobian of the DG operator. One could for instance choose a different
polynomial order in the element to generate a replacement operator as presented in [6],
[17] and [46]. However, we want to keep the number of degrees of freedom in the re-
placement operator the same. This can be achieved by introducing a subcell grid in each
element. On the subcell-element grid, the simplest replacement operator is a first order
finite volume (FV) discretization. Amotivation for this choice is the equivalence between
a DG-SEM discretization and a high order FV discretization proved in [19]. In the result-
ing approximate Jacobian, we only have (d+2)(p+1)(2d+1) entries [4]. Moreover, this
replacement operator allows to use the available knowledge about fast multigrid (MG)
methods for FV discretizations on block structured meshes. As a smoother for our FV
discretization we use a state of the art low memoryW3 smoother from [7] which has been
show to work very efficient for this MG setup.

In [1] a related approach was presented for spectral difference methods with a FV re-
placement operator on a potentially fine grid, which is overlaid and not embedded. This
makes it necessary to interpolate the solution between different grids, which we avoid
with the embedded FV grid we suggest.

The efficiency of the preconditioner is directly influenced by the efficiency of the multi-
grid method. In order to gain more insight intoMGmethods, we perform a local Fourier
Analysis (LFA), an important tool to analyze the quality of MG methods first presented
in [10]. Usually, a two-grid LFA is applied to study the design and the structure of a MG
method [58]. Moreover, the quality of the smoother can be analyzed using a so-called
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smoothing factor. We perform an LFA for a space-time DG multigrid model problem.
Similar analysis for different problems have been presented in [21], [27], [31], [37], [49].

1 Organization of the Thesis

In Chapter 2 we present the DG-SEM discretization with implicit time discretization.
We discuss both an method of lines and a space-time ansatz. We give an overview over
Newton-Krylov solvers for the resulting nonlinear equation systems in Chapter 3.

The core part of this thesis is to present an idea to construct efficient preconditioners for
these solvers and to analyze them. In Chapter 4 we present MG methods and discuss
how they can be used as preconditioners. We then show how to study the efficiency of
these methods using Local Fourier Analysis for a model problem in Chapter 5.

Conclusions and future work are found in Chapter 6. Numerical results from previous
publications are presented in the end of the thesis.
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Chapter 2

Discontinuous Galerkin Spectral
Element Methods

The goal of this work is to numerically approximate solutions of a d-dimensional conser-
vation law

ut +∇ · f(u) = 0, x ∈ Ω ⊂ Rd, t ∈ [0,T], (2.1)

with initial and boundary conditions. In this chapter we present the discretization tech-
nique we use in two variants.

Discontinuous Galerkin (DG)methods were first introduced 1973 in [48]. These schemes
are a combination of finite element (FE) and finite volume (FV) schemes since they are de-
rived from the weak form of PDEs with basis functions on elements, which are connected
using numerical surface fluxes. DGmethods have less limitations than FE schemes in the
following aspects: Standard finite element methods assume continuity on the interfaces
between two neighboring elements. In consequence, global continuity on the considered
domain is assumed. This causes problems when solving hyperbolic conservation laws, as
their solutions are typically discontinuous. The DGmethod allows discontinuities at the
interfaces and is therefore more suitable for these problems. Another advantage of the
DGmethod is that the order of accuracy can be improved by simply increasing the num-
ber of nodes within each element. Good introductions to the DG methods we consider
in this thesis can be found in [28] and [39].

Numerical schemes for conservation laws do not necessarily describe the correct physical
behavior of a fluid. One reason for this problem is that most numerical scheme do not
obey the second law of thermodynamics and are therefore not conservative. Over the
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last decades, numerical schemes which are both conservative and obey the second law of
thermodynamics have been developed. These schemes are called entropy stable. Tadmor
was the first one to develop conservative and entropy stable schemes for low order finite
volume methods [55]. Based on this, entropy-conservative and entropy-stable fluxes have
been constructed [45], [56], [57].

High-order, conservative and entropy stable boundary schemes for linear conservation
laws have been developed in [13] based on summation-by-parts (SBP) operators. These
operators were first designed 1974 in [42] and mimic integration by parts. In the continu-
ous entropy analysis, e.g when using Lax-Friedrich in stability proofs, integration by parts
is applied several times. Thus, SPB operators allow to mimic the continuous analysis in
the discrete case.

For standard DG methods applied to systems of conservation laws, L2 stability can not
be guaranteed at the boundaries. It has been shown in [12] and [23] that discontinu-
ous Galerkin spectral element methods (DG-SEM) with Legendre-Gauss-Lobatto (LGL)
nodes satisfy the discrete SBP property. The boundary and interface conditions can be
weakly imposed by a so called simultaneous approximation term (SAT), see [53]. The
conservative and entropy stable schemes for low order methods developed by Tadmor
were then extended to high order schemes with SBP operators in [23] and [18].

All schemes mentioned so far are based on semi-discrete discretizations. We will in this
thesis not go into all details about constructing entropy stable DG methods and refer to
[20] for the derivation of fully discrete entropy stable schemes.

We start by discussing a method of lines approach, where we first discretize the prob-
lem in space to transform it into a system of ordinary differential equations and then
discretize in time. We present the choices that lead to a DG-SEM method and give a
short overview over numerical fluxes. Next, we present a space-time ansatz where we
discretize simultaneously in space and time using DG. We finish this chapter by showing
the equivalence of DG approximations to Gauss Lobatto schemes.

1 Method of Lines: DG with Implicit Time-Stepping Schemes

In this section we present a semi-discrete method, where only the spatial direction is dis-
cretized usingDG. For simplicity we derive theDGdiscretization for the one-dimensional
case, i.e. d = 1 in (2.1). It can be easily extended to the multi-dimensional case using a
Kronecker product ansatz. This is discussed in the next section.

We start by dividing the computational domain Ω into N non-overlapping elements

6



ek = [xkL, x
k
R], then Ω =

∪N
k=1 e

k. To derive the weak form of the problem, we multiply
(2.1) by a test function ψ(x) and integrate over the spatial domain∫

Ω
(ut + f(u)x)ψdx = 0. (2.2)

We require that the test functions satisfy on each element∫
ek
utψdx+

∫
ek
f(u)xψdx = 0, k = 1, . . . ,N. (2.3)

It is of advantage to map each element to the reference element Ω̂ = [−1, 1] in order to
derive the DG-SEM method later. This is done using the linear mapping

ξ(x) = 2
x− xkL
Δxk

− 1, Δxk = xkR − xkL.

Then (2.3) becomes

Δxk

2

∫ 1

−1
utψdξ +

∫ 1

−1
f(u)ξψdξ = 0, k = 1, . . . ,N. (2.4)

We apply integration by parts to the second term in (2.4) to finally get the weak form of
the problem

Δxk

2

∫ 1

−1
utψdξ + f(u)ψ|1−1 −

∫ 1

−1
f(u)ψξdξ = 0, k = 1, . . . ,N. (2.5)

The solution u and the physical flux function f are approximated on each element by a
nodal polynomial of degree px written in the reference space:

u(ξ, t)|ek ≈ uk(ξ, t) =
Nx∑
j=1

ukj (t)φj(ξ),

f(ξ, t)|ek ≈ f k(ξ, t) =
Nx∑
j=1

f kj (t)φj(ξ),

with time dependent coefficients ukj , f kj and a set of basis functions {φj}Nx
j=1 for Nx =

px + 1. The choice of the basis functions gives rise to different DG methods. The global
solution u(ξ, t) is then approximated by a piecewise polynomial of degree px:

u(ξ, t) ≈ unum(ξ, t) =
N⊕

k=1

uk(ξ, t).

7



xk−2 xk−1 xk xk+1ek−1 ek ek+1

uk−1 uk uk+1

u−
u+

Figure 2.1: DG approximations are assumed to be continuous on elements, but not on interfaces.

Note that we only assume continuity of the polynomial approximation on the elements,
but not on the interfaces, i.e. we allow for discontinuous numerical approximations.
Thus the numerical solution will be of some form as visualized in Figure 2.1. In con-
sequence, the surface term f(u)ψ|1−1 in (2.5) is not exchanging information with the
neighboring elements, i.e. the elements are uncoupled. As in the finite volume method,
this can be resolved by introducing a numerical surface flux f∗(u−,u+), which is a func-
tion of the interface values of the neighboring elements, see Figure 2.1. Different choices
of numerical fluxes will be presented in the end of this section.

Moreover, we assume that the test function can also be written in the same basis

ψ(ξ) =

Nx∑
j=1

ψjφj(ξ).

Inserting the numerical solution, the numerical flux function and the numerical surface
flux in (2.5) and choosing ψj ≡ 1 we get the DG formulation in the weak form on the
reference element Ω̂ = [−1, 1]

Δxk

2

Nx∑
j=1

ukj (t)
∫ 1

−1
φjφidξ + f∗φi|+1

−1 −
Nx∑
j=1

f kj (t)
∫ 1

−1
φjφiξdξ = 0 (2.6)

for i = 1, . . . ,Nx. This can be rewritten in amore compact form by using inner products.

Definition 2.1 ([28]). We define the local inner product and the corresponding L2 norm
on the reference element Ω̂ by

(u, v)L2(Ω̂) :=

∫ 1

−1
uvdx, ∥u∥L2(Ω̂) := (u, u)L2(Ω̂).

8



For each element we define a mass matrix M̃ ∈ RNx×Nx , a derivative matrix D̃ ∈ RNx×Nx

and a surface matrix S̃ ∈ RNx×Nx as

M̃ij := (φj, φi)L2(Ω̂),

D̃ij := (φj, φiξ)L2(Ω̂),

S̃ij := −δ1jφi(−1) + δNxjφi(1),

(2.7)

and

uk = (uk1, . . . , u
k
Nx)

T,

f k = (f k1 , . . . , f
k
Nx)

T,

f∗ = (f ∗(uk(t,−1)), 0, . . . , 0, f ∗(uk(t, 1)))T.

(2.8)

These matrices only depend on the basis and the geometry and not on the solution and
can therefore be precomputed after the grid generation. Moreover, since all elements are
mapped to the reference element, the matrices are the same on each element. Thus the
weak form (2.6) can be written on each element ek as

Δxk

2
M̃uk

t = D̃TM̃f k − S̃f∗, k = 1, . . . ,N. (2.9)

This results in a system of ODEs which can be solved using any time-stepping method,
e.g. Runge-Kutta methods.

1.1 DG-SEM Discretization

TheDG spectral element method is based on collocating the interpolation nodes with the
corresponding quadrature nodes. The integrals are approximated with Legendre-Gauss-
Lobatto (LGL) quadrature on the reference interval using a Lagrange basis [29]. We can
define the nodes and weights using Legendre polynomials [39].

Definition 2.2 (Legendre-Gauss-Lobatto nodes and weights). Consider the Legendre
polynomials defined recursively as

Ln+1(x) =
2n+ 1
n− 1

xLn(x)−
n

n+ 1
Ln−1(x),

with L0(x) = 1, L1(x) = x. Then the LGL nodes include the endpoints of the reference
interval, ±1, and the interior nodes are the roots of the polynomial

q(x) = LN+1(x)− LN−1(x).
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The weights are given by

ωj =
2

N(N+ 1)(LN(ξj))2
.

As basis functions Lagrange polynomials of degree px based on the LGL nodes on the
reference interval Ω̂ are used.

Definition 2.3 (Lagrange polynomial). For a given set of points {x1, . . . , xN} the j-the
Lagrange polynomial of degree N− 1 is defined by

ℓj(x) :=
N∏

i=1,i ̸=j

x− xi
xj − xi

, j = 1, . . . ,N,

satisfying the property

ℓj(xi) = δji :=

{
1, i = j,
0, i ̸= j.

The collocation of the interpolation nodes with the corresponding quadrature nodes re-
sults in a diagonal mass matrix M̃ in (2.7), since

Mji =

∫ 1

−1
ℓjℓidξ ≈

Nx∑
m=1

ωmℓj(ξm)ℓi(ξm) = ωmδij. (2.10)

LGL quadrature is only exact for polynomials of degree 2Nx + 1. Exact integration of
the Lagrange basis polynomials increases the cost of the integral approximation, thus we
accept an integration error in (2.10). This is called mass lumping [22]. Applying the same
quadrature gives the derivative matrix D̃ in (2.7)

Dij =

∫ 1

−1
ℓjℓiξdξ ≈

Nx∑
m=1

ωmℓj(ξm)ℓiξ(ξm) = ωjℓiξ(ξj). (2.11)

This integral is calculated exactly even with the LGL quadrature because of its order.
Since the mass matrix is nonsingular, we get

uk
t = − 2

Δxk
M−1(Sf∗ −DTMf k).

We can collect the left hand side in a long vector u = [u1, . . . ,uN]T and the right hand
side a nonlinear function G. The we get an ODE system

u̇ = G(u). (2.12)

10



Applying any time stepping method to (2.12), for example implicit Euler, yields

un+1 − un − ΔtG(un+1) =: F(un+1) = 0. (2.13)

Therefore, a DG discretization in space with implicit time stepping methods results in
solving a root problem in each time step. This will be discussed in Chapter 3.

1.2 Numerical Fluxes

The choice of the numerical flux is very important for the DG formulation in order to
connect the elements. Since the numerical solution will be discontinuous at the element
interfaces, a numerical flux function f∗ is defined on these interfaces by taking states from
the left and the right side of the face and approximating the physical flux f based on these
states. The simplest idea to define a numerical flux function would be to use the average
of the physical fluxes from the left and the right. Since this leads to an unconditionally
unstable scheme, additional stabilizing terms are needed. A numerical flux function

f∗ := f∗(u−,u+), (2.14)

is called consistent if it is Lipschitz continuous and if f(u) = f∗(u,u). This implies that
for finer discretization, the numerical flux approximates the physical flux better. Here,
u− denotes the value to the left of the considered node and u+ the value to the right of
the considered node. In this thesis we use the following two numerical fluxes.

Upwind Flux

The simplest flux is the upwind flux, defined as

f∗up(u
−,u+) =

f(u−) + f(u+)

2
+

n̂−f(u−) + n̂+f(u+)

2
, (2.15)

with the respective normal n̂.

Rusanov Flux

The Rusanov flux, also known as local Lax-Friedrich flux, is defined as

f∗LLF(u
−,u+) =

f(u−) + f(u+)

2
− λmax

2
(u+ − u−), (2.16)

with λmax = maxu−,u+ | ∂f∂u | is an estimate of the maximum wave speed at the interface.
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Figure 2.2: Finite volume grid in one dimension.

1.3 Finite Volume Discretization

We now want to present the easiest DG discretization with constant polynomials on each
element. This reduces to the finite volume method, which is very common to apply to
conservation laws (2.1). Due to the fact that the finite volume method is close to the
physics of the flow system and since it easy to implement, it is one of the standard meth-
ods in industry and academia and we use this discretization for constructing multigrid
preconditioners. They correspond to a DG method with px = 0 and the only node for
each element is located at the center of the respective element. In order to simplify the no-
tation, it is of advantage to denote the elements by ek = [xk−1/2, xk+1/2], k = 1, . . . ,N,
and the nodes by xk, see Figure 2.2.

A semi-discrete first order finite volume method onN elements with fixed element width
Δx for a problem (2.1) is defined by

ukt +
1
Δx

(f∗k+1/2 − f∗k−1/2) = 0 (2.17)

with uk := u(xk, t), k = 1, . . . ,N, and the numerical flux f∗k−1/2 := f∗(uk,uk−1),
k = 2, . . . ,N.

Let us as an example consider the simplest conservation law, namely the linear advection
equation

ut + aux = 0,

with a > 0 and periodic boundary conditions. Since the information travels from left
to right, is is most natural to use a first order upwind flux, f∗k−1/2 = uk−1. Then an
equidistant FV discretization with mesh width Δx gives an evolution equation for the
cell average uk in one cell k

ukt +
a
Δx

(uk − uk−1).
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With the vector u = (u1, . . . , uN)T and the matrix

B =


1 −1
−1 1

−1 1
. . . . . .

−1 1


we obtain the system of ODEs

ut +
a
Δx

Bu = 0.

As before, this can be solved using any time-stepping method.

2 Space-Time DG-SEM

Instead of a semi-discrete method as presented in the previous section, we can also apply
DG to the temporal direction. This results in a space-time DG method. The main focus
in this section lies on the temporal DG discretization and we therefore consider again a
one-dimensional conservation law

ut + f(u)x = 0, x ∈ Ω ⊂ R, t ∈ [0,T]. (2.18)

An extension to the multi-dimensional case can be found in [20]. In the following we
treat time like another spatial dimension and therefore start by discretizing the space-
time domain Ω × [0,T] into non-overlapping elements. For simplicity we assume that
all elements have width Δx and height Δt. An example for such a space-time grid can be
seen in Figure 2.3. Let Nt denote the number of elements in time and Nx the number of
elements in space. Then we have space-time elements em,n := [tm, tm+1]× [xn, xn+1] for
m = 1, . . . ,Nt and n = 1, . . . ,Nx.

We derive the space-time DG discretization as presented in [20] and similar to the semi-
discrete case by multiplying the conservation law (2.18) by a test function ψ := ψ(t, x)
and integrating in space and time over each element∫ tm+1

tm

∫ xn+1

xn
(ut + f(u)x)ψdxdt = 0.

13
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Figure 2.3: Space-time grid in 1D with three nodes in the spatial and four nodes in the temporal direction in each space-time
slab.

As in the semi-discrete case, we map all elements to the reference element Ω̂
2
= [−1, 1]2

using the linear maps

τ(t) = 2
t− tm

tm+1 − tm
− 1,

ξ(x) = 2
x− xn

xn+1 − xn
− 1.

The change of variables gives

2
Δt

∫ 1

−1

∫ 1

−1
uτψdτdξ +

2
Δx

∫ 1

−1

∫ 1

−1
f(u)ξψdτdξ = 0.

We now perform integration by parts in both temporal and spatial direction to obtain
the weak form

2
Δt

∫ 1

−1

(
uψ|+1

−1 −
∫ 1

−1
uψτdτ

)
dξ +

2
Δx

∫ 1

−1

(
f(u)ψ|+1

−1 −
∫ 1

−1
f(u)ψξdξ

)
dτ = 0.
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For the space-time DG-SEM ansatz we approximate the solution u and the physical flux
f on each space-time element em,n by polynomials of degree pt in space and px in time:

u(τ, ξ) ≈
Nτ∑
i=1

Nξ∑
j=1

uijℓi(τ)ℓj(ξ),

f(τ, ξ) ≈
Nτ∑
i=1

Nξ∑
j=1

fijℓi(τ)ℓj(ξ).

(2.19)

Here, ℓi are Lagrange polynomials of degree pτ = Nτ − 1 and ℓj Lagrange polynomials
of degree pξ = Nξ − 1, see Definition 2.3. As in the semi-discrete case we choose LGL
nodes τi and ξj, i = 1, . . . ,Nτ and j = 1, . . . ,Nξ. Moreover, we assume thatψ can also
be represented in the basis of Lagrange polynomials

ψ :=

Nτ∑
i=1

Nξ∑
j=1

ψijℓi(τ)ℓj(ξ).

We choose the coefficients ψij such that

2
Δt

∫ 1

−1

(
uℓi|+1

−1 −
∫ 1

−1
uℓiτ dτ

)
ℓjdξ

+
2
Δx

∫ 1

−1

(
f(u)ℓj|+1

−1 −
∫ 1

−1
f(u)ℓjξdξ

)
ℓidτ = 0

for i = 1, . . . ,Nτ and j = 1, . . . ,Nξ. In the space-time ansatz we also get numerical
surface fluxes in the solution u∗ in addition to f∗. The solution flux u∗ is due to the
temporal DG discretization and it is most natural to model it using upwind since this
captures the travel direction of time. Inserting approximations (2.19), the surface fluxes
and approximating all integrals with LGL quadrature as described before yields the im-
plicit weak space-time discretization

2ωj

Δt
(u∗

Nτ j∂iNξ
− u∗

0j∂i0 −
Nτ∑
l=1

ωlDliulj)

+
2ωi

Δx
(f∗iNξ

∂Nτ j − f∗i0∂0j −
Nξ∑
l=1

ωlDljfil) = 0.

This an be written in compact form on each element em,n with the same notation as in
(2.7) and (2.8) using a Kronecker product

(Sτu
∗ −DT

τMτu)⊗
2
Δt

Mξ +
2
Δx

Mτ ⊗ (Sξf
∗ −DT

ξMξf) = 0, (2.20)
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where the index τ denotes the temporal matrices and the index ξ the spatial matrices.
Due to the choice of basis functions and the numerical quadrature we derived a space-
time DG-SEM discretization in (2.20).

3 Equivalence of DG Approximations to Lobatto Schemes

We will finish this chapter by proving the equivalence of the spatial DG approximation
to a subclass of implicit Runge-Kutta time integration methods called Lobatto schemes.
The theorems and results of this section are needed in Chapter 5. Lets consider the DG
discretization in time for the scalar evolution equation

ut(t) + au(t) = 0 (2.21)

with a > 0, t ∈ [0,T] and u(0) = u0 ∈ R. As in the derivation of (2.9) we have on
each DG reference element n = 1, . . . ,N

−uni

∫ 1

−1
ℓi(τ)ℓjτ (τ)dτ + uni ℓi(1)ℓj(1) +

aΔt
2

uni

∫ 1

−1
ℓi(τ)ℓj(τ)dτ = uni ℓi(−1)ℓj(−1)

for i, j = 1, . . . ,Nt. The only reasonable and entropy stable flux in the temporal direction
is the upwind flux, which gives for n = 2, . . . ,N− 1

− uni

∫ 1

−1
ℓi(τ)ℓjτ (τ)dτ + uni ℓi(1)ℓj(1) +

aΔt
2

uni

∫ 1

−1
ℓi(τ)ℓj(τ)dτ

= un−1
i ℓi(−1)ℓj(−1).

(2.22)

With

K̃ij := −
∫ 1

−1
ℓi(τ)ℓjτ (τ)dτ + ℓi(1)ℓj(1),

M̃ij :=

∫ 1

−1
ℓi(τ)ℓj(τ)dτ,

C̃ij := ℓi(−1)ℓj(−1),

we can write (2.22) as a system of linear equations

(K̃+
aΔt
2

M̃)un = C̃un−1. (2.23)

It can be shown that these schemes are equivalent to specific Runge-Kutta schemes when
choosing Gauss-Lobatto quadrature:
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Theorem 2.4 ([9],[26]). If the integrals of equation (2.23) are approximated by Gauss-
Lobatto quadrature of order 2pt + 1, then the discontinuous Galerkin approximation of
the model problem (2.21) is equivalent to the (pt+1)-stage Runge-Kutta scheme Lobatto
IIIC.

Since the products of the test functions are of degree at most 2pt, we can apply the GL
quadrature of order 2pt + 1 to all integrals. We get the following results about Lobatto
IIIC schemes:

Theorem 2.5 ([25],[36]). For s ∈ N the s-stage Lobatto IIIC scheme is of nonstiff order
2s− 1 and their stability function R(z) is given by the (s− 2, s)-Padé approximation to
the exponential function ez. The method is L-stable and furthermore algebraically stable,
thus B-stable and A-stable, i.e.,

|R(z)| < 1 for z ∈ C with Re(z) < 0.

Padé approximants will be of importance in Chapter 5, thus we define them here.

Definition 2.6 (Padé approximant). For a given scalar function f(z) the rational function
rkm(z) is a (k,m)-Padé approximant of f if rkm ∈ Rkm, qkm(0) = 1 and

f(z)− rkm(z) = O(zk+m+1).

If a (k,m)-Padé approximant exists then it is unique.

We can now conclude that stability function of the DG discretization is given by a Padé
approximation to the exponential function.

Corollary 2.7. The stability function R(z) of the discontinuous Galerkin approximation
with polynomial degree pt ∈ N, pt ≥ 1, is given by the (pt−1, pt+1)-Padé approximation
to the exponential function ez.

Proof. For the Dahlquist test equation u̇ = λu, λ ∈ C, by theorem 2.4 the DG scheme
is equivalent to the Lobatto IIIC method. Thus, both methods have the same stability
function R(z). By theorem 2.5 the stability function is given as the (pt − 1, pt + 1)-Padé
approximation to the exponential function ez and is A-stable.

The Padé approximant for the exponential function can be computed directly.
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Theorem 2.8 (Padé approximant of ez). The Padé approximant

rkm(z) =
pkm(z)
qkm(z)

to the exponential function ez is given by

pkm(z) =
k∑

j=0

(k+ m− j)! k!
(k+ m)! (k− j)!

· z
j

j!
,

qkm(z) =
m∑
j=0

(k+ m− j)!m!
(k+ m)! (m− j)!

· (−z)j

j!
.
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Chapter 3

Solving Nonlinear Systems

In this chapter we present methods to solve nonlinear systems of equations which result
from the implicit DG discretizations described in Chapter 2. These nonlinear systems to
be solved have block structure and the block size depends on the number of unknowns in
each element. For high order DG methods the blocks are very large and moreover dense.
Therefore storage and computational time need to be considered when choosing a suitable
solver. We suggest to use Newton-Krylov methods since there exist easy to implement
matrix-free variants and the sparsity of the Jacobian can be exploited. We first present
so called inexact Newton methods. We then discuss Krylov subspace methods for the
solution of the linear systems within Newton methods and finish this chapter with the
easy to implement modification called Jacobian-free Newton-Krylov methods.

1 Newton’s Method

Newton’s method is a classical method to solve nonlinear equation systems. We only
explain those parts of the theory relevant to the needed methodology here and refer to
[14] for more details. Newton’s method is an iterative method to solve the root finding
problem

F(u) = 0 (3.1)
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for a differentiable function F. The iteration reads

solve
∂F(u)

∂u
|u(k)Δu = −F(u(k)),

u(k+1) = u(k) + Δu, k = 0, 1, 2, . . .
(3.2)

The iteration is terminated if

∥F(u(k+1))∥ ≤ TOL · ∥F(u(0))∥. (3.3)

Newton’s method as presented has two drawbacks, which are impractical for large sys-
tems to be solved, i.e. systems of high dimension: The Jacobian has to be computed in
each iteration and the linear systems have to be solved exactly. The first problem will be
discussed later. For the latter one, we use inexact Newton methods where the linear sys-
tem is solved using an iterative scheme. This can be done for example with some Krylov
subspace methods, which are the subjects of the next section. These can be terminated
prematurely, based on the residual of the linear equation system. Thus an approximate
solution Δ̃u to the Newton update Δu in step k is accepted if the relative residual in
the linear system is below a certain tolerance for a so called forcing term ηk. The inexact
Newton method reads∥∥∥∥∂F(u)∂u

|u(k) Δ̃u+ F(u(k))

∥∥∥∥ ≤ ηk∥F(u(k))∥,

u(k+1) = u(k) + Δu, k = 0, 1, 2, . . . .
(3.4)

When choosing the forcing terms ηk ∈ R one has to keep in mind that it is not necessary
to solve the first few linear systems very accurately. While far away from the solution,
we do not need the optimal search direction for Newton’s method, but just a reasonable
one, to get us in the generally correct direction.

Eisenstat and Walker introduced in [15] a method to choose forcing terms which fulfill
the following theorem:

Theorem 3.1. Assume that (3.1) has a solution u∗, ∂F
∂u : Ω → Rm×m is Lipschitz

continuous and ∂F(u∗)
∂u is nonsingular. Then there exists a δ such that if u(0) is in

a δ-neighborhood of u∗, {ηk} ⊂ [0, η] with η < 1 then the inexact Newton itera-
tion (3.4) converges linearly. Moreover, if ηk → 0, convergence is superlinear and if
ηk ≤ Kη∥F(u(k))∥p for some Kη > 0 and p ∈ [0, 1] and the convergence is superlinear
with order p+ 1.
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For the sequence

ηAk = γ
∥F(u(k))∥2

∥F(u(k−1))∥2
, γ ∈ (0, 1],

they prove that this sequence has the convergence behavior required for the theorem.
Moreover, the theorem says that we achieve quadratic convergence if this sequence is
bounded away from one uniformly. Thus, we set η0 = ηmax for some ηmax < 1 and

ηBk = min(ηmax, η
A
k ), k > 0.

To avoid unexpected decrease in ηk they recommend to refine the definition to

ηCk =


ηmax, k = 0,
ηBk , k > 0, γη2k−1 ≤ 0.1,
min(ηmax,max(ηAk , γη

2
k−1)), k > 0, γη2k−1 > 0.1.

In order to not oversolve the final stages, Eistenstat andWalker suggest to finally compute

ηk = min

(
ηmax,max

(
ηCk , 0.5

TOL · ∥F(u(0))∥
F(u(k))

))
,

for the tolerance TOL at which the Newton iteration would terminate in (3.3).

2 Krylov Subspace Methods

Krylov subspace methods are one of the most important iterative techniques available for
solving large linear systems [50], [52]. These techniques approximate the solution of a
linear system

Ax = b,

for a nonsingularA ∈ Rm×m and are based on projections onto Krylov subspaces. In the
inexact Newton method (3.4) the system matrix A corresponds to the Jacobian in (3.2).

Definition 3.2 (Krylov subspace, [50]). A Krylov subspace is defined as

Km = span{r0,Ar0, . . . ,A
m−1r0} = Km(A, r0),

with r0 = Ax0 − b for an initial guess x0.
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Thus, approximations obtained from Krylov subspace methods are of the form

A−1b ≈ xm = x0 + qm−1(A)r0,

with qm−1 a polynomial of degree m− 1.

AKrylov subspace technique computes an orthonormal basis of the spacex0+Km(A, r0)
and calculates the next iterate using projection. One of the most popular Krylov subspace
methods is the generalized minimal residual method (GMRES) from Saad and Schultz
[52], which generalizes the minimal residual method. In the inexact Newton method
(3.4), the iterations are terminated prematurely. Moreover, we know that the system
matrix is the Jacobian of (3.1) and has a sparse block structure. GMRES consists of one
matrix vector product and only a few scalar products per iteration and is therefore very
efficient for our problems when only a few iterations are applied.

2.1 GMRES

The generalized minimal residual method (GMRES) is an iterative method to find nu-
merical solutions to nonsymmetric linear systems of equations.

In the i-th GMRES iteration the minimization problem

min
x∈x0+Ki

∥Ax− b∥2,

has to be solved. Since the vectors in Ki can be almost linearly dependent, it is of advan-
tage to construct an orthonormal basis {v1, . . . ,vi} of the Krylov subspace. This can
be achieved using Arnoldi’s method [2], where (modified) Gram-Schmidt is used to con-
struct the basis. An orthogonal matrixVi ∈ Ri×m can be constructed with the orthonor-
mal basis as columns. Then the upper Hessenberg matrix H̃i = VT

i+1AVi ∈ Ri+1×i is
transformed to an upper triangular matrix, for example using Givens rotations.

2.2 Preconditioning

Preconditioning is the technique of transforming the original linear system into one with
the same solution which is easier to solve with an iterative solver [51]. Let PL and PR be
nonsingular matrices. Then

Ax = b ⇔ PLAPRz = PLb,PRz = x. (3.5)

PL and PR are called left and right preconditioner, respectively, and we refer to right
preconditioning if PL = I and to left preconditioning if PR = I.
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We summarize the influence of both techniques on the GMRES algorithm, and refer to
[51] for more details and pseudocodes.

In the case of left preconditioning the residual rP0 = PAx−Pb = Pr0 changes, which
influences the termination criteria of the method. The Krylov subspace is given by

Kk(PA, r
P
0) = span{rP0,PArP0 , . . . ,PA

k−1rP0}.

Right preconditioning leaves the residual rP0 = APz0−b = Ax0−b unchanged. The
corresponding Krylov space is given by

Kk(AP, r0) = span{r0,APr0, . . . ,APk−1r0}.

In the GMRES algorithm, Ax has to be replaced by APx. This implies that the pre-
conditioner is applied once in the beginning and once in the end, see the pseudocode
in Algorithm 1 from [50]. The advantage of right preconditioning is that the termina-
tion criteria does not need to be adapted since the right hand side is not changed by the
preconditioner. Therefore we always refer to right preconditioning when we mention
preconditioning in the following.

A way to construct efficient preconditioners is presented in Chapter 4.

3 Jacobian-free Newton-GMRES

As mentioned before, Newton’s method (3.2) has two drawbacks: The Jacobian has to
be computed in each iteration and the linear systems have to be solved exactly. For the
latter problemwe have already discussed methods to terminate the solver prematurely, i.e.
Eistenstat andWalker’s termination criteria [15]. The problem regarding the computation
of the Jacobian remains to be solved. In [38] an extensive overview over Jacobian free
Newton-Krylov methods is presented. The idea is to use a cheap approximation of the
Jacobian, i.e. a difference quotient, combined with a matrix-vector product routine to
save CPU time when assembling it. This is called Jacobian-free Newton-GMRES and
reads

∂F(ũ)

∂u
q ≈

F(ũ+ εq)− F(ũ)

ε
. (3.6)

The parameter ε has to be chosen carefully. If ε is very small, the approximation improves
but cancellation errors occur. A simple choice for the parameter that is moderately small
but avoids cancellation is

ε =

√eps
∥q∥2

,
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Algorithm 1 GMRES with preconditioner
Choose x0 and calculate r0 = Ax0 − b
if r0 == 0 then

END
else

v1 =
r0

∥r0∥
for j = 1, 2, . . . ,m do

wj = APvj
for i = 1, . . . , j do

hij = wT
j vi

wj = wj − hijvi
end for
hj+1,j = ∥wj∥2
if hj+1,j == 0 then

Set m = j and BREAK
else

vj+1 =
wj

hj+1,j

end if
end for
Vm := [v1, . . . ,vm], H̃m = {hij}

j=1,...,m
i=1,...,m+1

Compute ym = argminy∥∥r0∥2 − H̃my∥ and xm = x0 +PVmym
end if

with the machine accuracy eps [47].

TheGMRESmethod performs better than others in the matrix free context since the vec-
tors in matrix vector multiplications are normalized. The preconditioned matrix vector
product is given by

∂F(ũ)

∂u
Pq ≈

F(ũ+ εPq)− F(ũ)

ε
. (3.7)

Without calculating the Jacobian it is difficult to construct a preconditioner for the GM-
RES solver. In the next chapter we discuss the construction of multigrid preconditioners
using a replacement operator in order to avoid calculating the Jacobian of the original
system.
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Chapter 4

Multigrid Methods

Multigrid methods (MG) are a class of iterative methods specifically designed to solve
systems arising from discretized differential equations. They are linearly convergent and
it has been demonstrated for large classes of partial differential equations, amongst others
for the Navier-Stokes equations, that the convergence rates are independent of the mesh
size. Moreover, only a few steps are needed to compute the solution. This property is
called textbook multigrid efficiency. Good introductions to the basic principles of MG
are given in [11], [24], [58] and [62]. In the case of differential operators with periodic
boundary conditions it has been noticed for a lot of problems that the eigenvectors of the
discretized problem are discrete evaluations of the eigenfunctions, which happen to be
periodic. The fundamental idea of MG is to divide the error into low and high frequency
parts. A so-called smoother damps the high frequency parts in a few iterations. The low
frequency parts can be approximated on a coarser grid, where the transformed problem
is taken care of in a space with fewer unknowns using the same approach. This leads
to a recursive method on multiple grids. We first explain the concept of basic iterative
methods before we describe in more details the elements of multigrid methods for linear
problems.

1 Classical Iterative Schemes

Solving discretized PDEs with Jacobian-free Newton-Krylov methods as presented in
(3.2) involves solving linear systems of the form

Ax = b. (4.1)
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Classical iterative schemes are fixed-point iterations to solve systems (4.1). A good overview
over the history of iterative methods from Gauss to modern techniques can be found in
[51].

Lets assume that we have an approximation x̃ to the solution x. Then the algebraic error

e = x̃− x (4.2)

is not necessarily accessible since x is unknown. On the other hand, the residual

r = Ax̃− b (4.3)

can be computed easily. These two quantities are connected via the residual equation

Ae = r. (4.4)

We can solve equation (4.4) for the algebraic error e and use equation (4.2) to compute
the solution by

x = x̃−A−1r

= (I−A−1A)x̃+A−1b.
(4.5)

However, (4.5) is problematic since the exact inverse of the system matrixA−1 is needed.
Therefore we could just solve problem (4.1) directly. The idea is to replaceA−1 by some
non-singular approximation N−1 to get x ≈ (I−N−1A)x̃ + N−1b. This has to be
done iteratively to get a good approximation to the solution and yields a linear fixed point
iteration

xk+1 = Mxk +N−1b (4.6)

withM := I−N−1A, thusA = N−NM. If (4.6) converges, thenNx = NMx+b
which is equivalent to Ax = b and therefore solves the original problem (4.1). Several
choices of N correspond to well known methods, see [62], where iterative methods are
derived based on matrix splitting. We want to mention for example Jacobi, Gauss-Seidel
and successive over-relaxation (SOR) with

NJA = L+D,

NGS = D,

NSOR =
1

ω(2− ω)
(D+U)−1D(D+ L),

(4.7)

where L is the strict lower left part of A, D the diagonal and U the strict upper right
part and ω a relaxation factor [50], [58], [62].

The convergence of iterative methods of the form (4.6) depends on the spectral radius of
the system matrix M:
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Theorem 4.1 ([62]). Iterative schemes (4.6) converge to the solution of (4.1) if and only
if ρ(M) < 1.

One problem with the methods presented so far is that the convergence rate decreases
after a couple of iterations [11]. The reason behind this behavior is that high frequency
error modes are damped efficiently in the first iterations, while these methods have prob-
lems damping the low frequency error components. However, these components can be
mapped onto a coarser mesh, where parts of them seem high frequent. This method is
called multigrid.

2 Multigrid Methods for Linear Systems

The first multigrid method was designed in 1964 for the Poisson equation [16], which
reads

− uxx = f(x), x ∈ (0, 1), f ∈ C((0, 1),R),
u(0) = u(1) = 0.

Later it was generalized to other problems, see [62]. Second order finite difference dis-
cretization with fixed mesh width Δx results in the system

Au = b

with

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ∈ Rn×n, b = Δx2


f(x0)
f(x1)
...

f(xn−1)

 .

The eigenvalues of A are given by

λk = 4 sin2
(
θk
2

)
, θk =

kπ
n+ 1

, k = 1, . . . , n,

and the corresponding eigenvectors by

ωk = (sin(θk), sin(2θk), . . . , sin(nθk))T, k = 1, . . . , n.
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These are the discrete evaluations of the eigenfunctions

ϕ(x) = sin(kπx), k ∈ N,

of−uxx satisfying the boundary conditions. In Figure 4.1 we see that the eigenvectors can
be divided into low and high frequency vectors. If we define a coarse grid by dropping
every other grid point, only the smooth eigenvectors can be represented there, see Figure
4.2. Moreover, on the coarser grid some of the low frequencies become high frequencies.
This gives the basic idea for multigrid methods: Classical iterative methods damp high
frequency error modes in a few iterations, while working poorly on low frequency modes
[24]. These modes can be presented without loss of information on a coarser grid, where
some of them become high frequent and can be damped using the same iterative method
as before.

Figure 4.1: Eigenvectors of discretized Poisson equation: figures on top are low frequencies, figures on bottom are high
frequencies.

This observation leads to the simple idea of multigrid methods: On the fine grid, the high
frequency error parts can be taken care of by a smoother. On the coarse level we solve
(4.4) for the error and then correct the fine level solution by the prolongated error on the
coarse level. This can be done iteratively on a hierarchy of grids Ωℓ, where each grid is
denoted by their level ℓ, and a smaller index corresponds to a coarser grid. A restriction
operator Rℓ

ℓ−1 is used to transfer a grid function from a finer level ℓ to the next coarser
level ℓ − 1 and a prolongation operator Pℓ−1

ℓ for the reverse operation. Let us denote
the smoothing operators on level ℓ by MS,ℓ and NS,ℓ and the system matrix and right
hand side byAℓ and bℓ. More details about all these operators will be given in the next
section. The pseudo code for a MG scheme to solve a linear systemAx = b is given by
Algorithm 2.
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Figure 4.2: Eigenvectors of discretized Poisson equation displayed on every other grid point.

This gives rise to an iterative method of the form xk+1
ℓ = MMGx

k
ℓ + N−1

MGbℓ. In the
case of an ℓmax-level multigrid cycle with γ = 1 and presmoothing on the coarsest level
we can define recursively

M0,MG = 0, and for ℓ = 1, . . . , ℓmax :

Mℓ,MG = MS,ℓ(I−Pℓ−1
ℓ N−1

ℓ−1,MGR
ℓ
ℓ−1Aℓ)M

−1
S,ℓ

(4.8)

and

N0,MG = N−1
S,0 , and for ℓ = 1, . . . , ℓmax : (4.9)

N−1
ℓ,MG = MS,ℓ(N

−1
S,ℓ −Pℓ−1

ℓ N−1
ℓ−1,MGR

ℓ
ℓ−1AℓN

−1
S,ℓ +Pℓ−1

ℓ N−1
ℓ−1,MGR

ℓ
ℓ−1) +N−1

S,ℓ .

In Figure 4.3 we see the visualization of a 4-grid iteration with γ = 1, called V-cycle due
to its shape. Figure 4.4 shows a 4-grid iteration with γ = 2, called W-cycle due to its
shape.
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Figure 4.3: Visualization of V cycle, γ = 1
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Figure 4.4: Visualization of W cycle, γ = 2
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Algorithm 2MG(xℓ,bℓ, ℓ)
xℓ = MS,ℓxℓ +N−1

S,ℓbℓ (pre-smoothing)
if ℓ > 0 then

rℓ−1 = Rℓ
ℓ−1(Aℓxℓ − bℓ) (restriction)

vℓ−1 = 0
for j = 1, . . . , γ do

vℓ−1 = MG(vℓ−1, rℓ−1, ℓ− 1)
end for
xℓ = xℓ −Pℓ−1

ℓ vℓ−1 (fine-grid correction)
xℓ = MS,ℓxℓ +N−1

S,ℓbℓ (post-smoothing)
end if

2.1 Multigrid Components

The first choice to make in a MG algorithm is the coarsening strategy. The most fre-
quently used and simplest strategy is standard coarsening, where the mesh size is doubled
in each direction. In the case of several dimensions, semi-coarsening refers to doubling
the mesh size in some directions only. There exist further coarsening strategies which we
do not use in this thesis and therefore refer to [11] and [58] for more details.

The next question is how to choose the coarse grid operator Aℓ−1. One possibility is to
discretize the problem on each grid. Another option is to use a so-called Galerkin coarse
grid approximation [58], [62]

Aℓ−1 = Rℓ
ℓ−1AℓP

ℓ−1
ℓ .

The choice of transfer operatorsRℓ
ℓ−1 and P

ℓ−1
ℓ is connected to the coarsening strategy.

For standard coarsening, typical restriction operators are given by injection, full weighting
and half weighting. Typical prolongation operators are linear or bilinear interpolation
and projection [58], [62].

In the case of conservation and balance laws the intergrid operators need to be conser-
vative. The corresponding method is called agglomeration multigrid since a coarse grid
is obtained by agglomerating a number of neighboring cells. The fine grid values are
summed up, weighted by the volumes of the respective cells and divided by the total
volume to obtain the restricted value. For an equidistant grid in one dimension, the
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corresponding restriction operator reads

Rℓ
ℓ−1 =

1
2


1 1

1 1
. . . . . .

1 1

 .

The corresponding prolongation is injection, where the value in the coarse cell is given by
the value on all the corresponding fine cells, which corresponds to Pℓ−1

ℓ = 2
(
Rℓ

ℓ−1
)T.

2.2 Smoothers

Another key aspect of efficientmultigrid algorithms is a good smoother. Classical smoothers
are given in (4.7). These smoothers do not perform well for all problems, e.g. for con-
vection dominated flows [44]. Very efficient MG schemes to solve the steady Euler equa-
tions around an airfoil were developed in [35], where the smoothers are based on the
SGS method. Unfortunately, these methods do not perform well for the Navier-Stokes
equations on high aspect grids. For these equations, W3 smoothers, a special choice of
Rosenbrock methods where the Jacobian is replaced by an approximation, are very ef-
ficient [7]. These smoothers can be constructed using a dual time stepping approach
developed in [33], where a pseudo time step is added to the steady state of the equation:

∂x

∂t∗
+Ax− b = 0.

Then each time stepping scheme becomes an iterative method. An s-stage scheme is given
by

x(0) = x(n),

x(j) = x(n) − αjΔt∗W−1(Ax(j−1) − b), j = 1, . . . , s

x(n+1) = x(s),

with W ≈ I + ηΔt∗A, pseudo time step width Δt∗ and problem dependent parame-
ters αj and η. The specific approximation to define W is based on a symmetric Gauss-
Seidel (SGS) approach as suggested in [54] and modified in [34]. The first step is to
approximate the Jacobian by using a different first order discretization. It is based on
a splitting A = A+ + A− of the flux Jacobian. This is evaluated in the average of
the values on both sides of the interface. The split Jacobians correspond to positive and
negative eigenvalues and can be written in terms of the matrix of right eigenvectors Q
as A+ = QΛ+Q−1,A− = QΛ−Q−1, where Λ± are diagonal matrices containing
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the positive and negative eigenvalues, respectively. These are then bounded away from
zero using a parabolic function which takes care when the modulus of the eigenvalue λ
is smaller or equal to a fraction ad of the speed of sound a with free parameter d ∈ [0, 1]:

|λ| = 1
2

(
ad+

|λ|2

ad

)
, |λ| ≤ ad.

With this, an upwind discretization of the split Jacobian in cell i is given by

xit∗ + xi +
Δt
Δxi

((A+
ii xi +A−

i,i+1xi+1)− (A+
i−1,ixi−1 +A−

ii xi)) = 0.

The corresponding approximation of the Jacobian is then used to construct a precondi-
tioner. Specifically, in [7] a block SGS preconditioner

Q−1 = (D+ L)−1D(D+U)−1,

is considered where L,D and U are block matrices with 3× 3 blocks.

With L+D+U = I+ ηΔt∗J one obtains

Li−1,i = −ηΔtΔt
∗
i

Δxi
A+

i−1,i, Ui,i+1 =
ηΔtΔt∗i
Δxi

A−
i,i+1,

Dii = I+ ηΔt∗I+
ηΔtΔt∗i
Δxi

(A+
ii −A−

ii ).

Applying this preconditioner requires solving 3 × 3 systems coming from the diagonal,
which can be done directly.

To improve the efficiency of the smoother, an optimization process can be applied. Either
the parameters in the smoother itself are optimized in order to damp high frequency error
components efficiently or the spectral radius of the MG iteration matrix is minimized.
Both methods are discussed in [3] for Runge-Kutta smoothers.

2.3 Multigrid Preconditioners

Multigrid methods can not only be used as a solver but also to construct preconditioners.
We recall that they are iterative methods of the form

xk+1 = MMGx
k +N−1

MGb
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where the matrices are defined recursively, see (4.8) and (4.9). We notice that we would
construct the most efficient scheme ifN−1

MG = A−1. Since for a well-designed multigrid
method N−1

MG approximates the inverse of A, this can be used as an efficient precon-
ditioner for an external iterative solver. We need preconditioners in the Jacobian-free
context for the Newton-Krylov solver in Algorithm 1. The MG preconditioner can be
applied by replacing the matrix vector products in the algorithm with the finite difference
approximation (3.7) and due to the definition of the MG method, the preconditioner
can be implemented matrix free as well. Unfortunately, more advanced smoothers as
presented before can not be implemented fully matrix free. This is still an open problem
in the construction of these preconditioners. Therefore MG can be used to construct
efficient low storage preconditioners. For DG methods this has been tried in [43], [46].

In the attached publications we demonstrate the potential of such multigrid precondi-
tioners for implicit DG solvers. Using a W3 smoother as presented before we construct a
preconditioner for matrix-free Newton Krylov solvers, see the work flow chart in Figure
4.5. The core idea is to replace the DG Jacobian by a simplified replacement operator. We
choose a first order finite volume operator, since we want to keep the number of degrees
of freedom in the replacement operator the same. This can be achieved by introducing
a subcell grid in each element. Moreover, this choice is motivated by the equivalence
between a DG-SEM discretization and a high order FV discretization [19] and the fact
that this replacement operator allows to use the available knowledge about fast multigrid
(MG) methods for FV discretizations on block structured meshes. For a linear problem
the results are presented in [59], and for a nonlinear problem in [8], see part 2 of this
thesis.

DG-SEM

PDE

FV

Linear algebraic
system

MG

discretization (implicit method)

Jacobian-free Newton-Krylov iterative solver

approximate discretization

preconditioner

Figure 4.5: Work flow to construct a MG based preconditioner using a FV replacement operator to solve implicit DG-SEM
discretizations.
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Chapter 5

Local Fourier Analysis

TheLocal Fourier Analysis (LFA) was first presented in [10] as a tool to analyze the quality
ofmultigridmethods. In this chapter we present the basic concept of the LFA as described
in [24] and [58] and apply it to a space-time model problem, similar to [21].

The LFA can be used both to analyze the efficiency of a smoother and of a two-grid
algorithm. The smoothing factor and the asymptotic convergence factor are quantities
to measure the efficiency of a multigrid method. They are both related to the eigenvalues
of the operators for the smoother and the two-grid algorithm. Since these operators are
very large for space-time discretizations, a discrete Fourier transform is performed. This
is of advantage since the operators are of block diagonal form in the Fourier space, which
allows to work with operators of much smaller dimension, implying that all calculations
become feasible.

The LFA is based on transforming the given problem into the frequency domain using a
discrete Fourier transform and so-called grid functions of the form

φk(θ) = eikθ, (5.1)

with frequencies θ on an infinite grid. One of the core ideas of LFA is to study everything
locally. General discrete operators with non-constant coefficients can be linearized locally
and locally replaced by an operator with constant coefficients and are therefore formally
defined on an infinite grid. This implies that boundary conditions are not taken into
account in the analysis. From the definition of the grid functions it follows that it suffices
to consider frequencies θ ∈ (−π, π].

The core idea of the LFA is presented the following Lemma:
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Lemma 5.1 (Fourier Symbol of Operators, [58]). For θ ∈ (−π, π], all grid functions
φ(θ) are eigenfunctions of any discrete operator L corresponding to a difference stencil
Lw(x) =

∑
j ujw(x+ jΔx) with constant coefficients uj and can be written

Lφ(θ) = L(θ)φ(θ),

with L(θ) =
∑

j uje
ijθ called the Fourier symbol of L.

The idea is to write all discrete operators of an MG algorithm, i.e. the system, smoother,
prolongation and restriction, in terms of the Fourier modes and replace the operators by
their Fourier symbols in order to calculate the smoothing and asymptotic convergence
factors.

In the next sections we present the LFA as a formal tool to analyze a space-time multigrid
solver for a model problem. We follows [21], where the heat equation is discretized using
a standard finite element method in space and a discontinuous Galerkin approximation
in time, and an LFA for this problem is presented. Instead, we consider in this thesis
the linear advection equation which we discretize with a finite volume method in space
and DG-SEM in time and perform an LFA in order to compute smoothing and two-grid
convergence factors. As in [21] we compare two different coarsening strategies: coarsening
in both temporal and spatial direction as well as coarsening in the temporal direction only.

1 Model Problem

We analyze a space-time multigrid method for a model problem, the one-dimensional
linear advection equation

ut + aux = 0, (5.2)

with a > 0 and (x, t) ∈ [xL, xR]× [0,T] =: Ω ⊂ R2 and periodic boundary conditions
in space and time.

Following Chapter 2 we discretize the advection problem (5.2) using a space-time DG
ansatz. We choose the spatial polynomial degree to be 0, thus the spatial discretization
simplifies to a first order finite volume discretization, see Section 1.3 in Chapter 2 for more
details. In the temporal direction we allow for a variable polynomial degree pt. Moreover,
we use an upwind flux in both directions. The spatial discretization matrices are in the
following denoted by the index ξ and the temporal discretization matrices by the index
τ .
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On each space-time slab n = 1, . . . ,N we denote the vector of unknowns by un ∈
RNx·Nt , with Nx the degrees of freedom in space and Nt the degrees of freedom in one
time element. The components of un are given by un

j,k ∈ R, where n denotes the time
step, j is the index w.r.t. the unknowns in space and k w.r.t. the unknowns in one time
element, i.e. un

j ∈ RNt . We have this index notation throughout the whole chapter for
vectors in the space RN·Nx·Nt . Combining discretization in space and time yields a linear
system to be solved on each space-time slab:

(Iξ ⊗Kτ +Kξ ⊗Mτ )u
n+1 = Iξ ⊗Cτu

n, (5.3)

with Iξ ∈ RNx×Nx , Mτ ∈ RNt×Nt as in (2.10), Kτ = ENt − DTM ∈ RNt×Nt with
ENt = diag(0, . . . , 0, 1) ∈ RNt×Nt and D as in (2.11), and

Kξ =
a
Δx


1 −1
−1 1

. . . . . .
−1 1

 ∈ RNx×Nx , Cτ =

0 1
. . .

0

 ∈ RNt×Nt .

The full space-time system for time steps n = 1, . . . ,N is given by a block triangular
system 

Aτ,ξ Bτ,ξ

Bτ,ξ Aτ,ξ

. . . . . .
Bτ,ξ Aτ,ξ



u1

u2

...
uN

 =


0
0
...
0

 (5.4)

withAτ,ξ := Iξ⊗Kτ +Kξ⊗Mτ ∈ RNx·Nt×Nx·Nt ,Bτ,ξ := −Iξ⊗Cτ ∈ RNx·Nt×Nx·Nt .
We can rewrite (5.4) in compact form as

Lτ,ξu = b, (5.5)

with Lτ,ξ ∈ RN·Nt·Nx×N·Nt·Nx and u,b ∈ RN·Nx·Nt . Here, u = (u1, . . . ,uN)T is a long
vector containing vectors of unknowns un ∈ RNx·Nt in each space-time slab n.

The linear system (5.5) can be solved using a multigrid method. We start by constructing
a sequence of space-time grids. Let Ωℓ ⊂ R2 denote the grid on level ℓ = 0, . . . ,M,
with ℓ = 0 the coarsest and ℓ = M the finest level. On each space-time grid Ωℓ the
system matrix Lτℓ,ξℓ

has to be set up and the original system (5.5) is obtained on levelM.

The next step is to choose an appropriate smoother. We use a damped block Jacobi
smoother of the form

u(k+1) = ωt(Dτℓ,ξℓ
)−1b+ (I− ωt(Dτℓ,ξℓ

)−1Lτℓ,ξℓ
)u(k), (5.6)
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on each grid level ℓ with the block diagonal matrix Dτℓ,ξℓ
:= diag{Aτℓ,ξℓ}

Nℓt
n=1 and the

system matrix

Sτℓ,ξℓ
= I− ωt(Dτℓ,ξℓ

)−1Lτℓ,ξℓ
. (5.7)

Here, the blocks correspond to a space-time slab on the given grid level. The damping
factor ωt depends on the order of the DG method in time and has therefore the index t.

Next, we need to construct the space-time restriction and prolongation operators Rℓ
ℓ−1

and Pℓ−1
ℓ . For multigrid level ℓ ∈ N0 we denote the number of time steps by Nℓt ∈ N

and the degrees of freedom in space byNℓx ∈ N. The order of the DG time discretization
is not changed and thus the degree of freedom in time for one time step is given by Nt
on each grid.
We will study two different coarsening strategies: both in space and time, referred to
as full-coarsening and in the following denoted by index f, and coarsening only in the
temporal direction, which we will refer to as semi-coarsening with index s. Since we
want to keep the polynomial degree constant on all levels in the temporal direction, we
interpolate from coarse to fine grids by combining two time steps to one coarse time step.
The restriction and prolongation matrices in time are given by an L2 projection and are
of the form

Rℓt
ℓt−1 :=


R1 R2

R1 R2
. . . . . .

R1 R2

 ∈ RNt·Nℓt−1×Nt·Nℓt ,

Pℓt−1
ℓt

:= (Rℓt
ℓt−1)

T,

(5.8)

with the local prolongation matrices RT
1 := M−1

τℓ
M̃1

τℓ
and RT

2 := M−1
τℓ

M̃2
τℓ
, see [21]

and [37]. For the basis functions {ℓk}Nt
k=1 ⊂ Ppt(0, τℓ) on the fine and {ℓ̃k}Nt

k=1 ⊂
Ppt(0, 2τℓ) on the coarse grid the local projection matrices from coarse to fine grid are
defined for k, l = 1, . . . ,Nt by

M̃1
τℓ
(k, l) :=

∫ τℓ

0
ℓ̃l(t)ℓk(t)dt and M̃2

τℓ
(k, l) :=

∫ 2τℓ

τℓ

ℓ̃l(t)ℓk(t− τ)dt.

The restriction and prolongation matrices in space are given by agglomeration, i.e.

Rℓx
ℓx−1 :=

1
2


1 1

1 1
. . . . . .

1 1

 ∈ RNℓx−1×Nℓx ,

Pℓx−1
ℓx

:= (2Rℓx
ℓx−1)

T ∈ RNℓx×Nℓx−1 .

(5.9)
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Then the restriction and prolongation matrices for the space-time system are defined via
a Kronecker product

(Rℓ
ℓ−1)

s := INℓx
⊗Rℓt

ℓt−1, (R
ℓ
ℓ−1)

f := Rℓx
ℓx−1 ⊗Rℓt

ℓt−1, (5.10)

(Pℓ−1
ℓ )s := INℓx

⊗Pℓt−1
ℓt

, (Pℓ−1
ℓ )f := Pℓx−1

ℓx
⊗Pℓt−1

ℓt
. (5.11)

With this, the iteration matrices for the two-grid cycles, with pre- and post-smoothing
on the fine grid and solving the system on the coarse grid, are given by

Ms
τℓ,ξℓ

:= Sν2
τℓ,ξℓ

[
I− (Pℓ−1

ℓ )s(L2τℓ,ξℓ)
−1(Rℓ

ℓ−1)
sLτℓ,ξℓ

]
Sν1
τℓ,ξℓ

, (5.12)

M
f
τℓ,ξℓ

:= Sν2
τℓ,ξℓ

[
I− (Pℓ−1

ℓ )f(L2τℓ,2ξℓ)
−1(Rℓ

ℓ−1)
fLτℓ,ξℓ

]
Sν1
τℓ,ξℓ

, (5.13)

for semi-coarsening and full-coarsening.

We start by deriving some basics for the LFA with regards to the given model problem.

1.1 LFA Basics for the Model Problem

In the following, the discrete Fourier transform is formulated for the given space-time
problem and the notation introduced before.

Definition 5.2 (Fourier modes and frequencies). The function φ(θk) := [φ1(θk), . . . ,
φN(θk)]

T with φj(θk) := eijθk , j = 1, . . . ,N, N ∈ N, is called Fourier mode with
frequency

θk ∈ Θ :=

{
2kπ
N

: k = 1− N
2
, . . . ,

N
2

}
⊂ (−π, π].

The frequencies Θ can be separated into high and low frequencies

Θlow := Θ ∩
(
−π
2
,
π
2

]
,

Θhigh := Θ ∩
((

−π,−π
2

]
∪
(π
2
, π
]]
.

Theorem 5.3 (Discrete Fourier transform [62]). Letu ∈ RNt·Nℓx ·Nℓt forNt,Nℓx ,Nℓt ∈ N,
and assume that Nℓx and Nℓt are even. Then the vector u can be represented as

u =
∑

θx∈Θℓx

∑
θt∈Θℓt

ψ(θx, θt),
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and ψ(θx, θt) ∈ RNt·Nℓx ·Nℓt consists of the vectors

ψn
j (θx, θt) := U(θx, θt)Φ

n
j (θx, θt) ∈ CNt , n = 1, . . . ,Nℓt , j = 1, . . . ,Nℓx ,

where the vector Φn
j (θx, θt) ∈ CNt has elements

Φn
j,l(θx, θt) := φn(θt)φj(θx), l = 1, . . . ,Nt.

Moreover, we define the coefficient matrix as

U(θx, θt) := diag(û1, . . . , ûNt) ∈ CNt×Nt ,

with coefficients

ûl :=
1
Nℓx

1
Nℓt

Nℓx∑
j=1

Nℓt∑
n=1

unj,lφj(−θx)φn(−θt), l = 1, . . . ,Nt.

Definition 5.4 (Fourier space). For the space level ℓx and the time level ℓt consider the
frequencies θx ∈ Θℓx and θt ∈ Θℓt and the vectorΦ

n
j (θx, θt) as in Theorem 5.3. Then we

define the linear space of Fourier modes with frequencies (θx, θt) as

Ψℓx,ℓt(θx, θt) := span{Φ(θx, θt)}
:= {ψ(θx, θt) ∈ CNt·Nℓx ·Nℓt : ψn

j (θx, θt) := UΦn
j (θx, θl),

for n = 1, . . . ,Nℓt , j = 1, . . . ,Nℓx andU ∈ CNt×Nt}.

One of the key properties of the LFA which we will use frequently is the shifting equality.

Lemma 5.5 (Shifting equality). For the space and time level ℓx and ℓt let θx ∈ Θℓx ,
θt ∈ Θℓt and ψ(θx, θt) ∈ Ψℓx,ℓt(θx, θt). Then the shifting equalities

ψn−1
j (θx, θt) = e−iθtψn

j (θx, θt),

ψn
j−1(θx, θt) = e−iθxψn

j (θx, θt),

hold for n = 2, . . . ,Nℓt and j = 2, . . . ,Nℓx .

Proof. It holds

φn−1(θ) = ei(n−1)θ = e−iθeinθ = e−iθφn(θ),
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and therefore with Theorem 5.3

Φn−1
j,l (θx, θt) = φn−1(θt)φj(θx) = e−iθtφn(θt)φj(θx) = e−iθtΦn

j,l(θx, θt),

Φn
j−1,l(θx, θt) = φn(θt)φj−1(θx) = e−iθxφn(θt)φj(θx) = e−iθxΦn

j,l(θx, θt),

for l = 1, . . . ,Nt. This implies

ψn−1
j (θx, θt) = U(θx, θt)Φ

n−1
j (θx, θt) = e−iθtU(θx, θt)Φ

n
j (θx, θt)

= e−iθtψn
j (θx, θt),

ψn
j−1(θx, θt) = U(θx, θt)Φ

n
j−1(θx, θt) = e−iθxU(θx, θt)Φ

n
j (θx, θt)

= e−iθxψn
j (θx, θt),

for n = 2, . . . ,Nℓt and j = 2, . . . ,Nℓx .

We can now derive the Fourier symbol of the system matrix LτL,ξL (5.5) for the model
problem (5.2).

Lemma 5.6 (Fourier symbol of Lτℓ,ξℓ
). For the frequencies θx ∈ Θℓx and θt ∈ Θℓt we

consider the vector ψ(θx, θt) ∈ Ψℓx,ℓt(θx, θt). Then for

Lτℓ,ξℓ(θx, θt) := −e−iθtCτℓ +Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ ∈ CNt×Nt

it holds

(Lτℓ,ξℓ
ψ(θx, θt))

n
j = Lτℓ,ξℓ(θx, θt)ψ

n
j (θx, θt),

for n = 2, . . . ,Nℓt and j = 2, . . . ,Nℓx − 1 and we callLτℓ,ξℓ(θx, θt) the Fourier symbol
of Lτℓ,ξℓ

.

Proof. With the shifting equality from Lemma 5.5 and for ψ(θx, θt) ∈ Ψℓx,ℓt(θx, θt) we
get

(Lτℓ,ξℓ
ψ(θx, θt))

n = Bτℓ,ξℓψ
n−1(θx, θt) +Aτℓ,ξℓψ

n(θx, θt)

= (e−iθtBτℓ,ξℓ +Aτℓ,ξℓ)ψ
n(θx, θt)

for n = 2, . . . ,Nℓt . Thus, we have to study the product ofAτℓ,ξℓ = Iξℓ ⊗Kτℓ +Kξℓ ⊗
Mτℓ and Bτℓ,ξℓ = −Iξℓ ⊗Cτℓ with the vector ψn(θx, θt). We get

(Bτℓ,ξℓψ
n(θx, θt))j,l = −

Nℓx∑
i=1

Nt∑
k=1

Iξℓ(j, i)Cτℓ(l, k)ψ
n
i,k(θx, θt)

= −
Nt∑
k=1

Cτℓ(l, k)ψ
n
j,k(θx, θt) = −(Cτℓψ

n
j (θx, θt))l
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and

(Aτℓ,ξℓψ
n(θx, θt))j,l =

Nℓx∑
i=1

Nt∑
k=1

Iξℓ(j, i)Kτℓ(l, k)ψ
n
i,k(θx, θt)

+

Nhℓ∑
i=1

Nt∑
k=1

Kξℓ(j, i)Mτℓ(l, k)ψ
n
i,k(θx, θt)

= (Kτℓψ
n
j (θx, θt))l

+
a
Δx

(−e−iθx + 1)(Mτℓψ
n
j (θx, θt))l

= (Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ)ψ
n
j (θx, θt))l

for j = 2, . . . ,Nℓx − 1 and l = 1, . . . ,Nt. It follows that

(Lτℓ,ξℓ
ψ(θx, θt))

n
j = (−e−iθtCτℓ +Kτℓ +

a
Δx

(−e−iθx + 1)Mτℓ)ψ
n
j (θx, θt)

and thus

Lτℓ,ξℓ = −e−iθtCτℓ +Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ ∈ CNt×Nt .

2 Smoothing Analysis

In this section we study the performance of the Jacobi method (5.6). We start by con-
structing the Fourier symbol of the smoother.

Lemma 5.7 (Fourier symbol of Sτℓ,ξℓ
). For the frequencies θx ∈ Θℓx and θt ∈ Θℓt we

consider the vector ψ(θx, θt) ∈ Ψℓx,ℓt(θx, θt). Then for

Sτℓ,ξℓ(θx, θt) := (1− ωt)INt + ωte−iθt(Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ)
−1Cτℓ ∈ CNt×Nt

it holds

(Sτℓ,ξℓ
ψ(θx, θt))

n
j = Sτℓ,ξℓ(θx, θt)ψ

n
j (θx, θt)

for n = 1, . . . ,Nℓt , j = 1, . . . ,Nℓx and we call Sτℓ,ξℓ(θx, θt) the Fourier symbol of
Sτℓ,ξℓ

.
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Proof. Let ψ(θx, θt) ∈ Ψℓx,ℓt(θx, θt), then we have with (5.7) for fixed n = 1, . . . ,Nℓt

and j = 1, . . . ,Nℓx

(Sτℓ,ξℓ
ψ(θx, θt))

n
j = ((INtNℓxNℓt

− ωt(Dτℓ,ξℓ
)−1Lτℓ,ξℓ

)ψ(θx, θt))
n
j

= (INt − ωt(Âτℓ,ξℓ(θx))
−1Lτℓ,ξℓ(θx, θt))ψ

n
j (θx, θt)

=: Sτℓ,ξℓ(θx, θt)ψ
n
j (θx, θt)

with Âτℓ,ξℓ(θx) := Kτℓ +
a
Δx(−e−iθx + 1)Mτℓ derived as in the previous proof. More-

over,

(Âτℓ,ξℓ(θx))
−1Lτℓ,ξℓ(θx, θt) = (Kτℓ +

a
Δx

(−e−iθx + 1)Mτℓ)
−1

(−e−iθtCτℓ +Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ)

= INt − e−iθt(Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ)
−1Cτℓ .

This implies

Sτℓ,ξℓ(θx, θt) = INt − ωt(INt − e−iθt(Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ)
−1Cτℓ)

= (1− ωt)INt + ωte−iθt(Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ)
−1Cτℓ .

The smoothing factor of the damped block Jacobi method can be measured using the
spectral radius. In order to do so, we need the following result.

Lemma 5.8. For λ ∈ C the eigenvalues of the matrix (K + λM)−1C ∈ CNt×Nt are
given by

σ((K+ λM)−1C) = {0,R(−λτ)}

where R(z) is the stability function of the given DG time stepping scheme, see Corollary
2.7.

Proof. See [21].

With these results we can calculate the smoothing factor using the Fourier symbol of the
smoother, which is of smaller dimension.
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Lemma 5.9. The spectral radius of the Fourier symbol Sτℓ,ξℓ(θx, θt) is given by

ρ(Sτℓ,ξℓ(θx, θt)) = max{|1− ωt|, S(ωt, θx, θt)}

with

S(ωt, θx, θt) := |1− ωt + e−iθtωtR(−µβ(θx))| (5.14)

for the stability function R of the given DG time stepping scheme, β(θx) := 1 − e−iθx

and the CFL number µ := aΔτℓ
Δxℓ

.

Proof. The eigenvalues of the Fourier symbol Sτℓ,ξℓ(θx, θt) from Lemma 5.7 are given by

σ(Sτℓ,ξℓ(θx, θt)) = 1− ωt + e−iθtωtσ(Kτℓ +
a
Δx

(−e−iθx + 1)Mτℓ)
−1Cτℓ .

With Lemma 5.8 we can compute the spectrum as

σ(Sτℓ,ξℓ(θx, θt)) = {1− ωt, 1− ωt + e−iθtωtR(−µβ(θx))}

and therefore

ρ(Sτℓ,ξℓ(θx, θt)) = max{|1− ωt|, |1− ωt + e−iθkωtR(−µβ(θx))|}.

We are now able to analyze the optimal smoothing behavior of the Fourier symbol Sτℓ,ξℓ

of the smoother. The first step is to find the optimal damping parameter ωt ∈ (0, 1] in
(5.7), i.e. for the worst case frequencies (θx, θt) ∈ (−π, π]2. We consider two different
coarsening strategies for the given space-time problem: either full-coarsening in both
spatial and temporal direction, or semi-coarsening, where we consider coarsening in the
temporal direction only. We apply both strategies in order to smoothen the set of high
frequencies from the coarser grid. For the set of space-time frequencies

Θℓx,ℓt := {(θx, θt) : θx ∈ Θℓx , θt ∈ Θℓt} ⊂ (−π, π]2

they are given by

Θ
high,s
ℓx,ℓt

:= Θℓx,ℓt \Θ
low,s
ℓx,ℓt

for Θlow,s
ℓx,ℓt

:= Θℓx,ℓt ∩ (−π, π]×
(
−π
2
,
π
2

]
,

Θ
high,f
ℓx,ℓt

:= Θℓx,ℓt \Θ
low,f
ℓx,ℓt

for Θ
low,f
ℓx,ℓt

:= Θℓx,ℓt ∩
(
−π
2
,
π
2

]2
,

where the index s denotes semi-coarsening in time and the index f full space-time coars-
ening. In Figure 5.1 the low and high frequency modes are visualized for both coarsening
strategies. First we need to determine the frequencies which are damped less efficient.
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Figure 5.1: Low and high frequencies for semi coarsening (left) and full coarsening (right)

Definition 5.10 (Worst case frequencies). The worst case frequencies for the function S
in (5.14) are defined as

(θ∗x (ωt, µ), θ∗t (ωt, µ)) := arg sup
(θx,θt)∈Θhigh

S(ωt, θx, θt). (5.15)

Since it is not possible to find an analytical expression for (5.14), we compute the worst
case frequencies numerically, using that the stability function R of the DG scheme is
given by a Padé approximant, see Chapter 2. However, for the (pt − 1, pt + 1)-Padé
approximant it holds R(−z) −−−−→

pt→∞
e−z and therefore some analytical computations can

be performed for the case pt → ∞. In this case, (5.14) becomes

S(ωt, θx, θt) := |1− ωt + e−iθtωte−µβ(θx)|,

and

e−µβ(θx) = eµ cos(θx)−µ(cos(µ sin(θx))− i sin(µ sin(θx))).

Moreover, for a big CFL number µ ≫ 0, which is of interest when considering implicit
solvers, we get

eµ cos(θx)−µ −−−→
µ→∞

{
1, θx = 0,
0, θx ∈ (−π, π] \ {0},
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since cos(θx) − 1 < 0 for θx ∈ (−π, π] \ {0} and cos(θx) = 0 for θx = 0, and
cos(µ sin(θx)), sin(µ sin(θx)) ∈ [−1, 1] for θx ∈ (−π, π] with increasing oscillation for
µ → ∞. This implies

e−µβ(θx) −−−→
µ→∞

{
1, θx = 0,
0, θx ∈ (−π, π] \ {0},

and therefore

S(ωt, θx, θt) −−−→µ→∞

{
|1− ωt + ωte−iθt |, θx = 0,
|1− ωt|, θx ∈ (−π, π] \ {0}.

We can compute the worst case frequency in space by

θ∗x = arg sup
θx∈(−π,π]

S(ωt, θx, θt) = 0,

which lies in the set of high frequencies both for semi and full coarsening, and thus

S(ωt, θ
∗
x , θt) = |1− ωt + ωte−iθt | =

√
(1− ωt)2 + ω2

t + 2ωt cos(θt)(1− ωt).

The worst case frequencies w.r.t. the temporal direction can then be calculated

θ∗t = arg sup
θt∈[π/2,π]

S(ωt, θ
∗
x , θt) =

π
2
,

θ∗t = arg sup
θt∈[−π,−π/2]

S(ωt, θ
∗
x , θt) = −π

2

We have therefore found worst case frequencies for both semi and full coarsening. Then
the optimal damping parameter can be calculated by

ω∗
t = arg inf

ωt∈(0,1]
S(ωt, θ

∗
x , θ

∗
t ) = 0.5.

These results can be seen as a comparison for the following numerical tests with Padé
approximations for the case pt <∞.

2.1 Semi-Coarsening in Time

We start by analyzing semi-coarsening in time and determine numerically the worst case
frequencies

(θ∗x (ωt, µ), θ∗t (ωt, µ)) ∈ [−π, π]×
[π
2
, π
]
∪ [−π, π]×

[
−π,−π

2

]
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for µ > 0 and ωt ∈ (0, 1].

By computing the maximum over 100×100 equidistant grid points in [−π, π]×[π/2, π]
and [−π, π]×[−π,−π/2]we can find S(ωt, θ

∗
x (ωt, µ), θ∗t (ωt, µ)) for fixedωt and µ. Nu-

merical tests show that S(ωt, θ
∗
x (ωt, µ), θ∗t (ωt, µ)) behaves very similar in its supremum

over θx and θt for different degrees pt of the (pt − 1, pt + 1)-Padé approximants, since
they are all approximating ez.

In Figure 5.2 the results for the example case pt = 3 can be seen. The four subfig-
ures show the worst case frequency θ∗x (ωt, µ), θ∗t (ωt, µ) and S(ωt, θ

∗
x , θ

∗
t ) for different

smoothing factors ωt = 0.25, 0.5, 0.75 respectively and for 100 equidistantly distributed
µ ∈ [0, 1000] . The worst case frequencies converge for all ωt and all pt to θ∗x (ωt, µ) = 0
and θ∗t (ωt, µ) = π

2 for large enough CFL number µ, while they oscillate for small µ.

As comparison we also look at the case pt → ∞. Again, the worst case frequencies
converge to θ∗x (ωt, µ) = 0 and θ∗t (ωt, µ) = π

2 , this time for even larger CFL number µ.
By this example we are able to detect a pattern in the oscillation: The worst case frequency
oscillate with decreasing amplitude when increasing µ. Thus we can conclude that the
numerical results confirm the analytical results for the limit case pt → ∞.

With these worst case frequencies it is possible to calculate the optimal damping param-
eter analytically by taking the infimum of

S(ωt, θ
∗
x , θ

∗
t ) =

√
(1− ωt)2 + ω2

t .

We get ω∗
t = 0.5 and therefore

S(ω∗
t , θ

∗
x , θ

∗
t ) =

1√
2
.

We want to confirm the optimal damping factor ω∗
t numerically. With the limits of the

worst case frequencies we obtained before we can calculate the minimum of S for 100
equidistant distributed µ ∈ [0, 1000] and ωt ∈ (0, 1] respectively.

The results for pt = 1, 3, 5 as well as for the reference case pt → ∞ can be seen in
Figure 5.3. The optimal damping parameter is given by ω∗

t = 0.5 for large µ, where with
increasing pt the critical CFL number µ to get convergence increases. These numerical
calculations coincide with the analytical result for pt → ∞.

For µ large enough we see that

S(ω∗
t , θ

∗
x , θ

∗
t ) ≈

1√
2
.
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(a) ωt = 0.25 (b) ωt = 0.5

(c) ωt = 0.75 (d) ωt = 0.5 for pt → ∞

Figure 5.2: (a)-(c): Worst case frequencies for (θ∗
x (ωt, µ), θ∗

t (ωt, µ)) ∈ [−π, π]× [π/2, π]∪ [−π, π]× [−π,−π/2] for 100
equidistant distributed µ ∈ [0, 1000] and varying ωt for the (2, 4)-Padé approximant, (d): worst case frequencies
for limit of the Padé approximants for pt → ∞.

and therefore

inf
ωt∈(0,1]

sup
θt∈[−π,−π/2]∪[π/2,π]

θx∈[0,π]

S(ωt, θx, θt) ≈
1√
2
.

This shows that for the Fourier symbol Sτℓ,ξℓ of the smoother from Lemma 5.9 and the
damping parameter ω∗

t = 0.5 the following approximation holds for any polynomial
degree pt:

sup
θt∈[−π,−π/2]∪[π/2,π]

θx∈[−π,π]

S(ω∗
t , θx, θt) ≈

1√
2
.

Thus, applying the damped block Jacobi smoother with optimal damping parameter
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Figure 5.3: Finding the optimal damping parameter ωt when varying µ for worst case frequencies θ∗
x (ωt, µ) and θ∗

t (ωt, µ)
for different Padé approximations.

ω∗
t = 0.5 results in asymptotically damping the error components in the high frequencies

Θ
high,s
ℓx,ℓt

by a factor of approximately 1√
2
.
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2.2 Full Space-Time Coarsening

We now study the asymptotic smoothing factor for full space-time coarsening. Using the
damping parameterω∗

t = 0.5 obtained before, we can calculate the worst case frequencies
for given µ and pt.

In Figure 5.4 the worst case frequencies for 100 equidistant distributed values µ ∈ [0, 1000]
for pt = 1, 2, 3 as well as for the case pt → ∞ can be seen, calculated with the same setup
as in the previous section. Theworst case frequencies are given by θ∗x = 0 and θ∗t = −π/2
for all pt and large CFL number µ.

Figure 5.4: (a)-(c): Worst case frequencies for (θ∗
x (ωt, µ), θ∗

t (ωt, µ)) ∈ [−π, π]2 \ [−π/2, π/2]2 for 100 equidistant dis-
tributed µ ∈ [0, 1000] and varying Padé approximant, (d): worst case frequencies for limit of the Padé approxi-
mants for pt → ∞.

We have found the worst case frequencies θ∗x (ωt, µ) = 0, θ∗t (ωt, µ) = −π/2 and as in
the semi-coarsening case, we get the asymptotic smoothing factor

sup
θt∈[−π,π]\[−π/2,π/2]
θx∈[−π,π]\[−π/2,π/2]

S(ω∗
t , θx, θt) ≈

1√
2
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for µ large enough.

2.3 Concluding Remarks on Smoothing Factors

In the previous sections we obtained good smoothing behavior for high frequencies in
space θx ∈ Θ

high
ℓx

, i.e. ρ(S) ≈ 1√
2
, if the CFL number µ is big enough.

In general we have for all frequencies (θx, θt) ∈ Θ the bound

S(ω∗
t , θx, θt) ≤

(
1
4
+

1
2
Re(R(−µβ(θx))) +

1
4
|R(−µβ(θx))|2

)1/2
≤ 1.

Moreover, we get β(θx) = 0 only for θx = 0, implying R(−µβ(θx)) = 1 due to the
construction of Padé approximants. By the L-stability we also have

|R(−µβ(θx))| ≈ 0

for almost all frequencies θx ∈ ΘLx , giving a good smoothing behavior for almost all fre-
quencies. This can be seen in Figures 5.5 and 5.6, where S(ω∗

t , θx, θt) is plotted withω∗
t for

100× 100 equidistant distributed nodes (θx, θt) ∈ [−π, π]2 for µ = 0.01, 1, 100, 1000
for pt = 1 in Figure 5.5 and for pt → ∞ in Figure 5.6. We notice for both cases and µ ≥ 1
that only frequencies θx and θt close to zero imply a smoothing factor of approximately
1.

3 Two-Grid Analysis

In this section we analyze the two-grid procedure for both full- and the semi-coarsening
strategies by studying the corresponding iteration matrices Mf

τℓ,ξℓ
and Ms

τℓ,ξℓ
from the

two-grid algorithm, see (5.12) and (5.13).

With the following lemma it suffices to only consider low frequencies in the calculations.

Lemma 5.11. Let u = (u1, . . . ,uNℓt )T ∈ RNt·Nℓx ·Nℓt and assume that Nℓx and Nℓt are
even numbers. Then the vector u can be written as

u =
∑

(θx,θt)∈Θlow,f
ℓx,ℓt

(
ψ(θx, θt) +ψ(γ(θx), θt) +ψ(θx, γ(θt)) +ψ(γ(θx), γ(θt))

)
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(a) µ = 0.01 (b) µ = 1

(c) µ = 100 (d) µ = 1000

Figure 5.5: Smoothing factor S(ω∗
t , θx, θt) for (θx, θt) ∈ [−π, π]2 with ω∗

t = 0.5 for pt = 1 and different µ.

with the shifting operator

γ(θ) :=

{
θ + π, θ < 0,
θ − π, θ ≥ 0,

and ψ(θx, θt) ∈ CNt·Nℓx ·Nℓt as in Lemma 5.3.

Proof. With Theorem 5.3 every u ∈ RNt·Nℓx ·Nℓt can be written as

u =
∑

θx∈Θℓx

∑
θt∈Θℓt

ψ(θx, θt)
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(a) µ = 0.01 (b) µ = 1

(c) µ = 100 (d) µ = 1000

Figure 5.6: Smoothing factor S(ω∗
t , θx, θt) for (θx, θt) ∈ [−π, π]2 with ω∗

t = 0.5 for pt → ∞ and different µ.

with the frequencies

θ ∈ Θℓ =
{(2−N)π

N
,
(4−N)π

N
, . . . ,

((N− 2)− N)π
N

, 0,

(N− (N− 2))π
N

,
(N− (N− 4))π

N
, . . . ,

(N− 2)π
N

,
Nπ
N

}
.

All low frequency modes lie in the interval
(
− π

2 ,
π
2
]
. The positive frequency modes are

given for 0 ≤ b ≤ N and can be classified as low frequency modes if

(N− b)π
N

≤ π
2
⇔ N− b

N
≤ 1

2
⇔ 1

2
≤ b

N
⇔ b ≥ N

2
.

The negative frequency modes are given for 2 ≤ b ≤ N− 2 and can be classified as low
frequency modes if

(b− N)π
N

> −π
2
⇔ b− N

N
> −1

2
⇔ b

N
>

1
2
⇔ b >

N
2
.
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If we consider for θ ∈ Θlow the mapping γ(θ) as defined in the lemma, then

γ(θ) = θ − π =
(N− b)π

N
− π = −bπ

N
≤ −

N
2 π
N

= −π
2
∈ Θhigh for θ ≥ 0,

γ(θ) = θ + π =
(b− N)π

N
+ π =

bπ
N
>

N
2 π
N

=
π
2
∈ Θhigh for θ < 0.

This shows that the shifting operator maps low to high frequencies, i.e. γ : Θlow
ℓ → Θ

high
ℓ .

Using this shifting operator and Lemma 5.3 we can rewrite the sum as a sum over low
frequency modes only:

u =
∑

(θx,θt)∈Θf
ℓx,ℓt

ψ(θx, θt) =

∑
(θx,θt)∈Θlow,f

ℓx,ℓt

(
ψ(θx, θt) +ψ(γ(θx), θt) +ψ(θx, γ(θt)) +ψ(γ(θx), γ(θt))

)
.

Since ψ(θx, θt) consists of the vectors ψn
j (θx, θt) = UΦn

j (θx, θt) which build the vector
Φ(θx, θt), the previous theorem implies that each vector u = (u1, . . . ,uNℓt )T can be
written as a linear combination of the low frequency vectors

{Φ(θx, θt),Φ(γ(θx), θt),Φ(θx, γ(θt)).Φ(γ(θx), γ(θt))},

Thus, four fine grid modes get aliased to one coarse grid mode. In the following it suffices
therefore to only consider low frequencies, using the shifting operator γ : Θlow

ℓ → Θ
high
ℓ .

Definition 5.12 (Space of low frequency harmonics). ForNt,Nℓx ,Nℓt consider the vector
ψ(θx, θt) ∈ CNt·Nℓx ·Nℓt for low frequencies (θx, θt) ∈ Θ

low,f
ℓx,ℓt

as in Lemma 5.3. We define
the linear space of low frequency harmonics as

Eℓx,ℓt(θx, θt) := span{Φ(θx, θt),Φ(γ(θx), θt),Φ(θx, γ(θt)),Φ(γ(θx), γ(θt))}
= {ψ(θx, θt) ∈ CNt·Nℓx ·Nℓt : ψn

j (θx, θt) = U1Φ
n
j (θx, θt)

+U2Φ
n
j (γ(θx), θt) +U3Φ

n
j (θx, γ(θt)) +U4Φ

n
j (γ(θx), γ(θt)),

n = 1, . . . ,Nℓt , j = 1, . . . ,Nℓx andU1,U2,U3,U4 ∈ CNt×Nt}.
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WithTheorem 5.3 and Lemma 5.6 we get for the systemmatrixLτℓ,ξℓ
and low frequencies

(θx, θt) ∈ Θ
low,f
ℓx,ℓt

the following mapping property:

Lτℓ,ξℓ
:Eℓx,ℓt(θx, θt) → Eℓx,ℓt(θx, θt),

U1
U2
U3
U4

→


Lτℓ,ξℓ(θx, θt)U1

Lτℓ,ξℓ(γ(θx), θt)U2
Lτℓ,ξℓ(θx, γ(θt))U3

Lτℓ,ξℓ(γ(θx), γ(θt))U4

 =: L̃τℓ,ξℓ(θx, θt)


U1
U2
U3
U4

 ,
(5.16)

with a block diagonal matrix L̃τℓ,ξℓ(θx, θt) ∈ C4Nt×4Nt and Lτℓ,ξℓ ∈ CNt×Nt as defined
in Lemma 5.6. Accordingly, we obtain with Lemma 5.7 for the smoother Sτℓ,ξℓ

and low
frequencies (θx, θt) ∈ Θ

low,f
ℓx,ℓt

Sτℓ,ξℓ
:Eℓx,ℓt(θx, θt) → Eℓx,ℓt(θx, θt),

U1
U2
U3
U4

→


Sτℓ,ξℓ(θx, θt)U1

Sτℓ,ξℓ(γ(θx), θt)U2
Sτℓ,ξℓ(θx, γ(θt))U3

Sτℓ,ξℓ(γ(θx), γ(θt))U4

 =: S̃τℓ,ξℓ(θx, θt)


U1
U2
U3
U4

 ,
(5.17)

with a block diagonal matrix S̃τℓ,ξℓ(θx, θt) ∈ C4Nt×4Nt and Sτℓ,ξℓ ∈ CNt×Nt as defined
in Lemma 5.7.

Next, we want to analyze the two-grid cycle on the space of low frequency harmonics
Eℓx,ℓt(θx, θt). In order to do so, we need to study the mapping properties of the restriction
and prolongation operators for full- and semi-coarsening.

Lemma 5.13 (Fourier symbols for spatial prolongation and restriction). Consider the
spatial restriction and prolongation operators Rℓx

ℓx−1 and Pℓx−1
ℓx

as defined in (5.9). Let
φℓx(θx) ∈ CNℓx be a fine Fourier mode andφℓx−1(2θx) ∈ CNℓx−1 a coarse Fourier mode
for low frequencies θx ∈ Θlow

ℓx
. Then for Rℓx

ℓx−1(θx) :=
1
2(e

−iθx + 1) it holds

(Rℓx
ℓx−1φ

ℓx(θx))j = Rℓx
ℓx−1(θx)φ

ℓx−1
j (2θx)

for j = 1, . . . ,Nℓx−1 and we call Rℓx
ℓx−1(θx) the Fourier symbol for the restriction oper-

ator in space.

For Pℓx−1
ℓx

(θx) :=
1
2(e

iθx + 1) it holds

(Pℓx−1
ℓx

φℓx−1(2θx))i = Pℓx−1
ℓx

(θx)φ
ℓx
i (θx) + Pℓx−1

ℓx
(γ(θx))φ

ℓx
i (γ(θx))

for i = 1, . . . ,Nℓx and we call Pℓx−1
ℓx

(θx) the Fourier symbol for the prolongation oper-
ator in space.
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Proof. For the spatial restriction operator we have

(Rℓx
ℓx−1φ

ℓx(θx))j =
1
2
(φℓx

2j−1(θx) + φℓx
2j(θx))

=
1
2
(e−iθx + 1)φℓx

2j(θx)

=
1
2
(e−iθx + 1)φℓx−1

j (2θx)

= Rℓx
ℓx−1(θx)φ

ℓx−1
j (2θx),

for j = 1, . . . ,Nℓx−1 using the shifting Lemma 5.5 and φℓx
2j(θx) = φℓx−1

j (2θx).

For the spatial prolongation operator we have

(Pℓx−1
ℓx

φℓx−1(2θx))2j−1 = φℓx−1
j (2θx) = φℓx

2j(θx) = eiθxφℓx
2j−1(θx)

and

(Pℓx−1
ℓx

φℓx−1(2θx))2j = φℓx−1
j (2θx) = φℓx

2j(θx)

for j = 1, . . . ,Nℓx−1, using the same arguments as before. Then

(Pℓx−1
ℓx

φℓx−1(2θx))j =

{
eiθxφℓx

j (θx), j odd,
φℓx
j (θx), j even,

j = 1, . . . ,Nℓx .

Moreover,

φℓx
j (γ(θx)) = eijγ(θx) =

{
eijπeijθx , θx < 0,
e−ijπeijθx , θx ≥ 0,

=

{
−φℓx

j (θx), j odd,
φℓx
j (θx), j even,

and

Pℓx−1
ℓx

(γ(θx)) =
1
2
(eiγ(θx) + 1) =

1
2
(−eiθx + 1)

for j = 1, . . . ,Nℓx . This implies

Pℓx−1
ℓx

(θx)φ
ℓx
j (θx) + Pℓx−1

ℓx
(γ(θx))φ

ℓx
j (γ(θx))

=
1
2
(eiθx + 1)φℓx

j (θx) +
1
2
(−eiθx + 1)

{
−φℓx

j (θx), j odd,
φℓx
j (θx), j even

=

{
eiθxφℓx

j (θx), j odd,
φℓx
j (θx), j even,

= (Pℓx−1
ℓx

φℓx−1(2θx))j

for j = 1, . . . ,Nℓx .
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Lemma 5.14 (Fourier symbols for temporal prolongation and restriction). Consider the
temporal restriction and prolongation operatorsRℓt

ℓt−1 andP
ℓt−1
ℓt

as defined in (5.8). Let
Φℓt(θt) ∈ CNt·Nℓt be a fine Fourier mode and Φℓt−1(θt) ∈ CNt·Nℓt−1 a coarse Fourier
mode for low frequencies θt ∈ Θlow

ℓt
with elements

Φn,ℓt
l (θt) := φn(θt), l = 1, . . . ,Nt, n = 1, . . . ,Nℓt ,

Φn,ℓt−1
l (θt) := φn(θt), l = 1, . . . ,Nt, n = 1, . . . ,Nℓt−1.

Then forRℓt
ℓt−1(θt) := e−iθtR1 +R2 ∈ RNt×Nt , withR1 andR2 as defined in (5.8), it

holds

(Rℓt
ℓt−1Φ

ℓt(θt))
n = Rℓt

ℓt−1(θt)Φ
n,ℓt−1(2θt)

for n = 1, . . . ,Nℓt−1 and we callRℓt
ℓt−1(θt) the Fourier symbol for the restriction oper-

ator in time.

Moreover, for Pℓt−1
ℓt

(θt) :=
1
2(e

iθtRT
1 +RT

2 ) ∈ RNt×Nt it holds

(Pℓt−1
ℓt

Φℓt−1(2θt))n = Pℓt−1
ℓt

(θt)Φ
n,ℓt(θt) +Pℓt−1

ℓt
(γ(θt))Φ

n,ℓt(γ(θt))

for n = 1, . . . ,Nℓt and we call Pℓt−1
ℓt

(θt) the Fourier symbol for the prolongation in
time.

Proof. See [21].

3.1 Semi-Coarsening in Time

We start by analyzing the mapping properties of the prolongation and restriction opera-
tors in the case of semi-coarsening in time.

Definition 5.15 (Fourier space for semi-coarsening). For Nt,Nℓx ,Nℓt−1 ∈ N and the
frequencies (θx, θt) ∈ Θ

low,f
ℓx,ℓt

define the vectorΦ(θx, θt) ∈ CNt·Nℓx ·Nℓt−1 as in Lemma 5.3.
We define the linear space with frequencies (θx, 2θt) as

Ψℓx,ℓt−1(θx, 2θt) := span{Φℓx,ℓt−1(θx, 2θt),Φℓx,ℓt−1(γ(θx), 2θt)}
= {ψℓx,ℓt−1(θx, 2θt) ∈ CNt,Nℓx ,Nℓt−1 :

ψn,ℓx,ℓt−1
j (θx, 2θt) = U1Φ

n,ℓx,ℓt−1
j (θx, 2θt)

+U2Φ
n,ℓx,ℓt−1
j (γ(θx), 2θt) for n = 1, . . . ,Nℓt − 1,

j = 1, . . . ,Nℓx , U1,U2 ∈ CNt×Nt}.

57



With the next lemmas we get the mapping properties for the semi-restriction and semi-
prolongation operators.

Lemma 5.16 (Fourier symbol for restriction for semi-coarsening). The restriction opera-
tor (Rℓ

ℓ−1)
s satisfies the mapping property

(Rℓ
ℓ−1)

s : Eℓx,ℓt(θx, θt) → Ψℓx,ℓt−1(θx, 2θt)
U1
U2
U3
U4

 7→ (R̃
ℓ

ℓ−1)
s(θt)


U1
U2
U3
U4


with the matrix

(R̃
ℓ

ℓ−1)
s(θt) :=

(
Rℓt

ℓt−1(θt) 0 Rℓt
ℓt−1(γ(θt)) 0

0 Rℓt
ℓt−1(θt) 0 Rℓt

ℓt−1(γ(θt))

)
∈ C2NtNt

and the Fourier symbol Rℓt
ℓt−1(θt) ∈ CNt×Nt as defined in Lemma 5.14.

Proof. See [21].

Lemma 5.17 (Fourier symbol for prolongation for semi-coarsening). For (θx, θt) ∈ Θ
f
ℓx,ℓt

the prolongation operator (Pℓ−1
ℓ )s satisfies the mapping property

(Pℓ−1
ℓ )s : Ψℓx,ℓt−1(θx, 2θt) → Eℓx,ℓt(θx, θt)(

U1
U2

)
7→ (P̃

ℓ−1
ℓ )s(θt)

(
U1
U2

)
with the matrix

(P̃
ℓ−1
ℓ )s(θt) :=


Pℓt−1

ℓt
(θt) 0

0 Pℓt−1
ℓt

(θt)

Pℓt−1
ℓt

(γ(θt)) 0
0 Pℓt−1

ℓt
(γ(θt))

 ∈ C4Nt×2Nt

and the Fourier symbol Pℓt−1
ℓt

(θt) ∈ CNt×Nt as defined in Lemma 5.14.

Proof. See [21].
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With Lemma 5.6 we obtain the mapping property for the coarse grid correction when
semi-coarsening in time is applied:

(L2τℓ,ξℓ)
−1 : Ψℓx,ℓt−1(θx, 2θt) → Ψℓx,ℓt−1(θx, 2θt),(

U1
U2

)
7→ (L̂s

2τℓ,ξℓ(θx, 2θt))
−1
(
U1
U2

)
,

(5.18)

with the matrix

(L̂s
2τℓ,ξℓ(θx, 2θt))

−1 :=

(
(L2τℓ,ξℓ(θx, 2θt))

−1 0
0 (L2τℓ,ξℓ(γ(θx), 2θt))

−1

)
∈ C2Nt×2Nt .

Here, a complication arises for frequencies (θx, θt) such that L2τℓ,ξℓ(θx, 2θt) = 0. For
some more discussion of the reasons for this formal complication we refer to [58]. In
order to make sure that L̂s

exists, we exclude the set

Λs :=
{
(θx, θt) ∈ (−π, π]×

(
−π
2
,
π
2

]
: Lτℓ,ξℓ(θx, θt) = 0 or L2τℓ,ξℓ(θx, 2θt) = 0

}
.

3.2 Full Space-Time Coarsening

Next, we analyze the mapping properties of the prolongation and restriction operators in
the case of full space-time coarsening.

Lemma 5.18 (Fourier symbol for restriction for full-coarsening). The following mapping
property holds for the full restriction operator:

(Rℓ
ℓ−1)

f : Eℓx,ℓt(θx, θt) → Ψℓx−1,ℓt−1(2θx, 2θt),
U1
U2
U3
U4

 7→ (R̃
ℓ

ℓ−1)
f(θx, θt)


U1
U2
U3
U4

 ,

with the matrix

(R̃
ℓ

ℓ−1)
f(θx, θt) :=(

R̂ℓ
ℓ−1(θx, θt) R̂ℓ

ℓ−1(γ(θx), θt) R̂ℓ
ℓt(θx, γ(θt)) R̂ℓ

ℓ−1(γ(θx), γ(θt))

)
∈ CNt×4Nt

and the Fourier symbol

R̂ℓ
ℓ−1(θx, θt) := Rℓx

ℓx−1(θx)R
ℓt
ℓt−1(θt) ∈ CNt×Nt ,

with the Fourier symbols Rℓx
ℓx−1(θx) ∈ C from Lemma 5.13 and Rℓt

ℓt−1(θt) ∈ CNt×Nt

from Lemma 5.14.
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Proof. See [21].

Lemma 5.19 (Fourier symbol for prolongation for full-coarsening). The following map-
ping property holds for the full prolongation operator:

(Pℓ−1
ℓ )f : Ψℓx−1,ℓt−1(2θx, 2θt) → Eℓx,ℓt(θx, θt),

U 7→ (P̃
ℓ−1
ℓ )f(θt, θx)U,

with the matrix

(P̃
ℓ−1
ℓ )f(θt, θx) :=


P̂ℓ−1

ℓ (θx, θt)

P̂ℓ−1
ℓ (γ(θx), θt)

P̂ℓ−1
ℓ (θx, γ(θt))

P̂ℓ−1
ℓ (γ(θx), γ(θt))

 ∈ CNt×4Nt ,

and the Fourier symbol

P̂ℓ−1
ℓ (θx, θt) := Pℓx−1

ℓx
(θx)Pℓt−1

ℓt
(θt) ∈ CNt×Nt

with the Fourier symbols Pℓx−1
ℓx

∈ C from Lemma 5.13 and Pℓt−1
ℓt

∈ CNt×Nt from
Lemma 5.14.

Proof. See [21].

Moreover, we obtain the mapping property

(L2τℓ,2ξℓ)
−1 : Ψℓx−1,ℓt−1(2θx, 2θt) → Ψℓx−1,ℓt−1(2θx, 2θt),

U 7→ (L̂f
2τℓ,2ξℓ(2θx, 2θt))

−1U
(5.19)

with the matrix

(L̂f
2τℓ,2ξℓ(2θx, 2θt))

−1 := (L2τℓ,2ξℓ(2θx, 2θt))
−1 ∈ CNt×Nt .

As before, a complication arises for frequencies (θx, θt) such thatL2τℓ,2ξℓ(2θx, 2θt) = 0.
In order to make sure that L̂f

exists, we exclude the set

Λf :=

{
(θx, θt) ∈

(
−π
2
,
π
2

]2
: Lτℓ,ξℓ(θx, θt) = 0 or L2τℓ,2ξℓ(2θx, 2θt) = 0

}
.
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3.3 Asymptotic Convergence Factors

We are now able to write down the Fourier symbol of the two-grid operators and calculate
the asymptotic convergence factors.

Theorem 5.20 (Fourier symbol for the two-grid operator for semi-coarsening). For low
frequency modes (θx, θt) ∈ Θ

low,f
ℓx,ℓt

the following mapping property holds for the two-grid
operatorMs

τℓ,ξℓ
in (5.13) with semi-coarsening in time:

Ms
τℓ,ξℓ

: Eℓx,ℓt(θx, θt) → Eℓx,ℓt(θx, θt),
U1
U2
U3
U4

 7→ Ms(θx, θt)


U1
U2
U3
U4

 ,

with the iteration matrix

Ms(θx, θt) := S̃
ν2
τℓ,ξℓ

(θx, θt)(I4Nt − (P̃
ℓ−1
ℓ )s(θt)(L̂

s
2τℓ,ξℓ(θx, 2θt))

−1

(R̃
ℓ

ℓ−1)
s(θt)L̃τℓ,ξℓ(θx, θt))S̃

ν1
τℓ,ξℓ

(θx, θt) ∈ C4Nt×4Nt .

Proof. The two-grid operator for semi-coarsening is given by

Ms
τℓ,ξℓ

= Sν2
τℓ,ξℓ

(I− (Pℓ−1
ℓ )s(L2τℓ,ξℓ)

−1(Rℓ
ℓ−1)sLτℓ,ξℓ

)Sν1
τℓ,ξℓ

.

By previous results we obtain

Ms
τℓ,ξℓ

:Eℓx,ℓt
(5.17)−−→ Eℓx,ℓt

(5.16)−−−→ Eℓx,ℓt
5.16−−→ Ψℓx,ℓt−1(θx, 2θt)

(5.18)−−→ Ψℓx,ℓt−1(θx, 2θt)
5.17−−→ Eℓx,ℓt

(5.17)−−→ Eℓx,ℓt

with the mapping
U1
U2
U3
U4

 7→ S̃
ν1
τℓ,ξℓ


U1
U2
U3
U4



7→ L̃τℓ,ξℓS̃
ν1
τℓ,ξℓ


U1
U2
U3
U4
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7→ (R̃
ℓ

ℓ−1)
sL̃τℓ,ξℓS̃

ν1
τℓ,ξℓ


U1
U2
U3
U4



7→ (L̂s
2τℓ,ξℓ)

−1(R̃
ℓ

ℓ−1)
sL̃τℓ,ξℓS̃

ν1
τℓ,ξℓ


U1
U2
U3
U4



7→ (P̃
ℓ−1
ℓ )s(L̂s

2τℓ,ξℓ)
−1(R̃

ℓ

ℓ−1)
sL̃τℓ,ξℓS̃

ν1
τℓ,ξℓ


U1
U2
U3
U4



7→ (I4Nt − (P̃
ℓ−1
ℓ )s(L̂s

2τℓ,ξℓ)
−1(R̃

ℓ

ℓ−1)
sL̃τℓ,ξℓ)S̃

ν1
τℓ,ξℓ


U1
U2
U3
U4



7→ S̃
ν2
τℓ,ξℓ

(I4Nt − (P̃
ℓ−1
ℓ )s(L̂s

2τℓ,ξℓ)
−1(R̃

ℓ

ℓ−1)
sL̃τℓ,ξℓ)S̃

ν1
τℓ,ξℓ


U1
U2
U3
U4



Theorem 5.21 (Fourier symbol for the two-grid operator for full-coarsening). For low
frequency modes (θx, θt) ∈ Θ

low,f
ℓx,ℓt

the following mapping property holds for the two-

grid operator Mf
τℓ,ξℓ

in (5.12) with space-time coarsening:

M
f
τℓ,ξℓ

: Eℓx,ℓt(θx, θt) → Eℓx,ℓt(θx, θt),
U1
U2
U3
U4

 7→ Mf(θx, θt)


U1
U2
U3
U4

 ,

with the iteration matrix

Mf(θx, θt) := S̃
ν2
τℓ,ξℓ

(θx, θt)(I4Nt − (P̃
ℓ−1
ℓ )f(θx, θt)(L̂

f
2τℓ,2ξℓ(2θx, 2θt))

−1

(R̃
ℓ

ℓ−1)
f(θx, θt)L̃τℓ,ξℓ(θx, θt))S̃

ν1
τℓ,ξℓ

(θx, θt) ∈ C4Nt×4Nt .

Proof. The proof follows as for the previous theorem.
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Using Theorems 5.20 and 5.21 we can analyze the asymptotic convergence behavior of
the two-grid cycle by simply computing the maximal spectral radius of Ms

µ(θx, θt) and

Mf
µ(θx, θt) w.r.t. the low frequencies (θx, θt) ∈ Θ

low,f
ℓx,ℓt

. This motivates the following
definition:

Definition 5.22 (asymptotic two-grid convergence factors). For the two-grid iteration
matricesMs(θx, θt) andMf(θx, θt) as in (5.13) and (5.12) we define the asymptotic con-
vergence factors

ϱ(Ms) := max{ϱ(Ms(θx, θt)) : (θx, θt) ∈ Θ
low,f
ℓx,ℓt

\ Λs},

ϱ(Mf) := max{ϱ(Mf(θx, θt)) : (θx, θt) ∈ Θ
low,f
ℓx,ℓt

\ Λf}.

To derive the asymptotic convergence factors ϱ(Ms) and ϱ(Mf) for a given discretiza-
tion parameter µ ∈ R+ and a given polynomial degree pt ∈ N it is necessary to compute
the eigenvalues of

Ms(θx, θt) ∈ C4Nt×4Nt and Mf(θx, θt) ∈ C4Nt×4Nt

with Nt = pt + 1 for each low frequency (θx, θt) ∈ Θ
low,f
ℓx,ℓt

. This shows that the local
Fourier analysis provides a feasible option to calculate the asymptotic convergence factors
for a huge space-time system of the dimension Nt · Nℓt · Nℓx × Nt · Nℓt · Nℓx .

3.4 Numerical Results

Since we can not find analytical expressions for the eigenvalues of the two-grid operators
Mf(θx, θt) and Ms(θx, θt) in order to calculate the asymptotic convergence factors,
we compute the eigenvalues numerically. We consider a space-time discretization with
Nx = 28 spatial elements,N = 28 temporal elements with polynomial degree pt ∈ {0, 1}
and varying CFL number µ. When varying the CFL number and at the same time
keeping the number of temporal elements on the fine grid the same, we need to adjust
the time interval [0,T] for each CFL number. This setup results in very large space-time
systems, making direct calculations of convergence factors not feasible, while we are left
with calculating the eigenvalues of a matrix of dimension 4Nt × 4Nt, with Nt = pt + 1
with the local Fourier analysis.

For 100 equidistant CFL numbers µ between 1 and 1000 we calculate for low frequencies
Θ

low,f
ℓx,ℓt

the asymptotic convergence factors as given inDefinition 5.22. The results obtained
from the Fourier analysis can be seen in Figure 5.7 for pt = 0 and in Figure 5.8 for pt = 1.
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In both cases the asymptotic convergence factors converge to the same value for semi- and
full-coarsening case, respectively.

In the case pt = 0 the asymptotic convergence factor converges to approximately 0.5
for µ ≈ 35 for semi-coarsening and slightly bigger critical CFL number for the full-
coarsening case. Moreover, we notice that both for semi- and full-coarsening the two-grid
cycle converges for any discretization parameter µ ∈ [1, 1000]. In the semi-coarsening
case, the asymptotic convergence factors are in the range [0.5, 0.5225] and oscillate for
CFL numbers smaller than 35. In the full-coarsening case, the convergence factors are
in the range [0.5, 0.66] and oscillate as well slightly for CFL numbers smaller than 35.

When increasing the polynomial order to pt = 1, the asymptotic convergence rate be-
comes smaller, approximately 0.37, when choosing the CFL number big enough. In
this case, the critical CLF number is µ ≈ 66 for semi-coarsening and µ ≈ 40 for full-
coarsening. As before, both for semi- and full-coarsening the two-grid cycle converges for
any discretization parameter µ ∈ [1, 1000]. In the semi-coarsening case, the asymptotic
convergence factors are in the range [0.37, 0.65] and oscillate for CFL numbers smaller
than 66. In the full-coarsening case, the convergence factors are in the range [0.37, 0.57]
and oscillate as well slightly for CFL numbers smaller than 40.

We conclude that the two-grid cycle converges to the exact solution both for semi- and
full-coarsening for polynomial degrees pt = 0 and pt = 1 and the asymptotic convergence
rates are always bounded by 0.66. Moreover, the asymptotic convergence rates decrease
when increasing pt. However, in the case of full-coarsening the problem on the coarse
grid becomes smaller than in the semi-coarsening case and is therefore cheaper to solve
directly.
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Figure 5.7: Two-grid asymptotic convergence factors for pt = 0 for different coarsening strategies, calculated with local
Fourier analysis.
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Figure 5.8: Two-grid asymptotic convergence factors for pt = 1 for different coarsening strategies, calculated with local
Fourier analysis.
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Chapter 6

Conclusions and Outlook

1 Conclusion

In this work we presented a method to construct multigrid based preconditioners for
implicit DG-SEM discretizations. These discretizations need an efficient solver for the
resulting nonlinear system since the size of the system is connected to the order of the
method, i.e. the number of unknowns increases with increasing polynomial degree and
dimension. In particular, this leads to large dense Jacobian blocks. Therefore we suggested
to use a Jacobian-free Newton-Krylov solver, which is favorable with regards to memory
consumption. However, in order to improve the convergence speed of the GMRES sub-
solver, a preconditioner needs to be constructed.

Since we are interested in a Jacobian-free solver, the problem arose how to construct a
good and efficient preconditioner without using the Jacobian. In this thesis we presented
a novel idea for constructing a Jacobian-free preconditioner for the JFNK approach us-
ing multigrid methods. We suggested to construct a multigrid preconditioner based on
a lower order replacement operator, i.e. a first order finite volume replacement operator.
The choice of this replacement operator was motivated by the equivalence of a DG-SEM
discretization and a high order FV discretization. With this ansatz, we avoided con-
structing the Jacobian of the original DG operator while keeping the number of degrees
of freedom in the replacement operator the same. Moreover, using a FV replacement
operator allows to apply available knowledge about fast multigrid schemes for FV dis-
cretizations, e.g. to equip these multigrid methods with a state of the art low memory
W3 smoother. In the attached publications we showed the efficiency of the suggested
preconditioner for both linear and nonlinear test problems and can therefore show the
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potential of the suggested multigrid preconditioned JFNK solvers for conservation laws.

Recently, space-time DGmethods have become of interest. In these methods the tempo-
ral direction is discretized using DG schemes as well, resulting in large nonlinear systems.
In order to extend the efficient preconditioners to the space-time setting, we need space-
time multigrid methods. These methods have to be constructed carefully since the spatial
and temporal directions have different properties, e.g. with regards to information flow,
but also require different coarsening strategies.

In order to improve the insight into such space-timemultigridmethods, we presented and
performed a Local Fourier Analysis. In the core part of this thesis we discussed an LFA
for the one-dimensional linear advection equation as model problem, discretized with
DG-SEM of variable order in time and order 0 in space. We showed how to calculate
smoothing and convergence factors using the Fourier symbols of the operators, which is
the only feasible option for large systems resulting from such discretizations. The results
and insights we gained with this analysis are valuable for constructing efficient space-time
multigrid based preconditioners.

2 Future work

There are several options for future directions for the work presented in this thesis. The
most intuitive one is to generalize the preconditioners presented in the publications to
a space-time framework. This might include constructing space-time multigrid precon-
ditioners for space-time DG-SEM solvers using a replacement (space-time) FV operator
as we suggested in the publications. When doing so, the option to coarsen in only some
directions could be investigated with regards to the efficiency of the multigrid precondi-
tioner. Moreover, considering space-time discretizations in two or three dimensions also
implies the need for parallelization.

Then, the focus can be laid on either the construction of new numerical methods, i.e.
optimizing the resulting preconditioner and analyzing the effects of different smoothers
on the spatial and temporal direction. Another option is to consider a specific appli-
cation and apply the suggested multigrid preconditioners to these problem, eventually
using open source software for PDE solvers and extend them with multigrid based pre-
conditioners.
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Our aim is to construct efficient preconditioners for high order discontinuous Galerkin (DG) methods. We consider the DG
spectral element method with Gauss-Lobatto-Legendre nodes (DGSEM-GL) for the 1D linear advection equation. It has been
shown in [4] that DGSEM-GL has the summation-by-parts (SBP) property and an equivalent finite volume (FV) discretization
is presented in [3]. Thus we present a multigrid (MG) preconditioner based on a simplified FV discretization.

c© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

An efficient implicit DG variant is DGSEM, where the interpolation of the flux is collocated with the numerical quadrature
used for the inner products, [4]. Key to an efficient algorithm is a fast solver with low memory footprint. Our aim is to
constuct a matrix-free preconditioner using approximations to the FV discretization. We solve the 1D advection equation with
DGSEM using a right preconditioner based on an agglomeration multigrid method. We show first results for 2-, 3- and 4-stage
Runge-Kutta (RK) smoothers with optimized parameters from [1].

2 Discontinuous Galerkin Spectral Element Method

To introduce the DGSEM method, we consider the one-dimensional linear scalar advection equation

ut + aux = 0 (1)

with a > 0, periodic boundary and suitable initial conditions. We construct a grid with M elements and introduce a nodal
polynomial approximation of N + 1 degrees of freedom {uj}Nj=0 located at the element grid nodes xn0 , . . . , x

n
N

un(x, t) ≈ uh(x, t) =

N∑

j=0

uj(t)`j(x), (2)

in each element. We choose GL grid nodes and Lagrange basis functions `j(x) of degree N . Multiplying with a test function
` ∈ {`j}Ni=0 and integrating over the element transformed to [−1, 1] gives the weak form of (1). Inserting the numerical
approximation (2) and integration by parts yields

∫ 1

−1

u̇h`jdx+ [u∗`j ]|1−1 −
∫ 1

−1

uh`
′
jdx = 0, j = 0, . . . , N (3)

with u̇h the time derivative of (2), (.)′ the spatial derivative w.r.t x and u∗ the numerical upwind flux between elements.
Integration by numerical quadrature with GL nodes and Lagrange basis yields a matrix vector formulation on each element:

∆xn
2

Mu̇−DTMu = Bu∗, (4)

Dki = `i(xk), i, k = 0, . . . , N and B = diag([−1, 0, . . . , 0, 1]).

3 Finite Volume Based Agglomeration Multigrid Preconditioner

We construct a preconditioner for (2) based on an MG method applied to a simple FV discretization of (1). The grid points of
the FV cells coincide with the DGSEM elements plus additional N equidistant points inside of each element. An equidistant
FV discretization for (1) with mesh width ∆x̃ reads

u̇i +
a

∆x̃
(ui − ui−1) = 0, (5)

∗ Corresponding author: e-mail lea_miko.versbach@math.lu.se, phone +46 46 222 6811
∗∗ e-mail philipp.birken@na.lu.se
∗∗∗ e-mail ggassner@math.uni-koeln.de
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2 of 2 Section 22: Scientific computing

for the cell average ui on cell i = 1, . . . ,K. Implicit Euler time stepping yields a linear system to be solved in each time step:

un+1 − un +
a∆t

∆x̃
Cun+1 = 0 ⇔ Aun+1 = un, (6)

for A = I + ν
∆x̃C ∈ RK×K and ν = a∆t. The two-grid preconditioner for a smoother xk+1 = MSx

k +N−1
S b reads

(I − P 0
1A
−1
0 R1

0A1)N−1
S + P 0

1A
−1
0 R1

0A1. (7)

We consider s-stage RK schemes with initial condition u0 = un as smoothers:

uj = un + αj∆t
∗(un −Auj−1), j = 1, . . . , s− 1,

un+1 = un + ∆t∗(un −Aus−1).

On each grid level l, the explicit pseudo time step is defined by ∆t∗l = c∆xl/ν for mesh width ∆xl. We use optimized s-stage
RK parameters from [1].

4 Numerical Results

We test the preconditioner on (1) with a = 2 on the interval [0, 2] with periodic boundary conditions and initial condition
sin(πx). We keep the number of unknowns constant 300 and perform one time step with CFL = 1. In figure 1 we see

Fig. 1: Performance of preconditioned DGSEM for different optimized smoothers

the effect of the preconditioner. As expected, using the FV method itself results in the best preconditioner. FV MG based
preconditioners perform also well, with a visible influence of the smoother. In this setting, the optimized RK2 smoother gives
the best results. While unpreconditioned GMRES does not terminate in 70 iterations, using the FV based MG preconditioner
with RK2 smoother GMRES terminates in less that 70 iterations. It is moreover noticeable that the preconditioner performs
better for smaller N , namely in the left figure. This might be caused by the optimized smoothing parameters, which are
constructed for the case N = 1.

5 Conclusions and Outlook

We suggested an FV based MG preconditioner for DGSEM to solve the advection equation in 1D. Using explicit 2-, 3- and
4-stage RK smoothers we have achieved an improved performance compared to the unpreconditioned case. The relatively
large influence of the smoother choice suggests to consider more advanced smoothers, such as W-smoothers [2], and to find
new optimal parameters for higher order DGSEM discretizations.

References
[1] P. Birken, Optimizing Runge-Kutta smoothers for unsteady flow problems, Electronic Transactions on Numerical Analysis 39, pp. 298-

312 (2012).
[2] P. Birken, J. Bull, A. Jameson, Preconditioned smoothers for the full approximation scheme for the RANS equations, J. Sci. Comput.

preprint (2016).
[3] T. C. Fisher, M. H. Carpenter, J, Nordström, N. K. Yamaleev, C. Swanson, Discretely conservative finite-difference formulations for

nonlinear conservation laws in split form: Theory and boundary conditions, Journal of Computational Physics 234, pp. 353-375 (2013).
[4] G. J. Gassner, A skew-symmetric discontinuous Galerking spectral element discretization and its relation to SBP-SAT finite difference

methods, J. Sci. Comput. 35, pp. A1233-A1253 (2012).
[5] D. A. Kopriva, Implementing Spectral Element Methods for Partial Differential Equations, Scientific Computing, Springer, Dordrecht

(2009).

c© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.gamm-proceedings.com

80



Paper ii





INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS
2019, VOL. 33, NO. 9, 353–361
https://doi.org/10.1080/10618562.2019.1667983

Subcell finite volumemultigrid preconditioning for high-order discontinuous
Galerkin methods

Philipp Birkena, Gregor J. Gassnerb and Lea M. Versbacha

aNumerical Analysis, Centre for the Mathematical Sciences, Lund University, Lund, Sweden; bDepartment for Mathematics and Computer
Science, Center for Data and Simulation Science, University of Cologne, Köln, Germany

ABSTRACT
We suggest a newmultigrid preconditioning strategy for use in Jacobian-free Newton–Krylov (JFNK)
methods for the solution of algebraic equation systems arising from implicit Discontinuous Galerkin
(DG) discretisations. To define the new preconditioner, use is made of an auxiliary first-order finite
volume discretisation that refines the original DG mesh, but can still be implemented algebraically.
As smoother,we consider thepseudo-time iterationW3with a symmetricGauss–Seidel-typeapprox-
imation of the Jacobian. As a proof of concept numerical tests are presented for the one-dimensional
Euler equations, demonstrating the potential of the new approach.
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1. Introduction

The goal of our research is the construction of e!cient
Jacobian-free preconditioners for high order Discon-
tinuous Galerkin (DG) discretisations with implicit
time integration. One of our main interests is three-
dimensional unsteady compressible "ow. High-order
DG methods (and related methods such as Flux
Reconstruction (FR) discretisations) o#er great poten-
tial for Large Eddy Simulation (LES) of turbulent "ows
with geometries, such as jet engines. The idea of DG
(or FR) is to approximate the solution element-wise
using a polynomial, which is allowed to be discon-
tinuous across element interfaces, see Kopriva (2009)
and Huynh (2007). Communication and coupling of
degrees of freedom (DOF) is only across faces, whereas
the element-local computations are very dense. As a
result, DG methods are very well suited for domain-
decomposition-based parallelisation (see, e.g. Hin-
denlang et al. 2012; Vincent et al. 2016). The spe-
ci$c variant we consider is the DG Spectral Element
Method (DG-SEM), e.g. Kopriva, Woodru#, and Hus-
saini (2002). We use a Lagrange-type (nodal) basis
with Gauss–Lobatto (GL) quadrature nodes with the
collocation of the discrete integration. These choices
yield DG operators that satisfy the summation-by-
parts (SBP) property (see Gassner 2013), which is the
discrete analogue to integration-by-parts. SBP is key

CONTACT Lea M. Versbach lea@maths.lth.se, lea_miko.versbach@math.lu.se

to construct methods that are discretely entropy stable
and/or kinetic energy preserving.

DG discretisation in space results in a big system
of ODEs. Due to geometry features and thin bound-
ary layers that occur in challenging compressible tur-
bulent "ow applications as the design of jet engines,
aeroplanes and wind turbines, the resulting large sys-
tem of ODEs is sti#. Implicit time integrators can
overcome the de$ciency of explicit time integrators
with restrictive CFL conditions. However, e!ciency
can only be restored when the arising large non-linear
systems are solved e!ciently in terms of CPU time,
but also regardingmemory consumption. Vincent and
Jameson mention that solvers for linear and non-
linear equation systems are severely lacking for 3D
DG applications as one of four major obstacles that
need to be solved if high-order methods are to be
widely adopted by, e.g. industry, Vincent and Jame-
son (2011). Candidates for solvers are FAS-Multigrid
(full-approximation multigrid scheme) and precondi-
tioned Jacobian-Free Newton–Krylov methods (JFNK)
(Knoll andKeyes 2004) wheremultigrid can be used as
a preconditioner (see Birken and Jameson 2010). The
JFNK technology is in general interesting, as themem-
ory use is minimised. Although DG systems have a
weakly coupled block structure, the blocks themselves
can be large. In particular, the problem for high-order

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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DG methods is that the number of unknowns per
element increases dramatically with increasing poly-
nomial degree and dimension, leading to large dense
Jacobian blocks (see Birken et al. 2013; Birken 2012).
For a $nite volume method, the block size is 2+d
with dimension d, whereas for a DG-SEM with pth
degree polynomials, it is (d + 2)(p + 1)d. For degree
2 in 3D, this is already 135. The favourable memory
consumption of the JFNK approach is obsolete if the
preconditioner requires the storage of (parts of) the
DG system Jacobian.

Hence in this article, we present a novel idea for
the construction of a well-performing preconditioner
for the JFNK approach, while retaining the low mem-
ory use, i.e. a Jacobian-free preconditioner. The main
ingredient consists in the construction of a simpli-
$ed replacement operator. A motivation for this is
a previously proved equivalence between a DG-SEM
discretisation and a high order FV discretisation, see
Fisher et al. (2013). One could, for instance, choose a
di#erent polynomial order in the element to generate
a replacement operator as in Fidkowski et al. (2005)
and Birken et al. (2013). However, we aim to retain
the number of DOFs in our replacement operator by
introducing subcells in each element, namely p+1 in
each spatial direction. On this subcell-element grid,
the simplest replacement operator is a $rst-order $nite
volume (FV) discretisation. In some sense, we reinter-
pret the nodal values as input for an FV method. This
gives a semi-structured–unstructured approximation,
where the elements are unstructured, but inside the
element the subcells are structured (Versbach, Birken,
and Gassner 2018). We extend the idea of this paper to
the Euler equations. In the resulting approximate Jaco-
bian, we now only have (d + 2)(p + 1)(2d + 1) entries
(Birken 2012). Furthermore, it allows to use the avail-
able knowledge about fastmultigrid (MG)methods for
FV discretisations on (block-)structured meshes. As a
smoother for our FV discretisation, we use a state of
the art low memory W3 smoother from Birken, Bull,
and Jameson (2018).

A related approach was proposed in Allaneau, Li,
and Jameson (2012) for spectral di#erence (SD) meth-
ods, where the replacement operator is also an FV
discretisation on a potentially $ne grid.However, there
the FV grid is not embedded in the high-order grid,
but overlayed. Thus, it is necessary to interpolate the
solution (and the residual) in-between di#erent grids
(with di#erent topologies), which needs interpolation

and reconstruction operators similar to Chimera tech-
niques. In contrast, we want to harness in particu-
lar the semi-unstructured–structured mesh-topology:
our FV discretisation basically lives on the same DOFs
as the nodal high-order DG method.

In the remainder of the paper, we $rst describe our
prototype problem, the one-dimensional compressible
Euler equations. We then present the DG-SEM and
the FV subcell discretisations as well as the multigrid
solver. In the last part of the paper, we show numeri-
cal experiments to validate the approach and draw our
conclusions.

2. One-dimensional Euler equations

As a prototype problem for our novel idea, we consider
the one-dimensional compressible Euler equations for
a perfect gas




ρ

m
ρE





t

+




m

mv + p
Hm





x

= 0, (1)

with appropriate initial and boundary conditions.
Here ρ is the density, m = ρv the momentum,
p the pressure, E the energy and H = E + p/ρ
the enthalpy. De$ning U = (ρ,m, ρE)T and f (U) =
(m,mv + p,Hm)T, we can write the Euler equations in
vector form:

Ut + f (U)x = 0. (2)

3. Spatial discretisation

3.1. DG-SEM

For the spatial discretisation, we introduce a grid with
K elements ek of width "xk, k = 1, . . . ,K. Each ele-
ment is transformed to the reference element [−1, 1]
by a linear mapping with Jacobian Jk := "xk/2. The
solution is approximated by a nodal polynomial in
reference space with degree p in each element ek

U(ξ , t)|ek ≈ Uk(ξ , t) =
p+1∑

j=1
Uk
j (t)ψj(ξ), (3)

where the interpolation nodes are the GL nodes
{ξj}

p+1
j=1 . We use the element mapping to transform the

Euler equations into reference space

JkUt + f (U)ξ = 0, (4)
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and insert our ansatz (3). Next, we integrate over the
reference element, use integration-by-parts for the "ux
term and replace the "uxes at the element interfaces
with so-called numerical "ux functions f ∗ to arrive at

∫ 1

−1
JkUk

t ψ(ξ) dξ + [f ∗ψ(ξ)]1−1

−
∫ 1

−1
f (Uk)ψξ (ξ) dξ = 0. (5)

As a numerical "ux function, we choose the Rusanov
"ux (or local Lax–Friedrich "ux)

f ∗(U−,U+) = f (U−) + f (U+)

2

− λmax
2

(
U+ − U−)

, (6)

where U−,U+ are the values left and right at an ele-
ment interface and λmax is an estimate of the maxi-
mum wave speed at the interface.

As stated above, the main idea of the DG-SEM is
collocation. We use collocation for our discrete inte-
gration, i.e. we replace the integrals in (5) with GL
quadrature rules at the same location as our inter-
polation, which can be interpreted as a collocation
of the non-linear "uxes f (U). With this choice, the
DG-SEM operators simplify a lot: we get the diagonal
massmatrixMij = δijωi, i, j = 1, . . . , p + 1, the diago-
nal boundarymatrixB = diag(−1, 0, . . . , 0, 1) and the
derivative matrix Dij := (ψj)ξ (ξi), i, j = 1, . . . , p + 1.
Replacing the integrals in (5) and using the de$ni-
tions of the DG-SEM operators, we arrive at the DG-
SEMmethod in thematrix–vector formulation for one
cell ek

U̇k = − 1
Jk

(M−1Bf ∗ − M−1DTMf ). (7)

The elemental residuals are coupled through the
numerical "ux f ∗ withDOFs fromother elements con-
nected via the interfaces. Collecting the equations for
all elements in one big system with unknown u and
applying implicit Euler in time gives

un+1 − un −"tG(un+1) =: F(un+1) = 0, (8)

where G(un+1) collects the DG-SEM residuals, i.e. the
right-hand side of (7).

3.2. Finite volume d iscretisation

Based on the DG-SEM discretisation, we de$ne an
FV discretisation on a subcell mesh with p+1 cells

Figure 1. Two DG cells with 6 GL nodes each. An equidistant FV
mesh is shown in the right cell.

(see Figure 1). The discretisation on this semi-
structured–unstructured grid is used to de$ne the pre-
conditioner and to construct the multigrid method.
An FV method is based on approximating the cell
averages in a subcell i in an element ek

1
"xi

∫ xi+1/2

xi−1/2

U(x, tn) dx ≈ Uk,n
i (9)

at each time level tn. For a subcell in the element ekwith
subcell size"xi, the subcell FV discretisation reads

U̇k
i + 1

"xi
(f ∗i+1/2 − f ∗i−1/2) = 0,

i = 1, . . . , p + 1; k = 1, . . . ,K. (10)

The numerical "ux function f ∗i+1/2 is again Rusanov
"ux (6), with the values left and right being not
the polynomial values, but the subcell average values
instead.

4. Preconditioned Jacobian-free
Newton-GMRES

The resulting system of nonlinear equations (8)
is solved using Newton’s method, written for the
equation F(u) = 0:

solve
∂F(u)

∂u
|u(k)s = −F(u(k)),

u(k+1) = u(k) + s, k = 0, 1, . . .
(11)

for a given initial guess u(0). The linear system in (11)
is solved using right preconditioned GMRES with a
relative tolerance.

In order to not compute the Jacobian in each iter-
ation (11), we replace the matrix–vector products
appearing in GMRES by a di#erence quotient:

∂F(u)

∂u
q ≈

F(u + εq) − F(u)

ε
, with ε = 1e−7

‖q‖
.

(12)
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5. Finite volumemultigrid preconditioner

The basis for the preconditioner is an agglomera-
tion multigrid method on the $nite volume grid. The
coarse grid problems are given by applying the FV
discretisation on the coarse grid. To restrict $ne grid
values, they are summed, weighted by the volumes
of the respective cells and divided by the total vol-
ume. For an equidistant grid in one dimension, the
corresponding restriction operator is given by

Rl
l−1 = 1

2





1 1
1 1

. . . . . .
1 1




. (13)

As prolongation we use the injection, where the value
in the coarse cell is taken for all corresponding $ne
cells:

Pl−1
l = 2RlT

l−1. (14)

A generic smoother is an iterative method for the
solution of Alsl = bl and is given by sk+1

l = MS,lskl +
N−1

S,l bl. The index l speci$es the multigrid level, while
S denotes that this iterative method represents the
smoother. It is possible to construct an MG pre-
conditioner based on a V- or a W-cycle, as well as
several consecutive cycles. The number of pre- and
postsmoothing steps is also "exible. We now write
down a V-cycle multigrid algorithm with one step of
pre- and postsmoothing, which corresponds to γ = 1
in the following pseudo-code:
function MG(sl, bl, l):

• sl = MS,lsl + N−1
S,l bl (presmoothing)

if(l>0)

• rl−1 = Rl
l−1(Alsl − bl) (restriction)

• vl−1 = 0
◦ for j = 1, . . . , γ : vl−1 = MG(vl−1, rl−1,

l − 1)
• sl = sl − Pl−1

l vl−1 ($ne grid correction)
• sl = MS,lsl + N−1

S,l bl (postsmoothing)

This gives rise to an iterative method of the form
sk+1
l = MMGskl + N−1

MGbl. In the case of an lmax-level
multigrid cycle with presmoothing on the coars-
est level, the preconditioner N−1

+,MG ≈ A−1 is de$ned

recursively by

N−1
0,MG = N−1

S,0 , and for l = 1, . . . , lmax :

N−1
l,MG = MS,l(N

−1
S,l − Pl−1

l N−1
l−1,MGR

l
l−1AlN

−1
S,l

+ Pl−1
l N−1

l−1,MGR
l
l−1) + N−1

S,l . (15)

5.1. Smoothers: pseudo-time iterations

As smoothers for the multigrid preconditioner, we
consider W schemes (see Birken, Bull, and Jame-
son 2018). A pseudo-time derivative is added to
Equation (11) to yield

∂s
∂t∗

+ As − b = 0. (16)

A W smoother is given by

s0 = sn,

sj = sn − αj"t∗W−1(Asj−1 − b), j = 1, . . . , s,

sn+1 = ss,
(17)

where W ≈ I + η"t∗A. The free parameters are η,
usually taken from the range [0.25, 1.5], as well as αj ∈
[0, 1] and a local "t∗, given by a pseudo-CFL num-
ber c∗ depending on the maximal eigenvalue of the
Jacobian λmax:

"t∗ = c∗
"xi

|λmax|
. (18)

Smoothers of form (17) can be written as a linear
iterative scheme

sn+1 = MSsn + N−1
S b, (19)

where for a 3-stage W smoother, we obtain

N−1
S = α3"t∗W−1 − α3α2"t∗2W−1AW−1

+ α3α2α1"t∗3(W−1A)2W−1. (20)

The approximation of W−1 will be explained in
the next section. The coe!cients are given by
[α1,α2,α3] = [0.1481, 2/5, 1].

5.1.1. SGS preconditioner
The speci$c approximation to de$ne W is based on
a symmetric Gauss–Seidel (SGS) approach. Such a
method was originally suggested in Swanson, Turkel,
and Rossow (2007) and further developed by several
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authors. We follow a recent version from Birken, Bull,
and Jameson (2018).

The$rst step is to approximate the Jacobian by using
a di#erent $rst-order discretisation of the linearised
Euler equation. It is based on a splittingA = A+ + A−

of the "ux Jacobian. This is evaluated in the average
of the values on both sides of the interface. The split
Jacobians correspond to positive and negative eigen-
values and can bewritten in terms of thematrix of right
eigenvectorsQ as

A+ = Q.+Q−1, A− = Q.−Q−1,

where .± are diagonal matrices containing the pos-
itive and negative eigenvalues, respectively. These are
then bounded away from zero using a parabolic func-
tion which takes care when the modulus of the eigen-
value λ is smaller or equal to a fraction ad of the speed
of sound a with free parameter d ∈ [0, 1]:

|λ| = 1
2

(
ad + |λ|2

ad

)
, |λ| ≤ ad. (21)

With this, an upwind discretisation of the split Jaco-
bian is given in cell i by

uit∗ + ui +
"t
"xi

((A+
ii ui + A−

i,i+1ui+1)

− (A+
i−1,iui−1 + A−

ii ui)) = 0. (22)

The corresponding approximation of the Jacobian is
then used to construct a preconditioner. Speci$cally,
we consider the block SGS preconditioner

W−1 = (D + L)−1D(D + U)−1, (23)

where L,D andU are blockmatrices with 3 × 3 blocks.
We have L + D + U = I + η"t∗J and obtain

Li−1,i = −
η"t"t∗i
"xi

A+
i−1,i, Ui,i+1 =

η"t"t∗i
"xi

A−
i,i+1,

(24)

Dii = I + η"t∗I +
η"t"t∗i
"xi

(A+
ii − A−

ii ).

Applying this preconditioner requires solving 3 × 3
systems coming from the diagonal, which can be done
directly. A fast implementation is obtained by trans-
forming $rst to a certain set of symmetrising variables
(see Swanson, Turkel, and Rossow 2007).

6. Numerical results

We consider the one-dimensional Euler equations on
the interval [0, 10] and study one step of implicit Euler
where we look at the convergence rate of GMRES with
maximal 100 iterations in the $rst Newton step. All
results are produced in Python. Measuring the CPU
time will not give a great insight into performance
in the one-dimensional case and is therefore not dis-
cussed in the following, but is important to consider
in higher dimensions.

We equip the Euler equations with periodic bound-
ary conditions and consider two di#erent initial condi-
tions: A subsonic case (ρ0, v0, p0) = (1 + 0.1 sin(2πx/
10), 1, 28)withMachnumber 0.16 and a transonic case
(ρ0, v0, p0) = (1 + 0.1 sin(2πx/10), 1, 1) with Mach
number 0.85.We choose a CFL number of 100 and test
the discussed MG preconditioner with W3 smoother
for a V cycle, see (15). A simple block Jacobi precondi-
tioner with blocks corresponding to the 3 × 3 systems
does not improve the convergence rate of the GMRES
cycle compared to no preconditioner. This motivates
to consider more sophisticated peconditioners for the
given problem. We also note that applying the W3
presmoothing step several times gives almost no con-
vergence improvement while being very expensive in
terms of computational costs. The sameholds for using
a W cycle or two consecutive V cycles, as well as for
the method of nonsymmetric Restriction Aggregation
(NSR) from Sala and Tuminaro (2008).

We test the framework for 4th- and 8th-order DG
methodswith 240 and 480DOFs, respectively. In order
to have a reference for e!ciency, we construct a pre-
conditioner based on the Jacobian of FV discretisation
(12). The new multigrid preconditioner approximates
the inverse of the FV Jacobian and thus cannot be
expected to behave superior to the reference precon-
ditioner. The reference preconditioner is applied by
using GMRES with tolerance 1e-14 and maximal 300
iterations. This is very expensive in terms of computa-
tions and only suggested to compare how well the pro-
posed MG preconditioner approximates the inverse of
the FV Jacobian.

6.1. Subsonic case

In the subsonic case, the pseudo-CFL number for the
W3 smoother is c∗ = 10, η = 1.4 and d=0.1.We con-
sider two di#erent MG preconditioners: one with only
one presmoothing step on each level and one with one
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Figure 2. Convergence history for GMRES for one Newton iteration, subsonic case, DG order 4 (top) and 8 (bottom), 240 DOFs (left) and
480 DOFs (right).

pre- and one postsmoothing step on each level. The
convergence results are shown in Figure 2.

We see that the reference preconditioner (FV) gives
very good results for all four test cases, butworks better
for 4th order. In particular, there is fast initial conver-
gence, which is crucial to get fast termination within
an inexact Newton’s method. The suggested MG pre-
conditioners yield a very good approximation to the
reference preconditioner, especially within the $rst 20
GMRES iterations. The MG preconditioner with pre-
and postsmoothing gives the best results, outperform-
ing the MG preconditioner equipped with only pres-
moothing slightly. This holds forDG solvers of 4th and
8th order as well as for DOFs 240 and 480. Increasing
theDOFs does not have a visible impact on the conver-
gence rate of the reference preconditioner for both 4th
and 8th order while we can notice small di#erences in

the behaviour of theMGpreconditioners. The residual
after 100GMRES iterations di#ers slightlymore for the
two MG preconditioners when increasing the DOFs
for both 4th and 8th order. Since the FV replacement
operator is of the $rst order, the question arises how
it behaves for the increased order of the DG method.
When going from 4th to 8th order for 240 DOFs, there
are two orders of magnitude decrease of the refer-
ence preconditioner, whereas the decrease for the W3
preconditioners is very small and they behave very
similarly. For 480 DOFs, there is a 1.5 order of magni-
tude decrease of the reference preconditioner and the
MG preconditioners behave similarly. It is noticeable
that the MG preconditioners mimic the FV precon-
ditioner better when increasing the order of the DG
discretisation. We expect a performance improvement
of the smoother for optimised c∗, η and d.
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Figure 3. Convergence history for GMRES for one Newton iteration, transonic case, DG order 4 (top) and 8 (bottom), 240 DOFs (left) and
480 DOFs (right).

6.2. Transonic case

In the transonic case, the pseudo-CFL number for the
W3 smoother is c∗ = 2, η = 0.7 and d=0.1. We con-
sider the same two di#erent MG preconditioners as in
the transonic case. The convergence results are shown
in Figure 3.

Both reference FV and MG preconditioners per-
form worse than in the subsonic case. Such a loss
of performance has been reported for a p-multigrid
method in Premasuthan et al. (2009). In the transonic
case, the reference preconditioner works very similar
for 4th and 8th order and di#erent DOFs. We notice
only a slight decrease in performance when increas-
ing the order as well as when increasing the DOF.
For 240 DOFs, the $rst MG preconditioner mimics
the performance of the reference preconditioner with
approximately 0.5 order ofmagnitude degradation and
works slightly better for the 4th order. The second

MG preconditioner does not work well for 240 DOFs
and the 4th and 8th order, respectively. When increas-
ing the DOFs, the MG preconditioner with pre- and
postsmoothing slightly outperforms the onewith pres-
moothing only. In the case of 480 DOFs, the second
MG preconditioner works around 1 order of magni-
tude worse than the reference preconditioner, giving
for both 4th and 8th order methods a result approxi-
mately 0.5 order of magnitude degradation compared
to 240 DOFs. Again the order a#ects the performance
only slightly for di#erent DOFs.

7. Conclusions

We presented a new multigrid preconditioning strat-
egy for use in JFNK methods for the solution of
equation systems arising fromDG discretisations. The
core idea is to make use of an auxiliary $rst-order FV

89



360 P. BIRKEN ET AL.

discretisation that re$nes the original DG mesh, but
can still be implemented algebraically. As smoother,
we consider W3. Numerical results show the potential
of the approach as a proof of concept for the one-
dimensional Euler equations. A simple block Jacobi
preconditioner does not improve the convergence rate
compared to no preconditioner at all, which justi$es
the necessity of using this more sophisticated pre-
conditioner. The convergence results of the proposed
preconditioner are promising, being close to a quasi-
exact preconditioner in the subsonic case. Our results
indicate that the performance of the preconditioner
is only weakly in"uenced by the order of the DG
discretisation. A possible extension of the precondi-
tioner to multiple spatial dimensions could be based
on a tensor product strategy, which is also the nat-
ural approach for the extension of DG-SEM to mul-
tiple spatial dimensions. It should be noted that W3
smoothers are designed for high aspect ratio grids and
have been shown to achieve even better performance
on those compared to equidistant meshes (Birken,
Bull, and Jameson 2018). This is of special interest for
Navier–Stokes equations with a boundary layer.
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