
Parallel Algorithm to Efficiently Mine

High Utility Itemset

Eduardus Hardika Sandy Atmaja1,2[0000-0003-1739-0116] and Kavita Sonawane1[0000-0003-

0865-6760]

1 St. Francis Institute of Technology, Mumbai, India

eduardus@student.sfit.ac.in, kavitasonawane@sfit.ac.in
2 Sanata Dharma University, Yogyakarta, Indonesia

Abstract. Finding high utility itemset (HUI) from transactional databases like

customer transaction data is not an easy task. The generated HUI should

represent the real world condition which contains set of items that likely to be

purchased together and also has high profit. Many algorithms have been

introduced to overcome that issue. Parallelism is one of the good architectures

that can be adapted for mining algorithms and it is rarely used for HUI Mining.

The basic idea that can be adapted is by dividing the mining process based on

sub search spaces in concurrent time to boost the performance. This paper

proposed two new frameworks that adapted parallel mining namely CLB and

PLB which are extension of ULB-Miner algorithm. CLB is hybrid algorithm

from CTU-PRO and ULB-Miner, and PLB is proposed because of inefficient

process in CLB. From the experimental evaluation, PLB outperforms ULB-

Miner in all cases regarding execution time.

Keywords: High utility itemset ∙ Data mining ∙ Parallel processing ∙ CLB ∙ PLB

1 Introduction

Market basket analysis is a common instance of frequent itemset mining (FIM) which

specifically deal with transactional databases such as customer purchase history. FIM

helps to reveal products that are likely to be purchased together by analyzing custom-

er buying habit. This technique commonly used by retailers to increase sales. They

can optimize product bundling, placement, recommendation, and offer special deals to

get customer satisfaction. Agrawal and Srikant [1] introduced FIM along with apriori

as the algorithm that can efficiently discover interesting patterns. There are several

algorithms that were introduced afterwards [2-4]. FIM uses minimum support

threshold to identify which itemset is interesting or has high frequency in the

database. This condition makes the interesting patterns become less meaningful in

real world situation. For example, tea and sugar are items that are likely to be

purchased together but they give less profit when compared to washing machine.

To solve problem in FIM algorithms, high utility itemset mining (HUIM) was

introduced. To find the profitable patterns, HUIM uses additional parameter such as

quantity and profit. HUIM uses minimum utility threshold to decide whether an

itemset is interesting or not. In HUIM, every item is not seen as equal like in FIM

because every item has their own weight. That is the reason why HUIM is more

complex thus designing efficient algorithm is very important. HUIM has been studied

by many researchers, tree structure [6, 9, 10, 17] and utility list based structure [7, 11-

14] are the most interesting extensions because it has efficient data structure and also

has efficient mining algorithm. Hybrid implementation [15, 16] is also done to

combine advantages from different data structures to improve the performance.

Moreover computation technology such as multicore processor can be used as a

powerful infrastructure to execute many tasks in a concurrent time that leads to

efficient mining process [17-19].

In this paper, two frameworks are proposed for HUIM. The first framework is by

combining utility list and tree based algorithm to get advantages of them and applying

parallel processing to the mining process. The second framework is by creating new

parallelism framework to improve efficiency of ULB-Miner [7] algorithm.

2 Literature Review

FIM has been studied by many researchers, Apriori [1] is the first algorithm to solve

FIM that introduces downward closure property. It means that for every itemset that

has support below the minimum support threshold, all of its superset is infrequent,

thus can be removed from the search space. This Apriori idea greatly reduces the

search space by removing unnecessary candidates. UMining and UMining_H [5] is

extension of Apriori to solve HUIM. It is designed more efficient than apriori but it

may discover incomplete HUIs, moreover it also does not satisfy downward closure

property. Two Phase [8] is then introduced that applies downward closure property.

Transaction weighted utilization (TWU) is the upper-bound to identify the unpromis-

ing item by applying transaction weighted downward closure (TWDC) strategy. All

itemsets that has TWU below the minimum utility threshold can be pruned, thus a

complete HUIs can be discovered. This concept is used by many tree based algo-

rithms [6, 9, 10]. CTU-PRO[6] has efficient tree structure called CUP-Tree. It is more

compressed than the other above trees structures that makes the algorithm efficient.

The main problem in tree based algorithm is that when the number of transaction is

large then it becomes inefficient because more memory and time are needed to build

and mine the tree. Utility list based algorithm is then introduced. HUI-Miner [11] is

the first algorithm inspired by ECLAT [2]. The mining process works by combining

itemsets within the utility list. This combination procedure is costly when there are

too many items. FHM [12] solved the problem by developing EUCS (Estimated Utili-

ty Co-Occurrence Structure) and EUCP (Estimated Utility Co-occurrence Pruning) as

the pruning strategy. This concept is used by many researchers to efficiently prune the

search space. Some other utility list based algorithms are [7, 13, 14], ULB-Miner [7]

has utility list buffer (ULB) that works like memory pipeline which reuses data seg-

ments whenever it is no longer needed thus makes efficient in memory consumption.

mHUIMiner [15] and UFH [16] are hybrid algorithms that combine tree and utility

list based algorithms. The tree structure is used to generate candidate itemset and

helps to prune the low utility itemsets and the mining process is done by utility list

based. With this strategy, the search space can be reduced so it can reduce the

memory usage and running time. Parallelism can be used to improve the performance

of HUIM algorithms. Since the search space is independent then parallel mining is

possible to do. The basic idea is by dividing the search spaces that can be mined con-

currently. CHUI-Mine [17], pEFIM [18] and MCH-Miner [19] are algorithms that

implemented parallel processing to mine HUI. pEFIM which is extension from EFIM

[20] and MCH-Miner which is extension from iMEFIM [21] are the efficient two that

apply simple load balancing to manage the resources. This strategy is efficient to

boost the original algorithm performance.

3 Problem Statement

From a dataset, let 𝐼 = {𝑖1, 𝑖2, 𝑖3, … 𝑖𝑛}, where 𝐼 is list of distinct items from dataset.

Let 𝐷 = {𝑇1, 𝑇2, 𝑇3, … 𝑇𝑛}, where 𝐷 is list of transactions from database. Each trans-

action has an id called 𝑇𝑖𝑑 . Each item 𝑖 in 𝑇𝑖 has a quantity that represents how many 𝑖
appeared in 𝑇𝑖 . Every item 𝑖 ∈ 𝐼 is related to a profit 𝑝(𝑖). Table 1 shows example of

𝐷 and Table 2 shows example of profit.

Problem Statement : Let 𝐷 is transactional database and 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 is minimum

threshold of utility given by the user, then the problem in HUIM is that performs effi-

cient mining process to reveal itemsets that have utility higher than 𝑚𝑖𝑛𝑢𝑡𝑖𝑙.

Table 1. Example of database

Tid Transaction (item:quantity) tu

𝑇1 (a:4), (b:1), (c:2) 9

𝑇2 (c:1), (d:3) 13

𝑇3 (a:2), (d:3) 14

𝑇4 (a:2), (b:3), (c:2), (d:1) 17

𝑇5 (b:1), (c:5), (e:3) 14

Table 2. Example of profit

Item Profit

a 1

b 3

c 1

d 4

e 2

4 Proposed Algorithm

This research work presents two strategies being proposed and experimented namely

hybrid framework termed as CLB and parallel framework termed as PLB. The

pseudocode for CLB and PLB is given in Algorithm 1 and Algorithm 2.

4.1 Hybrid Algorithm : CLB (ULB-Miner with CTU-PRO)

The hybrid idea of CLB is by modifying CUP-Tree [6] and combining with ULB-

Miner [7]. The proposed data structure namely CLB-Tree, a modified version of

CUP-Tree is constructed to maintain the database, reduce transactions, and manage

parallel mining. The CLB-Tree construction is similar to CUP-Tree, the differences

are 1) Every node maintains items, TWU and utilities from similar transactions. It

1

2
12 30 3 16

3

4
1234 17 2 4 9 2

4
134 9 2 3 4

3
13 9 2 3

1 39 5

4
24 14 12 2

2 14 12

123 17 2 4 9

supports parallel processing by saving time to traverse all descendant nodes 2) Every

node contains calculated utilities so that there is no need to do repeated calculations.

The CLB mining process occurs during the tree construction with a specific condition

based on step 3c and 3d [17] in Algorithm 1.

Fig. 1. CLB-Tree after inserting 𝑇4

{}{}

bb ddaa

adad

abdabd

abab acac

cc

abcabc

abdcabdc

adcadc

bdbd bcbc

bdcbdc

dcdc

Task 1

Task 2

Task 3

Task 4

Fig. 2. Enumeration tree distribution

Fig. 1 illustrates CLB-Tree after inserting 𝑇4. From our running example, 𝑇1 is

mapped into {(1:2), (3:3), (4:4)} and inserted into the tree. The count of these items

are deducted by 1 so that the new set of count is 𝐶𝑜𝑢𝑛𝑡 = {3, 3, 2, 2}. 𝑇2, 𝑇3, 𝑇4 are

inserted in the same way and 𝐶𝑜𝑢𝑛𝑡 = {1, 0, 1, 0}. Count of item {d} and {a} are 0 so

we can do local mining immediately using concurrent process for prefix 2 and 4.

Algorithm 1: CLB Algorithm 2: PLB

Input : database D, minimum utility threshold minUtil

Output : high utility itemset 𝐻𝑈𝐼𝑠
Step 1:Construct global

item table

Step 2:Initialize CLB-Tree

Step 3:For each t ∈ D
a. Revise and map t
b. Insert t and update

items, TWU and

utilities for each node

i ∈ t

c. Reduce i.count ∈ t in

global item table by 1

d. If i.count==0 then

retrieve all node i and

do parallel mining

using ULB-Miner

Step 4:Collect all HUIs

Step 1:Scan D to find

promising items I where

TWU(i∈I) ≥ minUtil and sort
I into TWU ascending order

Step 2:Scan and revise D to

construct global ULB

Step 3:Set n=number of CPU

cores and create n empty

local ULB

Step 4:For each task i ∈ I
do parallel:

a. If no local ULB available
then wait. Else,

b. Assign and mine task i
using available local ULB

c. Release local ULB and
notify main thread

Step 5:Collect all HUIs

The next proposed strategy is that we distribute the search space based on prefix tree,

overall step 3 in Algorithm 1 explain this condition. Fig. 2 shows enumeration tree for

the search space. For local mining prefix 2 which is item {d}, the mining process only

Thread 1

Thread 3

Thread 4

Thread 2

does task 3. Similar to prefix 4 which is item {a}, it only does task 1. The last strategy

is by ordering the items. CLB-Tree uses TWU descending order but ULB-Miner uses

TWU ascending order. This leads to incorrect calculation of remaining utilities. The

order of the items is incorrect and the distribution of the data from CLB-Tree is also

incorrect. Then, items in CLB-Tree is sorted into TWU descending order and for

same TWU value it is lexicographically sorted into descending order. In ULB-Miner,

we sort them into ascending order. With this strategy the order of the data is correct

either for ascending or descending task.

4.2 Extended ULB-Miner : PLB (ULB-Miner with Parallel Framework)

PLB is proposed to improve performance of ULB-Miner [7] by applying parallel

processing along with load balancing and more efficient memory management. Step 2

in Algorithm 2 is the same process as ULB-Miner to build global ULB. Based on the

running example, Fig. 3a shows the global ULB.

a) Global ULB

b) Local ULB

Fig. 3. PLB mining strategy

Instead of exploring the search space sequentially like the original ULB-Miner, PLB

explores it in parallel guided by enumeration tree in Fig. 2. The mining process in

ULB-Miner uses the ULB as a memory pipeline. The explored data is inserted as a

new data segment in the last index+1 of UTLBuf and SULs from main ULB. This

data segment can be reused when it is no longer needed. This strategy cannot be ap-

plied to PLB because it causes collision and synchronization problem between

threads. PLB introduces new strategy by applying load balancing and more efficient

memory management. PLB limits the number of task pool based on the number of

available processors [19]. It also creates and limits the number of local ULB to

improve the memory efficiency during exploration. Step 3 and 4 in Algorithm 2

explain this strategy. Fig. 3a and 3b also show illustration of the above explanation.

For example, task 1 (item a) is explored by thread 1, task 2, 3 and 4 are explored by

thread 2, 3 and 4 respectively. Suppose we have extra item {e} that is executed

through task 5, then it waits until any thread finished. Suppose thread 4 is finished and

released its local ULB then task 5 is executed and reuses local ULB from task 4.

a) Retail

b) Kosarak

c) Real Retail

Fig. 4. Execution time for 3 datasets

a) Retail

b) Kosarak

c) Real Retail

Fig. 5. Memory consumption for 3 datasets

5 Results and Discussion

5.1 Experimental Setup

The experiments used three datasets, two standard benchmark structured datasets

retail and kosarak available in SMPF website [22] and a real world customer transac-

5,0

10,0

15,0

20,0

0 , 1 0 0 , 0 8 0 , 0 6 0 , 0 4 0 , 0 2

R
U

N
TI

M
E

(S
)

MINUTIL (%)

14,0

22,0

30,0

38,0

3 , 5 0 3 , 0 0 2 , 5 0 2 , 0 0 1 , 5 0

R
U

N
TI

M
E

(S
)

MINUTIL (%)

0,6

0,8

0,9

1,1

0 , 8 2 0 , 8 1 0 , 8 0 0 , 7 9 0 , 7 8

R
U

N
TI

M
E

(S
)

MINUTIL (%)

190,0

230,0

270,0

310,0

0 , 1 0 0 , 0 8 0 , 0 6 0 , 0 4 0 , 0 2M
EM

O
R

Y
U

SA
G

E
(M

B
)

MINUTIL (%)

250,0

500,0

750,0

1000,0

3 , 5 0 3 , 0 0 2 , 5 0 2 , 0 0 1 , 5 0

M
EM

O
R

Y
U

SA
G

E
(M

B
)

MINUTIL (%)

21,0

23,5

26,0

28,5

0 , 8 2 0 , 8 1 0 , 8 0 0 , 7 9 0 , 7 8

M
EM

O
R

Y
U

SA
G

E
(M

B
)

MINUTIL (%)

tion dataset namely real retail from a store in Malang Indonesia. Retail and kosarak

were chosen because these two datasets are complex with many transactions and

many distinct items. Table 3 shows the datasets in details. The algorithms were evalu-

ated based on minimum utility, memory usage and the running time. For each

algorithm, it was executed using the same minimum utility varied from 0.02-0.1% for

retail, 1,5-3,5% for kosarak, and 0,78-0.82% for real retail, then the results are

compared. For the implementation, Java Netbeans IDE 8.2 was used. The experiments

were performed on a personal computer equipped with 4th generation Intel Core i5-

4210U processor @1.7 GHz (4 logical CPUs), DDR3 8 GB RAM, and running Win-

dows 10 Pro.

Table 3. Datasets details

No. Dataset Name Distinct Items Transactions Count Avg. Length

1 Retail 16.470 88.162 10

2 Kosarak 41.270 990.002 8

3 Real Retail 3.114 24.511 3

5.2 Results and Analysis

Table 4 shows comparison for CLB and PLB with ULB-Miner performances which

clearly states that CLB is not contributing positively with the intended objectives. For

large database it is inefficient because it needs more memory and time to build the

tree, moreover creating many ULB for each local mining is inefficient. However the

proposed parallel framework named PLB is performing quite better in terms of

running time as compared to CLB and the existing ULB-Miner algorithm.

Table 4. Comparative analysis (ULB-Miner, CLB and PLB)

Dataset

ULB-Miner (Avg) CLB (Avg) PLB (Avg)

Runtime

(s)

Memory

(MB)

Runtime

(s)

Memory

(MB)

Runtime

(s)

Memory

(MB)

Retail 13,234 245,026 13,331 679,711 8,284 254,441

Kosarak 24,119 647,525 96,474 1.897,213 22,758 693,611

Real

Retail
0,892 23,960 0,772 34,184 0,762 25,234

Observations: Best cases runtime (PLB-0,762 s) and memory usage(ULB-Miner-

23,960 MB, PLB-25,234 MB)

Runtime.

The experiments were done by setting the maximum task pool number to 4 since the

processor has 4 cores. Fig. 4 shows the results of the running time. It is clear that PLB

has better performance than the ULB-Miner for all cases. The PLB running time is

up to two times faster than ULB-Miner. For each dataset, let 𝑋 be ULB-Miner

runtime and 𝑌 be PLB runtime. For retail dataset 𝑋 = 1,5𝑌, kosarak 𝑋 = 1,06𝑌 and

real retail 𝑋 = 1,2𝑌 in average case. The results of retail dataset is the best and the

results of kosarak is not significant but still better than ULB-Miner. Different dataset

has different results because there are some factors that affect the performance viz.

distinct item count, transaction count and transaction length. The distinct item count is

the most affecting factor because it increases the search space. From the overall re-

sults we can conclude that PLB can efficiently mine HUIs by applying parallel pro-

cessing framework. It outperforms ULB-Miner which uses sequential process.

Memory Usage.

The experiments were also conducted to compare the memory usage. Fig. 5 shows the

memory usage results. It is clear that in almost cases, ULB-Miner consumes less

memory than PLB. It is reasonable because in parallel processing each thread need

memory allocation to maintain their data. Instead of creating one local ULB for each

sub search space, PLB allocates only 4 local ULB to maintain data from its sub search

spaces. These local ULB are reusable, since every sub search space is independent

and can be overwritten. This approach can minimize the memory usage. This is the

reason why even PLB has higher memory usage but the difference is not significant.

6 Conclusion

We have proposed two new frameworks to extend the original ULB-Miner to

efficiently mine HUI namely CLB and PLB. CLB has a great concept to combine tree

based and utility list based algorithm but the performance is relatively poor even it

can discover the correct HUI. The worst case is in large databases because it needs

more memory and time to build the tree and creating individual ULB for all search

spaces. PLB which is extension of ULB-Miner is proposed. Parallel processing, load

balancing and more efficient memory management are implemented to improve the

efficiency. The results show that PLB outperforms ULB-Miner by up to two times

faster. The drawback of PLB is that it consumes more memory to store the data for

each active thread. This problem can be investigated in the future work by finding a

way to do efficient memory management for parallel processing.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: 20th Int. Conf.

on Very Large Data Bases, pp. 487-499. Morgan Kaufmann, San Francisco (1994)

2. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. on Knowl. and Data

Eng. 12(3), 372–390 (2000). doi:10.1109/69.846291

3. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: 2000

ACM SIGMOD Int. Conf. on Management of Data, pp. 1-12. Association for Computing

Machinery, New York (2000). doi:10.1145/335191.335372

4. Sucahyo, Y.G., Gopalan, R.P.: CT-PRO: a bottom-up non recursive frequent itemset

mining algorithm using compressed fp-tree data structure. In: IEEE ICDM Workshop on

Frequent Itemset Mining Implementations. (2004)

5. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data &

Knowl. Eng. 59(3), 603-626 (2006). doi:10.1016/j.datak.2005.10.004

6. Erwin, A., Gopalan, R.P., Achuthan, N.R.: A bottom-up projection based algorithm for

mining high utility itemsets. In: 2nd Int. Workshop on Integrating Artificial Intelligence

and Data Mining, pp. 3-11. Australian Computer Society, Australia (2007)

7. Duong, Q.H., Viger, P.F., Ramampiaro, H., Norvag, K., Dam, T.L.: Efficient high utility

itemset mining using buffered utility-lists. Appl. Intell. 48, 1859-1877 (2018).

doi:10.1007/s10489-017-1057-2

8. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high utility

itemsets. In: 9th Pacific-Asia Conf. on Knowl. Discovery and Data Mining, pp. 689-695.

Springer, Berlin (2005). doi:10.1007/11430919_79

9. Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high utility

itemsets from transactional databases. IEEE Trans. on Knowl. and Data Eng. 25(8), 1772-

1786 (2013). doi:10.1109/TKDE.2012.59

10. Deng, Z.H.: An efficient structure for fast mining high utility itemset. Appl. Intell. 48,

3161–3177 (2018). doi:10.1007/s10489-017-1130-x

11. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: 21st ACM

Int. Conf. on Information and Knowl. Management, pp. 55-64. Association for Computing

Machinery, New York (2012). doi:10.1145/2396761.2396773

12. Viger, P.F., Wu, C.W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining

using estimated utility co-occurrence pruning. In: 21st Int. Symp. on Methodologies for

Intell. Systems, pp. 83-92. Springer, Cham (2014). doi:10.1007/978-3-319-08326-1_9

13. Viger, P.F., Zhang, Y., Lin, J.C.W., Dinh, D.T., Le, H.B.: Mining correlated high-utility

itemsets using various measures. Logic Journal of Interest Group in Pure and Appl. Logics

(IGPL). 28(1), 19-32 (2018). doi:10.1093/jigpal/jzz068

14. Wu, C.W., Viger, P.F., Gu, J.Y., Tseng, V.S.: Mining compact high utility itemsets

without candidate generation. In: High-Utility Pattern Mining: Theory, Algorithms and

Applications, pp. 279-302. Springer: Cham (2019). doi:10.1007/978-3-030-04921-8_11

15. Peng, A.Y., Koh, Y.S., Riddle, P.: mHUIMiner: A fast high utility itemset mining

algorithm for sparse datasets. In: 21st Pacific-Asia Conf. on Knowl. Discovery and Data

Mining, pp. 196-207. Springer, Cham (2017). doi:10.1007/978-3-319-57529-2_16

16. Dawar, S., Goyal, V., Bera, D.: A hybrid framework for mining high-utility itemsets in a

sparse transaction database. Appl. Intell. 47, 809-827 (2017). doi:10.1007/s10489-017-

0932-1

17. Song, W., Liu, Y., Li, J.: Mining high utility itemsets by dynamically pruning the tree

structure. Appl. Intell. 40, 29-43 (2014). doi:10.1007/s10489-013-0443-7

18. Nguyen, T.D.D., Nguyen, L.T.T., B. Vo.: A parallel algorithm for mining high utility

itemsets. In: Proc. 39th Int. Conf. on Information System Architecture and Tech., 853, pp.

286–295. Springer, Cham (2019). doi:https://doi.org/10.1007/978-3-319-99996-8_26

19. Vo, B., Nguyen, L.T.T., Nguyen, T.D.D., Viger, P.F., Yun, U.: A multi-core approach to

efficiently mining high-utility itemsets in dynamic profit databases. IEEE Access. 8,

85890-85899 (2020). doi:10.1109/ACCESS.2020.2992729

20. Zida, S., Viger, P.F., Lin, J. C.W., Wu, C.W., Tseng, V.S.: EFIM: a fast and memory

efficient algorithm for high-utility itemset mining. Knowl. and Information System. 51(2),

595-625 (2017). doi:10.1007/978-3-319-27060-9_44

21. Nguyen, L.T.T., Nguyen, P., Nguyen, T.D.D., Vo, B., Viger, P.F., Tseng, V.S.: Mining

high-utility itemsets in dynamic profit databases. Knowl. Based Systems. 175, 130-144

(2019). doi:https://doi.org/10.1016/j.knosys.2019.03.022

22. Viger, P.F.: SPMF : An open source data mining library (2008-2021).

http://www.philippe-fournier-viger.com/spmf/

