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Abstract. Finding high utility itemset (HUI) from transactional databases like 

customer transaction data is not an easy task. The generated HUI should 

represent the real world condition which contains set of items that likely to be 

purchased together and also has high profit. Many algorithms have been 

introduced to overcome that issue. Parallelism is one of the good architectures 

that can be adapted for mining algorithms and it is rarely used for HUI Mining. 

The basic idea that can be adapted is by dividing the mining process based on 

sub search spaces in concurrent time to boost the performance. This paper 

proposed two new frameworks that adapted parallel mining namely CLB and 

PLB which are extension of ULB-Miner algorithm. CLB is hybrid algorithm 

from CTU-PRO and ULB-Miner, and PLB is proposed because of inefficient 

process in CLB. From the experimental evaluation, PLB outperforms ULB-

Miner in all cases regarding execution time. 
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1 Introduction 

Market basket analysis is a common instance of frequent itemset mining (FIM) which 

specifically deal with transactional databases such as customer purchase history. FIM 

helps to reveal products that are likely to be purchased together by analyzing custom-

er buying habit. This technique commonly used by retailers to increase sales. They 

can optimize product bundling, placement, recommendation, and offer special deals to 

get customer satisfaction. Agrawal and Srikant [1] introduced FIM along with apriori 

as the algorithm that can efficiently discover interesting patterns. There are several 

algorithms that were introduced afterwards [2-4]. FIM uses minimum support 

threshold to identify which itemset is interesting or has high frequency in the 

database. This condition makes the interesting patterns become less meaningful in 

real world situation. For example, tea and sugar are items that are likely to be 

purchased together but they give less profit when compared to washing machine. 

To solve problem in FIM algorithms, high utility itemset mining (HUIM) was 

introduced. To find the profitable patterns, HUIM uses additional parameter such as 

quantity and profit. HUIM uses minimum utility threshold to decide whether an 



itemset is interesting or not. In HUIM, every item is not seen as equal like in FIM 

because every item has their own weight. That is the reason why HUIM is more 

complex thus designing efficient algorithm is very important. HUIM has been studied 

by many researchers, tree structure [6, 9, 10, 17] and utility list based structure [7, 11-

14] are the most interesting extensions because it has efficient data structure and also 

has efficient mining algorithm. Hybrid implementation [15, 16] is also done to 

combine advantages from different data structures to improve the performance. 

Moreover computation technology such as multicore processor can be used as a 

powerful infrastructure to execute many tasks in a concurrent time that leads to 

efficient mining process [17-19]. 

In this paper, two frameworks are proposed for HUIM. The first framework is by 

combining utility list and tree based algorithm to get advantages of them and applying 

parallel processing to the mining process. The second framework is by creating new 

parallelism framework to improve efficiency of ULB-Miner [7] algorithm.  

2 Literature Review 

FIM has been studied by many researchers, Apriori [1] is the first algorithm to solve 

FIM that introduces downward closure property. It means that for every itemset that 

has support below the minimum support threshold, all of its superset is infrequent, 

thus can be removed from the search space. This Apriori idea greatly reduces the 

search space by removing unnecessary candidates. UMining and UMining_H [5] is 

extension of Apriori to solve HUIM. It is designed more efficient than apriori but it 

may discover incomplete HUIs, moreover it also does not satisfy downward closure 

property. Two Phase [8] is then introduced that applies downward closure property. 

Transaction weighted utilization (TWU) is the upper-bound to identify the unpromis-

ing item by applying transaction weighted downward closure (TWDC) strategy. All 

itemsets that has TWU below the minimum utility threshold can be pruned, thus a 

complete HUIs can be discovered. This concept is used by many tree based algo-

rithms [6, 9, 10]. CTU-PRO[6] has efficient tree structure called CUP-Tree. It is more 

compressed than the other above trees structures that makes the algorithm efficient. 

The main problem in tree based algorithm is that when the number of transaction is 

large then it becomes inefficient because more memory and time are needed to build 

and mine the tree. Utility list based algorithm is then introduced. HUI-Miner [11] is 

the first algorithm inspired by ECLAT [2]. The mining process works by combining 

itemsets within the utility list. This combination procedure is costly when there are 

too many items. FHM [12] solved the problem by developing EUCS (Estimated Utili-

ty Co-Occurrence Structure) and EUCP (Estimated Utility Co-occurrence Pruning) as 

the pruning strategy. This concept is used by many researchers to efficiently prune the 

search space. Some other utility list based algorithms are [7, 13, 14], ULB-Miner [7] 

has utility list buffer (ULB) that works like memory pipeline which reuses data seg-

ments whenever it is no longer needed thus makes efficient in memory consumption.  

mHUIMiner [15] and UFH [16] are hybrid algorithms that combine tree and utility 

list based algorithms. The tree structure is used to generate candidate itemset and 



 

helps to prune the low utility itemsets and the mining process is done by utility list 

based. With this strategy, the search space can be reduced so it can reduce the 

memory usage and running time. Parallelism can be used to improve the performance 

of HUIM algorithms. Since the search space is independent then parallel mining is 

possible to do. The basic idea is by dividing the search spaces that can be mined con-

currently. CHUI-Mine [17], pEFIM [18] and MCH-Miner [19] are algorithms that 

implemented parallel processing to mine HUI. pEFIM which is extension from EFIM 

[20] and MCH-Miner which is extension from iMEFIM [21] are the efficient two that 

apply simple load balancing to manage the resources. This strategy is efficient to 

boost the original algorithm performance. 

3 Problem Statement 

From a dataset, let 𝐼 = {𝑖1, 𝑖2, 𝑖3, … 𝑖𝑛}, where 𝐼 is list of distinct items from dataset. 

Let 𝐷 = {𝑇1,  𝑇2,  𝑇3, … 𝑇𝑛}, where 𝐷 is list of transactions from database. Each trans-

action has an id called 𝑇𝑖𝑑 . Each item 𝑖 in 𝑇𝑖  has a quantity that represents how many 𝑖 
appeared in 𝑇𝑖 . Every item 𝑖 ∈ 𝐼 is related to a profit 𝑝(𝑖). Table 1 shows example of 

𝐷 and Table 2 shows example of profit. 

Problem Statement : Let 𝐷 is transactional database and 𝑚𝑖𝑛𝑢𝑡𝑖𝑙 is minimum 

threshold of utility given by the user, then the problem in HUIM is that performs effi-

cient mining process to reveal itemsets that have utility higher than 𝑚𝑖𝑛𝑢𝑡𝑖𝑙. 

Table 1. Example of database 

Tid Transaction (item:quantity) tu 

𝑇1 (a:4), (b:1), (c:2) 9 

𝑇2 (c:1), (d:3) 13 

𝑇3 (a:2), (d:3) 14 

𝑇4 (a:2), (b:3), (c:2), (d:1)  17 

𝑇5 (b:1), (c:5), (e:3) 14 

Table 2. Example of profit 

Item Profit 

a 1 

b 3 

c 1 

d 4 

e 2 

4 Proposed Algorithm 

This research work presents two strategies being proposed and experimented namely 

hybrid framework termed as CLB and parallel framework termed as PLB. The 

pseudocode for CLB and PLB is given in Algorithm 1 and Algorithm 2. 

4.1 Hybrid Algorithm : CLB (ULB-Miner with CTU-PRO) 

The hybrid idea of CLB is by modifying CUP-Tree [6] and combining with ULB-

Miner [7]. The proposed data structure namely CLB-Tree, a modified version of 

CUP-Tree is constructed to maintain the database, reduce transactions, and manage 

parallel mining. The CLB-Tree construction is similar to CUP-Tree, the differences 

are 1) Every node maintains items, TWU and utilities from similar transactions. It 
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supports parallel processing by saving time to traverse all descendant nodes 2) Every 

node contains calculated utilities so that there is no need to do repeated calculations. 

The CLB mining process occurs during the tree construction with a specific condition 

based on step 3c and 3d [17] in Algorithm 1. 
 

 

 

 

 

 

 

Fig. 1. CLB-Tree after inserting 𝑇4 
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Fig. 2. Enumeration tree distribution 

Fig. 1 illustrates CLB-Tree after inserting 𝑇4. From our running example, 𝑇1 is 

mapped into {(1:2), (3:3), (4:4)} and inserted into the tree. The count of these items 

are deducted by 1 so that the new set of count is 𝐶𝑜𝑢𝑛𝑡 = {3, 3, 2, 2}. 𝑇2, 𝑇3, 𝑇4 are 

inserted in the same way and 𝐶𝑜𝑢𝑛𝑡 = {1, 0, 1, 0}. Count of item {d} and {a} are 0 so 

we can do local mining immediately using concurrent process for prefix 2 and 4. 

Algorithm 1: CLB Algorithm 2: PLB 

Input : database D, minimum utility threshold minUtil 

Output : high utility itemset 𝐻𝑈𝐼𝑠 
Step 1:Construct global 

item table 

Step 2:Initialize CLB-Tree 

Step 3:For each t ∈ D 
a. Revise and map t 
b. Insert t and update 

items, TWU and 

utilities for each node 

i ∈ t 

c. Reduce i.count ∈ t in 

global item table by 1 

d. If i.count==0 then 

retrieve all node i and 

do parallel mining 

using ULB-Miner 

Step 4:Collect all HUIs 

Step 1:Scan D to find 

promising items I where 

TWU(i∈I) ≥ minUtil and sort 
I into TWU ascending order 

Step 2:Scan and revise D to 

construct global ULB 

Step 3:Set n=number of CPU 

cores and create n empty 

local ULB 

Step 4:For each task i ∈ I 
do parallel: 

a. If no local ULB available 
then wait. Else, 

b. Assign and mine task i 
using available local ULB 

c. Release local ULB and 
notify main thread 

Step 5:Collect all HUIs 

The next proposed strategy is that we distribute the search space based on prefix tree, 

overall step 3 in Algorithm 1 explain this condition. Fig. 2 shows enumeration tree for 

the search space. For local mining prefix 2 which is item {d}, the mining process only 
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Thread 2 

does task 3. Similar to prefix 4 which is item {a}, it only does task 1. The last strategy 

is by ordering the items. CLB-Tree uses TWU descending order but ULB-Miner uses 

TWU ascending order. This leads to incorrect calculation of remaining utilities. The 

order of the items is incorrect and the distribution of the data from CLB-Tree is also 

incorrect. Then, items in CLB-Tree is sorted into TWU descending order and for 

same TWU value it is lexicographically sorted into descending order. In ULB-Miner, 

we sort them into ascending order. With this strategy the order of the data is correct 

either for ascending or descending task. 

4.2 Extended ULB-Miner : PLB (ULB-Miner with Parallel Framework) 

PLB is proposed to improve performance of ULB-Miner [7] by applying parallel 

processing along with load balancing and more efficient memory management. Step 2 

in Algorithm 2 is the same process as ULB-Miner to build global ULB. Based on the 

running example, Fig. 3a shows the global ULB.  

 

a) Global ULB 

 

 

 

 

 

 

b) Local ULB 

Fig. 3. PLB mining strategy 

Instead of exploring the search space sequentially like the original ULB-Miner, PLB 

explores it in parallel guided by enumeration tree in Fig. 2. The mining process in 

ULB-Miner uses the ULB as a memory pipeline. The explored data is inserted as a 

new data segment in the last index+1 of UTLBuf and SULs from main ULB. This 

data segment can be reused when it is no longer needed. This strategy cannot be ap-

plied to PLB because it causes collision and synchronization problem between 

threads. PLB introduces new strategy by applying load balancing and more efficient 

memory management. PLB limits the number of task pool based on the number of 

available processors [19]. It also creates and limits the number of local ULB to 

improve the memory efficiency during exploration. Step 3 and 4 in Algorithm 2 



explain this strategy. Fig. 3a and 3b also show illustration of the above explanation. 

For example, task 1 (item a) is explored by thread 1, task 2, 3 and 4 are explored by 

thread 2, 3 and 4 respectively. Suppose we have extra item {e} that is executed 

through task 5, then it waits until any thread finished. Suppose thread 4 is finished and 

released its local ULB then task 5 is executed and reuses local ULB from task 4. 
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Fig. 4. Execution time for 3 datasets 

 
a) Retail 

 
b) Kosarak 

 
c) Real Retail 

 

Fig. 5. Memory consumption for 3 datasets 

5 Results and Discussion  

5.1 Experimental Setup  

The experiments used three datasets, two standard benchmark structured datasets 

retail and kosarak available in SMPF website [22] and a real world customer transac-
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tion dataset namely real retail from a store in Malang Indonesia. Retail and kosarak 

were chosen because these two datasets are complex with many transactions and 

many distinct items. Table 3 shows the datasets in details. The algorithms were evalu-

ated based on minimum utility, memory usage and the running time. For each 

algorithm, it was executed using the same minimum utility varied from 0.02-0.1% for 

retail, 1,5-3,5% for kosarak, and 0,78-0.82% for real retail, then the results are 

compared. For the implementation, Java Netbeans IDE 8.2 was used. The experiments 

were performed on a personal computer equipped with 4th generation Intel Core i5-

4210U processor @1.7 GHz (4 logical CPUs), DDR3 8 GB RAM, and running Win-

dows 10 Pro. 

Table 3. Datasets details 

No. Dataset Name Distinct Items Transactions Count Avg. Length 

1 Retail 16.470 88.162 10 

2 Kosarak 41.270 990.002 8 

3 Real Retail 3.114 24.511 3 

5.2 Results and Analysis 

Table 4 shows comparison for CLB and PLB with ULB-Miner performances which 

clearly states that CLB is not contributing positively with the intended objectives. For 

large database it is inefficient because it needs more memory and time to build the 

tree, moreover creating many ULB for each local mining is inefficient. However the 

proposed parallel framework named PLB is performing quite better in terms of 

running time as compared to CLB and the existing ULB-Miner algorithm.  

Table 4. Comparative analysis (ULB-Miner, CLB and PLB)  

Dataset 

ULB-Miner (Avg) CLB (Avg) PLB (Avg) 

Runtime 

(s) 

Memory 

(MB) 

Runtime 

(s) 

Memory 

(MB) 

Runtime 

(s) 

Memory 

(MB) 

Retail 13,234 245,026 13,331 679,711 8,284 254,441 

Kosarak 24,119 647,525 96,474 1.897,213 22,758 693,611 

Real 

Retail 
0,892 23,960 0,772 34,184 0,762 25,234 

Observations: Best cases runtime (PLB-0,762 s) and memory usage(ULB-Miner-

23,960 MB, PLB-25,234 MB) 

Runtime.  

The experiments were done by setting the maximum task pool number to 4 since the 

processor has 4 cores. Fig. 4 shows the results of the running time. It is clear that PLB 

has better performance than the ULB-Miner for all cases. The PLB  running time is 

up to two times faster than ULB-Miner. For each dataset, let 𝑋 be ULB-Miner 

runtime and 𝑌 be PLB runtime. For retail dataset 𝑋 = 1,5𝑌, kosarak 𝑋 = 1,06𝑌 and 

real retail 𝑋 = 1,2𝑌 in average case. The results of retail dataset is the best and the 



results of kosarak is not significant but still better than ULB-Miner. Different dataset 

has different results because there are some factors that affect the performance viz. 

distinct item count, transaction count and transaction length. The distinct item count is 

the most affecting factor because it increases the search space. From the overall re-

sults we can conclude that PLB can efficiently mine HUIs by applying parallel pro-

cessing framework. It outperforms ULB-Miner which uses sequential process. 

Memory Usage.  

The experiments were also conducted to compare the memory usage. Fig. 5 shows the 

memory usage results. It is clear that in almost cases, ULB-Miner consumes less 

memory than PLB. It is reasonable because in parallel processing each thread need 

memory allocation to maintain their data. Instead of creating one local ULB for each 

sub search space, PLB allocates only 4 local ULB to maintain data from its sub search 

spaces. These local ULB are reusable, since every sub search space is independent 

and can be overwritten. This approach can minimize the memory usage. This is the 

reason why even PLB has higher memory usage but the difference is not significant.  

6 Conclusion 

We have proposed two new frameworks to extend the original ULB-Miner to 

efficiently mine HUI namely CLB and PLB. CLB has a great concept to combine tree 

based and utility list based algorithm but the performance is relatively poor even it 

can discover the correct HUI. The worst case is in large databases because it needs 

more memory and time to build the tree and creating individual ULB for all search 

spaces. PLB which is extension of ULB-Miner is proposed. Parallel processing, load 

balancing and more efficient memory management are implemented to improve the 

efficiency. The results show that PLB outperforms ULB-Miner by up to two times 

faster. The drawback of PLB is that it consumes more memory to store the data for 

each active thread. This problem can be investigated in the future work by finding a 

way to do efficient memory management for parallel processing. 
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