
Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 7 –

Performance Analysis of a Multiuser Multipath

Communication System: a Game Theoretical

Approach

Béla Almási*, Tamás Balogh**, János Kormos*, Balázs Kreith*

* Faculty of Informatics, University of Debrecen, Kassai u. 26, H-4028 Debrecen,
Hungary, almasi.bela@inf.unideb.hu, kormos.janos@inf.unideb.hu,
kreith.balazs@inf.unideb.hu

** Faculty of Economics and Business, University of Debrecen, Böszörményi u.
138, H-4032 Debrecen, Hungary, tamas.balogh@econ.unideb.hu

Abstract: The study of multipath communication technologies is a hot research area today.
One natural effect of using multipath communication instead of the single path one is the
higher throughput value which will result in a better performance, not only in the usual
Internet communication, but also in Big Data centers where the communication
infrastructure can appear as a bottleneck point of the system. In this paper, we introduce a
new game theoretical model for the evaluation of multiuser-multipath communication
technologies. The decision problem for the users (i.e. network clients) is studied in a
multipath communication system. We develop a game theoretical model for client payoff
maximization, where the decision variables for each client are defined as their path
requests. Due to limited hardware performance and limited service capacity, we assume
that each client’s payoff depends on other clients’ path requests. We apply the tools of
game theory to describe equilibrium behavior of the clients in the given interaction
situation. By providing two examples, we show that our model is suitable for measuring
payoffs, both in money and in throughput. We also offer possible directions for the further
development of our model.

Keywords: multipath communication; throughput aggregation; Data Center Networks;
game theory modeling; concave games; performance analysis

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 8 –

1 Introduction

1.1 Overview of the Multipath Communication Technologies

The traditional Internet Communication Technology (IP), uses a single
communication path between the endpoints in a communication session, since the
IP address of the endnode is a part of the socket ID. In the case of multipath
routing (see e.g. [1]), when the packet transmission in the Cloud is distributed by
routers among multiple paths (in order to decrease the effect of congestion), the
endnode uses only one of its interfaces, in the communication session. Thus, a
communication session is connected to a single interface of the endnode. The
currently used devices (laptops, tablets and mobile phones) usually have more
than one network interface: Wi-Fi, 3 G/4 G, Bluetooth, NFC etc. (see Figure 1
below for illustration).

Figure 1

Illustration of multipath-multilink communication networks

The idea of combining available interfaces in one communication session is an
important research topic today. The advantage of aggregating the throughput
capacity of multiple interfaces is a widely used technology, also in Big Data
centers where the communication infrastructure may become the bottleneck point
of the overall system’s performance [2]. In the modern Data Center Networks
(DCNs) the throughput sensitive large flows can be effectively serviced by using
multipath infrastructure background, which can be tuned according to the DCN
special requirements (see [3]).

The multipath communication technology is studied in different OSI Layers: The
IEEE “Convergent Digital Home Network” working group started the creation of
the 1905.1 standard at the Data Link Layer. It is a special implementation of the
Multipath technology (it is named as “Multilink technology” in Layer 2, as there
is no multihop path in this case [4]). The 1905.1 standard focuses on the
throughput aggregation possibility of the different links. The IETF RFC 6824
document “TCP Extensions for Multipath Operation with Multiple Addresses” [5]
was published in January 2013. It specifies the extensions of the traditional TCP
Transport Layer protocol (named as MPTCP) in order to be able to use multiple
paths in one communication session. The aim of the MPTCP specification is to

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 9 –

increase the throughput and the reliability of the TCP communication session. The
MPT software library roughly targets as the MPTCP, but works at the Network
Layer. One common purpose of the multipath/multilink technology is to aggregate
the speed capacity of the different paths/links (i.e. throughput aggregation).
Different laboratory measurements show (see [6], [7], [8]) that the multipath
technology is able to efficiently aggregate the throughput capacity of the paths. In
[6] Paasch et al. introduced an MPTCP based system, which produced a World
Record throughput capacity of 50 Gbps by aggregating 6 pieces of 10 Gbps
connection paths. Almási and Szilágyi showed an MPT based system in [7] and
[8] aggregating 2 and 4 pieces of paths with the efficiency ratio better than 95% in
each case.

Lencse and Kovács investigated the aggregation performance limits of the MPT
multipath software library in [9] and [10]: The throughput capacity of the
multipath system increased linearly with the number of paths using IPv4 (up to the
systems’ maximum of 12 paths with speed of 100 Mbps in each physical
connection). Using IPv6, the test measurements reached the maximum limit of the
aggregation in the same laboratory environment: The throughput of the system
increased up to 7 paths, but then no further speed increasing could be seen even
when adding more paths to the system. Considering the performance evaluation,
this limitation was caused by the hardware. The overall throughput performance
remained roughly constant after a special number of allocated paths. It means that
allocating more paths to the system did not increase the overall throughput
performance.

The performance evaluation of the multipath communication systems, their
usability, utilization and consequences is also an actual research area. The
utilization of MPTCP according to the client throughput aggregation to the overall
network communication system is investigated in Khalili, Ramin, et al. [11]. They
analyzed the performance of the MPTCP [5] communication system and in
contrast to TCP based communications, they proved that it was not Pareto-
optimal. A system is called Pareto-optimal if the improvement of an individual
participant’s benefit is impossible without decreasing another one’s. In contrast to
MPTCP, MPT uses a different path scheduling algorithm for link aggregation,
where Pareto-optimality is not proved, but currently it serves as a basis of further
investigation.

Due to the interaction of endnodes and the server in a MPT network, for modeling
the overall system utilization, a game theoretical approach is also adequate.

Game theory is fundamental for modeling and evaluating systems in which the
overall benefits (payoffs) of the participants depend on their individual decisions.
Seminal contributions can be found in [12, 13]. Studying network communication
systems by using a game theoretical approach, clients are assumed to choose their
path request strategies in order to reach the best overall performance. Applying
game theory tools for different network problems takes place frequently, see e.g.

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 10 –

[14], where cooperative and non-cooperative approaches are compared for
network problems. Increasing the network capacity indefinitely and letting the
routers decide the best path individually may lead to Braess’s Paradox [15].
Braess’s Paradox describes that in certain circumstances in which participants are
choosing the best path individually without cooperation, they can actually slow
down the network. It concludes that the existence of multiple paths between two
nodes in the network in some circumstances can produce worse overall system
utilization than using fewer paths.

The overall system utilization investigation using game theory suggests strategies
on how to design or use the overall network system. As Lencse and Kovács [9]
show, hardware capacity influences the aggregated bandwidth limitation at the
client site, it leads us to investigate the overall system utilization further and to use
game theory approaches.

A precise mathematical model of the multipath network communication system
using game theoretical tools may open the possibility for many investigations
related to the overall system utilization. It can be used for instance to investigate
and model the path allocation strategies for multipath communication systems
according to the client requests and the server interests. Other investigations may
also be performed focusing on utilization and payoff interests of the participants
of the system.

In this paper we introduce a non-cooperative game-theoretical framework for path
allocation in a multipath network communication system to provide an analytical
tool for finding the best available path allocation mechanism in the system. We
combine a classic game theoretical approach with the multipath network
communication system, in which clients aim at increasing their communication
speeds by requesting new paths from the server. After defining the model and
proving existence of equilibrium, we present two example solutions. In the first,
clients are assumed to maximize their monetary payoffs which is defined as a
linear combination of their utility of receiving a certain number of paths
(expressed in money), and the financial costs for their path requests. The second
approach considers the limited hardware capacity of the client and aims at
maximizing throughput. Thus, in the second example, the payoff is not expressed
as money, but as throughput.

We emphasize that the two examples employ two different, but adequate
approaches to model client behavior and therefore, we do not wish to show any
preferences. They can be considered as suggestions to understand and solve
clients’ decision problem in a multipath communication environment.

We note that our model does not yet take server payoff maximization into
consideration, in order to provide clear results on the client site. A possible further
research direction includes investigating the server side’s decision problem.
However, the server is involved in our model as well, but its role is restricted to
allocate paths according to a certain allocation rule.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 11 –

The main contribution of this paper is to offer a link between game theory and
multipath communication systems and introduce a model that is suitable for
further studies.

The rest of the paper is organized as follows… Section 2 provides the
mathematical specification of multipath communication networks. Section 3
defines the path allocation game for a multipath system, offering a link between
multipath communication networks and game theoretical models, where game
theory is used to model the decision problem and strategic interaction of the
clients in a multipath environment. Section 4 introduces two theoretical game
approaches and that match the concept introduced in Section 3. We also provide
the equilibrium scenario of the two games. Finally, Section 5 concludes our work.

2 Mathematical Specification of Multiuser-Multipath

Systems

We define the following notations for representing the parameters of the multipath
communication systems.

NL: The number of physical links that connect the Node (client) to the Internet.

K: The maximum number of paths used by the multipath communication system

Li : The speed (bandwidth) of the ith physical link, which connects the Node to the
Internet

UP: The throughput capacity of one path (homogeneous system)

MPSpeed(k): The speed (throughput capacity) of the system aggregating k paths.

Aggr(k): The aggregation efficiency of aggregating k paths:

()
()

P

MPSPeed k
Aggr k

k U




The number of physical links (NL) is limited by the interface number of the Node.
As the multipath communication system may include not totally disjoint paths (i.e.
paths with common links), the number of paths may be larger than the number of

physical links (i.e. L PN N) even in the case of efficient aggregation (see [7],

[8]).

Of course, the sum of the physical links’ speeds gives a limit for the theoretical

maximum speed of the multipath system:
1

LN

P P i

i

N U L


  .

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 12 –

As it was presented in [9], the aggregation needs resources from the Node (mainly
CPU). The available resources are limited on the Node:

ResMaxi: The maximum of the available resources on the ith Node.

For simplicity, we may assume that the resource need of aggregating k paths
(denoted by Res(k)) is linearly increasing by k: Res(k)= k Res .

For all k the inequality iRes(k) ResMax must hold for each client i.

PMaxi: The maximal available path the Node can handle according to ResMaxi . If
resources are infinite, then the maximal number of path the system can handle is

limited by the bandwidth of the physical link: 1

LN

j

j
i

p

L

PMax
U




.

In what follows, we define a theoretical game framework to analyze Node (client)
behavior. Later on, in Section 4 we present two models that are in coherence with
the mathematical specification of the multipath communication framework.

3 The Game Theoretical Framework

We define a non-cooperative game theoretical approach for the allocation of paths
in the multi-user environment. We give a formal model for Node (i.e. client,
household) payoff maximization in a multipath communication environment. The
main idea is that each client aims at maximizing its own profit (which we will call
payoff in accordance with the game theoretic terminology). The payoff function of
a certain node – precisely defined below – consists of a function of the node’s
total throughput and a cost function of the requested paths.

In our simplified framework, at the beginning of the allocation process, each
endnode announces simultaneously the requested amount of paths. Then,
according to an allocation rule, paths are assigned to the endnodes and the payoff
functions are evaluated.

3.1 Definition and Assumptions of the Game

The strategic (normal) form of the game is as follows.

Definition 3.1 (Path allocation game)

The players are the endnodes which we denote by 1,2... n. The strategy set of any

player i is given by  () 0,1,2...KS i , where a strategy stands for the (integer)

number of requested paths, which can grow up to K. K stands for the maximum

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 13 –

number of available paths for the whole system. For any i, we denote the
requested number of paths by ki. The payoff function of any player i is given by:

1 2 1 2(, ...) (, ...) () i n i n i ik k k f k k k c k (1)

where if is the utility of player i (expressed in money or throughput). Note that

if depends directly on the received number of paths, and indirectly – as indicated

in the arguments of if – on the requests of all endnodes. Throughout this section,

for the sake of simplicity we refer to if as depending directly on the requested

amounts of paths. At the same time, ic is a cost function of the requested paths of

player i.

We note that throughout the analysis we relax the logical assumption of ki being
an integer in order to create continuous payoff functions. Provided that the
solution is not an integer number for a certain player (endnode), we will assume
that the endnodes will choose the integer value resulting in the closest payoff level
to optimal.

Before giving the solution of the game, we introduce the following assumptions
on the payoff functions.

The first assumption is in accordance with the principle of decreasing marginal
utility. This principle can also be applied for consumers (endnodes) in the
communication environment, as a certain growth in bandwidth is worth more if
the initial bandwidth of a user is smaller.

Assumption 3.2. For any i, if is strictly increasing, continuous in ik on  0...K ,

strictly concave and twice continuously differentiable on its domain.

The following assumption dictates that if an endnode increases its number of paths
requested, then its extra cost is more if the initial request was larger. This ensures
that the amount of paths a household needs costs proportionally less than
industrial consumption.

Assumption 3.3. For any i, the financial cost function ic is strictly increasing in

ik , convex and twice continuously differentiable on its domain.

From Assumptions 3.2 and 3.3 it is trivial that the combined payoff function of
each player is concave in its own path request variable. We state this in the
following corollary.

Corollary 3.4. For any i, the combined i is concave and twice continuously

differentiable in ik .

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 14 –

If the total number of requested paths is too large, then the server cannot satisfy all
needs. We define a rationing (allocation) rule to determine the number of received
paths as a function of all path requests for each endnode.

Definition 3.5. Rationing (allocation) rule:

For any i,

1

1 2

1

1

if

(, ...)
if

n

i i
i

n
i n i

in
i

i
i

k k K

R k k k Kk
k K

k







 
 










 (2)

This means that whenever the sum of requests exceeds the available paths, paths
are allocated in proportion of the requests.

We note that according to Definition 3.1 endnodes pay according to the number of
their requested paths (and not the received ones).

We also note that whenever the sum of path requests does not exceed K, the
payoff functions depend only on one variable (which is the client’s own path
request).

Finally, we assume that every player is aware of the strategies and payoff
functions of all the others. This is in accordance with the assumption that
“neighbors” know each other well enough to be able to estimate their needs.

Assumption 3.6. For any i, the set of players, ()S i and i are common

knowledge.

Our last assumption considers the issue of time. For simplicity reasons we assume
that the game is played as a one-shot game, excluding time elapse from the model.
A suitable extension of this model to real-life situations is to consider the repeated
version of the game.

Now we fix the ordering of actions in the one-shot game.

Step 1. Every endnode announces its requested amount of paths simultaneously by
sending the need to the server.

Step 2. After receiving the needs, the server allocates the paths to the endnodes
according to the rationing rule.

It follows directly that the endnodes are not aware of each other’s requests at the
moment they have to send their own need to the server.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 15 –

3.2 Equilibrium of the Path Allocation Game

To find the payoff-maximizing strategy of each endnode, we will employ the Nash
equilibrium concept.

According to the definition, the Nash equilibrium players choose mutually
beneficial response strategies for each other. (For more about the Nash
equilibrium concept, we refer the reader to [16].) For the multipath environment,
this means that in equilibrium every endnode is satisfied with its received amount

of paths, because none of them would be able to increase their payoff level (i)

by ceteris paribus modifying its own request.

In what follows, we cite a useful theorem for the concave games and show that the
path allocation game has exactly, one Nash equilibrium in pure strategies. After
proving existence, we determine the unique Nash equilibrium profile.

Theorem 3.7 (Rosen). Equilibrium of concave games (from Theorems 1 and 2 of
[17])

Let us consider a game of n players given in normal form. If for any i the payoff

function i is strictly concave in player i’s own decision variable, then the game

has one and only one Nash equilibrium strategy profile in pure strategies.

The proof can be found in [17].

Corollary 3.8. The path allocation game has one and only one Nash equilibrium in
pure strategies.

The proof follows directly from the assumptions that for any endnode i, if is

strictly concave, while ic is convex in ik .

To determine the single equilibrium of the path allocation game, we use the fact
that Nash equilibrium strategies are best responses for each other, thus, for any i,

i is maximized by the choice of the equilibrium strategy, whenever the

strategies of the other players are fixed at their equilibrium levels.

Formally, this means that the one and only one Nash equilibrium profile of the
game is implicitly provided as a solution of an equation system of n equations.

Proposition 3.9. The following system of equations provides implicitly the only
Nash equilibrium profile of the path allocation game.

1 2

1 2

0; 0 ... 0n

nk k k

   
  

  
 (3)

From the previous result, a question might arise. Namely, for which of the
function classes does the above system have an explicit solution? We omit the

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 16 –

mathematical analysis of this problem, as in the following section, we will provide
numerical results for different types of payoff functions.

In the following Section 4, we present two approaches to handle client payoff. The
first one considers monetary payoffs, while in the second one, payoffs are given in
throughput. Both games will match the framework we presented in Section 3, and
also the features of the systems defined earlier in Section 2.

4 Models of Client Behavior

As defined in Section 3, a participant’s total payoff depends on its (positive)
utility and the cost function value. In a multipath communication system a client
may use multiple interfaces and logical paths in order to maximize its throughput
efficiency. In the case of several multipath communication (MPC) clients being
connected to a common multipath capable server that has finite resources (e.g.:
limited number of physical interfaces and bandwidth) the server must distribute
the resources among the clients by considering their requests. According to this
given allocation rule, every client wants to maximize their individual payoff
regardless of the others. As described in Section 3, based on the requests sent by
the clients to the server, the server distributes the requested resources. The
requests can be throughput needs or a number of logical paths that the client wants
to use, etc. The sum of the requests may exceed the available resources.

In what follows, a game is defined for two clients as players (1, 2). They send
their throughput requests (R1, R2), to the MPT server, which calculates the number
of paths to allocate to them based on their requests. For simplicity we assume, as
previously described in Section 2, that a number of used resources linearly
increases by the number of allocated paths distributed to the players. A player, by
sending its throughput request and then participating in the game, must consider
that other clients send their requests to the server as well. Every client has their
own cost function limiting their payoffs. Whenever the server allocates paths from
a finite resource that is exceeded by the sum of client needs, in equilibrium, one
player’s payoff may increase only by decreasing another player’s payoff.

We note here, that the models presented, can easily be generalized for the more-
than-two player cases, using the concept described in Section 3.

The payoff functions are defined as follows:

1 1 2 1 1 1 2 1 1(,) (R (,)) ()k k f k k c k   (4)

2 1 2 2 2 1 2 2 2(,) (R (,)) ()k k f k k c k   (5)

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 17 –

Here, ik denotes the value of request of the ith player, Ri indicates the allocation

rule used by the server for distributing the paths according to the players’ requests,
function fi transfers throughput to utility (e.g. expressed in money) and ()i ic k

denotes ith player’s cost function.

If the above payoff functions are used in the framework game defined in Section
3, one and only one Nash equilibrium point exists in the game. In that case the
Nash equilibrium point can be determined by finding the only mutual best
response strategies of the two players, as described in Section 3. Technically, this
means that both players maximize their payoffs taking into consideration the other
player’s strategy. Thus, the following system of equations has to be solved:

1 1 2

1

(,)
0

k k

k





 (6)

2 1 2

2

(,)
0

k k

k





 (7)

To calculate the equilibrium after every request has arrived to the server, we need
to find the numerical solution of the equation system defined above.

In what follows, we present two examples with different payoff functions and
different focus. In the first one, MPC clients aim at maximizing their individual
payoffs expressed in money. This game serves as an example of how an MPC
client aims at increasing its payoff related to the throughput it receives, while the
payoff is limited by the cost function. In the second game, payoff functions are
represented by throughput gains and the cost functions are represented as
hardware resource limitations caused by the increasing number of requested paths
as investigated by Lencse and Kovacs [9].

4.1 Monetary Payoffs

In this subsection we present the analytical solution of a simple, two-player
version of the path allocation game. We assume that the capacity of the server is 8
paths (i.e. K=8). The payoff functions of the two endnodes are as follows

(i always consists of a utility function and a financial cost function).

21
1 1 2

1 21 1 2

2
1 1 1 2

10
(,)

10

k
K k if k k K

k kk k

k k if k k K


     
   

 (8)

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 18 –

3/21
2 1 2

1 22 1 2

3/2
2 2 1 2

10
(,)

10

k
K k if k k K

k kk k

k k if k k K


     
   

 (9)

It is easy to see that the first (utility) part in the payoff function is strictly concave

for both players, while the cost part is strictly convex. Therefore, i remains

strictly concave for both players.

To decide which payoff functions provide the equilibrium, we have to solve the
equation system generated by the simpler one and check whether the sum of path
requests are below 8 or not. From the latter payoff functions we obtain

1 1 2
1

1

(,)
10 2 0

k k
k

k


  


 (10)

2 1 2
2

2

(,) 3
10 0

2

k k
k

k


  


 (11)

It follows directly that in equilibrium,
1 2

4
5; 44

9
k k  . The sum of the requests

exceeds 8, therefore the former, more complicated payoff functions, should be
used to find the equilibrium. Thus, we obtain the following system of equations:

1 1 2 2
12

1 1 2

(,)
80 2 0

()

k k k
k

k k k


  

 
 (12)

2 1 2 1
22

2 1 2

(,) 3
80 0

() 2

k k k
k

k k k


  

 
 (13)

We obtain, that in equilibrium,
1 23.041; 5.334k k  . If we require integer

values, then the solution is 3 and 5, respectively. This result is seemingly far from
that of the former equation system, but we note that the previous solution did not
take into consideration the server’s capacity limit. And finally, it does not matter,
where the unconditional optimal level lies, if the sum of requests exceeds K. The
following table presents the payoff function values of the two players when
receiving certain amounts of paths.

Clearly, the only Nash equilibrium point is played if Player 1 requests 3 paths,
while Player 2 requests 5 paths. This can easily be justified by analyzing the
previous Table 1. Here, at the (3;5) allocation profile, it is in neither of the players
interest to alter their strategies individually, while the other player’s strategy
remains fixed. This is because neither of the players can increase their payoff by a
unilateral modification of her request.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 19 –

Table 1

Payoff function values according to the number of requested paths of players 1;2

 k2

k1

2 3 4 5 6

2 16.00;17.17 16.00;24.80 16.00;32.00 16.00;38.82 16.00;45.30

3 21.00;17,17 21.00;24.80 21.00;32.00 21.00;38.82 17.67;38.64

4 24.00;17.17 24.00;24.80 24.00;32.00 19.56;33.26 16.00;33.30

5 25.00;17.17 25.00;24.80 19.47;27.56 15.00;28.82 11.36;28.94

6 24.00;17.17 17.33;21.47 12.00;24.00 7.64;25.18 4.00;25.30

The following figures illustrate the payoffs of player 1 and 2 based on the
previous results.

Figure 2

Monetary payoffs of player 1

Figure 3

Monetary payoffs of player 2

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 20 –

It is visible from the figures that the discussed game belongs to the family of
concave games. This is because, if we fix the number of requested paths for a
player, then the payoff function of the other player is concave in its own variable.
The only Nash equilibrium lies at the profile of requested paths where both
players obtain maximum possible payoffs provided that the other player’s choice
is fixed. The importance of Theorem 3.7, lies in the unique nature of the Nash
equilibrium profile.

As it can also be seen, the server can calculate the Nash equilibrium point based
on the throughput requests the players sent to it, and thus, the server is also
involved in the process, as declared in the introduction.

In the following example, we will change the payoff functions and use throughput
increases and decreases representing the utility and cost values.

4.2 Throughput Payoffs

In the previous example the server calculated the number of paths to be given to
the players based on the throughput needs and monetary payoff calculation. Based
on the assumptions we argued that multipath communication system path
allocation strategy for finite resources can be modeled by game theory and the
path distribution is calculated according to the players’ benefits. In the following
we create a game between players sharing common limited resources and requests
for paths in order to maximize their own throughput capacity, but their overall
increases are limited by the hardware capacity they have. The utility is represented
by the gained throughput and the cost function is represented by the loss of the
throughput, for an MPC client. We use the observation described by Lencse and
Kovacs in [9] that the throughput aggregation of a client that uses multipath
communication system is limited by the hardware capacity. In this game, the cost
function representing this limitation appeared after a certain number of paths. The
payoff function increases quasi-linearly according in the received path number,
and remains quasi-constant after it reaches its hardware limitation.

A suitable function that represents what we defined in the previous paragraph is
defined below as the cost function of the client.

1 1()
1 1 2 1(,) 0.01(() ln(1))p k PMax

pk k p k U e    (14)

2 2()
2 1 2 2(,) 0.01(() ln(1))p k PMax

pk k p k U e    (15)

Here,
1 2,k k represent the number of requested paths of players 1 and 2,

respectively.
pU is the total throughput capacity of the server, which is used by

the players. The 0.01 multiplier is used only to avoid large function values. The

()ip k in the utility part of the function (14) and (15) denotes the possessed

number of paths the ith player acquired from the server. If the sum of the number

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 21 –

of requested paths (
1 2k k) does not exceed the total number of available path

(K), then ()i ip k k . If the sum of the requested paths exceeds those available,

K , the server must distribute the paths in proportion to the requests originated
from the players (we refer the reader to the rationing (allocation) rule defined in

Section 3). In that case,
1 2() / ()i ip k k K k k    . The cost function is the

throughput loss for the ith player that happens above a certain number of allocated
paths, caused by the hardware limitation of the client. The maximal number of
paths the player can handle is determined by

iPMax . The cost function

()ln(1)i ip k PMaxe  is a softplus sigmoid function. This function increases quasi-

linearly until a certain point (
iPMax) and then remains quasi-constant. Its

usability and the property of being easily differentiable makes this function
applicable to represent the hardware limitation that occurs at a certain point, where
the MPC client acquires a number of paths that exceeds its limitation.

It is easy to see that the game is concave, as the utility part of each payoff function
is concave, while the cost part is convex. Therefore, we can apply Theorem 3.7
and state that this game has again one and only one Nash equilibrium point.

To determine the one and only Nash equilibrium profile of the game, we have to
solve the following system of equations.

1 1

1 1 2 1 2
()2

1 1 1

(,) 2 1
0.01

1 ()
p p k PMax

k k k k
U

k K e p k dk




         
 (16)

2 2

2 1 2 1 2
()2

2 2 2

(,) 2 1
0.01

1 ()
p p k PMax

k k k k
U

k K e p k dk




         
 (17)

The payoff function of players remains quasi-constant after they acquired the
number of paths given by

iPMax . That payoff function is applicable for modeling

the throughput increases, according to the players path requests, from the server in
a multipath communication system. The following illustrates the hardware
resource changes, by changing the requested number of paths.

We fixed
1PMax and

2PMax to both players for 6 and 5 respectively. The

throughputs of the players regarding their requests are presented in the following
tables and figures. The Nash equilibrium profile is also indicated.

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 22 –

Table 2

Payoff function values according to the number of requested paths of players 1;2

 k2

k1

2 3 4 5 6

2 19.51;19.51 19.51;28.73 19.51;36.86 19.51;43.06 19.51;46.86

3 29.51;19.51 29.51;28.73 29.51;36.86 29.51;43.06 19.81;43.06

4 38.73;19.51 38.73;28.73 38.73;36.86 29.51;36.86 29.51;36.86

5 46.86;19.51 46.86;28.73 36.86;28.73 38.73;36.86 29.51;36.86

6 53.06;19.51 46.86;28.73 46.86;28.73 38.73;28.73 38.73;36.86

The following figures illustrate the payoffs of player 1 and 2 based on the
previous results.

Figure 4

Throughput payoffs of player 1

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 23 –

Figure 5

Throughput payoffs of player 2

We can draw the same conclusion as in Section 4.1. As the game is concave, we
have only one Nash equilibrium profile of path requests. The payoff functions of
both players are strictly concave, if the request of the other player is fixed.

The models can easily be extended to more than two players. As presented in
Section 3, the construction of the equation system, leading to the unique Nash
equilibrium profile for the game remains the same, for more than two endnodes.

Conclusions

These current systems usually have more than one networking interface: Wi-Fi,
3G/4G, Bluetooth, NFC etc. The idea of combining available interfaces in one
communication session is a hot research area today. Multipath/multilink
technology aims at aggregating speed capacities – i.e. throughputs – of the
available paths/links. Different laboratory measurements show that the multipath
technology, is able, to efficiently aggregate the throughput capacity of the paths.

Due to the interaction of endnodes and the server in a multipath/multilink
environment, we found that a game theoretical approach could also be useful for
modeling the overall system utilization. In this paper we introduced a non-
cooperative, game-theoretical framework, for path allocation in a multipath
network communication system to provide an analytical tool for finding the best
available path allocation mechanism in the system. We applied a classical game
theoretical approach for the multipath/multilink network communication system,
in which clients aim at increasing their bandwidths by requesting new paths from
the server.

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 24 –

After a precise mathematical definition of the multipath/multilink environment,
we introduced our game-theoretical model. We stressed the use of the Nash
equilibrium concept throughout the paper. We showed that the defined game
belonged to the class of concave games, ensuring the existence of a single Nash
equilibrium strategy profile in the game. Our results were proven to applicable for
a wider range of payoff functions. Therefore, we had the possibility to present two
different examples to solve a path allocation game. In the first, clients were
assumed to maximize their monetary payoffs, which was defined as a linear
combination of their utility of receiving a certain number of paths (expressed in
money), and their financial cost for their path requests. The second approach
considered the limited hardware capacity of the clients. In the second example, the
payoff was not expressed in money, but in throughput which can be used also to
investigate modeling of Big Data centers’ performance, using multipath internal
communication infrastructure (see [2]).

For both games a rationing (allocation) rule was defined. We illustrated the payoff
vectors of the two endnodes for different path request combinations, and besides,
we gave explanation for the single (unique) Nash equilibrium. The two example
models employed two different approaches, to model client behavior, and we did
not wish to show a preference to either side. These can be considered as
suggestions, to understand and solve clients’ decision problem, in a
multipath/multilink environment. Our models can be considered as clear, positive
results for client side payoff maximization. A possible further research direction
includes investigating the server side’s decision problems. Another direction
might include a more exact specification (estimation) of clients’ payoff functions,
based on lab experiments.

To conclude, this paper has contributed to multipath/multilink network research,
by offering a link between game theory and multipath/multilink systems, and has
introduced a model that is suitable for further studies.

Acknowledgement

The work was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project.
The project has been supported by the European Union, co-financed by the
European Social Fund.

References

[1] M. L. M. Kiah, L. K. Qabajeh, M. M. Qabajeh, “Unicast Position-based
Routing Protocols for Ad-Hoc Networks”, Acta Polytechnica Hungarica,
Vol. 7. No. 5, pp. 19-46, 2010

[2] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, M. Handley,
“Improving Datacenter Performance and Robustness with Multipath TCP”,
Proceedings of the ACM SIGCOMM 2011 conference, pp. 266-277, ACM
New York, NY, USA, 2011

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 25 –

[3] Y. Cao, M. Xu, X. Fu, E. Dong, “Explicit Multipath Congestion Control for
Data Center Networks”, Proceedings of the CoNEXT’13, pp. 73-84, 2013,
Santa Barbara, California, USA, 2013

[4] IEEE Standards Association, "1905.1-2013 - IEEE Standard for a
Convergent Digital Home Network for Heterogeneous Technologies",
2013. Available: http://standards.ieee.org/findstds/standard/1905.1a-
2014.html (Downloaded: 12/01/2015)

[5] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, “TCP Extensions for
Multipath Operation with Multiple Addresses”; IETF RFC-6824, 2013.
Available: http://tools.ietf.org/html/rfc6824 (Downloaded 20/01/2015)

[6] C. Paasch, G. Detal, S. Barré, F. Duchêne, O. Bonaventure: “The Fastest
TCP Connection with Multipath TCP”; ICTEAM, UCLouvain, Louvain-la-
Neuve, Belgium; http://multipath-tcp.org/pmwiki.php?n=Main.50Gbps
(Downloaded: 04/03/2015.)

[7] B. Almási, Sz. Szilágyi: "Throughput Performance Analysis of the
Multipath Communication Library MPT", Proceedings of the 36th
International Conference on Telecommunications and Signal Processing
(TSP 2013, ISBN:978-1-4799-0403-7), pp. 86-90, Rome, Italy, 2013

[8] B. Almási, Sz. Szilágyi: “Investigating the Throughput Performance of the
MPT Multipath Communication Library in IPv4 and IPv6”, Journal of
Applied Research and Technology, To appear

[9] G. Lencse, Á. Kovács, "Advanced Measurements of the Aggregation
Capability of the MPT Multipath Communication Library", International
Journal of Advances in Telecommunications, Electrotechnics, Signals and
Systems, Vol. 4. No. 2, pp. 41-48, 2015

[10] G. Lencse, Á. Kovács, "Testing the Channel Aggregation Capability of the
MPT Multipath Communication Library", World Symposium on Computer
Networks and Information Security 2014 (WSCNIS 2014), Hammamet,
Tunisia, 13-15 June, 2014, ISBN: 978-9938-9511-9-6, Paper ID:
1569946547

[11] Khalili, Ramin, et al. "MPTCP is not Pareto-Optimal: Performance Issues
and a Possible Solution." Proceedings of the 8th international conference on
Emerging networking experiments and technologies. ACM, 2012

[12] Morgenstern, Oskar, and John Von Neumann. "Theory of Games and
Economic Behavior" (1953)

[13] Nash Jr, John F. "The Bargaining Problem." Econometrica: Journal of the
Econometric Society (1950): 155-162

[14] Easley, David, and J. Kleinberg. "Modeling Network Traffic using Game
Theory."Networks, Crowds, and Markets: Reasoning about a Highly
Connected World (2010): 229-247

http://standards.ieee.org/findstds/standard/1905.1a-2014.html
http://standards.ieee.org/findstds/standard/1905.1a-2014.html
http://tools.ietf.org/html/rfc6824
http://multipath-tcp.org/pmwiki.php?n=Main.50Gbps

B. Almási et al. Performance Analysis of a Multiuser Multipath Communication System:
 a Game Theoretical Approach

 – 26 –

[15] Murchland, John D. "Braess's Paradox of Traffic Flow." Transportation
Research4.4 (1970): 391-394

[16] Fudenberg, Tirole, J. "Game Theory" MIT Press, 1991

[17] J. B. Rosen. "Existence and Uniqueness of Equilibrium Points for Concave
N-Person Games" Econometrica, Volume 33, Issue 3, 1965, pp. 520-534

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 27 –

Classification of Electroencephalograph Data:

A Hubness-aware Approach

Krisztian Buza, Júlia Koller

BioIntelligence Lab, Institute of Genomic Medicine and Rare Disorders,
Semmelweis University, Tömő u. 25-29, H-1083 Budapest, Hungary,
buza@biointelligence.hu, jkoller@biointelligence.hu

Abstract: Classification of electroencephalograph (EEG) data is the common denominator
in various recognition tasks related to EEG signals. Automated recognition systems are
especially useful in cases when continuous, long-term EEG is recorded and the resulting
data, due to its huge amount, cannot be analyzed by human experts in depth. EEG-related
recognition tasks may support medical diagnosis and they are core components of EEG-
controlled devices such as web browsers or spelling devices for paralyzed patients. State-
of-the-art solutions are based on machine learning. In this paper, we show that EEG
datasets contain hubs, i.e., signals that appear as nearest neighbors of surprisingly many
signals. This paper is the first to document this observation for EEG datasets. Next, we
argue that the presence of hubs has to be taken into account for the classification of EEG
signals, therefore, we adapt hubness-aware classifiers to EEG data. Finally, we present the
results of our empirical study on a large, publicly available collection of EEG signals and
show that hubness-aware classifiers outperform the state-of-the-art time-series classifier.

Keywords: electroencephalograph; nearest neighbor; classification; hubs

1 Introduction

Ongoing large-scale brain research projects – such as the European Human Brain
Project, the BRAIN initiative announced by President Obama1 and the Hungarian
National Brain Research Project – are expected to generate an unprecedented
amount of data describing brain activity. This is likely to lead to an increased need
for enhancement of statistical analysis techniques, development of new methods
and computer software that support the analysis of such data.

One of the most wide-spread devices for monitoring and recording the electrical
activity of the brain is the electroencephalograph (EEG). EEG is used in clinical
practice, research and various other domains. Its numerous applications contain

1
 see also https://www.humanbrainproject.eu/ , http://braininitiative.nih.gov/

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 28 –

pre-surgical evaluation [1], diagnostic decision-making [2] and the assessment of
chronic headaches [3]. EEG "is an important diagnostic tool for patients with
seizures and other paroxysmal behavioral events" [4], it may provide diagnostic
information in case of epilepsy [5], Alzheimer's disease [6], [7], schizophrenia [8]
or after a brain injury [9]. EEG is used in various brain-computer interfaces [10]
which are core components of EEG-controlled devices, such as spelling tools [11]
or web browsers [12] for paralyzed patients. EEG was used to study sleepiness in
long distance truck driving [13] and there were attempts to predict upcoming
emergency braking based on EEG signals [14].

Continuous, long-term EEG monitoring is required in many cases, such as some
forms of epilepsy [15], [16], coma, cerebral ischemia, assessment of a medication
[17], sleep disorders and disorders of consciousness [18], psychiatric conditions,
movement disorders [19], during anesthesia, in intensive care units and neonatal
intensive care units [20], [17]. In these cases, EEG signals are recorded for hours
or days. Due to the large amount of captured data, the detailed analysis of the
entire records is usually not possible by human experts. Therefore, in order to
allow for real-time diagnosis and thorough analysis of the data, various techniques
were developed to assist medical doctors and other employees of hospitals and to
allow for the (semi-)automated analysis of EEG signals.

A common feature of the aforementioned diagnostic problems and EEG-based
tools (such as EEG-controlled web browsers or spelling tools) is that they involve
recognition tasks related to EEG signals. As EEG signals can be considered as
multivariate time-series, these recognition tasks can be formulated as multivariate
time-series classification problems, for which state-of-the-art solutions are based
on machine learning. For example, Boostani et al. used Boosted Direct Linear
Discriminant Analysis for the diagnosis of schizophrenia [21], Sabeti et al.
selected best channels based on mutual information and utilized genetic
programming in order to select best features [22], while Srinivasan et al. used
neural networks for EEG classification [23]. Sun et al. studied ensemble methods
[24]. For an excellent survey about EEG-related analysis tasks we refer to [25].

Nearest-neighbor classifiers using dynamic time warping (DTW) as distance
measure have been shown to be competitive, if not superior, to many state-of-the-
art time-series classification methods such as neural networks or hidden Markov
models, see, e.g. [26]. The experimental evidence is underlined by theoretical
results about error bounds for the nearest neighbor classifiers. While classic
works, such as [27], considered vector data, in their recent work, Chen et al. [28]
focused on the nearest neighbor classification of time series and proved error
bounds for nearest neighbor-like time-series classifiers. Besides their accuracy,
nearest neighbor classifiers deliver human-understandable explanations for their
classification decisions in the form of sets of similar instances which makes them
preferable to medical applications. As nearest neighbor classifiers are attractive
both from the theoretical and practical points of view, considerable research was
performed to enhance nearest neighbor classification. Some of the most promising

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 29 –

recent methods were based on the observation that a few time-series tend to be
nearest neighbors of surprisingly large amount of other time-series [62]. We refer
to this phenomenon as the presence of hubs or hubness for short, and the
classifiers that take this phenomenon into account are called hubness-aware
classifiers. Hubness-aware classifiers were originally proposed for vector data and
image data [29], [30], [31], and only few works considered hubness-aware
classification of time series [32], [33], [34], but none of them considered hubness-
aware classifiers for EEG data.

In this paper, we focus on hubness-aware classification of EEG signals. As we
will show, hubness-aware classifiers lead to statistically significant improvements
over the state-of-the-art in terms of accuracy, precision, recall and F-score.

The paper is organized as follows. In Section 2 we introduce basic concepts and
notations, while Section 3 is devoted to the presence of hubs in EEG data and
hubness-aware classifiers. In Section 4 we present the results of our experiments.
Finally, we conclude in Section 5.

2 Basic Concepts and Notations

We use D to denote the set of EEG signals used to construct the recognition
model, called classifier. D is called training data and each signal in D is
associated with a class label. For example, in the simplest case of diagnosing
epilepsy, there are two classes of signals, one of them contains the EEG signals of
healthy individuals, while the second class contains the EEG signals of epileptic
patients. The class label of each signal denotes to which class that signal belongs,
i.e., in the previous example, the class label of a particular signal denotes whether
this signal originates from a healthy or epileptic individual. The class labels of the
training data are known while constructing the classifier. The process of
constructing the classifier is called training. Once the classifier is trained, it can be
applied to new signals, i.e., the classifier can be used to predict the class labels of
new signals. In order to evaluate our classifier we will use a second set of EEG
signals D

test, called test data. D
test is disjoint from D and the class labels of the

signals in Dtest are unknown to the classifier. We only use the class labels of the
signals in D

test to quantitatively assess the performance of the classifier (by
comparing the predicted and true class labels and calculating statistics regarding
the performance).

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 30 –

3 Hubness-aware Classification of EEG Data

3.1 Hubs in EEG Data

The presence of hubs, i.e., the presence of a few instances (objects, signals) that
occur surprisingly frequently as neighbors (peers) of other instances, while many
instances (almost) never occur as neighbors, has been observed for various natural
and artificial networks, such as protein-protein-interaction (PPI) networks or the
internet [40], [41], [42], [43], [44]. Hubs were shown to be relevant in various
contexts, including text mining [45], [46], music retrieval and recommendation
[47], [48], [49], [50], image data [51], [52] and time series [34], [53].

In this study, we focus on EEG signals, and we will describe our novel
observation that nearest neighbor graphs built from EEG signals contain hubs.

In context of EEG classification, informally, the hubness phenomenon means that
some (relatively few) EEG signals appear as nearest neighbors of many EEG
signals. Note that, throughout this paper, an EEG signal is never treated as the
nearest neighbor of itself. Intuitively speaking, very frequent neighbors, or hubs,
dominate the neighbor sets and therefore, in the context of similarity-based
learning, they represent the centers of influence within the data. In contrast to
hubs, there are signals that occur rarely as neighbors and therefore they contribute
little to the analytic process. We will refer to them as orphans or anti-hubs.

In order to express hubness more precisely, for an EEG dataset D one can define
the k-occurrence of a signal t from D, denoted by Nk(t), as the number of signals
in D having t among their k-nearest neighbors:

 (1)

where k(ti) denotes the set of k-nearest neighbors of ti. With the term hubness
we refer to the phenomenon that the distribution of Nk(t) becomes significantly
skewed to the right. We can measure this skewness with the third standardized
moment of Nk(t):

 (2)

where and are the mean and standard deviation of the distribution of
Nk(t) and the notation E stands for the expected value of the quantity between the
brackets. When the skewness is higher than zero, the corresponding distribution is
skewed to the right and starts presenting a long tail. It should be noted, though,
that the occurrence distribution skewness is only one of indicator statistics and
that the distributions with same or similar skewness can still take different shapes.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 31 –

In the presence of class labels, we distinguish between good hubness and bad
hubness: we say that an EEG signal t' is a good k-nearest neighbor of the signal t,
if (i) t' is one of the k-nearest neighbors of t, and (ii) both have the same class
labels. Similarly: we say that the signal t' is a bad k-nearest neighbor of the signal
t, if (i) t' is one of the k-nearest neighbors of t, and (ii) they have different class
labels. This allows us to define good (bad) k-occurrence of a signal t, GNk(t) (and
BNk(t) respectively), which is the number of other signals that have t as one of
their good (bad respectively) k-nearest neighbors. For EEG signals, both
distributions of GNk(t) and BNk(t) are skewed, as it is exemplified in Fig. 1, which
depicts the distributions of GN1(t), BN1(t) and N1(t) for a publicly available EEG
dataset from the UCI Machine Learning repository. We describe this dataset in
more detail in Section 4. As shown, the distributions have long tails.

Figure 1

Distribution of GN1(t), BN1(t) and N1(t) for the EEG dataset from the UCI Machine Learning

repository. Note that the scale is logarithmic on the vertical axis.

We say that a signal t is a good (or bad) hub, if GNk(t) (or BNk(t) respectively) is
exceptionally large for t. For the nearest neighbor classification of time series,
such as EEG signals, the skewness of good occurrence is of major importance,
because some few time series are responsible for large portion of the overall error:
bad hubs tend to misclassify a surprisingly large number of time series [34].
Therefore, one has to take into account the presence of good and bad hubs in EEG
datasets.

In the light of the previous discussion, the total occurrence count Nk(t) of an EEG
signal t can be decomposed into good and bad occurrence counts: Nk(t) = GNk(t) +
BNk(t). More generally, we can decompose the total occurrence count into the
class-conditional counts:

, (3)

where denotes the set of all the classes and denotes how many times t
occurs as one of the k-nearest neighbors of signals belonging to class C, i.e.,

, (4)

where yi denotes the class label of ti.

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 32 –

3.2 Hubness-aware Classifiers

In this section, we give a detailed description of classifiers that work under the
assumption of hubness. In our experiments in Section 4, we will examine how
these algorithms perform on EEG signals. The algorithms are general, in the sort
of sense that they can be applied to any kind of data, provided that an appropriate
distance measure between the instances of the dataset is available. In case of EEG-
data, we use multivariate DTW as distance measure as described in [36]. As in our
case instances are EEG-signals, we will mostly use the term EEG-signal instead of
instance while describing hubness-aware classifiers.

In order to predict how hubs will affect classification of non-labeled signals (e.g.
signals arising from observations in the future), we can model the influence of
hubs by considering the training data. The training data can be utilized to learn a
neighbor occurrence model that can be used to estimate the probability of
individual neighbor occurrences for each class. There are many ways to exploit
the information contained in the occurrence models. Next, we will review the
most prominent approaches. While describing these approaches, we will consider
the case of classifying the signal t*. We will denote its unknown class label as y*
and its nearest neighbors as ti, where i is an integer number in the range from 1 to
k. We assume that the test data is not available when building the model, and
therefore Nk(t), Nk,C(t), GNk(t) and BNk(t) are calculated on the training data.

3.2.1 hw-kNN: Hubness-aware Weighting

The weighting scheme proposed by Radovanović et al. [54] is one of the simplest
ways to reduce the influence of bad hubs. In this approach, lower voting weights
are assigned to bad hubs in the nearest neighbor classifier. In hw-kNN, the vote of

each neighbor ti is weighted by , where

 (5)

is the standardized bad hubness score of the neighbor signal ti in k(t*), while

 and

are the mean and standard deviation of BNk(t).

In hw-kNN all neighbors vote by their own label. As this may be disadvantageous
in some cases [51], in the algorithms considered below, the neighbors do not
always vote by their own labels, which is a major difference to hw-kNN.

3.2.2 h-FNN: Hubness-based Fuzzy Nearest Neighbors

Consider the relative class hubness uC(ti) of each nearest neighbor ti:

 (6)

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 33 –

where C denotes one of the classes. The above uC(ti) can be interpreted as the
fuzziness of the event that ti occurred as one of the neighbors. Integrating
fuzziness as a measure of uncertainty is usual in k-nearest neighbor methods and
h-FNN [30] uses the relative class hubness when assigning class-conditional vote
weights. The approach is based on the fuzzy k-nearest neighbor voting framework
[55]. Therefore, the probability of each class C for the signal t* is estimated as:

. (7)

Special care has to be devoted to anti-hubs. Their occurrence fuzziness is
estimated as the average fuzziness of points from the same class. Optional
distance-based vote weighting is possible.

3.2.3 NHBNN: Naive Hubness Bayesian k-Nearest Neighbor

For each class C, Naive Hubness Bayesian k-Nearest Neighbor (NHBNN)
estimates P(y* = C | k(t*)), i.e., the probability that t* belongs to class C given
its nearest neighbors. Then, NHBNN selects the class with highest probability.

NHBNN follows a Bayesian approach to assess P(y* = C | k(t*)). For each
training EEG signal t of the training dataset, one can estimate the probability of
the event that t appears as one of the k-nearest neighbors of any training instance

belonging to class C. This probability is denoted by .

Assuming conditional independence between the nearest neighbors given the
class, P(y* = C | k(t*)) can be assessed as follows:

 (8)

where P(C) denotes the prior probability of the event that an instance belongs to
class C. From the labeled training data, P(C) can be estimated as |DC|/|D|, where
|DC| denotes the number of EEG signals instances belonging to class C in the
training data, and |D| is the total number of EEG signals in the training data. The
maximum likelihood estimate of is the fraction

 (9)

Estimating according to Eq. (9) may simply lead to zero
probabilities. In order to avoid it, we can use a simple Laplace-estimate for

 as follows:

 (10)

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 34 –

where m > 0 and q denotes the number of classes. Informally, this estimate can be
interpreted as follows: we consider m additional pseudo-instances from each class
and we assume that ti appears as one of the k-nearest neighbors of the pseudo-
instances from class C. We use m=1 in our experiments.

Even though k-occurrences are highly correlated, as shown in [61], NHBNN
offers improvement over the basic k-NN. This is in accordance with other results
from the literature that state that Naive Bayes can deliver good results even in
cases with high independence assumption violation [56].

3.2.4 HIKNN: Hubness Information k-Nearest Neighbor

In h-FNN, as in most kNN classifiers, all neighbors are treated as equally
important. The difference is sometimes made by introducing the dependency on
the distance to t*, the signal to be classified. However, it is also possible to deduce
some sort of global neighbor relevance, based on the occurrence model, which is
the basic idea behind HIKNN [29]. It embodies an information-theoretic
interpretation of the neighbor occurrence events. In that context, rare occurrences
have higher self-information, see Equation (11). The more frequently an EEG
signal t occurs as nearest neighbor of other EEG signals, the less surprising is the
occurrence of t as one of the nearest neighbors while classifying a new signal.

The EEG signals that rarely occur as neighbors are, therefore, more informative
and they are favored by HIKNN. The reasons for this lies hidden in the geometry
of high-dimensional feature spaces. Namely, hubs have been shown to lie closer to
the cluster centers [57], as most high-dimensional data lies approximately on
hyper-spheres. Therefore, hubs are points that are somewhat less 'local'. Therefore,
favoring the rarely occurring points helps in consolidating the neighbor set
locality. The algorithm itself is a bit more complex, as it not only reduces the vote
weights based on the occurrence frequencies, but also modifies the fuzzy vote
itself so that the rarely occurring points vote mostly by their labels and the hub
points vote mostly by their occurrence profiles. Next, we will present the approach
in more detail.

The self-information associated with the event that ti occurs as one of the

nearest neighbors of an EEG signal to be classified can be calculated as

 (11)

Occurrence self-information is used to define the relative and absolute relevance
factors in the following way:

 (12)

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 35 –

The final fuzzy vote of a neighbor ti combines the information contained in its
label with the information contained in its occurrence profile. The relative
relevance factor is used for weighting the two information sources. This is shown
in Eq. (13).

. (13)

Hubness-aware classifiers are illustrated by an elaborated example in [61].

3.2.5 On the Computational Aspects of the Implementation of Hubness-

aware Classifiers

When classifying EEG signals, i.e., multivariate time series, with hubness-aware
classifiers, the computationally most expensive step is the computation of the
nearest neighbors of training instances, which is used to determine hubness-scores
such as Nk(t), Nk,C(t), GNk(t) and BNk(t). On the one hand, approaches known to
speed-up nearest neighbor classification of time series can be used to reduce the
computational costs of hubness-aware classifiers. Such techniques include:
speeding-up the calculation of the distance of two time series (by, e.g. limiting the
warping window size), indexing and reducing the length of the time series used.
For more details we refer to [32] and the references therein. On the other hand, we
note that distances between different pairs of training instances can be calculated
independently, therefore, computations can be parallelized and implemented on a
distributed supercomputer (cloud).

4 Experimental Evaluation

In this section, first, we describe the data we used in our experiments. Next, we
provide details of the experimental settings. Subsequently, we present our
experimental results.

4.1 Data

In order to evaluate our approach, we used the publicly available EEG dataset2
from the UCI machine learning repository. This collection contains in total 11028
EEG signals recorded from 122 people. Out of the 122 people, 77 were alcoholic
patients and 45 were healthy individuals. Each signal was recorded using 64
electrodes at 256 Hz for 1 second. Therefore, each EEG signal is a 64 dimensional

2
 http://archive.ics.uci.edu/ml/datasets/EEG+Database

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 36 –

time series of length 256 in this collection. In order to filter noise, as a simple
preprocessing step, we reduced the length of the signals from 256 to 64 by binning
with a window size of 4, i.e., we averaged consecutive values of the signal in non-
overlapping windows of length 4.

As noted before, the examined EEG dataset exhibits remarkable hubness, as the
neighbor occurrence frequency is significantly skewed. For instance, if we set
k=1, there exists a hub signal that acts as a nearest neighbor of 113 other signals
from the data. For k = 10, the top neighbor occurrence frequency peaks at 707.
This illustrates the significance of hub signals in practice. They influence many
classification decisions.

As shown in Figure 2, the distribution of such hub signals, as well as detrimental
(bad) hubs and anti-hubs differ between the two classes of the EEG dataset and do
not follow the prior class distribution. In particular, most hub signals emerge
among the Alcoholic class, while most anti-hubs appear among the signals from
the Healthy class. Many anti-hubs are in fact known to be outliers and points that
lie in borderline regions, far away from local cluster means – and they are,
therefore, more difficult to handle and properly associate with a particular class in
a prospective study. This suggests that the two classes might not be equally
difficult for k-NN classification.

Figure 2

Distribution of hub signals, bad hubs and anti-hubs in the Healthy and Alcoholic class

4.2 Experimental Settings

In our experiments we examined the performance of hubness-aware classifiers.
We compared these algorithms to k-NN. Both in case of k-NN and the hubness-
aware classifiers, we used multivariate DTW as distance measure as described in
[36]. We set k = 10 for the hubness-aware classifiers. This value was chosen,
since most hubness-aware methods are known to perform better in cases when k is
somewhat larger than 1, because more reliable neighbor occurrence models can be
inferred from more occurrence information, see also [29]. In case of the baseline,
k-NN, we experimented with both k = 1 and k = 10.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 37 –

Based on the EEG signals, we aimed to recognize whether a person is affected by
alcoholism or not. In other words: the class label of an EEG-signal reflects
whether this signal originates from an alcoholic patient or a healthy individual.
Both for hubness-aware classifiers and the baseline, we make use of the
information that we know which signals originate from the same person: we
classify a person as healthy (or alcoholic, respectively) if majority of the signals
originating from that person were classified as healthy (alcoholic, respectively).

In all the experiments, we used the 10x10-fold crossvalidation protocol to evaluate
hubness aware classifiers and the baseline. With 10-fold crossvalidation we mean
that we partition the entire dataset into 10 disjoint random splits and we use 9 out
of these splits as train data, while the remaining split is used as test data. We
repeat the experiment 10 times, in each round we use a different split as test data.
With 10x10-fold crossvalidation we mean that we repeat the above 10-fold
crossvalidation procedure 10 times, each time beginning with a different random
partitioning of the data. While partitioning the data, we pay attention that all the
signals belonging to the same person are assigned to the same split, and therefore
each person either appears in the training data or in the test data, but not in both.
On the one hand, this allows to simulate the real-world scenario in which the
recognition system is applied to new users; on the other hand, EEG signals are
somewhat characteristic to individuals, see e.g. person identification systems
using EEG [58], therefore, if the same person would appear in both the train and
test data, this could lead to overoptimistic results.

4.3 Performance Metrics

As primary performance measure we used accuracy, i.e., the number of correctly
classified persons divided by the number of all the persons in the dataset. We
performed t-test at significance level of 0.05 in order to decide whether the
differences are statistically significant.

Additionally, we measured precision, recall and F-score for the class of alcoholic
patients. Precision and recall regarding class C are defined as Prec(C) = TP(C) /
(TP(C) + FP(C)) and Recall(C) = TP(C) / (TP(C) + FN(C)) respectively, where
TP(C) denotes the true positive signals, i.e., signals that are classified as belonging
to class C and they really belong to this class; FP(C) denotes false positive
signals, i.e., signals that are classified as belonging to class C, but they belong to
some other class in reality; and FN(C) denotes false negative, i.e., signals that are
not classified as belonging to class C, but they belong to class C in reality. F-score
is the harmonic mean of precision and recall: F(C) = 2 Prec(C) Recall(C) /
(Prec(C) + Recall(C)).

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 38 –

4.4 Results

The results of our experiments are summarized in Tab. 1 and Tab. 2. Tab. 1 shows
accuracy of the examined methods averaged over 10x10 folds, while Tab. 2 shows
precision, recall and F-score for the identification of alcoholic patients. This
experiment simulates the medically relevant application scenario in which EEG is
used to diagnose a disease. In both tables, we provide standard deviations after the
± sign. Additionally, in the last two columns of Tab. 1 we provide the results of
statistical significance tests (t-test at significance level of 0.05) in the form of a
symbol ± where + denotes significance, and – its absence when comparing to 1-
NN and 10-NN respectively. In both tables, we underlined those hubness-aware
classifiers that outperformed both baselines (in terms of accuracy and F-score).

Table 1

Accuracy ± standard deviation of hubness-aware classifiers and the baselines

Method Accuracy Significant difference compared to

 1-NN 10-NN

1-NN 0.650 ± 0.055

10-NN 0.662 ± 0.053

h-FNN 0.690 ± 0.060 + +

NHBNN 0.780 ± 0.112 + +

HIKNN 0.663 ± 0.050 + –

hw-kNN 0.660 ± 0.050 + –

Table 2

Precision, recall and F-score ± its standard for the class of alcoholic patients

Method Precision Recall F-score

1-NN 0.65 ± 0.04 0.99 ± 0.04 0.78 ± 0.03

10-NN 0.65 ± 0.04 1.00 ± 0.00 0.79 ± 0.03

h-FNN 0.67 ± 0.05 1.00 ± 0.00 0.80 ± 0.03

NHBNN 0.81 ± 0.10 0.87 ± 0.11 0.83 ± 0.09

HIKNN 0.65 ± 0.04 1.00 ± 0.00 0.79 ± 0.03

hw-kNN 0.65 ± 0.04 1.00 ± 0.00 0.79 ± 0.03

4.5 Discussion

Hubness-aware classifiers yield significant overall improvements over k-NN.
However, some hubness-aware methods perform better than others.

In particular, all of the hubness-aware classifiers significantly outperformed 1-NN
in terms of classification accuracy, whereas two hubness-aware classifiers, namely
h-FNN and NHBNN, outperformed 10-NN significantly. Although in terms of
accuracy, HIKNN appears to have outperformed 10-NN on average, the difference

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 39 –

is not significant statistically. The simple weighting approach (hw-kNN) did not
outperform 10-NN of the examined task of EEG signal classification. The highest
improvements in accuracy were achieved by NHBNN, which seems to be very
promising for this task.

In medical applications, as we have to deal with class-imbalanced data in many
cases, precision and recall are often more important than accuracy. Therefore, in
order to further assess the performance of hubness-aware classifiers, we measured
their precision, recall and F-score on the class of alcoholic patients. We observed
similar trends as in case of accuracy: the performance of the simple hw-kNN was
comparable to the baselines, while NHBNN, h-FNN and HIKNN showed clear
advantages. Again, NHBNN showed the best overall performance: NHBNN
achieved the highest F-score as the relatively low recall of NHBNN was
compensated by precision.

In order to interpret these improvements, we have analyzed how different signal
types were handled by the tested classifiers. According to [59], we distinguish
between four different types of signals: safe signals, that lie in class interiors and
have all or most of their neighbors belong to the same class, borderline signals,
that lie in borderline regions between different classes, rare signals that are
somewhat unusual and distant from the class prototypes and outliers. Apart from
safe signals, all other signal types are difficult to properly classify.

Figure 3 shows that the two classes in this EEG dataset are formed of different
signal type distributions. Most signals of healthy individuals seem to be either
borderline, rare or outliers. On the other hand, most signals of alcoholic patients
seem to be safe in terms of k-NN classification. This indicates that there is
probably a common pattern to most alcoholic EEG signals, while the healthy
group might be less coherent and comprise different subgroups.

Figure 3

Distribution of different signal types in the Healthy and Alcoholic classes. The two classes have

different signal type distributions: compared to the Healthy class, the Alcoholic class seems to be

composed of more compact clusters, where most signals lie in class/cluster interiors.

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 40 –

The examined hubness-aware classifiers that improve over 10-NN achieve their
improvement by increasing precision of classification for difficult signal types,
i.e., borderline, rare and outlier signals, see Fig. 4. This is in concordance with
prior observations in other class-imbalanced classification studies [60].

Finally, in order to clarify why hubness-aware classifiers might be well suited for
EEG signal classification, we briefly discuss the merits of using neighbor
occurrence models on this EEG dataset. Namely, unlike the baseline k-NN,
hubness-aware classifiers are based on building neighbor occurrence models that
learn from prior occurrences on the training set. Predicting the occurrence profiles
of individual points requires us to consider reverse neighbor sets, in contrast to the
direct k-NN sets in the k-NN baseline. With reverse neighbors of a signal x, we
mean the set of signals that have x as one of their k-nearest neighbors. As Fig. 5
suggests, the average entropy of the reverse neighbor sets in the EEG dataset is
lower that the entropy of the direct k-NN sets. This means that less uncertainty is
present on average in the reverse neighbor sets.

Figure 4

Precision of hubness-aware classifiers and k-NN on different signal types. Performance decomposition

indicates clear improvements in case of the difficult signal types (borderline and rare signals, outliers).

Figure 5

Average entropy (vertical axis) of k-nearest neighbor sets and reverse k-neighbor sets for various

neighborhood sizes (horizontal axis). The lower uncertainty of reverse neighbor sets may explain why

hubness-aware classifiers outperform k-NN.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 41 –

Conclusions and Outlook

Classification is a common denominator across biomedical recognition tasks. We
examined the effectiveness of hubness-aware classifiers in case of EEG signals.

Hubness-aware classification methods have recently been proposed for classifying
complex and intrinsically high-dimensional datasets, under the assumption of
hubness, which is the skewness of the neighbor occurrence distribution and
characterizes many high-dimensional datasets. We have demonstrated that EEG
data indeed exhibits significant hubness and that some recently proposed hubness-
aware classification methods can be successfully used for signal class recognition.

These recent advances had not been applied to EEG data before and this study
attempts to evaluate their usefulness in this context, as well as familiarize domain
experts with the potential that these methods seem to hold for these data types.

We have experimentally compared several recently proposed hubness-aware
classifiers on a large, publicly available EEG dataset. Our experiments
demonstrate significant improvements over the baseline. Naive Hubness-Bayesian
k-Neareset Neighbor classifier (NHBNN) showed very promising performance.
As future work, we will consider different possibilities for boosting hubness-
aware methods or combining them into classification ensembles.

Acknowledgement

Discussions with Dr. Nenad Tomašev, researcher of the Artificial Intelligence
Laboratory, Jožef Stefan Institute, Ljubljana, Slovenia as well as his contributions
to the paper, esp. in Section 4.5 are greatly appreciated. This research was
performed within the framework of the grant of the Hungarian Scientific Research
Fund - OTKA 111710 PD. This paper was supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences. We thank Henri
Begleiter at the Neurodynamics Laboratory at the State University of New York
Health Center at Brooklyn for making the EEG data publicly available.

References

[1] S. Knake, E. Halgren, H. Shiraishi, K. Hara, H. Hamer, P. Grant, V. Carr,
D. Foxe, S. Camposano, E. Busa, T. Witzel, M. Hmlinen, S. Ahlfors, E.
Bromfield, P. Black, B. Bourgeois, A. Cole, G. Cosgrove, B. Dworetzky, J.
Madsen, P. Larsson, D. Schomer, E. Thiele, A. Dale, B. Rosen, S.
Stufflebeam, The Value of Multichannel Meg and Eeg in the Presurgical
Evaluation of 70 Epilepsy Patients, Epilepsy Research 69 (2006) pp. 80-86

[2] J. Askamp, M. J. van Putten, Diagnostic Decision-Making after a First and
Recurrent Seizure in Adults, Seizure 22 (2013) pp. 507-511

[3] U. Kramer, Y. Nevo, M. Y. Neufeld, S. Harel, The Value of EEG in
Children with Chronic Headaches, Brain and Development 16 (1994) pp.
304-308

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 42 –

[4] J. Alving, S. Beniczky, Diagnostic Usefulness and Duration of the Inpatient
Long-Term Video-EEG Monitoring: Findings in Patients Extensively
Investigated before the Monitoring, Seizure 18 (2009) pp. 470-473

[5] E. Montalenti, D. Imperiale, A. Rovera, B. Bergamasco, P. Benna, Clinical
Features, EEG Findings and Diagnostic Pitfalls in Juvenile Myoclonic
Epilepsy: a Series of 63 Patients, Journal of the Neurological Sciences 184
(2001) pp. 65-70

[6] K. Bennys, G. Rondouin, C. Vergnes, J. Touchon, Diagnostic Value of
Quantitative EEG in Alzheimers Disease, Neurophysiologie
Clinique/Clinical Neurophysiology 31 (2001) pp. 153-160

[7] J. Dauwels, F. Vialatte, T. Musha, A. Cichocki, A Comparative Study of
Synchrony Measures for the Early Diagnosis of Alzheimer's Disease Based
on Eeg, NeuroImage 49 (2010) pp. 668-693

[8] M. Sabeti, S. Katebi, R. Boostani, Entropy and Complexity Measures for
EEG Signal Classification of Schizophrenic and Control Participants,
Artificial Intelligence in Medicine 47 (2009) pp. 263-274

[9] Large-Scale Brain Dynamics in Disorders of Consciousness, Current
Opinion in Neurobiology 25 (2014) pp. 7-14

[10] M. Schreuder, A. Riccio, M. Risetti, S. Dhne, A. Ramsay, J. Williamson,
D. Mattia, M. Tangermann, User-centered Design in Braincomputer
Interfacesa Case Study, Artificial Intelligence in Medicine 59 (2013) pp.
71-80, Special Issue: Brain-computer interfacing

[11] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A.
Kübler, J. Perelmouter, E. Taub, H. Flor, A Spelling Device for the
Paralysed, Nature 398 (1999) pp. 297-298

[12] M. Bensch, A. A. Karim, J. Mellinger, T. Hinterberger, M. Tangermann,
M. Bogdan, W. Rosenstiel, N. Birbaumer, Nessi: an EEG-controlled Web
Browser for Severely Paralyzed Patients, Computational Intelligence and
Neuroscience (2007)

[13] G. Kecklund, T. Åkerstedt, Sleepiness in Long Distance Truck Driving: an
Ambulatory EEG Study of Night Driving, Ergonomics 36 (1993) pp. 1007-
1017

[14] S. Haufe, M. S. Treder, M. F. Gugler, M. Sagebaum, G. Curio, B.
Blankertz, Eeg Potentials Predict Upcoming Emergency Brakings during
Simulated Driving, Journal of neural engineering 8 (2011) 056001

[15] E. Rodin, T. Constantino, J. Bigelow, Interictal Infraslow Activity in
Patients with Epilepsy, Clinical Neurophysiology (2013)

[16] A. Serafini, G. Rubboli, G. L. Gigli, M. Koutroumanidis, P. Gelisse,
Neurophysiology of Juvenile Myoclonic Epilepsy, Epilepsy & Behavior 28,
Supplement 1 (2013) S30-S39

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 43 –

[17] M. L. Scheuer, Continuous EEG Monitoring in the Intensive Care Unit,
Epilepsia 43 (2002) pp. 114-127

[18] U. Malinowska, C. Chatelle, M.-A. Bruno, Q. Noirhomme, S. Laureys, P. J.
Durka, Electroencephalographic Profiles for Differentiation of Disorders of
Consciousness, Biomedical Engineering online 12 (2013) p. 109

[19] W. O. Tatum IV, Long-Term EEG Monitoring: a Clinical Approach to
Electrophysiology, J. Clinical Neurophysiology 18 (2001) pp. 442-455

[20] B. McCoy, C. D. Hahn, Continuous EEG Monitoring in the Neonatal
Intensive Care Unit, J. Clinical Neurophysiology 30 (2013) pp. 106-114

[21] R. Boostani, K. Sadatnezhad, M. Sabeti, An Efficient Classifier to
Diagnose of Schizophrenia Based on the EEG Signals, Expert Systems with
Applications 36 (2009) pp. 6492-6499

[22] M. Sabeti, S. Katebi, R. Boostani, G. Price, A New Approach for EEG
Signal Classification of Schizophrenic and Control Participants, Expert
Systems with Applications 38 (2011) pp. 2063-2071

[23] V. Srinivasan, C. Eswaran, N. Sriraam, Artificial Neural Network-based
Epileptic Detection Using Time-Domain and Frequency-Domain Features,
Journal of Medical Systems 29 (2005) pp. 647-660

[24] S. Sun, C. Zhang, D. Zhang, An Experimental Evaluation of Ensemble
Methods for EEG Signal Classification, Pattern Recognition Letters 28
(2007) pp. 2157-2163

[25] D. P. Subha, P. K. Joseph, R. Acharya, C. M. Lim, EEG Signal Analysis: A
Survey, Journal of Medical Systems 34 (2010) pp. 195-212

[26] X. Xi, E. Keogh, C. Shelton, L. Wei, C. A. Ratanamahatana, Fast Time
Series Classification using Numerosity Reduction, in: Proceedings of the
23rd International Conference on Machine Learning, ICML '06, ACM, New
York, NY, USA (2006) pp. 1033-1040

[27] L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern
Recognition, Springer Verlag (1996)

[28] G. H. Chen, S. Nikolov, D. Shah, A Latent Source Model for
Nonparametric Time Series Classification, in: Advances in Neural
Information Processing Systems 26 (2013) pp. 1088-1096

[29] N. Tomašev, D. Mladenić, Nearest Neighbor Voting in High Dimensional
Data: Learning from Past Occurrences, Computer Science and Information
Systems 9 (2012) pp. 691-712

[30] N. Tomašev, M. Radovanović, D. Mladenić, M. Ivanović, Hubness-based
Fuzzy Measures for High-Dimensional k-nearest Neighbor Classification,
International Journal of Machine Learning and Cybernetics (2013)

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 44 –

[31] N. Tomašev, M. Radovanović, D. Mladenić, M. Ivanović, A Probabilistic
Approach to Nearest Neighbor Classification: Naive Hubness Bayesian k-
nearest Neighbor, in: Proceeding of the CIKM conference

[32] K. Buza, A. Nanopoulos, L. Schmidt-Thieme, Insight: Efficient and
Effective Instance Selection for Time-Series Classification, in: Proceedings
of the 15th Pacific-Asia conference on Advances in Knowledge Discovery
and Data Mining -Volume Part II, PAKDD'11, Springer-Verlag (2011) pp.
149-160

[33] K. Buza, A. Nanopoulos, L. Schmidt-Thieme, J. Koller, Fast Classification
of Electrocardiograph Signals via Instance Selection, in: First International
Conference on Healthcare Informatics, Imaging and Systems Biology,
IEEE Computer Society, Washington, DC, USA (2011) pp. 9-16

[34] M. Radovanović, A. Nanopoulos, M. Ivanović, Time-Series Classification
in Many Intrinsic Dimensions, in: Proceedings of the 10th SIAM
International Conference on Data Mining (SDM) pp. 677-688

[35] H. Sakoe, S. Chiba, Dynamic Programming Algorithm Optimization for
Spoken Word Recognition, Acoustics, Speech and Signal Processing 26
(1978) pp. 43-49

[36] K. A. Buza, Fusion Methods for Time-Series Classification, Peter Lang
Verlag (2011)

[37] T. F. Smith, M. S. Waterman, Identification of Common Molecular
Subsequences, Journal of molecular biology 147 (1981) pp. 195-197

[38] W. R. Cohen, P. S. Ravikumar, P. S. Fienberg, A Comparison of String
Distance Metrics for Name-Matching Tasks, in: Proceedings of the IJCAI-
03 Workshop on Information Integration on the Web (2003) pp. 73-78

[39] V. Levenshtein, Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals 10 (1966) pp. 707-710

[40] A. Barabási, Linked: How Everything Is Connected to Everything Else and
What It Means for Business, Science, and Everyday Life, Plume (2003)

[41] J. B. Axelsen, S. Bernhardsson, M. Rosvall, K. Sneppen, A. Trusina,
Degree Landscapes in Scale-Free Networks, Physical Review E-Statistical,
Nonlinear and Soft Matter Physics 74 (2006) 036119

[42] A.-L. Barabási, E. Bonabeau, Scale-Free Networks, Sci. Am. 288 (2003)
pp. 50-59

[43] X. He, J. Zhang, Why Do Hubs Tend to Be Essential in Protein Networks?,
PLoS Genet 2 (2006)

[44] N. N. Batada, L. D. Hurst, M. Tyers, Evolutionary and Physiological
Importance of Hub Proteins, PLoS Comput Biol 2 (2006) e88

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 45 –

[45] A. Nanopoulos, M. Radovanović, M. Ivanović, How does High
Dimensionality Affect Collaborative Filtering?, in: Proceedings of the third
ACM conference on Recommender systems, RecSys '09, ACM, New York,
NY, USA (2009) pp. 293-296

[46] N. Tomašev, J. Rupnik, D. Mladenić, The Role of Hubs in Cross-Lingual
Supervised Document Retrieval, in: Proceedings of the PAKDD
Conference, PAKDD (2013)

[47] J. Aucouturier, F. Pachet, Improving Timbre Similarity: How High is the
Sky?, Journal of Negative Results in Speech and Audio Sciences 1 (2004)

[48] Flexer A., Schnitzer D., Schlüter, J., A Mirex Meta-Analysis of Hubness in
Audio Music Similarity, in: Proceedings of the 13th International Society
for Music Information Retrieval Conference, ISMIR'12

[49] Schedl M., Flexer A., Putting the User in the Center of Music Information
Retrieval, in: Proceedings of the 13th International Society for Music
Information Retrieval Conference, ISMIR'12

[50] D. Schnitzer, A. Flexer, M. Schedl, G. Widmer, Using Mutual Proximity to
Improve Content-based Audio Similarity, in: ISMIR'11, pp. 79-84

[51] N. Tomašev, R. Brehar, D. Mladenić, S. Nedevschi, The Influence of
Hubness on Nearest-Neighbor Methods in Object Recognition, in:
Proceedings of the 7th IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), pp. 367-374

[52] N. Tomašev, D. Mladenić, Image Hub Explorer: Evaluating
Representations and Metrics for Content-based Image Retrieval and Object
Recognition, in: Proceedings of the ECML/PKDD Conference, Springer
(2013)

[53] N. Tomašev, D. Mladenić, Exploring the Hubness-related Properties of
Oceanographic Sensor Data, in: SiKDD conference (2011)

[54] M. Radovanović, A. Nanopoulos, M. Ivanović, Nearest Neighbors in High-
Dimensional Data: The Emergence and Influence of Hubs, in: Proceedings
of the 26rd International Conf. on Machine Learning, ACM, pp. 865-872

[55] J. E. Keller, M. R. Gray, J. A. Givens, A Fuzzy k-nearest-neighbor
Algorithm, in: IEEE Transactions on Systems, Man and Cybernetics, pp.
580-585

[56] I. Rish, An Empirical Study of the Naive Bayes Classifier, in: Proc. IJCAI
Workshop on Empirical Methods in Artificial Intelligence (2001)

[57] N. Tomašev, M. Radovanović, D. Mladenić, M. Ivanović, The Role of
Hubness in Clustering High-Dimensional Data, Advances in Knowledge
Discovery and Data Mining, Lecture Notes in Computer Science 6634
(2011) pp. 183-195

K. Buza et al. Classification of Electroencephalograph Data: A Hubness-aware Approach

 – 46 –

[58] M. Poulos, M. Rangoussi, N. Alexandris, A. Evangelou, Person
Identification from the Eeg using Nonlinear Signal Classification, Methods
of Information in Medicine 41 (2002) pp. 64-75

[59] K. Napierala, J. Stefanowski, Identification of Different Types of Minority
Class Examples in Imbalanced Data, in: In Proceedings of Hybrid Artificial
Intelligence Systems Conference, Springer Berlin (2012) pp. 139-150

[60] N. Tomašev, D. Mladenić, Class Imbalance and the Curse of Minority
Hubs, Knowledge-Based Systems 53 (2013) 157-172

[61] N. Tomašev, K. Buza, K. Marussy, P. B. Kis, Hubness-aware
Classification, Instance Selection and Feature Construction: Survey and
Extensions to Time-Series, Feature selection for data and pattern
recognition (2015) pp. 231-262

[62] N. Tomašev, D. Mladenić, Hub co-occurrence Modeling for Robust High-
Dimensional Knn Classification, Machine Learning and Knowledge
Discovery in Databases. Springer Berlin Heidelberg (2013) pp. 643-659

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 47 –

Big Data Testbed for Network Attack Detection

Dániel Csubák, Katalin Szücs, Péter Vörös, Attila Kiss
Department of Information Systems, Eötvös Loránd University
Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
csuby@caesar.elte.hu, szucsk@caesar.elte.hu, vopraai@inf.elte.hu,
kiss@inf.elte.hu

Abstract: Establishing an effective defense strategy in IT security is essential on one hand,

but very challenging on the other hand. According to the 2014 Cyberthreat Defence Report

[1] that involved more than 750 security decision makers and practitioners, more than 60%

of organizations had been breached in 2013. Big data analytics in security provides the

possibility to gather and analyse massive amounts of digital information in order to predict

and prevent these attacks. However, since collecting the needed data in an efficient,

complete and reliable fashion encounters problems, the industry is lacking and could truly

benefit from a tool offering benchmark data, provided in a platform, which would allow

gauging and improving the effectiveness of security defence algorithms. To this end in this

paper we introduce a platform that allows one to generate large parametrized datasets of

simulated Internet traffic consisting of the combination of attack-free and malicious

network traffic patterns. For the simulations we use the ns3 discrete-event network

simulator. To make the resulting dataset appropriate for intrusion detection system

benchmarking purposes we investigate the statistical characteristics of normal and

intrusive traffic patterns. Finally we present a use case in which we validate our results.

Keywords: Network Traffic Simulation; Intrusion Detection; DDOS; NS-3

1 Introduction and Background
Internet traffic simulation has long been important for network intrusion detection
experiments. For testing the efficiency of a newly developed algorithm,
researchers are in need of an environment in which tests of an intrusion detection
system can be performed. The produced dataset should contain attack-free
background traffic as well as intentionally inserted malicious traffic. Many of the
intrusion detection evaluation experiments have been conducted on proprietary
datasets that are hard to access (due to privacy concerns) and hinder reproducible
research. A great effort has been made to reduce this problem in 1998 and 1999 by
MIT Lincoln Laboratory, under Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL/SNHS) sponsorship, when
they created the IDEVAL benchmark datasets [2-3]. To generate a corpus they

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 48 –

followed the approach of recreating normal and attack patterns on a private
network using real hosts, live attacks, and live background traffic. The generated
data flow is similar to what can be seen between a small Air Force base and the
Internet. IDEVAL has been used extensively for many years as the largest publicly
available benchmark for intrusion detection system (IDS) performance evaluation,
although in 2000 McHugh [4] has reported some issues about it, such as the lack
of comparison of the benchmark data and real data. His suspicion that the dataset’s
statistical characteristics differ from live network traffic was later confirmed by
Mahoney et al. [5] in 2003.

Typically there are four approaches to use background traffic in IDS testing: using
no background traffic, using real traffic, using sanitized traffic and using simulated
traffic [6]. When the tests are conducted without using background traffic as a
reference condition, the IDS's hit rate can be determined, but nothing can be said
about the false positive rate. Another drawback of this scheme is the assumption
that the presence or the absence of background traffic does not change the
performance of the system being analysed. Injecting attacks in real background
traffic can overcome this difficulty, although, usually these experiments use a
small set of victim machines, the data may contain malicious traffic or anomalies
specific to the network, and even privacy concerns may arise. Sanitizing the real
traffic by removing any sensitive data (for example using only the TCP headers)
can reduce privacy problems, but it also can lead to unrealistic scenarios if too
much data is removed, or it can unintentionally cause privacy risk if sanitization
fails.

Using simulated traffic can overcome many of the above mentioned problems. It
can be freely distributed without privacy concerns and it surely does not contain
any unexplored attack. Another advantage is that the generated traffic can be later
replayed to repeat the experiment. However, providing a testbed environment that
is able to preserve all the important characteristics of real life Internet traffic is a
great challenge. In [7] Floyd and Paxon present a detailed description of these
simulation difficulties that are mainly present due to the heterogeneity and the
rapid change of the Internet.

In the literature we can find basically two ways of network traffic generation. One
of them is trace-based generation, where the generated traffic is the replication of
some previously recorded real traffic traces. Generators like this for example are
TCPReplay [8] and TCPivo [9]. The other solution is the analytical model-based
approach. It this scheme, the generation is based on statistical models. Some
widely used solutions like this are:

Traffic Generator (TG) that is capable to generate constant, uniform, exponential
on/off UDP or TCP traffic [10].

MGEN is both a command line and GUI traffic generator. It provides programs for
sourcing/sinking real-time multicast/unicast UDP/IP traffic flows [11].

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 49 –

RUDE/CRUDE: RUDE stands for Real-time UDP Data Emitter and CRUDE for
Collector for RUDE. RUDE is a small and flexible program that generates traffic
to the network, which can be received and logged on the other side of the network
with the CRUDE. Currently these programs can generate and measure only UDP
traffic [12].

Distributed Internet Traffic Generator (D-ITG) is a platform capable to produce
traffic that accurately adheres to patterns defined by the inter departure time
between packets and the packet size stochastic processes [13].

Internet Traffic Generator (ITG) allows the reproduction of TCP and UDP traffic
and to accurately replicate appropriate stochastic processes for both Inter
Departure Time and Packet Size random processes. ITG achieves performance
comparable to that of RUDE/CRUDE, but additionally it makes available a greater
number of traffic source types [14].

2 Our Network Traffic Generator
Our goal was to build a parametrizable tool that is able to generate realistic attack
free HTTP traffic combined with DDOS attack traffic. To this end, we used the
widely known NS3 event based network traffic generation tool as the basic
environment. Since there is no generally accepted definition about how HTTP
traffic has to be like, different servers have different user habits (e.g. Facebook is
checked several times a day, while news are usually read in work after lunch) we
tried to make our solution as configurable as possible.

Our background traffic generation model relies on the work of Choi and Limb
[15]. This is one of the most wildly used traffic generation models. According to
their study, a web browsing user can be described by an on-off process. The “on”
stage starts as soon as the user requests a web page. Upon a request the main
object is downloaded that contains the basic structure of the web page and the
links to inline objects. The main object is followed by the inline objects that
actualize the embedded content of the page, these can be scripts, images, etc. The
“on” stage ends when all the elements of the requested page are downloaded. After
that, a silent “off” stage takes place while the user is reading the retrieved content.
Although the basic concept is still viable, the exact measurements of HTTP traffic
made by Choi and Limb are considered obsolete because since the time of their
research the nature of web traffic went through a significant change. The
appearance of social networks and multimedia streaming, the more complex
structure and the new services of web pages required new measurements to better
describe web browsing behaviour. The actual measurements we relied on for
DDOS detection system evaluation in Section 3 were conducted by Pries et al. in
[16]. The presented results are based on the top one million visited web pages. The
settings that we used are presented in Table 1.

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 50 –

Table 1
HTTP model parameters

Parameter Best fit

Main object size Weibull (28242.8,0.814944)

Number of main objects Lognormal μ = 0.473844; σ = 0.688471

Inline object size Lognormal μ = 9.17979; σ = 1.24646

Number of inline objects Exponential μ = 31.9291

Reading time Lognormal μ = 0.495204; σ = 2.7731

Several calculations have been made about the content of the configuration, as we
wanted to keep it simple, yet customisable enough to fulfil any need of HTTP
traffic. The resulted bunch of options is detailed in Table 2.

Table 2
Simulation parameters

numOfNodes The number of nodes in the simulation, this
includes the server and the dos clients as well

numOfDosClients The number of nodes that will generate DoS traffic
instead of general client behaviour

startTime
This parameter shows in which simulated second
the clients start their work (does not affect DoS
clients)

endTime Which simulated second the clients stop their work

dosStartTime Which simulated second the DoS clients start their
work

dosStopTime Which simulated second the DoS clients stop their
work

serverPort Number of port which the server listens on, and
clients connect to

dataRate Global link speed

delay Number of seconds required for the first bit of a
packet to arrive at the destination host

packetLoss The probability that a packet gets lost while
transferring

inlineObjectSizeLogNormalVariable
Due to studies [16] the number of inline objects in
a mainline object is a Lognormal random variable.
This variable's two parameter can be set in.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 51 –

npageRequestsLogNormalVariable
Due to studies [16] the time between two mainline
object requests is a Lognormal random variable.
This variable's two parameter can be set in.

dosClient/
pageRequestsLogNormalVariable The same as above, but it refers to DoS clients

avgClicks
sleepTimeBetweenClickings

These parameters work together. Legal clients after
the set number of average clicks will not request
any other object for an average of
SleepTimeBetweenClickings seconds.

A key in our data generator is to make it easy to use. We integrated our solution
into a minimalistic web service, which results in a user friendly interface where
without installing anything, a click is enough to start the simulation, and be able to
download your results. This solution also, disencumbers our developer computers
and puts the load to dedicated servers.

Since ns3 compiles for quite a long time, we wanted to give a solution which does
not require recompilation too often but also stays parametrizable. Not just to
fasten the simulations but to provide an easy summation of possible parameters,
we implemented a configuration parser, which works with an XML file, and
therefore does not require recompilation after a parameter changes.

2.1 Case Study
To show that our solution is easily configurable to generate any type of network
traffic we simulated our local web server, and generated simulated data with the
attributions of the original. In this section we are going to discuss the details of
this experiment.

To gather a fair amount of real network data we monitored all the packets received
by our local web server, for about a month-long period. Figure 1 shows the
frequency of page requests that arrived at our server during the monitored time
interval.

Figure 1
Main object requests per second in the real data

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 52 –

To estimate the necessary parameters for the simulation we filtered the data for the
http requests. We used R's “fitdstrplus” library to give the best estimation for the
distribution of the time between two main object requests, the average number of
consecutive main object requests and for the “sleepTimeBetweenClickings” that
corresponds to the time between two visits of the same client to the web page. The
results are presented in Table 3.

Table 3
Parameter estimates

Parameter Best fit

MainpageRequests Exponential μ = 857.5256

avgClick Pareto mean = 5; shape = 1.1; bound = 20

sleepTimeBetweenClickings Exponential μ = 20696.83

Figure 2 shows the frequency of the page requests in the simulated traffic with the
above configuration.

Figure 2
Main object requests per second in the simulated data

2.1.1 Self-Similarity and Long-Range Dependence

The distribution of traffic on the Internet commonly exhibits self-similarity. The
first observation of the phenomena was made by Leland and Wilson [17]. They
commented in detail on the presence of “burstiness” across an extremely large
range of time scales in the data collected at Bellcore Morristown Research and
Engineering Center on several Ethernet LANs. The first statistically rigorous
analysis was made in 1994 by Leland et al. [18] on the same dataset. Their
research pointed out that the Ethernet LAN traffic is self-similar, irrespective of
where and when the data were collected in the network. They showed that the
Hurst parameter better describes the fractal-like nature of the traffic and able to
capture its “burstiness”, when other methods (the index of dispersion, the peak-to-
mean-ratio or the coefficient of variation for inter arrival times) fail to do so. Their
observations have been supported by later research and their findings have led the
research community to make significant efforts towards developing appropriate
mathematical and statistical techniques that provide a network-related

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 53 –

understanding of the observed self-similar scaling behaviour [19-26]. A
mathematical description of self-similarity used by Bai and Shami in 2013 [27,
28] for network traffic simulation is the following:

Let Xi (i = 1, 2, …) be an increment process and Xj
(m) (j = 1, 2, …) be another

process, which is obtained by averaging the values in non-overlapped blocks of
size m in Xi, i.e.:

X j

(m)= 1
m

(X jm−m+ 1 +Xjm−m+ 2+…+X jm). (1)

The process Xi is said self-similar if Xj
(m) is similar in distribution to mH-1Xi,

where m (m ≥ 1) is the scale parameter and H is the Hurst exponent. In a more
understandable form it implies:

Var (X j

(m))=m2 H− 2 Var(X i). (2)

Another wildly researched characteristic of network traffic is long-range
dependence (LRD). Its discovery in network traffic, has fundamentally changed
the conventional wisdom by stating that the correlation of packet inter arrivals
decays slower than in traditional traffic (e.g., Markov) models. LRD and self-
similarity are strongly related. From the definitions of [29] we use the inference
that LDR characterizes a time series if it holds for the Hurst exponent H that 0.5 <
H ≤ 1. As H approaches 1, the dependence becomes stronger.

During background traffic generation we found it important to test if the simulated
data preserved the LRD characteristics of the real data. To test LRD of the packet
arrivals we estimated the Hurst exponent using the aggregated variance method of
the fArma R library. The estimation of the real and the simulated traffic's Hurst
exponent satisfied our expectations since it resulted similar numbers, 0.57 and
0.52 respectively.

3 DDoS Detection

3.1 Brief introduction to DDoS Attacks
Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are
attempts to make machines, and network-related resources or services (e.g.
Webserver) unavailable for its legal users.

DDoS attacks are launched by more than one hosts, but more often the attacker
uses botnets (network of zombie hosts, infected by some kind malware) and
thousands of hosts from all around the world. According to [30], in 2014 the
frequency of recognized DDoS attacks had reached an average rate of 28 per hour.

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 54 –

In this paper we focus on HTTP GET flood attacks [31]. It is an application layer
attack and in this case the attacker's hosts send seemingly legitimate HTTP GET
requests to the webserver that they aim to attack. These attacks do not use
malformed packets, or spoofing, and they require less bandwidth than other
attacks to bring down the targeted servers, but they require some understanding of
the targeted application. This type of attack is harder to detect than some others,
mainly because it uses valid HTTP GET requests, and it usually doesn’t generate
significant network traffic. These types of measurements don’t really affect DDoS
detection, that’s why we used the frequency of the page requests in our detector.

Figure 3
Packet per second rate of a generated DDoS attack

Figure 3 shows the packet per second rate of a generated DDoS attack. In this
case, we used the recorded traffic (~100 MB) of the server that was attacked by
some malicious clients between time 45 and 55, which is illustrated by higher
lines in the plot. The traffic before, and after the DDoS is normal.

3.2 Detecting DDoS attacks with Snort
Snort [32] is widely used, free and open source network intrusion detection
software. It is capable of real time traffic analysis and packet logging, and because
of its huge community, it is one of the most widely developed intrusion detection
systems in the world.

Snort has a set of rules defined by the user, and the network traffic is analysed
against these rule-sets. After the detection special actions can take place based on
what has been identified.

Snort has a built-in set of rules for DDoS detection, which could be used for
validation, but these rules were very generic, so we tried another approach.

Our approach consists of two parts:

 Analysis of a training set of normal traffic data

 Use the parameters from phase 1 to detect DDoS attacks with Snort

In the 1st phase we analysed normal traffic data for parameters which will be used
for detection. In this case we used only the packet/sec rate of the most active client
from the most loaded moment of the server. To achieve this we used a python and
the “dpkt” module (python-dpkt package on ubuntu 14.04) for “pcap” analysis.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 55 –

In the 2nd phase we used the parameter from above as a base threshold for a rate
limit-like approach. Furthermore we used a multiplier for the parameter, but its
value was decided by empirical methods for every unique case. We generated
rules for Snort, and after we started it with the given ruleset, Snort raises alerts if
any of the clients reaches the packet rate.

In the case of datasets larger than many gigabytes, it is hard to check the generated
traffic in the way we have done it in the case of Figure 3, so instead of wireshark,
we used Snort to check for DDoS attacks. Snort was able to analyze these pcap
files in reasonable time, with the method mentioned above, so we could easily
validate our generator.

Conclusions

We deeply studied the different types of web traffic, with outstanding attention to
the relation between HTTP and the many DoS/DDoS attacks. Simulations are
much cheaper, quicker and easier to use than real systems, so we considered the
need of a tool, which is able to generate valid and parametrisable HTTP traffic,
with customisable DDoS attackers.

We extended the existing NS3 with our classes, and implemented our own XML
configurable simulator and a webservice to make our simulator easy to use.

The simulator is perfect for generating hundreds of GB traffic. Since such volume
of data cannot be verified manually, we implemented a python script that is able to
generate Snort rules.

References

[1] CyberEdge: 2014 Cyberthreat Defence Report for North America &
Europe, a CyberEdge report sponsored by ForeScout Technologies, Inc.,
2014

[2] R. Lippmann, et al.: The 1999 DARPA Off-Line Intrusion Detection
Evaluation, Computer Networks 34(4) 579-595, 2000. Data is available at
http://www.ll.mit.edu/IST/ideval/

[3] Lippmann, Richard P., et al.: Evaluating Intrusion Detection Systems: The
1998 DARPA Off-Line Intrusion Detection Evaluation, DARPA
Information Survivability Conference and Exposition, 2000, DISCEX'00,
Proceedings. Vol. 2, IEEE, 2000

[4] McHugh, John: Testing Intrusion Detection Systems: a Critique of the 1998
and 1999 DARPA Intrusion Detection System Evaluations as Performed by
Lincoln Laboratory. ACM Transactions on Information and System
Security 3.4 (2000): 262-294

[5] Mahoney, Matthew V., and Philip K. Chan: An Analysis of the 1999
DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly
Detection. Recent Advances in Intrusion Detection. Springer Berlin
Heidelberg, 2003

D. Csubák et al. Big Data Testbed for Network Attack Detection

 – 56 –

[6] Hu, Vincent, et al.: An Overview of Issues in Testing Intrusion Detection
Systems (2003)

[7] Floyd, Sally, and Vern Paxson: Difficulties in Simulating the Internet.
IEEE/ACM Transactions on Networking (TON) 9.4 (2001): 392-403

[8] URL http://tcpreplay.synfin.net/

[9] URL http://www.thefengs.com/wuchang/work/tcpivo/

[10] URL http://www.postel.org/tg/

[11] URL http://www.nrl.navy.mil/itd/ncs/products/mgen

[12] URL http://rude.sourceforge.net/

[13] Avallone, Stefano, et al.: D-ITG Distributed Internet Traffic Generator.
Quantitative Evaluation of Systems, 2004, QEST 2004, Proceedings, First
International Conference on the. IEEE, 2004

[14] Avallone, Stefano, Antonio Pescape, and Giorgio Ventre: Analysis and
Experimentation of Internet Traffic Generator. Proc. of New2an (2004): 70-
75

[15] Choi, Hyoung-Kee, and John O. Limb "A Behavioral Model of Web
Traffic."Network Protocols, 1999 (ICNP'99) Proceedings Seventh
International Conference on. IEEE, 1999

[16] Pries, Rastin, Zsolt Magyari, and Phuoc Tran-Gia "An HTTP Web Traffic
Model based on the Top One Million Visited Web Pages." Next Generation
Internet (NGI) 2012 8th EURO-NGI Conference on. IEEE, 2012

[17] Leland, Will E., and Daniel V. Wilson: High Time-Resolution Measurement
and Analysis of LAN Traffic: Implications for LAN Interconnection,
INFOCOM'91, Proceedings, Tenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Networking in the 90s, IEEE,
1991

[18] Leland, Will E., et al.: On the Self-Similar Nature of Ethernet Traffic
(extended version) Networking, IEEE/ACM Transactions on 2.1 (1994): 1-
15

[19] M. E. Crovella and A. Bestavros: Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes, ACM SIGMETRICS, Vol. 24, No.
1, pp. 160-169, 1996

[20] P. Barford and M. Crovella: Generating Representative Web Workloads for
Network and Server Performance Evaluation, ACM SIGMETRICS, Vol.
26, pp. 151-160, 1998

[21] P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella: Changes in Web
Client Access Patterns: Characteristics and Caching Implications, World
Wide Web, Special Issue on Characterization and Performance Evaluation,
Vol. 2, pp. 15-28, 1999

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 57 –

[22] C. R. Cunha, A. Bestavros, and M. E. Crovella: Characteristics of WWW
Client-based Traces, 1995, technical Report TR-95-010, Boston University
Computer Science Department

[23] T. Ott, T. Lakshman, and L. Wong: SRED: Stabilized RED, in IEEE
INFOCOM, 1999, pp. 1346-1355

[24] P. Barford and M. E. Crovella: A Performance Evaluation of HyperText
Transfer Protocols, in ACM SIGMETRICS, 1999, pp. 188-197

[25] Paxson, Vern, and Sally Floyd. "Wide Area Traffic: the Failure of Poisson
Modeling." IEEE/ACM Transactions on Networking (ToN) 3.3 (1995):
226-244

[26] Riedi, Rudolf H., and Walter Willinger.: Toward an Improved
Understanding of Network Traffic Dynamics. Self-Similar Network Traffic
and Performance Evaluation (2000): 507-530

[27] Bai, Xiaofeng, and Abdallah Shami.: Modeling Self-Similar Traffic for
Network Simulation. arXiv Preprint arXiv:1308.3842 (2013)

[28] P. Orenstein, H. Kim and C. L. Lau: Bandwidth Allocation for Self-Similar
Traffic Consisting of Multiple Traffic Classes with Distinct Characteristics,
IEEE GLOBECOM 2001, Vol. 4, pp. 2576-2580, December 2001

[29] Karagiannis, Thomas, Mart Molle, and Michalis Faloutsos.: Long-Range
Dependence Ten Years of Internet Traffic Modeling. Internet Computing,
IEEE 8.5 (2004): 57-64

[30] Preimesberger, Chris (May 28, 2014) "DDoS Attack Volume Escalates as
New Methods Emerge". Eweek

[31] Incapsula - DDoS Attack Glossary – HTTP Flood
http://www.incapsula.com/ddos/attack-glossary/http-flood.html

[32] Snort: - URL: https://www.snort.org

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 59 –

A Formal Representation for Structured Data

János Demetrovics

MTA SZTAKI, Lágymányosi u. 11, H-1111 Budapest, Hungary
e-mail: demetrovics.janos@sztaki.mta.hu

Hua Nam Son, Ákos Gubán

Budapest Business School, Buzogány u. 11-13, H-1149 Budapest, Hungary
e-mail: Hua.NamSon@pszfb.bgf.hu, guban.akos@pszfb.bgf.hu

Abstract: Big Data is a technology developed for 3-V management of data by which large
volumes and different varieties of data would be processed in optimal velocity. The data to
be dealt with may be structured or unstructured. Relational databases (spreadsheets) are
typical examples of structured data and the methods, as well as the techniques for
researches of relational database management are well-known. In this paper, we describe
a formalism, by which, structured data, can be considered as a directly generalized model
of relational databases. A higher leveled structured data, in our generalization, are defined
recursively as a set or a queue of lower leveled structured data. Consequently, our study
proves that many concepts and results of relational database management can be
transferred to structured data, accordingly to this generalization. The sub data, the
components of structured data, the functional dependencies between structured data, as
well as the keys data in structured data are defined and studied. Alternately, some concepts
that are defined here for structured data can be applied for relational databases, as a
special case. In this paper, some operations on structured data and the homomorphism
between structured data are defined and studied that appear to be quite suitable for
relational databases. In fact, the formalization introduced here, offers effective methods for
further structural, algebraic researches of structured data.

Keywords: Data management; Big Data; Structured data; Relational database; Lattice;
Partially ordered set

1 Introduction

Big Data storage and Big Data processing model design are essential problems of
Big Data management (see, for example, [9]). Structured data in a common sense,
are complex data, constructed by atomic data residing in fixed fields within a
definite structure. In contrast to semi-structured data and unstructured data,

mailto:demetrovics.janos@sztaki.mta.hu
mailto:Hua.NamSon@pszfb.bgf.hu
mailto:guban.akos@pszfb.bgf.hu

J. Demetrovics et al. A Formal Representation for Structured Data

 – 60 –

structured data is taking new and special roles in the world of Big Data.
Spreadsheets and relational databases are evident examples of structured data. A
data table in relational databases as defined by Codd [4] in fact can be considered
as a set of its columns (or its rows) that in their turn are the queues of atomic data.
By using the characteristics of the data structure, lots of properties of relational
databases were discovered and vigorously studied in 1990s ([1], [10]). The studies
were focused on keys, functional dependencies between attributes and
normalization of databases (see [2], [7]). The lattice-type properties of functional
dependencies in relational databases were studied thoroughly in [8]. We can note
that many properties of the functional dependencies between attributes are
induced by the lattice structure of the data.

This remark inspires an idea: not only for relational databases but in general, it is
the structure of data that determines the dependencies between their components
and other structural properties of them. Thus the first question to be considered is
the definition of the concept of structure. Structure is an indefinite concept and
one can hardly give a sufficient definition that concerns all possible structures.
This paper deals only with those structured data that are built up recursively as
sets, or queues of other less complex data. Thus, the data can be defined in
different orders of complexity: atomic data are structured data of lowest order, a
set or a queue of atomic data is structured data of first order, while the relations in
relational databases being sets of data columns (or data rows) are structured data
of second order, etc. This definition does not cover all structured data, but it deals
with rather wide range of data. The relational databases as sets of interconnected
relations are in fact 4-order data.

The formulation of structured data proposes an efficient approach for structural
studies. On one hand, the approach reveals the lattice characteristics of the well-
known properties of relational databases. On the other hand, the approach enables
the generalization of the concepts and properties, well-known for relational
databases, into those of structured data.

In Section 2 we generalize the concept of relations in structured data as defined
later. It is pointed out in this section, that there is a natural order between the
relations and all relations can be represented in a linear form or by tree graphs. In
Section 3, structured data are defined. In fact, structured data are generalized
relations with all their participant relations. Structured data may be considered as
algebraic objects in which the various operations and homomorphism should be
studied. The concept of sub data and components of data, as well as the queries on
data, are also defined here. In this generalized model we study the dependency
between components of data. The key components of structured data are defined
as those components, that all other components, depend. We show in this section
that relational databases are really special cases of structured data, where the
dependencies between attributes, are in fact, dependencies of partial order types.
Some aspects for further research, as well as open problems are discussed in the
Conclusions.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 61 –

2 Relations

In this section we propose a generalization of the concept of a relation. Relations
are defined recursively accordingly to their order. The first-order relation on a set
is a collection of subsets or queues of elements of the given set, while the higher
order relations are collection of subsets or queues of lower order relations. Thus
relations are defined based on subsets or queues of elements.

2.1 Sets and Queues of Atomic Data

By traditional algebraic definition the relation of elements is a set of n-tuples of
elements. In a more generalized sense, a relation of elements can be understood as
a set of finite tuples of elements.

Definition 1: For a set 𝑉, let 𝑉∞ = ⋃ 𝑉𝑖∞𝑖=1 . 𝑉∞ denotes the set of all finite
queues of elements in 𝑉.

Remark:

1. Below, we should distinguish the sets and the queues of elements: the sets
and the queues of elements are parenthesized by {} and by < >,
respectively.

2. By Definition 1, in general, {𝑢, 𝑣} = {𝑣, 𝑢} and {𝑣, 𝑣} = {𝑣}, while 〈𝑢, 𝑣〉 ≠ 〈𝑣, 𝑢〉 and 〈𝑣, 𝑣〉 ≠ 〈𝑣〉
3. We accept {𝑣} = 〈𝑣〉

Definition 2:

Let U, 𝑉 be two sets of atomic data, U ⊆ 𝑉. For 𝑠 ⊆ 𝑉∞ the projection of 𝑠
denoted by 𝑃𝑟𝑈(𝑠) is defined as follows:

i. If 𝑠 = 〈𝑣1, 𝑣2, … , 𝑣𝑘〉 ∈ 𝑉∞, then 𝑃𝑟𝑈(𝑠) = 〈𝑣𝑖|𝑣𝑖 ∈ U 〉.
ii. If 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞} ⊆ 𝑉∞ then 𝑃𝑟𝑈(𝑠) = {𝑃𝑟𝑈(𝑠1), 𝑃𝑟𝑈(𝑠2), … , 𝑃𝑟𝑈(𝑠𝑞)}.

iii. If 𝑠 = 〈𝑣1, 𝑣2, … , 𝑣𝑘〉 ∈ 𝑉∞ or 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞} ⊆ 𝑉∞ then 𝐴(𝑠) denotes

the set of all atomic data in 𝑉 that appears in 𝑠.
Remark:

1. If 𝑟 = 𝑃𝑟𝑈(𝑠) then 𝑟 is a sub-queue of 𝑠 in the case 𝑠 is a queue, and 𝑟 is a
set of sub-queues of 𝑠 in the case 𝑠 is a set of sub-queues.

2. If 𝑟 = 𝑃𝑟𝑈(𝑠) and 𝑠 = 𝑃𝑟𝑊(𝑡) then 𝑟 = 𝑃𝑟𝑈∩𝑊(𝑡).
3. If 𝑟, 𝑠 are finite subsets of 𝑉∞ and 𝑟 = 𝑃𝑟𝑈(𝑠), 𝑠 = 𝑃𝑟𝑊(𝑟) then 𝑠 = 𝑟 and 𝐴(𝑠) = 𝐴(𝑟) ⊆ 𝑈 ∩𝑊.

This is evident if 𝑠, 𝑟 are queues in 𝑉∞.

J. Demetrovics et al. A Formal Representation for Structured Data

 – 62 –

If 𝑟, 𝑠 ⊆ 𝑉∞, 𝑟 = {𝑟1, 𝑟2, … , 𝑟𝑝}, 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞}, then by definitions for

all 𝑘 there is 𝑖 such that 𝑟𝑘 = 𝑃𝑟𝑈(𝑠𝑖) and vice versa, for all 𝑖 there is 𝑘
such that 𝑠𝑖 = 𝑃𝑟𝑊(𝑟𝑘). Thus, for all 𝑘 there are 𝑟𝑘1 = 𝑟𝑘 , 𝑟𝑘2 , … and 𝑠𝑘1 , 𝑠𝑘2 , … such that 𝑟𝑘𝑗 = 𝑃𝑟𝑈 (𝑠𝑘𝑗) and 𝑠𝑘𝑗 = 𝑃𝑟𝑊 (𝑟𝑘𝑗+1), 𝑗 = 1,2, …. By

previous remarks one can see that 𝑟𝑘𝑗 = 𝑃𝑟𝑈∩𝑊 (𝑟𝑘𝑗+1). Since 𝑟𝑘𝑗+1 =𝑃𝑟𝑈∩𝑊 (𝑟𝑘𝑗+2), we have 𝑟𝑘𝑗 = 𝑟𝑘𝑗+1 = 𝑃𝑟𝑈∩𝑊 (𝑟𝑘𝑗+2). Now it is easy to see

that 𝑟𝑘 = 𝑟𝑘1 = 𝑟𝑘2 = ⋯ = 𝑠𝑘1 = 𝑠𝑘2 = ⋯, i.e. 𝑟𝑘 is a queue in 𝑠. The

similar explain proves that arbitrary queue 𝑠i in 𝑠 is queue in 𝑟. We
have 𝑟 = 𝑠. By the proof we see also that 𝐴(𝑠) = 𝐴(𝑟) ⊆ 𝑈 ∩𝑊.

4. By 2. and 3. if we define a relation on finite subsets of 𝑉∞ as follows: 𝑟 ⊲ 𝑠 ⇔ ∃𝑈: 𝑟 = 𝑃𝑟𝑈(𝑠)
then ⊲ is a partial order on the finite subsets of 𝑉∞.

2.2 m-Order Relations

The relations that we define below are a generalization of the relations
(spreadsheets) in relational modeling.

Definition 3:

1. A 0-order relation over 𝑉 is 𝑉. The set of all 0-order relations over 𝑉 is
denoted by ℛ0(𝑉). Thus ℛ0(𝑉) = 𝑉.

2. For 𝑚 ≥ 0 an (m+1)-order relation over 𝑉 is a finite subset of ℛm(𝑉) or a
finite queue of elements of ℛm(𝑉). The set of all (m+1)-order relations
over 𝑉 is denoted by ℛm+1(𝑉).

3. ℛ∞(𝑉) = ⋃ ℛm(𝑉)∞m=0 .

In words, a relation of higher order over 𝑉 is a finite subset or a finite queue of
lower order relations. ℛ∞(𝑉) denotes the set of all relations over 𝑉.

Remark:

1. By Definition 1 we have 𝑣 = {𝑣} = 〈𝑣〉, therefore 𝑉 ⊆ ℛ1(𝑉) and so on, ℛ𝑚(𝑉) ⊆ ℛ𝑚+1(𝑉) for all 𝑚 ≥ 0.

2. Two relations of different order are different and are named differently,
exceptionally, since 𝑟 = {𝑟} = 〈𝑟〉 for all 𝑟 ∈ ℛ𝑚(𝑉), we have also 𝑟 ∈ ℛ𝑚+1(𝑉).

Definition 4:

Let U ⊆ 𝑉. For 𝑠 ∈ ℛ∞(𝑉) the projection of 𝑠 denoted by 𝑃𝑟𝑈(𝑠) is defined as
follows:

i. If 𝑠 ∈ ℛ1(𝑉) then 𝑃𝑟𝑈(𝑠) is defined as in Definition 2.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 63 –

ii. If 𝑠 = 〈𝑣1, 𝑣2, … , 𝑣𝑘〉 ∈ ℛm+1(𝑉), 𝑣𝑖 ∈ ℛm(𝑉), then 𝑃𝑟𝑈(𝑠) =〈𝑃𝑟𝑈(𝑣𝑖)|i = 1,2, … , k 〉.
iii. If 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑞} ∈ ℛm+1(𝑉) where 𝑠1, 𝑠2, … , 𝑠𝑞 are queues on ℛm(𝑉),

then 𝑃𝑟𝑈(𝑠) = {𝑃𝑟𝑈(𝑠1), 𝑃𝑟𝑈(𝑠2), … , 𝑃𝑟𝑈(𝑠𝑞)}.
The projection of a relation on U ⊆ 𝑉 can be obtained from the given relation by
deleting all atomic data that are not in U.

2.3 Partial Order on Relations

We show that on ℛ∞(𝑉) there exists a partial order between the relations.

Definition 5: For 𝑟, 𝑠 ∈ ℛ∞(𝑉) we write 𝑟 ≤ 𝑠 if
i. 𝑟 = 𝑠, or

ii. There exist 𝑠0, 𝑠2, … , 𝑠𝑘 ∈ ℛ∞(𝑉), 𝑠0 = 𝑟, 𝑠k = 𝑠, such that 𝑠i is a finite
subset or a finite queue of 𝑠i−1 and other elements of ℛ∞(𝑉), for all 𝑖 = 1,2, … , 𝑘.

In words, 𝑟 ≤ 𝑠 if 𝑟 appears in the presentation of 𝑠. We have a trivial theorem:

Theorem 1: ≤ is a partial order on ℛ∞(𝑉).
2.4 Representation of Relations

The relations can be represented by linear expressions and by tree graphs.

Definition 6 (linear representations of relations):

i. For 𝑟 ∈ ℛ0(𝑉), 𝑟 = 𝑣 ∈ 𝑉 the linear representation of 𝑟 is the
expression 𝑙(𝑟) = 𝑣.

ii. For 𝑟 ∈ ℛ𝑚+1(𝑉) the linear representation of 𝑟 is the expression 𝑙(𝑟): 𝑙(𝑟) = { 〈𝑙(𝑟1), 𝑙(𝑟2), … , 𝑙(𝑟𝑘)〉 if 𝑟 = 〈𝑟1, 𝑟2, … , 𝑟k〉, 𝑟i ∈ ℛ𝑚(𝑉){𝑙(𝑟1), 𝑙(𝑟2), … , 𝑙(𝑟k)} if 𝑟 = {𝑟1, 𝑟2, … , 𝑟k}, 𝑟i ∈ ℛ𝑚(𝑉)
The set of all representations of on 𝑟 is denoted by 𝒫(𝑟).
In fact, the representations on 𝑉 are the expressions that can be defined, formally,
as follows:

Definition 7:

i. If 𝑣 ∈ 𝑉 then the expression 𝑣 is a formal representation. The set of all
expressions of this form is denoted by 𝒫0(𝑉).

ii. If 𝑟1, 𝑟2, … , 𝑟𝑘 ∈ 𝒫𝑖(𝑉), 𝑖 ≤ 𝑚, then the expressions of the form {𝑟1, 𝑟2, … , 𝑟𝑘} and 〈𝑟1, 𝑟2, … , 𝑟𝑘〉 are formal representations on 𝑉. The set of
all expressions of this form is denoted by 𝒫𝑚+1(𝑉).

J. Demetrovics et al. A Formal Representation for Structured Data

 – 64 –

iii. All formal representations on 𝑉 are defined as in i. and ii.

The set of all formal representations on 𝑉 is denoted by 𝒫(𝑉), i.e. 𝒫(𝑉) = ⋃ 𝒫𝑚(𝑉)∞𝑚=1 .

Remark:

1. The representation of relations is not unique: each relation has many
representations.

2. The linear representations of relations over 𝑉 are formal representations on 𝑉 and vice versa, each formal representation on 𝑉 represents some relation
over 𝑉.

For 𝑝, 𝑞 ∈ 𝒫 we write 𝑝 ~ 𝑞 if:

i. 𝑝 = {𝑞} or 𝑝 = 〈𝑞〉, or 𝑞 = {𝑝} or 𝑞 = 〈𝑝〉,
ii. 𝑝 = {𝑢1, 𝑢2, … , 𝑢𝑘}, 𝑞 = {𝑣1, 𝑣2, … , 𝑣𝑘}, 𝑢i, 𝑣i ∈ 𝑉 and 𝑣1, 𝑣2, … , 𝑣𝑘 is a

permutation of 𝑢1, 𝑢2, … , 𝑢𝑘, or

iii. 𝑝 = 〈𝑢1, 𝑢2, … , 𝑢𝑘〉, 𝑢i ∈ 𝑉 and 𝑞 = 𝑝, or

iv. 𝑝 = {𝑟1, 𝑟2, … , 𝑟𝑚}, 𝑞 = {𝑠1, 𝑠2, … , 𝑠𝑚}, 𝑟i, 𝑠i are formal representations on 𝑉
and there exists a permutation 𝑢1, 𝑢2, … , 𝑢𝑚 of 𝑟1, 𝑟2, … , 𝑟𝑚 such that 𝑢𝑖~ 𝑠𝑖
for all 𝑖 = 1,2, . . , 𝑚.

v. 𝑝 = 〈𝑟1, 𝑟2, … , 𝑟𝑚〉, 𝑞 = 〈𝑠1, 𝑠2, … , 𝑠𝑚〉 and 𝑟𝑖~ 𝑠𝑖 for all 𝑖 = 1,2, . . , 𝑚.
Theorem 2:

1. ~ is an equivalence on 𝒫.

2. 𝑝~𝑞 ⇔ ∃𝑟 ∈ ℛ∞(𝑉): 𝑝, 𝑞 ∈ 𝒫(𝑟).
3. There exists an algorithm that constructs 𝑟 ∈ ℛ∞(𝑉) such that 𝑙(𝑟) = 𝑝 for 𝑝 ∈ 𝒫.
4. There exists an algorithm that decides if 𝑝 ~ 𝑞 for 𝑝, 𝑞 ∈ 𝒫.

We define a partial order on 𝒫: For 𝑝, 𝑞 ∈ 𝒫 we write 𝑝 ≤ 𝑞 if

i. 𝑝 = 𝑞, or

ii. There exist 𝑝1, 𝑝2, … , 𝑝𝑘 ∈ 𝒫(𝑉), 𝑝1 = 𝑝, 𝑝k = 𝑞, such that 𝑝i ∈ 𝒫𝑚+𝑖(𝑉)
and 𝑝i+1 = 𝑝i or 𝑝i+1 is the expression of the form {… , 𝑝i, … } or 〈… , 𝑝i , … 〉
for all 𝑖 = 1,… , 𝑘 − 1. ≤ is a partial order on 𝒫. We have:

Theorem 3: For all 𝑟, 𝑠 ∈ ℛ∞(𝑉) we have: 𝑟 ≤ 𝑠 ⇔ 𝑙(𝑟) ≤ l(𝑠)

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 65 –

The relations can also be represented by tree graphs as follows:

Definition 8 (graphical representation of relations): To each relation 𝑟 we
associate a tree graph 𝑡(𝑟) as follows:

i. For 𝑟 = 𝑣 ∈ ℛ0(𝑉) the graph 𝑡(𝑣) is the tree graph that contains single
node labeled by 𝑣.

ii. For 𝑟 ∈ ℛ𝑚+1(𝑉), 𝑟 = 〈𝑟1, 𝑟2, … , 𝑟k〉, 𝑟i ∈ ℛ𝑚(𝑉) the graph 𝑡(𝑟) is the tree
graph with the root 𝑟 that is connected directly to the nodes to that we
attach the trees 𝑡(𝑟1), 𝑡(𝑟2), … , 𝑡(𝑟𝑘) from left to right.

iii. For 𝑟 ∈ ℛ𝑚+1(𝑉), 𝑟 = {𝑟1, 𝑟2, … , 𝑟k}, 𝑟i ∈ ℛ𝑚(𝑉), the graph 𝑡(𝑟) is the tree
graph with the root 𝑟 that is connected directly to the nodes to that we
attach the trees 𝑡(𝑟1), 𝑡(𝑟2), … , 𝑡(𝑟𝑘) for 𝑖 = 1,2… 𝑘.

The set of all graphs representing 𝑟 is denoted by 𝒯(𝑟). We have:

Theorem 4:

1. If 𝒯 = 𝒯(𝑟) is a tree that represents 𝑟, then

i. The leaves are labeled by elements of 𝑉.

ii. Only the labels of the leaves may be repeated.

2. If 𝒯 is a tree graph with labeled nodes that satisfies i, ii conditions, then
there exists a relation 𝑟 on 𝑉 such that 𝒯 = 𝒯(𝑟).

3. For two relations 𝑟, 𝑠 ∈ ℛ∞(𝑉) 𝑟 ≤ 𝑠 if and only if 𝒯(𝑟) is a sub-tree
of 𝒯(𝑠).

Example 1:

A data table, i.e. a relation in relational database, may be considered as a relation
defined in Definition 3: If 𝑟 = {𝐴1, 𝐴2, … , 𝐴𝑚} is a relation with 𝐴1, 𝐴2, … , 𝐴𝑚
columns, where 𝐴𝑖 = (𝑎1𝑖 , 𝑎2𝑖 , … , 𝑎𝑛𝑖) then 𝑟 is 2-order relation 𝑟 = {〈𝑎11, 𝑎21, … , 𝑎𝑛1〉, 〈𝑎12, 𝑎22, … , 𝑎𝑛2〉, … , 〈𝑎1𝑚 , 𝑎2𝑚, … , 𝑎𝑛𝑚〉}
The tree graph of 𝑟 is

Figure 1

Tree graph of a relation in a relational database

J. Demetrovics et al. A Formal Representation for Structured Data

 – 66 –

3 Structured Data

Structured data are sets of relations with specified systems of participant relations.
Formally, we have:

Definition 9: Let 𝑉 be a set of atomic data.

1. A structured data is a finite sequence of relations 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚]
where

i. r0 is finite subset of 𝑉,

ii. For all 𝑖 = 1,… ,𝑚, 𝑟𝑖 is a relation constructed by atomic data in 𝑟0 and
preceding data, i.e. 𝑟𝑖 is a finite set or a finite queue of elements from 𝑟0 ∪{𝑟1, 𝑟2, … , 𝑟𝑖−1}.

The set of all structured data over 𝑉 is denoted by 𝑆𝑉.

2. A structured data 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚] is simple if

iii. 𝑟𝑗 ≠ 𝑟i for 𝑖 ≠ 𝑗 and 𝑟𝑗 , 𝑟𝑖 are not elements from 𝑟0

In a simple structured data the condition iii. guarantees that only elements from 𝑟0
may be repeated.

Definition 10: Let 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚] be a structured data.

1. By 𝑙(𝛼) = [𝑙(𝑟0), 𝑙(𝑟1), … , 𝑙(𝑟𝑚)] we denote the linear representation of 𝛼
where 𝑙(𝑟𝑖) is some linear representation of 𝑟𝑖 for all 𝑖 = 1,… ,𝑚.

2. By 𝑡(𝛼) = {𝑡(𝑟0), 𝑡(𝑟1), … , 𝑡(𝑟𝑚)} we denote the multi tree of 𝛼 which is
constructed as follows:

i. 𝑡(𝑟0) contains the nodes marked by elements in 𝑟0,

ii. 𝑡(𝑟𝑖) is the tree of 𝑟𝑖 for all 𝑖 = 1, … ,𝑚.

Example 2: In Table 1 we can see a linear representation of a structured data:

Table 1

Linear representation of a structured data 𝛼 = [𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5] 𝑙(𝛼) = [𝑙(𝑟0), 𝑙(𝑟1), 𝑙(𝑟2), 𝑙(𝑟3), 𝑙(𝑟4), 𝑙(𝑟5)] 𝑟0 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} 𝑙(𝑟0) = {𝑣1, 𝑣2, 𝑣3, 𝑣4} 𝑟1 = 〈𝑣1, 𝑣2〉 𝑙(𝑟1) = 〈𝑣1, 𝑣2〉 𝑟2 = 〈𝑣2, 𝑣3〉 𝑙(𝑟2) = 〈𝑣2, 𝑣3〉 𝑟3 = {𝑣1, 𝑟1, 𝑟2} 𝑙(𝑟3) = {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉} 𝑟4 = {𝑣2, 〈𝑣4, 𝑟3〉} 𝑙(𝑟4) = {𝑣2, 〈𝑣4, {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉}〉} 𝑟5 = {𝑟4, 〈𝑟1, 𝑟3, 𝑟4〉} 𝑙(𝑟5) = {{𝑣2, 〈𝑣4, {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉}〉}, 〈〈𝑣1, 𝑣2〉, {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉}, {𝑣2, 〈𝑣4, {𝑣1, 〈𝑣1, 𝑣2〉, 〈𝑣2, 𝑣3〉}〉}〉}

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 67 –

Example 3: Let Atomic data = {N, BD, Na, NID, NV, NC, NM, T, C, NDL}

where N, BD, Na, NID, NV, NC, NM, T, C, NDL is the abbreviation of Name,
Birth date, Nationality, Number of ID card, Number of Vehicle registration card,
Number of chassis, Number of motor, Type, Category of vehicle and Number of
Driving license, respectively. Furthermore, let ID card = <NID, N, BD, Na>,
Vehicle registration card = <NV, NC, NM, T, C>, Driving license = <NDL, N,
BD, C>, Personal Document = {ID card, Vehicle registration card, Driving

license}.

In fact, Personal Document may be considered as a structured data: Personal

Document = [Atomic data, ID card, Vehicle registration card, Driving license,

{ID card, Vehicle registration card, Driving license}].

The tree graph of Personal Document is 𝑡(Personal Document):

Figure 2

The tree graph of Personal Document

3.1 Operations of Structured Data

Let 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚], 𝛽 = [𝑠0, 𝑠1, … , 𝑠𝑛] be structured data over 𝑉. Then:

1. Union: The union of 𝛼, 𝛽 is {𝛼, 𝛽} = [𝑟0 ∪ 𝑠0, 𝑟1, … , 𝑟𝑚, 𝑠1, … , 𝑠𝑛 , {𝑟𝑚 , 𝑠𝑛}]
The union of two structured data is also a structured data.

2. Queuing : The queuing of 𝛼, 𝛽 is 〈𝛼, 𝛽〉 = [𝑟0 ∪ 𝑠0, 𝑟1, … , 𝑟𝑚 , 𝑠1, … , 𝑠𝑛 , 〈𝑟𝑚 , 𝑠𝑛〉]
The queuing of two structured data is also a structured data.

3. Projection: If U ⊆ 𝑉, then the projection of 𝛼 on U is 𝑃𝑟𝑈(𝛼) = [𝑃𝑟𝑈(𝑟0), 𝑃𝑟𝑈(𝑟1), … , 𝑃𝑟𝑈(𝑟𝑚)]
The projection of a structured data is also a structured data.

J. Demetrovics et al. A Formal Representation for Structured Data

 – 68 –

4. Conjunction: Let 𝛼𝑖 = [𝑟0𝑖 , 𝑟1𝑖 , … , 𝑟𝑚𝑖𝑖] be structured data over 𝑉 for

all 𝑖 = 1, … , 𝑘, 𝑟0 = ⋃ 𝑟0𝑖𝑖 . If 𝑟 is a finite set of queues on 𝑟0 ∪{𝑟𝑗𝑖|𝑗 = 1,… ,𝑚𝑖 , 𝑖 = 1, … , 𝑘}, i.e. 𝑟 ∈ ℛ(𝑟0 ∪ {𝑟𝑗𝑖|𝑗 = 1,… ,𝑚𝑖 , 𝑖 =1, … , 𝑘}), then the conjunction of 𝛼𝑖’s by 𝑟 is 𝑟(𝛼1, 𝛼2, … , 𝛼𝑘) = [𝑟0, 𝑟11, 𝑟21, … , 𝑟𝑚11 , 𝑟12, 𝑟22, … , 𝑟𝑚22 , … , 𝑟1𝑘 , 𝑟2𝑘 , … , 𝑟𝑚𝑘𝑘 , 𝑟]
One can see that the conjunction of structured data is also a structured data.
The union and the queuing operations are special cases of the conjunction.

3.2 Homomorphism, Isomorphism between Structured Data

Let 𝑉, 𝑊 be two sets of atomic data, 𝜑: 𝑉 → 𝑊 and 𝑟 ∈ ℛm(𝑉). Then the
homomorphic image of 𝑟 is defined as follows:

Definition 11: Let 𝑉, 𝑊 be two sets of atomic data, 𝜑: 𝑉 → 𝑊 and 𝑟 ∈ ℛm(𝑉).
i. If 𝑟 ∈ ℛ1(𝒜) = ℛ(𝑉), i.e. 𝑟 is finite set of queues from 𝑉, 𝑟 = {𝑟1, … , 𝑟𝑘},

where 𝑟𝑖 = 〈𝑟1𝑖 , 𝑟2𝑖 , … , 𝑟𝑚𝑖𝑖 〉, 𝑟ji ∈ 𝑉, then 𝜑(𝑟) = {〈𝜑(𝑟11), 𝜑(𝑟21), … , 𝜑(𝑟𝑚11)〉, , … , 〈𝜑(𝑟1𝑘), 𝜑(𝑟2𝑘), … , 𝜑(𝑟𝑚𝑘𝑘)〉}
ii. Suppose that 𝜑(𝑠) has been defined for all 𝑠 ∈ ℛm(𝑉). If 𝑟 ∈ ℛm+1(𝑉) =ℛ(ℛm(𝑉)), 𝑟 = {𝑟1, … , 𝑟𝑘}, where 𝑟𝑖 = 〈𝑟1𝑖 , 𝑟2𝑖 , … , 𝑟𝑚𝑖𝑖 〉, 𝑟ji ∈ ℛm(𝑉), then 𝜑(𝑟) = {〈𝜑(𝑟11), 𝜑(𝑟21), … , 𝜑(𝑟𝑚11)〉, , … , 〈𝜑(𝑟1𝑘), 𝜑(𝑟2𝑘), … , 𝜑(𝑟𝑚𝑘𝑘)〉} 𝜑(𝑟) is the homomorphic image of 𝑟 through 𝜑.

Remark: Let 𝜑: 𝑉 → 𝑊 and let 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚] ∈ 𝑆𝑉 be a structured data
over 𝑉. It can be verified that 𝜑(𝛼) = [𝜑(𝑟0), 𝜑(𝑟1), … , 𝜑(𝑟𝑚)] is also a
structured data over 𝑊:

i. 𝜑(𝑟0) = {𝜑(𝑎)|𝑎 ∈ 𝑉} is a finite set over 𝑊.

ii. For 𝑖 = 1,2, … ,𝑚 we have 𝑟i ∈ ℛ(𝑟0 ∪ {𝑟1, 𝑟2, … , 𝑟𝑖−1}), i.e. 𝑟𝑖 ={𝑢1, 𝑢2, … , 𝑢𝑘}, where 𝑢𝑗 = 〈𝑢1𝑗 , 𝑢2𝑗 , … , 𝑢𝑚𝑗𝑗 〉, 𝑢tj ∈ 𝑟0 ∪ {𝑟1, 𝑟2, … , 𝑟𝑖−1}. By

Definition 11 𝜑(𝑟𝑖) = {𝜑(𝑢1), 𝜑(𝑢2), … , 𝜑(𝑢𝑘)}, where 𝜑(𝑢𝑗) =〈𝜑(𝑢1𝑗), 𝜑(𝑢2𝑗), … , 𝜑(𝑢𝑚𝑗𝑗)〉.
Since 𝜑(𝑢𝑡𝑗) ∈ 𝜑(𝑟0) ∪ {𝜑(𝑟1), 𝜑(𝑟2), … , 𝜑(𝑟𝑖−1)}, we have: 𝜑(𝑟𝑖) ∈ ℛ(𝜑(𝑟0) ∪ {𝜑(𝑟1), 𝜑(𝑟2), …, 𝜑(𝑟𝑖−1)}), i.e. [𝜑(𝑟0), 𝜑(𝑟1), … , 𝜑(𝑟𝑚)] is a
structured data over 𝑊

Definition 12:

Let 𝜑: 𝑉 → 𝑊 and 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚] ∈ 𝑆𝑉 .

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 69 –

1. The homomorphic image of 𝛼 by 𝜑 is 𝜑(𝛼) = [𝜑(𝑟0), 𝜑(𝑟1), … , 𝜑(𝑟𝑚)].
2. If 𝜑 is bijective then 𝜑(𝛼) is the isomorphic image of 𝛼 by 𝜑.

By the previous remark we can see that the homomorphic image of a structured
data is also a structured data. In other words, 𝜑: 𝑉 → 𝑊 can be extended
into 𝜑: 𝑆𝑉 → 𝑆𝑊. We have:

Theorem 5: Let 𝜑: 𝑉 → 𝑊. Then

1. For all 𝑟 ∈ ℛm(𝑉) we have 𝜑(𝑙(𝑟)) = 𝑙(𝜑(𝑟))
2. For all 𝛼 ∈ 𝑆𝑉 we have 𝜑(𝑙(𝛼)) = 𝑙(𝜑(𝛼))

Example 4:

Let 𝜑: 𝑉 → 𝑊, where 𝑉 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑊 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝜑(𝑥1) = 𝑎, 𝜑(𝑥2) = 𝑏, 𝜑(𝑥3) = 𝜑(𝑥4) = 𝑐. Then

Table 2

Homomorphic image of a structured data 𝛼 = [𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5] 𝜑(𝛼) = [𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5] 𝑟0 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} 𝑠0 = 𝜑(𝑟0) = {𝑎, 𝑏, 𝑐} 𝑟1 = 〈𝑥1, 𝑥2〉 𝑠1 = 𝜑(𝑟1) = 〈𝑎, 𝑏〉 𝑟2 = 〈𝑥2, 𝑥3〉 𝑠2 = 𝜑(𝑟2) = 〈𝑏, 𝑐〉 𝑟3 = {𝑥1, 𝑟1, 𝑟2} 𝑠3 = 𝜑(𝑟3) = {𝑎, 𝑠1, 𝑠2} 𝑟4 = {𝑥2, 〈𝑥4, 𝑟3〉} 𝑠4 = 𝜑(𝑟4) = {𝑏, 〈𝑐, 𝑠3〉} = {𝑏, 〈𝑐, {𝑎, 〈𝑎, 𝑏〉, 〈𝑏, 𝑐〉}〉} 𝑟5 = {𝑟4, 〈𝑟1, 𝑟3, 𝑟4〉} 𝑠5 = 𝜑(𝑟5) = {𝑠4, 〈〈𝑎, 𝑏〉, 𝑠3, 𝑠4〉}
Remark: There exists 𝜑: 𝑉 → 𝑊, 𝑟, 𝑠 ∈ ℛm(𝑉) such that:

1. φ(𝑃𝑟𝑈(s)) ≠ 𝑃𝑟φ(𝑈)(φ(𝑠))
2. 𝑟 ⊲ 𝑠, but φ(𝑟) ⋪ φ(𝑠)

Let 𝑉 = {𝑥, 𝑦, 𝑢}, 𝑈 = {𝑦, 𝑢}, φ (𝑥) = φ(𝑦) = a, φ(𝑢) = 𝑏. Then φ(𝑈) = {𝑎, 𝑏}.
For 𝑟 = {𝑢, 〈𝑦, 𝑢〉}, 𝑠 = {𝑥, 〈𝑥, 𝑢〉, 〈𝑦, 𝑢〉}, we see 𝑟 = 𝑃𝑟𝑈(𝑠), therefore 𝑟 ⊲ 𝑠.
Moreover, φ(𝑟) = φ(𝑃𝑟𝑈(s)) = {𝑏, 〈𝑎, 𝑏〉} and φ(𝑠) = 𝑃𝑟φ(𝑈)(φ(𝑠)) ={𝑎, 〈𝑎, 𝑏〉 }. One can see φ(𝑃𝑟𝑈(s)) ≠ 𝑃𝑟φ(𝑈)(φ(𝑠)) and φ(𝑟) ⋪ φ(𝑠).
3.3 Sub-Data

Below we define sub-data of the given structured data. In a sense, sub-data are not
simply parts of structured data, but inherit the given structure.

Definition 13:

For two structured data 𝛼 = [𝑟0, 𝑟1, … , 𝑟𝑚], 𝛽 = [𝑠0, 𝑠1, … , 𝑠𝑛] over 𝑉 we say that 𝛼 is a sub-data of 𝛽 if:

J. Demetrovics et al. A Formal Representation for Structured Data

 – 70 –

i. 𝑟0 ⊆ 𝑠0, and

ii. ∀𝑖 ≥ 1 ∃𝑗 ≥ 1: 𝑟𝑖 = 𝑠𝑗
Then we write 𝛼 ⊑ 𝛽. The set of all sub-data of 𝛽 is denoted by 𝑆𝑈𝐵𝐷(𝛽).
Example 5:

Let 𝛼 = [𝑟0, 𝑟1, 𝑟2, 𝑟3], 𝛽 = [𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4] where 𝑠0 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑠1 =〈𝑥2, 𝑥4〉, 𝑠2 = {𝑥1, 𝑠1} = {𝑥1, 〈𝑥2, 𝑥4〉}, 𝑠3 = 〈𝑥3, 𝑥4〉, 𝑠4 = {𝑠2, 𝑠3} ={{𝑥1, 〈𝑥2, 𝑥4〉}, 〈𝑥3, 𝑥4〉} and 𝑟0 = {𝑥1, 𝑥2, 𝑥4}, 𝑟1 = 𝑠1 = 〈𝑥2, 𝑥4〉, 𝑟2 = 𝑠2 ={𝑥1, 〈𝑥2, 𝑥4〉}. One can see that 𝛼 ⊑ 𝛽.

It is evident that the relation ⊑ defined in Definition 13 is a partial order on the set
of structured data.

3.4 Components of Structured Data

Not all sub-data of structured data are its components. The components of
structured data are all those sub-data that are maximal in a sense.

Definition 14:

1. Let 𝛼, 𝛽 ∈ 𝑆𝑉 be structured data. We say that 𝛼 is a component of 𝛽 if

i. 𝛼 ⊑ 𝛽,

ii. There is no structured data 𝛾 ∈ 𝑆𝑉 such that 𝛼 ⊑ 𝛾, 𝛾 ⊑ 𝛽, and 𝛾 ≠ 𝛼, 𝛾 ≠𝛽.

The set of all components of a structured data 𝛽 is denoted by 𝐶𝑂𝑀𝑃(𝛽).
2. Let 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝐶𝑂𝑀𝑃(𝛽). We say that {𝛼1, 𝛼2, … , 𝛼𝑛} is an adequate

set of components of 𝛽 if 𝛽 = 𝛼1 ∪ 𝛼1 ∪ …∪ 𝛼𝑛.

3. We say that {𝛼1, 𝛼2, … , 𝛼𝑛} is a minimal adequate set of components
(MASC) of 𝛽 if:

i. {𝛼1, 𝛼2, … , 𝛼𝑛} is an adequate set of components of 𝛽,

ii. There is no real subset of {𝛼1, 𝛼1, … , 𝛼𝑛} that is also adequate set of
components of 𝛽.

In other words, a component of a structured data is some it’s sub-data that is
maximal in the partial order defined by ⊑.

Example 6:

Let 𝛽 = [{𝑎, 𝑏, 𝑐}, {𝑏, 𝑐}, 〈𝑎, {𝑏, 𝑐}〉, {𝑎, 𝑐}, 〈𝑏, {𝑐, 𝑎}〉, {〈𝑎, {𝑏, 𝑐}〉, 〈𝑏, {𝑐, 𝑎}〉}]
and 𝛼 = [{𝑎, 𝑏, 𝑐}, {𝑏, 𝑐}, 〈𝑎, {𝑏, 𝑐}〉]. We can see that 𝛼 is a component of 𝛽.

The following theorems are evident:

Theorem 6:

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 71 –

1. Let 𝛼, 𝛽 ∈ 𝑆𝑉 be structured data and 𝛼 ⊑ 𝛽. Then there is 𝛾 ∈ 𝑆𝑉 such
that 𝛼 ⊑ 𝛾 and 𝛾 is a component of 𝛽.

2. Every structured data has at least one component.

3. Every structured data has at least one MASC.

Theorem 7:

Let α ∈ 𝑆𝒳 be structured data and 𝜑:𝒜 → ℬ. If a set of structured data {𝛽1, 𝛽1, … , 𝛽𝑛} is a MASC of 𝛼, then {𝜑(𝛽1), 𝜑(𝛽1), … , 𝜑(𝛽𝑛)} is a MASC
of 𝜑(α).

3.5 Queries on Structured Data

Queries are operations that for a given set of data produce a set of data. In general,
a simple query retrieves from a structured data some its sub-data. In this sense
selections and projections in relational databases are such simple queries. Joins are
queries, but are not simple queries.

Definition 15: Let 𝒟 ⊆ 𝑆𝑉 be a set of structured data over 𝑉.

1. A query over 𝒟 is a mapping 𝑞: 𝒟 → 𝒟.

2. A query 𝑞: 𝒟 → 𝒟 is proper for 𝛼 ∈ 𝑆𝑉 if 𝑞(𝛼) ⊑ 𝛼.

A query 𝑞 is proper for 𝑆 ⊆ 𝑆𝑉 if it is proper for all 𝛼 ∈ 𝑆.

3. Let 𝒬 be a set of queries over 𝒟 and 𝛼 ∈ 𝑆𝑉 be a structured data over 𝑉.
Then 𝛼 is minimal applicable data for 𝒬 if:

i. 𝛼 is applicable for all query 𝑞 ∈ 𝒬.

ii. There is no 𝛽 ∈ 𝑆𝑉 such that 𝛽 ⊑ 𝛼 and 𝛽 is applicable for all
queries 𝑞 ∈ 𝒬.

3.6 Dependency Types and Keys

In this section we propose a concept of dependency types and the dependencies
between the sub-data and components defined accordingly to the given
dependency types are studied. The idea is simple: structured data and their sub-
data, as well as their components are associated to the elements of a “sample set”
where the “sample dependencies” have been well defined. Thus, the “sample
dependencies” in the “sample set” induce, on the set of structured data, sample-
like dependencies. Our study is focused on the dependency types defined by the
lattices with partial order. We show here that functional dependencies in relational
databases are, in fact, partial order type (or lattice-type) dependencies. This
approach reveals that most of properties of functional dependencies are inherited
from the properties of the partial order on the “sample” lattice.

J. Demetrovics et al. A Formal Representation for Structured Data

 – 72 –

Let ℒ be a set with the partial order ≼, then, as usual, for 𝐿 ⊆ ℒ we denote 𝑆𝑢𝑝(𝐿) = {𝑙 ∈ ℒ| ∀𝑙′ ∈ 𝐿: 𝑙′ ≼ 𝑙} and 𝑆𝑢𝑝∗(𝐿) = {𝑙 ∈ 𝑆𝑢𝑝(𝐿)| ∀𝑙′ ∈ ℒ: 𝑙′ ≼ 𝑙 ⇒𝑙′ ∉ 𝑆𝑢𝑝(𝐿)}. Similarly, we denote 𝐼𝑛𝑓(𝐿) = {𝑙 ∈ ℒ| ∀𝑙′ ∈ 𝐿: 𝑙 ≼ 𝑙′}
and 𝐼𝑛𝑓∗(𝐿) = {𝑙 ∈ 𝐼𝑛𝑓(𝐿)| ∀𝑙′ ∈ ℒ: 𝑙 ≼ 𝑙′ ⇒ 𝑙′ ∉ 𝐼𝑛𝑓(𝐿)}.
Definition 16:

1. Let ℛ ⊆ ℛ∞(𝑉) be a set of relations over 𝑉. By dependency type on ℛ we
understand a couple (ℒ, 𝜑) where ℒ is a lattice with the partial order ≼, 𝜑:ℛ → ℒ is a mapping that satisfies the following conditions:

i. For 𝑟, 𝑠 ∈ ℛ if 𝜑(𝑟) are determined and 𝑠 ≤ 𝑟 then 𝜑(𝑠) is determined
and 𝜑(𝑠) ≼ 𝜑(𝑟)

ii. For 𝑟, 𝑠 ∈ ℛ, if 𝑠 = 〈𝑠1, 𝑠2, … , 𝑠n〉, 𝑟 = 〈𝑟1, 𝑟2, … , 𝑟𝑛〉; 𝜑(𝑠𝑖), 𝜑(𝑟𝑖) are
determined and 𝜑(𝑠𝑖) ≼ 𝜑(𝑟𝑖) for all 𝑖 = 1,2,… , 𝑛, then 𝜑(𝑠), 𝜑(𝑟)
are determined and 𝜑(𝑠) ≼ 𝜑(𝑟).

iii. For 𝑟, 𝑠 ∈ ℛ, if 𝑠 = {𝑠1, 𝑠2, … , 𝑠n}, 𝑟 = {𝑟1, 𝑟2, … , 𝑟𝑚}; 𝜑(𝑠𝑖), 𝜑(𝑟𝑗) are

determined and for all 𝑖 = 1,2, … , 𝑛 there exists 𝑗 = 1,2, … ,𝑚 such

that 𝜑(𝑠𝑖) ≼ 𝜑(𝑟𝑗), then 𝜑(𝑠), 𝜑(𝑟) are determined and 𝜑(𝑠) ≼ 𝜑(𝑟)
2. For two relations 𝑟, 𝑠 ∈ ℛ we say that 𝑠 depends on 𝑟 in dependency

type (ℒ, 𝜑) if 𝜑(𝑠) ≼ 𝜑(𝑟). Then we write 𝑟 ℒ,𝜑→ 𝑠 or for simplicity 𝑟 → 𝑠 if ℒ, 𝜑 are well known.

3. For two structured data 𝛼, 𝛽 ∈ 𝑆𝑉, 𝛼 = [𝑟1, 𝑟2, … , 𝑟𝑚], 𝛽 = [𝑠1, 𝑠2, … , 𝑠n],
we say that 𝛽 depends on 𝛼 in dependency type (ℒ, 𝜑) if {𝑟1, 𝑟2, … , 𝑟𝑚} → 𝑠i
for all 𝑖 = 1,2, … , 𝑛. Then we write 𝛼 ℒ,𝜑→ 𝛽 or for simplicity 𝛼 → 𝛽 if ℒ, 𝜑

are well known.

The dependencies defined in the Definition 16 are called partial order
dependencies or lattice-like dependencies.

Theorem 8: Let (ℒ, 𝜑) be a dependency type, where ℒ is a set with the partial
order ≼, 𝜑:ℛ → ℒ.

1. If 𝑠 = 〈𝑠1, 𝑠2, … , 𝑠n〉, 𝜑(𝑠𝑖) is determined for all 𝑖 = 1,2, … , 𝑛, then 𝜑(𝑠) is
determined and 𝜑(𝑠) ∈ 𝑆𝑢𝑝∗(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n))

2. If 𝑠 = {𝑠1, 𝑠2, … , 𝑠n}, 𝜑(𝑠𝑖) is determined for all 𝑖 = 1,2, … , 𝑛, then 𝜑(𝑠) is
determined and 𝜑(𝑠) ∈ 𝑆𝑢𝑝∗(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n))

Proof:

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 73 –

If 𝑠 = 〈𝑠1, 𝑠2, … , 𝑠n〉 or 𝑠 = {𝑠1, 𝑠2, … , 𝑠n}, 𝜑(𝑠𝑖) is determined for all 𝑖 =1,2, … , 𝑛, then 𝜑(𝑠) is determined. Moreover, 𝑠𝑖 ≤ 𝑠, therefore 𝜑(𝑠𝑖) ≼ 𝜑(𝑠) for

all 𝑖 = 1,2, … , 𝑛, i.e. 𝜑(𝑠) ∈ 𝑆𝑢𝑝(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)).
Moreover, if 𝜑(𝑠′) ∈ 𝑆𝑢𝑝(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)), then 𝜑(𝑠𝑖) ≼ 𝜑(𝑠′), for

all 𝑖 = 1,2, … , 𝑛.

1. By ii. in Definition 16, if 𝑠 = 〈𝑠1, 𝑠2, … , 𝑠n〉 then by 𝑠′ = 〈𝑠′, 𝑠′, … , 𝑠′〉, we
have 𝜑(𝑠) ≼ 𝜑(𝑠′). This proves that 𝜑(𝑠) ∈ 𝑆𝑢𝑝∗(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n)).

2. By ii. in Definition 16, if 𝑠 = {𝑠1, 𝑠2, … , 𝑠n} then by 𝑠′ = {𝑠′}, we have 𝜑(𝑠) ≼ 𝜑(𝑠′). This proves that 𝜑(𝑠) ∈ 𝑆𝑢𝑝∗(𝜑(𝑠1), 𝜑(𝑠2), … , 𝜑(𝑠n))
Theorem 9: The functional dependencies in relations of relational database are
partial order dependencies.

Proof: In the Example 1 we have shown that every relation 𝑟 = {𝐴1, 𝐴2, … , 𝐴𝑚} in

relational database with the columns 𝐴𝑖 = (𝑎𝑖𝑗), 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛 can

be considered as a 2-order relation: 𝑟 = {〈𝑎11, 𝑎12, … , 𝑎1𝑛〉, 〈𝑎21, 𝑎22, … , 𝑎2𝑛〉, … , 〈𝑎𝑚1, 𝑎𝑚2, … , 𝑎𝑚𝑛〉}
 In fact, 𝑟 can be considered as a structured data 𝑟 = [𝑟0, 𝑟1, 𝑟2, … , 𝑟𝑚 , 𝑟𝑚+1]
where 𝑟0 = {𝑎𝑖𝑗|𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛}, 𝑟𝑖 = 〈𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛〉 for 𝑖 =1,2, … ,𝑚 and 𝑟𝑚+1 = {𝑟1, 𝑟2, … , 𝑟𝑚}.
The functional dependency between the columns of 𝑟 can be defined as follows:
Let ℒ the set of all partitions on the set {𝑙1, 𝑙2, … , 𝑙𝑛}, where 𝑙1, 𝑙2, … , 𝑙𝑛 are the
rows of 𝑟. We denote by ≼ the following partial order on ℒ: for two partitions 𝑝, 𝑞
on 𝑙1, 𝑙2, … , 𝑙𝑛 we write 𝑝 ≼ 𝑞 if 𝑙𝑗~𝑞𝑙𝑘 ⇒ 𝑙𝑗~𝑝𝑙𝑘

To each 𝑎𝑖𝑗 we associate the partition 𝜑(𝑎𝑖𝑗) over {𝑙1, 𝑙2, … , 𝑙𝑛} defined by the

following equivalence: 𝑙𝑘~𝑎𝑖𝑗𝑙𝑡 if and only if both 𝑙𝑘 , 𝑙𝑡 contain 𝑎𝑖𝑗 or both 𝑙𝑘 , 𝑙𝑡
do not contain 𝑎𝑖𝑗 .
To the column 𝐴𝑖 we associate the partition 𝜑(𝐴𝑖) over {𝑙1, 𝑙2, … , 𝑙𝑛} defined by
the following equivalence: 𝑙𝑘~𝐴𝑖𝑙𝑡 if and only if 𝑎𝑖𝑘 = 𝑎𝑖𝑡.
To a set of columns 𝒜 we associate the partition 𝜑(𝒜) over {𝑙1, 𝑙2, … , 𝑙𝑛} defined
by the following equivalence: 𝑙𝑗~𝒜𝑙𝑘 if and only if 𝑙𝑗~𝐴𝑖𝑙𝑘 for all 𝐴𝑖 ∈ 𝒜.

One can verify that 𝜑 satisfies the conditions in Definition 16, thus (ℒ, ≼) is
partial order dependency type. It is easy to see that for two set of columns 𝒜,ℬ
in 𝑟, ℬ functionally depends on 𝒜, i.e. 𝒜 → ℬ, if and only if 𝜑(ℬ) ≼ 𝜑(𝒜).

J. Demetrovics et al. A Formal Representation for Structured Data

 – 74 –

One can verify that most of rules that hold for functional dependency in fact hold
also for generalized model, i.e. for partial order dependency. We have:

Theorem 10: Let (ℒ, 𝜑) be a dependency type on ℛ ⊆ ℛ∞(𝑉). Let 𝛼, 𝛽, 𝛾 be
relations (or structured data) over 𝑉. We have:

1. (Reflexivity) If 𝛽 ≤ 𝛼, then 𝛼 → 𝛽.

2. (Augmentation) If 𝛼 → 𝛽, then 𝛼 ∪ 𝛾 → 𝛽 ∪ 𝛾 for any 𝛾.

In the case 𝛼, 𝛽, 𝛾 are relations by 𝛼 ∪ 𝛾, 𝛽 ∪ 𝛾 we understand {𝛼, 𝛾}
and {𝛽, 𝛾}, respectively.

3. (Transitivity) If 𝛼 → 𝛽, 𝛽 → 𝛾, then 𝛼 → 𝛾.

Definition 17: For a structured data 𝛼 ∈ 𝑆𝑉, 𝛼 = [𝑟1, 𝑟2, … , 𝑟𝑚], we say that a set 𝛽 = {𝑟i1 , 𝑟i2 , … , 𝑟ik} is a key set of 𝛼 in dependency type (ℒ, 𝜑) if {𝑟i1 , 𝑟i2 , … , 𝑟ik}ℒ,𝜑→ 𝑟𝑖 for all 𝑖 = 1,2, … ,𝑚.

The following example shows how a relation in relational database can be
considered as structured data and how the functional dependencies in it can be
studied as partial order dependencies.

Example 7: Let 𝒓 be the relation in the Figure x, where 𝒍𝒊s and 𝒄𝟐 are the rows
and the columns of 𝒓, respectively.

Table 3

Relation 𝒓 in relational database

 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒍𝟏 𝑥1 𝑦1 𝑧1 𝑤1 𝒍𝟐 𝑥1 𝑦2 𝑧2 𝑤1 𝒍𝟑 𝑥2 𝑦2 𝑧3 𝑤1 𝒓 can be considered as a structured data [𝒓𝟎, 𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒, 𝒓] where 𝒓𝟎 ={𝑥1, 𝑥2, 𝑦1, 𝑦2 , 𝑧1, 𝑧2, 𝑧3, 𝑤1} is the set of all atomic data, 𝒄𝟏 = 〈𝑥1, 𝑥1, 𝑥2〉, 𝒄𝟐 =〈𝑦1, 𝑦2, 𝑦2〉, 𝒄𝟑 = 〈𝑧1, 𝑧2, 𝑧3〉, 𝒄𝟒 = 〈𝑤1, 𝑤1, 𝑤1〉 are the columns of the relation 𝒓 ={𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒}.
Denote the rows of 𝒓 by 𝒍𝟏, 𝒍𝟐, 𝒍𝟑. The set of all partitions on {𝒍𝟏, 𝒍𝟐, 𝒍𝟑} is denoted
by ℒ. Every partition 𝑝 ∈ ℒ can be determined by the equivalence ~𝑝: 𝒍𝒊, 𝒍𝒋 belong

to a same class in 𝑝 if and only if 𝒍𝒊~𝑝𝒍𝒋. ℒ is a lattice where the partial order on ℒ

is defined as usual: 𝑝 ≼ 𝑞 if and only if 𝒍𝒊~𝑞𝒍𝒋 ⇒ 𝒍𝒊~𝑝𝒍𝒋. The partial order on ℒ is

described in the following diagram:

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 75 –

Figure 3

The partial order between the partitions

Each relation 𝒙 in the structured data 𝒓, 𝒙 ∈ {𝒓𝟎, 𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒, 𝒓}, accordingly to
Theorem 9, can be associated to a partition 𝜑(𝒙) ∈ ℒ as follows:

Table 4

Relations in a structured data and their image in a partially ordered set

Thus one can see the dependencies between the relations in the structured data 𝒓:

Figure 4

The dependencies between the relations in a structured data

Conclusions

In this paper we have proposed a formalization for structured data, in which data
are constructed recursively by two basic structures, namely, by sets and queues,
based upon atomic data. Although the approach may not deal with all structured
data, it does touch on a large portion. The relations, relational databases can be
handled in this formalization. We show that many well-known concepts and
results in relational databases, such as keys and functional dependencies, can be
studied in this generalized model of data. The generalization has certain
advantages: the concepts and results in relational databases are quite clear in this
formalization, the properties of keys and functional dependencies are inherited
from the sample hierarchy in a lattice, etc. Moreover, the proposed approach also
offers a unique method for managing different operations on structured data.

J. Demetrovics et al. A Formal Representation for Structured Data

 – 76 –

As one can see, the approach poses several problems that may be interesting
topics for further studies. These problems are:

─ The operations on structured data should be studied more thoroughly,
including the composition and decomposition of structured data.

─ The relational algebra should be developed for structured data.

─ An optimization and normalization of structured data should be studied that
guarantees the optimality and consistency of structured data management
systems.

References

[1] Békéssy, J. Demetrovics: Contribution to the Theory of Data Base
Relations, Discrete Math., 27, 1979, pp. 1-10

[2] C. Beeri, M. Dowd, R. Fagin, R. Statman: On the Structure of Armstrong
Relations for Functional Dependencies, J. ACM, 31, 1984, pp. 30-46

[3] Brigitte Le Roux, Henry Rouanet: Geometric Data Analysis: From
Correspondence Analysis to Structured Data Analysis, Kluwer Academic
Publishers, ISBN 1402022352, 2004

[4] Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM 13 (6): 377.
doi:10.1145/362384.362685

[5] Dana Scott: Data Types as Lattices, SIAM Journal on Computing 1976,
Vol. 5, No. 3, pp. 522-587, ISSN: 0097-5397

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber
Bigtable: A Distributed Storage System for Structured Data, J. ACM
Transactions on Computer Systems (TOCS), Volume 26, Issue 2, June
2008, Article No. 4, ACM New York, NY, USA

[7] J. Demetrovics: Candidate Keys and Antichains, SIAM J. Algebraic
Discrete Math., 1 (1980), p. 92

[8] János Demetrovics, Leonid Libkin, Ilya B. Muchnik: Functional
Dependencies in Relational Databases: A Lattice Point of View, Discrete
Applied Mathematics,Volume 40, Issue 2, 10 December 1992, pp. 155-185

[9] Karthik Kambatla, Giorgios Kollias, Vipin Kumar, Ananth Grama: Trends
in Big Data analytics. J. Parallel Distrib. Comput. 74(7), 2014, pp. 2561-
2573

[10] Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the
Relational Database Model, EATCS Monographs on Computer Science, nr.
17, Springer Verlag, ISBN 3540137149, 1989

http://dblp.uni-trier.de/pers/hd/k/Kollias:Giorgios

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 77 –

Performance Analysis of a Cluster Management

System with Stress Cases

Gergő Gombos, Attila Kiss, Zoltán Zvara

Eötvös Loránd University, Faculty of Informatics
Pázmány Péter u. 1/c, H-1117 Budapest, Hungary
ggombos@inf.elte.hu, kiss@inf.elte.hu, dyin@inf.elte.hu

Abstract: Cluster computing frameworks are important in the “Big Data” world. The
famous common framework is the MapReduce that was introduced by Google. This
framework is used by many of companies. However, this technique doesn't effectively solve
all analytical problems. Some cases need another framework and these frameworks can
work in the cluster. In this case, the cluster needs a manager that manages the framework.
Therefore, the performance analysis of cluster management systems will be important. In
this paper, we compare the performance of two most well-known cluster management
systems (Yarn, Mesos) with stress cases. We analyze the resource usage techniques of the
management systems.

Keywords: cluster management; resource sharing; scheduling

1 Introduction

For years, Big Data was confined to a group of elite technicians working for
companies like Google and Yahoo, but the databases and the tools used to manage
the data at that scale have been constantly evolving. At that time, Big Data was
only a synonym to the leading tool, the Apache Hadoop [1], a MapReduce [2]
implementation that was used as a data-processing platform for many years,
exclusively. As Big Data continued to evolve, researchers found that MapReduce
– though is still powerful for a large number of applications – was not as effective
at solving many problems. Technicians were working on new cluster computing
frameworks, and it became clear that no framework would be optimal for all
applications. Researchers have been developing a wide array of data-centric
computing frameworks and the need for a major computing platform emerged,
powering both the growing number of data-intensive scientific applications and
large internet services. It has become essential to run multiple frameworks on the
same cluster, so data scientists can pick the best for each application.

mailto:ggombos@inf.elte.hu
mailto:kiss@inf.elte.hu

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 78 –

As new analytic engines began to cover the ever growing space of problems,
sharing a cluster between these frameworks started to get complicated. At the
enterprise level, along with the need of batch processing, the need of real-time
event processing, human interactive SQL queries, machine learning and graphic
analytics emerged.

In a cluster, data are distributed and stored on the same nodes that run
computations shared by frameworks. When the cluster is shared, statically, by
frameworks, unnecessary data replication will appear, along with utilization
issues. When a framework, for example a web-service farm, would be able to
scale down at late hours, the MapReduce framework would perform better if it
were able to use the resources released by the web-service farm. Sharing improves
cluster utilization, through statistical multiplexing and avoids per-framework data
replication and leads to data consolidation.

A cluster management system acts as a cluster-wide operating system by sharing
commodity clusters between multiple and diverse cluster computing frameworks.
Because reading data remotely, is expensive on a distributed file system, it is
necessary to schedule computations near their data. At each node, applications
take turns running computations, executing long or short tasks, spawned by
different frameworks. Locality in large clusters is crucial for performance,
because network bisection bandwidth becomes a bottleneck. [2] A cluster
management system should provide a tool or interface, to design and implement
specialized, distributed frameworks targeted at special problem domains. While
multiple frameworks are operating cluster-wide, the operating system should take
care of difficult problems, like cluster health, fault monitoring, resource arbitration
and isolation.

Energy efficiency also becomes a critical matter for data centers powering large
numbers of clusters [6] [7], since energy costs are ever increasing and hardware
costs are decreasing. Minimizing the total amount of resources consumed will
directly reduce the total energy consumption of a job.

Scalability, resource- and energy-efficiency are key metrics for a cluster
management system, their performance matters for data-center operators, as well
as for end users. [3] [4] [5]

Driven by the need of a cluster-wide operating system to share data among
frameworks, two solutions appeared from the ground of The Apache Software
Foundation that circulated widely in the Big Data community, to provide a
resource management substrate for analytic engines and their applications. One
such solution was designed and presented at U.C. Berkeley, called Apache Mesos
and another one, originated from the Hadoop architecture, named YARN (Yet
Another Resource Negotiator).

In this work we will show and demonstrate the differences of these two, open-
source cluster-wide operating systems, by presenting an infrastructure, resource

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 79 –

management, scheduling overview and performance evaluations, on different
scenarios together with load and stress testing. Both of these systems are used
widely in production systems and by introducing different resource-management
models, it is beneficial to analyze their performance. Using the performance
evaluations we will demonstrate the advantages and disadvantages, of different
configurations, use cases on both YARN and Mesos, with different analytical
frameworks having diverse needs and routines on execution.

2 Design and Concepts

A cluster management system consists of two main components. A master entity,
that manages resources, schedules framework’s resource requirements and slave
entities, which run on nodes to manage tasks and report to the master. These two
components build up the platform. A scheduler is a singular or distributed
component in the platform that schedules jobs (or applications) on the cluster
expressed and written by end-users using a specific framework library. A cluster
management system can be considered as a distributed operating system: it
provides resources for frameworks and schedules their distributed applications.

Frameworks are more or less, independent entities, with their own scheduler and
resource requirements, but there are dissimilarities among design philosophies on
different systems. A live framework is expected to register itself with the cluster’s
master, by implementing a resource-negotiating API defined by the master. Apart
from the global, cluster wide resource management, scheduling, other
expectations, such as fault tolerance, job-level scheduling or logging are the
framework’s duty to provide.

The masters are made to be fault-tolerant on both Mesos and YARN by
ZooKeeper [8]. In a cluster deployed with Mesos, a framework must be set up on
a given node and it must register itself with the master to be able to negotiate for
resources and run tasks on the nodes. YARN requires a client to submit the
framework, as an application to the resource manager. The resource manager will
eventually start the framework on a node, making it live, to be able to request
resources and run tasks on the nodes.

2.1 Resource Management

As previously described, the master entity arbitrates all available cluster resources
by working together with the per-node slaves and the frameworks or applications.
The resource manager component of the master entity does not concern itself with
framework or application state management. It schedules the overall resource
profile for frameworks and it treats the cluster as a resource pool.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 80 –

There are two methods for gathering resources from the cluster. Mesos pushes,
offers resources to frameworks, those implement a Scheduler, while
applications, which implement the YarnAppMasterListener interface are
expected to pull, request resources. Mesos offers resources to the Scheduler
and it chooses to accept, or not, in contrast to the model used by YARN, where the
AppMaster must request resources from the ResourceManager and it
chooses to give resources or not.

Resource allocations in YARN are late binding, that is, the application or
framework is obligated to use the resources provided by the container, but it does
not have to apply them to a logical task on request. The framework or application
can decide which task to run with its own, internal, second-level scheduler. In
Mesos, task descriptions must be sent upon accepting a resource.

On Mesos and YARN the existing grammar of resource requests does not support
specification of complex relationships between containers regarding co-location.
Second-level schedulers must implement such relationships. Also, since Mesos
offers resources to the framework it will hinder locality preferences, while YARN
lets the framework request any node in the cluster, not only from a sub-cluster
offered by the resource manager. To tailor and limit resource consumption of
different frameworks, a pluggable allocation module in the master entity of Mesos
can determine how many resources to offer each framework.

2.2 Scheduling

Given the limited resources in the cluster, when jobs cannot all be executed or
resource requests cannot all be served, scheduling their executions becomes an
important question, allocating resources to frameworks becomes crucial to the
performance. A centerpiece of any cluster management system is the scheduler.
Scheduler architecture design impacts elasticity, scalability and performance in
many dimensions and data-localities within distributed operating systems.

2.2.1 Statically Partitioned

Statically partitioned schedulers lead to fragmentation and suboptimal utilization.
It is not a viable architecture to achieve high throughput and performance, which
is an elemental requirement amongst cluster management systems.

2.2.2 Monolithic

A monolithic scheduler uses a central algorithm for all jobs and it is not parallel,
implements policies and specialized implementations, in one code base. In the
high-performance computing world, this is a common approach, where each job
must be scheduled by the same algorithm. The era of Hadoop on Demand (HoD),
was a monolithic scheduler implementation. The problem with a monolithic
architecture is that it puts too much strain on the scheduler from a certain cluster

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 81 –

size and it becomes increasingly difficult to apply new policy goals, such as,
failure-tolerance and scaling.

2.2.3 Two-Level

An approach used by many systems is to have a central scheduler, a coordinator
that decides how many resources each sub-cluster will have. This two-level
scheduling is used by Mesos, YARN, Corona [9] and HoD. An offer-based two-
level scheduling mechanism provided by Mesos, works best when the tasks
release resources frequently, meaning that job sizes are also small compared to the
total available resources. Since the Mesos master does not have access to a global
view of the cluster state, only the resources it has been offered, it cannot support
preemption. This restricted visibility of cluster resources might lead to losing
work when optimistic concurrency assumptions are not correct. Mesos uses
resource hoarding to group (gang) schedule frameworks and this can lead to a
deadlock in the system. Also, the parallelism introduced by two-level schedulers is
limited, due to a pessimistic concurrency control.

YARN, is effectively, a monolithic architecture, since the application masters
usually don’t provide scheduling, but only job-management services, like the
Spark [10] master entity. An ApplicationMaster can in fact implement a
second level of scheduling and assign its containers to whichever task is part of its
execution plan. The MRAppMaster is a great example of the dynamic two-level
scheduler as it matches allocated containers against the set of pending map tasks
by data locality.

2.2.4 Comparison

Design comparisons, simulations present the tradeoffs between the different
scheduler architecture approaches [11]. Increasing the per-job scheduling
overhead (the time needed to schedule a job) will increase the scheduler business
in the monolithic, single-path baseline case, linearly. The job wait time will
increase at a similar rate, until the scheduler is fully saturated. On a multi-path
implementation, average job wait time and scheduler activity decreases, but batch
jobs can still get stuck in a queue behind service jobs, which are slow to schedule.

Scheduling batch workloads will result in a busier scheduler when using a two-
level (Mesos) architecture instead of a monolithic architecture, as a consequence
of the interaction between the Mesos offer model and the second-level scheduler
in the framework. Because Mesos achieves fairness by offering all available
cluster resources to schedulers, a long second-level decision time means that
nearly all the resources are locked too long a time, making them inaccessible to
other schedulers. Mesos predicts by making quick scheduling decisions and
having small jobs within a large resource pool, which can cause aforementioned
mentioned problems in a different scenario.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 82 –

4 Experimental Evaluations

In this section we will demonstrate the two cluster management systems in
operation, regarding scheduling and execution performance in different scenarios
using two popular frameworks, the Hadoop MapReduce implementation and
Spark. We test single job execution concerning startup overhead and scheduling
efficiency, throughput along with node performances.

These evaluations were run on 5 computers, each equipped with an Intel Core i5
CPU and 4GB RAM. One computer was set up as a dedicated master, resource
manager for both YARN and Mesos, history server and proxy server for YARN,
but also as a name node and secondary name node for HDFS. The other 4 nodes
were set up as data nodes and slaves to run jobs. In the case of Mesos, the
frameworks (for example Hadoop JobTracker, Hama BSPMaster) were
deployed and activated on the master node.

In these experiments the following cluster and framework versions were used:
Hadoop YARN version 2.5.2 [12], Mesos 0.21.0 [13], with the Hadoop on Mesos
library version 0.0.8 [14] and Spark 1.3.0 [15]. We observed no measurable
performance differences between MRv1 and MRv2, apart from the overhead
originated from launching TaskTrackers.

In each cluster, a total 32 virtual CPUs and 32768 MB of virtual memory were
available while running these tests. Both YARN and Mesos were only able to
isolate CPU and memory as resources. Disk usage or network bandwidth were
managed by the underlying operating system (Ubuntu 14.04). The tests ran 5
times and the results were aggregated to calculate averages. We considered the
resource use as use of CPU and memory.

While each cluster management system provides a REST API to query for the
system, framework, job, task data as well as metrics, the Mesos API seemed to be
a more detailed and precise regarding system parameters. While each job runs as a
separate application in YARN, from a cluster point of view, finer grained snapshot
becomes visible. Mesos does not know and neither concerns of the job granularity,
it really does not know how many map-reduce jobs were ran by the connected
JobTracker framework entity.

The deployment of YARN with the different frameworks mentioned above
worked more like an out-of-box application, compared to Mesos, where
permission problems were met several times while running map-reduce jobs along
with the frequent node failures in case of handling too much executors at once.

4.1 Single Batch Job Performance

To examine the performance on accepting, scheduling and preparing a certain
task, we’ve ran a long, batch-like job on each platform, an IO and memory heavy
map-reduce program on a 40 GB dataset that is stored in HDFS with a replication

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 83 –

factor of 2. The cluster utilization was at 0% each time the program gets
submitted. Since Mesos uses Hadoop MapReduce API and architecture of version
1 and YARN uses the next-generation version 2 API, differences are expected in
map-reduce job execution schemes and performance.

While running the map-reduce job on Mesos, it completes in 1130 seconds with
374 maps and 1 reduce task and with total 358 data-local map tasks, that is 24
more maps ran, than in YARN. Figure 1 shows that the first TaskTrackers of
Hadoop version 1 to reach the staging status on an executor launched by Mesos
required 8 seconds from the time the job submitted. Staging status refers to the
state when the slot (container) is allocated and the setup of the executor has been
started. To be able to set up TaskTrackers, the Hadoop v1 architecture needs
to be distributed as a TAR throughout the slaves, stored on HDFS. After the
executors get started, the Hadoop distribution gets downloaded from HDFS, so a
working Hadoop must present on each slave with the capability to invoke the
hadoop command and to communicate with the HDFS. If the Hadoop
distribution in question, is not replicated at each node, the transfer time (of
roughly 250 MB) heavily impacts the ramp-up time of the TaskTrackers.

In a scenario, where network bandwidth is a bottleneck, transferring Hadoop
framework executors can keep many tasks on staging status for a long time.
Figure 1 shows that, with replication factor 4 it took 42 seconds to get the first
few TaskTrackers to get to running state. Other mappers were also considered
slow to start up. The reducer was created and launched in the 95th second, while
map phase was at 7.6% completion. Reaching the maximum utilization, 1 virtual
core and 1024 MB of memory was not used. Mesos set up a total of 11
TaskTrackers on the small cluster.

Figure 1

Number of staging and running tasks in case of long and short batch (map-reduce) jobs on Mesos

 It became clear that TaskTrackers, executors are a huge deal to set up on first
time and could mean a slow response from frameworks as elasticity is being
harnessed. Burst-like jobs from different frameworks could mean too much work
spent on setting up and launching executors.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 84 –

A much smaller, micro map-reduce job on an 8 MB dataset was run for the same
purpose. Mesos created two TaskTrackers on different nodes for 1 map and 1
reduce task, with 1 data-local map task. It took 29 seconds for the job to complete,
while in contrast to the long batch job, the first task reached staging state on the 4th
second and started to run on the 15 second mark. With smaller jobs, tasks get
staged and run much faster.

Figure 2

Number of containers allocated and reserved in case of long and short batch (map-reduce) job on

YARN

YARN outperformed Mesos on both long and short term. As shown in Figure 2,
YARN completed the short job in 21 seconds on average and the MRAppMaster
was placed on container 0 in a second. Breaking with the Hadoop v1 design really
pays off, as mappers and reducers are placed very fast on the designated nodes
without the TaskTrackers to deploy. We found minimal differences in speed
comparing the map-reduce implementation of Hadoop v1 and v2. As seen in
Figure 2, YARN reserved containers to prevent starvation from smaller
applications. This behavior appeared to be common on long tasks, but the
MRAppMaster never reserved more than 4 containers, even on longer jobs, but
one for each node.

YARN completed the long map-reduce job with 1 application master, 1 reduce
and 360 map containers in total. The advantage of this granularity pays off, when
new applications enter the scheduling phase and DRF wishes to free resources for
them. Killing a few map tasks to be able to allocate cluster resources for new
applications would not result in a major drawback for the map-reduce program
running on YARN, since 360 mappers are reserved and used up linearly in the
execution timeframe. On a long map-reduce job in case of Mesos, while
TaskTrackers would allocate slots for a long time, an allocation module
would kill a few of them, to place new frameworks’ tasks on the cluster. Map-
reduce is resilient to task failures, since work lost could be repeated, but on a long
term this can hurt utilization and hinder completion time in a much greater aspect.
Map-reduce on YARN, provides much better elasticity, along with, a faster
execution.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 85 –

Another issue to point out with Mesos, is that during the execution of the map-
reduce long job it consumed relatively more resources on the execution timeframe
than the MR implementation on YARN. As Figure 2 shows after the 940th second,
only one reducer was running on one container aggregating results from mappers,
but in case of Mesos, until the very end of the job’s last phase, all
TaskTrackers were still running and the JobTracker freed them after the
job was completed. As higher resource consumption directly affects money spent
in a cloud environment, choosing Mesos might result in a higher bill than
expected.

Running a micro Spark job on each system resulted in an average 4 second
difference, in favor of Mesos. It worth mentioning, that the current Spark
implementation does not support cluster deployment mode in for Mesos. Running
a Spark job on YARN requires a Spark ApplicationMaster to be created on
container 0, which impacts the startup time of the actual job. Spark jobs can run in
client mode with YARN, but this setup did not yield a better result. The same job
on Mesos was run by a Spark client on the master node, thus it was able to
negotiate resources and launch containers without the time to deploy itself. Spark
jobs on Mesos can run by using a predefined executor with the
spark.executor.uri configuration parameter or by deploying packages
manually to each node with the appropriate configuration.

It is evident, that the deploy-the-application approach introduced by YARN is
more convenient from the client’s point of view than the connect-the-framework
concept. A client does not have to keep its instance of framework running and can
disconnect from the cluster after the application got submitted. On the other hand,
deploying a framework manually to a node could lead to uncontrolled resource
consumption as the framework is not managed and isolated by the resource
manager. Using Spark in client mode means that multiple Spark-framework
instances will appear and act as tenants for the DRF scheduler, while one
JobTracker runs multiple map-reduce programs. This approach will eventually
make the tasks of the allocator module harder, when it tries to enforce
organizational policies.

Figure 3

Number of containers allocated (YARN) and number of tasks staging and running (Mesos) in case of

running the short Spark job

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 86 –

As seen in Figure 3, YARN completed the Spark job in 18 seconds using 3
containers (including the Spark master on container 0), while Mesos in 14 seconds
using 4 containers. The running container 0, on YARN, required roughly 5
seconds to request, prepare and run the Spark executors, on the allocated
containers. The executors were running for 11 seconds and the application master
went offline after 2 seconds. The execution of Spark job on 4 containers resulted
in a timeframe of 7 seconds.

Table 1

Summary of single job performances on YARN and Mesos

Case Runtime Maximum number of containers used

YARN, short map-reduce job 21 s 2 (including application master)

Mesos, short map-reduce job 28 s 2

YARN, long map-reduce job 1061 s 31 (including application master)

Mesos, long map-reduce job 1129 s 11

YARN, short Spark job 18 s 3 (including application master)

Mesos, short Spark job 14 s 4

4.2 Mixed Job and Framework Performance (Scenario 1)

To test the scheduling performance of Mesos and YARN, we’ve created a client
that submits map-reduce and Spark jobs periodically. In this scenario, a micro
map-reduce and a CPU Spark job was submitted every 10 seconds, and a long
batch map-reduce job every 100 seconds. A total of 22 jobs were submitted.

Using YARN as a platform, with the fair scheduler and unlimited application
preferences, we were able to encumber the system to a point, where the context
switching and administration overhead turned each running application into a
zombie as NodeManagers were overwhelmed. As seen in Figure 4, after
completing 22 applications, the last 20 never reached a complete state, but
actually did not make any progress in hours. The scenario became complicated for
YARN, when the long-job entered the cluster and a huge portion of resources
were allocated to it, rendering micro-job executions slower, causing them to pile
up. It became evident that concurrent application limits are crucial for
performance, after a certain threshold on YARN as context switching and
parallelism overhead went out of control. For this system and with this scenario, it
happened with 15 applications. As memory-intensive applications were still
running and requesting a resource vector with memory greater than (1 CPU, 1
GB), in average, 12 virtual cores were never used. The reserved values on the
dimension of memory were introduced by the long running map-reduce job. The
characteristic leap of the allocated plot line refers to the time when the first long
job appeared and started to acquire all available resources.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 87 –

Figure 4

Evaluation of scenario 1 on YARN using fair scheduler with unlimited applications configuration in

terms of number of applications and memory usage

Using YARN’s capacity scheduler with a limit of 4 concurrent applications, this
scenario was completed in 2168 seconds and as seen in Figure 5, compared to fair
scheduler with an application limit of 10, was slower. Fair scheduler completed
applications in 2132 seconds, while also performed with a better response-time as
smaller jobs were able to run earlier. For larger job sizes, capacity scheduler
provided a better response-time with a lower application limit. In the case of
capacity scheduler no reservations were made for new containers. By not
reserving containers, it seems a few containers were unused and scheduled on-the-
fly after they became available.

Figure 5

Evaluation of scenario 1 on YARN using capacity scheduler with maximum of 4 concurrent

applications in terms of number of applications and memory usage

The FIFO scheduler with unlimited applications completed this scenario, on
average 2153 seconds. This scheduling scheme can hurt smaller jobs and can
cause starvation when a single, long job gets all resources as seen in Figure 6.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 88 –

Figure 6

Evaluation of scenario 1 on YARN using FIFO scheduler with unlimited applications configuration in

terms of number of applications and memory usage

Figure 7

Evaluation of scenario 1 on YARN a maximumir scheduler with maximum of 10 concurrent

applications in terms of number of applications and memory usage

Comparing the DRF implementation of Mesos to YARN’s, YARN was able to
perform much better and achieved a high utilization by allocating 100% of the
available cluster resources for a long period of time, as shown on Figure 7. With
the use of reserved amounts by the scheduler, containers were allocated and ran
much faster achieving a higher utilization, than the capacity scheduler. Mesos, on
the other hand, was not able to utilize all cluster resources. For a long time, the
resource manager reported 4 CPUs and 6.1 GB memory idle, but the fine-grained,
rapid tasks of Spark were utilizing the 4 CPUs as seen in Figure 8. Spark was set
up in fine-grained mode in the first place, which means a separate Mesos task was
launched for each Spark task. This allows frameworks to share cluster resources in
a very fine granularity, but it comes with an additional overhead for managing
task lifespans in a rapid rate. Focusing on the number of cores in the fine- and
coarse-grained setup this behavior seems clear, as the fast task allocation pattern
appears on the plot in the fine-grained case. A noticeable difference shows in the
memory allocation pattern of different task-resolutions as (Spark) tasks with a
lifespan measured in milliseconds allocated containers with <1 CPU, 128 MB>
resource vectors instead of <1 CPU, 512 MB> or <1 CPU, 768 MB> as in the
coarse-grained mode. In certain circumstances, it might be a good practice to

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 89 –

place and force very fast tasks of different fine-grained setup frameworks next to
memory-intensive jobs to improve utilization and fairness with Dominant
Resource Fairness.

The map-reduce jobs were managed by a single JobTracker and Spark jobs
were submitted by multiple Spark clients. By increasing the number of Spark
clients, the utilization improved. Figure 8 shows the utilization best achieved
while 6 Spark frameworks were active.

Figure 8

Evaluation of scenario 1 on Mesos using coarse- and fine-grained setup with fair scheduler and

unlimited tasks configuration in terms of number of applications, virtual core and memory usage

In this scenario, multiple issues were found with Mesos. On some runs, an average
of 24 TaskTrackers were lost and some of them were stuck in staging status,
never reached running state. Also, one or two slaves were tended to disconnect
from the master and froze in the first minutes of this scenario. The recorded and
aggregated results were used, when Mesos did not lose a task.

The following table shows a summary of the results experienced from scenario 1.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 90 –

Table 2

Summary of runtimes and average utilization experienced in scenario 1

Case Runtime Average
utilization

(CPU)

Average
utilization
(memory)

YARN, fair scheduler, unlimited infinite 100% 100%

YARN, capacity scheduler, 4 2168 s 82.35% 89.87%

YARN, FIFO scheduler, unlimited 2153 s 83.27% 92.71%

YARN, fair scheduler, 10 2132 s 86.27% 92.90%

Mesos fine, fair scheduler, unlimited 3604 s 83.96% 78.46%

Mesos coarse, fair scheduler,
unlimited

2256 s 90.81% 89.25%

The Spark implementation in fine-grained mode using Mesos spanned close to
20000 tasks in this scenario, it has put a strain worth mentioning on the master to
schedule resources. While YARN performed about 1.7 times better than Mesos
(with fine setup) with a relaxed (unlimited applications or tasks) DRF setting, due
to the lightweight nature of Mesos it handled fine-grained tasks better as a first
level scheduler. It has become clear that Mesos is more reliable and more suited
for running large amounts of frameworks and tasks-per-framework with very fine-
grained tasks.

4.3 Micro-Job Performance (Scenario 2)

In scenario 2, we’ve prepared a script, which submitted 4 micro-applications or
jobs if you will, 2 map-reduce and 2 Spark job in each 10th second for 30 times. A
total of 120 jobs reached the cluster. Our goal were to evaluate how fast short jobs
can enter and leave the cluster on both systems and to see if there’s any chance of
overwhelming the slaves by increasing parallelism overhead to an undesirable
level.

It has been shown in the demonstration of Mesos running a long batch job,
TaskTrackers have a high startup overhead so our expectations were met
about the difficulties these cases would produce. A standby TaskTracker might
provide significant benefit regarding task start-ups, but it would also introduce
data-locality problems, since a data might not be available where our TaskTracker
has been deployed. Designing heuristics to keep TaskTrackers wisely on certain
nodes, suggested by workload statistics, would not solve all of our problems on a
long term. As seen on Figure 9 YARN performed very well, by not letting
pending tasks to reach 3 as applications were able to finish in a fast rate and were
not interrupted by and overcrowded cluster. Applications were completed linearly
with time and on average roughly 10 were running concurrently. In case of Mesos,
as seen on the curve of staging tasks, in the first 60 seconds every Spark job
entered the system were able to run and complete without unnecessary staging.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 91 –

In the first 100 seconds only TaskTrackers were staging for a longer period of
time, which meant that because of their startup time, those rapid map-reduce jobs
arriving in every 10 seconds were not reached running status fast enough. Due to
the fact that map-reduce programs were spawning on TaskTrackers,
unnecessary parallelism appeared on slaves and about 20 map-reduce jobs were
running concurrently along with the Spark jobs on the cluster.

Figure 9

Evaluation of scenario 2 on Mesos (unlimited tasks) and YARN (maximum 12 applications) using fair

scheduler in terms of number of tasks and application

On the memory footprint produced by tasks running on Mesos as shown in Figure
10, the TaskTrackers crowding the cluster are visible on the 30th to 110th
second interval. After that point a few of them were broken down to be able to
offer resources to Spark programs. YARN, in contrast, kept resource consumption
constant as applications were not able to encumber the cluster.

The container reservations used by YARN’s fair scheduler helps applications to
receive and utilize containers faster than the resource offer approach introduced by
Mesos. Mesos completed this scenario in 328 seconds, while YARN in 297
seconds. Again, issues were found, but this time with the JobTracker (Hadoop
v1): in some cases map-reduce jobs were stuck and never reached running state on
TaskTrackers.

Figure 10

Evaluation of scenario 2 on Mesos (unlimited tasks) and YARN (maximum 12 applications) using fair

scheduler in terms of memory consumption

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 92 –

4.4 Micro-Job Interruptions (Scenario 3)

To evaluate the problems related to granting fairness and job interruptions, we’ve
prepared a scenario, where micro Spark programs were submitted on a long
running map-reduce batch job. After the submission of the same long job, that was
previously evaluated, for every 100 seconds a Spark CPU-heavy program was
submitted, nine times longer overall.

Interrupting the map-reduce job’s execution with micro Spark jobs on Mesos
added, on average 9 seconds to the overall completion time, which became 1138
seconds. Recall the results of the same long job performance of YARN and Mesos
from Figure 1 and Figure 2. On YARN, the same scenario stretched the
completion time of the map-reduce batch job, from 1061 to 1092 seconds.

On Mesos, 1 CPU was available with 1 GB RAM and the Spark client was able to
initiate a start on a free container, where it completed in 48 seconds on average.
Since YARN were utilizing all cluster resources during the execution of the map-
reduce job most of the time, the Spark programs needed to wait on average 13.3
seconds to be able to progress to running state from pending state. Theoretically,
every 2.6 seconds, a mapper finish (from the length map phase and number of
maps) and its resources <1 CPU, 1 GB> frees up. On average, 3 containers were
reserved by the MRAppMaster and the Spark job needs 2 containers (including
the application master) to be able to run. When the Spark job reached the pending
state, on average, 5 containers needed to free up, to be able to reach running state,
which is roughly 13 seconds.

Figure 11

Evaluation of scenario 3 on Mesos (unlimited tasks) and YARN (unlimited applications) using fair
scheduler in terms of number of tasks, application and memory usage

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 93 –

As seen in Figure 11, the same Spark job on YARN needed more time to start,
mainly because the application master is necessary to be placed on a free
container, which set back and slowed subsequent pending mappers. Utilization of
YARN still proved to be better than in the case of Mesos.

Conclusions

Cluster management systems are the backbone of any Big Data analytical toolsets
that are used by an Enterprise, their performance is determined significantly, by
their design and greatly affects energy consumption for a data center. Evolution of
Hadoop had the greatest impact in the motivation, concept and birth of these
systems. We focused on the main two-level, open-source schedulers available,
YARN and Mesos.

YARN is perfect for ad-hoc application deployment, as it ships the application to
the requested node by carefully setting up the process in all cases. YARN has been
made for an environment with higher security demands, as it protects the cluster
from malicious clients and code in many cases. The differences in resource
allocation methods showed that the push-method used by Mesos might hinder
utilization and locality preferences in some cases, but proved to be faster than
YARN’s, which provides agility by using late-binding in opposite fashion.
Applications running on YARN have the benefit of making better second-level
scheduling decisions, because they have a global view of the cluster, whereas a
framework have sight of only a subset of the cluster on Mesos. In a consequence
of the resource allocation method, YARN supports preemption to prevent
starvation. Restricted visibility of cluster resources might lead to losing work and
resource hoarding used by Mesos can lead to a deadlock within the system. Mesos
predicts outcomes to make quick scheduling decisions.

The functionality of YARN proved to be richer by providing convenient services
for applications, but also supports more scheduling methods and algorithms.
Capacity schedulers can work effectively when the workloads are well known.
Fair scheduler introduces several problems with head-of-line jobs, but Delay
scheduling addresses them and improves locality. HaSTE is a good alternative on
YARN, when the goal is to minimize makespan in the cluster.

Regarding system parameters, the API provided by Mesos is more detailed and
precise, but YARN gives a finer grained snapshot as each job runs as a separate
application. Mesos does not know the job granularity of a connected framework,
which can cause several problems. Deployment of YARN is usually more
convenient, due to the higher level and more comprehensive interfaces available.
It works more like an out-of-box product. During the evaluations, several issues
were found with Mesos regarding permissions and node failures.

YARN has a wider and more diverse analytical toolset (frameworks) available
than Mesos, but a practical decision between these platforms might include special
requirements. The mainstream frameworks are mostly available on both systems.

G. Gombos et al. Performance Analysis of Cluster Management System with Stress Cases

 – 94 –

As single job performance evaluations show, executors are difficult to set up the
first time and can mean a slow response from frameworks like Hadoop
MapReduce. YARN deploys mappers and reducers, much faster on the designated
nodes and can provide better locality, also, this task-granularity provides better
elasticity along with a faster execution. As TaskTrackers are expensive to deploy
and they are long running, killing them to provide fairness is usually a significant
drawback. Cached or standby TaskTrackers might provide significant
improvements in task start-ups, but it would introduce other problems, for
instance, a hindered data locality. Single job benchmarks also showed, that map-
reduce jobs on Mesos run longer and consume more resources, which directly
affects money spent in a cloud environment. YARN is 1.06 (in case of short map-
reduce) and 1.33 (in case of long map-reduce) times faster than Mesos, but Mesos
runs a micro-Spark job 1.28 times faster than YARN. It must be taken to account
that YARN has to deploy the submitted application each time, while the
framework’s master runs separately on Mesos.

Multiple scenarios showed that the “concurrent application limit” is crucial for
performance after a certain threshold on YARN. Using preemption, YARN
performed about 1.7 times better than Mesos with the fine-grained setup, but
Mesos handles large amounts of tasks better as a first level scheduler. Mesos is
more reliable and more suited for running large amounts of fine-grained tasks.
With the same setup, YARN provides a 1.05 times faster execution and 4.54%
less CPU consumption. It is evident that the container reservations, used by
YARN’s fair scheduler, can utilize and provide containers to applications faster
than the resource offer approach introduced by Mesos. Other scenarios showed
that overall utilization on a YARN cluster is better, along with a 1.10 times faster
execution.

References

[1] WHITE, Tom. Hadoop: The definitive guide. O'Reilly Media, Inc., 2012

[2] DEAN, Jeffrey; GHEMAWAT, Sanjay. MapReduce: simplified data
processing on large clusters. Communications of the ACM, 2008, 51.1:
107-113

[3] LIANG, Fan, et al. Performance benefits of DataMPI: a case study with
BigDataBench. In: Big Data Benchmarks, Performance Optimization, and
Emerging Hardware. Springer International Publishing, 2014, pp. 111-123

[4] JIA, Zhen, et al. Characterizing and subsetting big data workloads. arXiv
preprint arXiv:1409.0792, 2014

[5] TAN, Jian; MENG, Xiaoqiao; ZHANG, Li. Performance analysis of
coupling scheduler for mapreduce/hadoop. In: INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 2586-2590

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 95 –

[6] CHEN, Yanpei, et al. Energy efficiency for large-scale mapreduce
workloads with significant interactive analysis. In: Proceedings of the 7th
ACM european conference on Computer Systems. ACM, 2012, pp. 43-56

[7] KUMAR, K. Ashwin; DESHPANDE, Amol; KHULLER, Samir. Data
placement and replica selection for improving co-location in distributed
environments. arXiv preprint arXiv:1302.4168, 2013

[8] HUNT, Patrick, et al. ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In: USENIX Annual Technical Conference. 2010, p. 9

[9] "Corona" 2013 [Online] Available: https://github.com/facebookarchive
/hadoop-20/tree/master/src/contrib/corona

[10] ZAHARIA, Matei, et al. Spark: cluster computing with working sets. In:
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. 2010, p. 10-10

[11] SCHWARZKOPF, Malte, et al. Omega: flexible, scalable schedulers for
large compute clusters. In: Proceedings of the 8th ACM European
Conference on Computer Systems. ACM, 2013, pp. 351-364

[12] "Apache Hadoop 2.5.2," 2014 [Online] Available:
http://hadoop.apache.org/docs/r2.5.2/

[13] "Apache Mesos" 2014 [Online] Available: https://github.com/apache/mesos

[14] "Hadoop on Mesos" 2014 [Online] Available:
https://github.com/mesos/hadoop

[15] "Spark" 2014 [Online] Available: https://github.com/apache/spark

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 97 –

Incremental Ensemble Learning for Electricity

Load Forecasting

Gabriela Grmanová, Peter Laurinec, Viera Rozinajová, Anna
Bou Ezzeddine, Mária Lucká, Peter Lacko, Petra Vrablecová,
Pavol Návrat
Faculty of Informatics and Information Technologies, Slovak University of
Technology in Bratislava, Ilkovičova 2, 842 16 Bratislava, Slovak Republic
{gabriela.grmanova, peter.laurinec, viera.rozinajova, anna.bou.ezzeddine,
maria.lucka, peter.lacko, petra.vrablecova, pavol.navrat}@stuba.sk

Abstract: The efforts of the European Union (EU) in the energy supply domain aim to
introduce intelligent grid management across the whole of the EU. The target intelligent
grid is planned to contain 80% of all meters to be smart meters generating data every 15
minutes. Thus, the energy data of EU will grow rapidly in the very near future. Smart
meters are successively installed in a phased roll-out, and the first smart meter data
samples are ready for different types of analysis in order to understand the data, to make
precise predictions and to support intelligent grid control. In this paper, we propose an
incremental heterogeneous ensemble model for time series prediction. The model was
designed to make predictions for electricity load time series taking into account their
inherent characteristics, such as seasonal dependency and concept drift. The proposed
ensemble model characteristics – robustness, natural ability to parallelize and the ability to
incrementally train the model – make the presented ensemble suitable for processing
streams of data in a “big data” environment.

Keywords: big data; time series prediction; incremental learning; ensemble learning

1 Introduction

Generating large amounts of data has become part of our everyday life. In reality,
human activities produce data that in recent years have rapidly increased, e.g. as
measured through various sensors, regulation systems and due to the rapid
development of information technologies [3]. “Big data” significantly changes the
nature of data management as it introduces a new model describing the most
significant properties of the data -volume, velocity and variety. Volume refers to
the vast amounts of data requiring management, and it may not stem from the
number of different objects, but from the accumulation of observations about these
objects in time or in space. Velocity can be determined by the rate of acquisition

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 98 –

of streams of new data, but also by application requirements, where it is necessary
to make a very fast prediction, as the result of a particular user's request. This will
comprise research of methods and models for big data analysis, whether with low
latency, or even in real time.

In our work, we focus on stream data coming from smart metering. The smart
meters are able to send measurements of power consumption every 15 minutes
thus, providing new possibilities for its modelling and prediction. The most useful
aspect of having this vast amount of data is the ability to forecast the power
demand more precisely. This is particularly important when viewed with regard to
the fact that the possibility to store electricity is very limited. With accurate
predictions, the distributor can reliably deliver electricity and fulfil the power
authorities’ regulations, which protect the distribution network from being at too
high or too low a voltage. It also helps to flexibly react to different unexpected
situations like large-scale blackouts.

The number of smart meters increases rapidly every day which results in
production of large amount of data. Classical methods can fail to process such
amount of data in reasonable amount of time; therefore it is necessary to focus on
parallel and distributed architectures and design methods and applications that are
able to automatically scale up depending on the growing volume of data.

The classical prediction methods of electricity consumption are: regression
analysis and time series analysis models. These approaches will not be sufficient
in the near future, as the European Union's efforts are aimed at introducing an
intelligent network across the whole of the European Union. This fact raises new
perspectives in modelling and predicting power demand.

A significant feature of many real-world data streams is concept drift, which can
be characterized as the arbitrary changes of data characteristics. The occurrence of
concept drift in a data stream can make classical predictive techniques less
appropriate therefore, new methods must be developed. The typical example of
concept drift is a change of workload profile in a system for controlling the load
redistribution in computer clusters [48] or a change of user’s interests in
information filtering and recommendation modelling [14], [26]. In power
engineering are concept drifts caused by change of consumers’ behaviour during
holidays, social events, different weather conditions, or summer leaves in big
enterprises – the biggest electricity consumers.

This paper introduces a new approach to electrical load forecasting. It takes into
consideration the aspect of concept drift, and is based on the principle of ensemble
learning. It is organized as follows: the second chapter is devoted to the
characteristics of the problem and the third contains the summary of the related
work. In the next chapter we describe our proposed approach (the incremental
heterogeneous ensemble model for time series prediction). The experimental
evaluation is presented in Chapter 5 and the overall evaluation and discussion is
given in Chapter 6.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 99 –

2 Characteristics of the Problem

As mentioned earlier, after the widespread introduction of smart meters, the data
provided will satisfy the first characteristic of Big Data based on volume. To
analyse these data, it is appropriate to propose parallel methods that can be solved
in distributed environments. Because electricity loads can be seen as a stream of
incoming data, it is necessary to focus on adaptive methods that are able to learn
incrementally.

There are also additional important characteristics that must be taken into account
– the presence of concept drifts and strong seasonal dependence. The values of
any variable evolving in time, such as the electricity load, often change their
behaviour over time. These changes may be sudden or gradual. In the literature,
both types of changes are termed concept drift. Narasimhamurthy and Kuncheva
[35] define the term concept as the whole distribution of the problem and
represent it by joined distribution of data and model parameters. Then, concept
drift may be represented by the change of this distribution [15]. Besides cases of
concept drift when the change is permanent, one can often observe changes that
are temporary. They are caused by the change of some conditions and after some
time, these conditions can again change back. Moreover, seasonal changes may be
considered to be concept drift, too.

In electricity load measurement, two types of concept drift can appear. The first
one is permanent or temporary change that may be caused by the change of
economical or environmental factors. The second type of concept drift is seasonal,
caused by seasonal changes of weather and the amount of daylight. Seasonal
dependency can be observed as daily, weekly and yearly levels. That is why it is
necessary to consider these two possible sources of concept drift in any model
proposal.

3 Literature Review

In this section we present methods used to compute time series predictions –
classical, incremental and ensemble approaches.

3.1 Classical Approaches

Classical approaches to time series prediction are represented mainly by
regression and time series analysis. Regression approaches model the
dependencies of target variables on independent variables. For electricity load
prediction, the independent variables can be the day of the week, the hour of the
day, the temperature, etc. Plenty of different regression models were presented in
the literature, such as a step-wise regression model, a neural network and a
decision tree [45].

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 100 –

Because of strong seasonal periodicities in electricity load data, time series models
are often used to make predictions. Mainly, Box-Jenkins methodology [5] with
AR, MA, ARMA, ARIMA and derived models are applied.

However, the classical approaches are not able to adapt to incoming streams of
data and thus, are not suitable for electricity load demand forecasting.

3.2 Incremental Learning

Incremental learning algorithms are able to adapt to new emerging data. They
process new data in chunks of appropriate size. They can possibly process the data
chunks by off-line algorithms.

Polikar et al. [39] defined the four desired properties of an incremental learning
algorithm – the ability to learn new information from arriving data, the capability
of working independently on historical data, the storage of previously learned
knowledge, and the accommodation of new classes of data on their arrival. Minku
[32] extends this definition and emphasizes that, in changing environments, where
the target variable might change over time, only the useful knowledge will be
stored.

Most of the incremental learning algorithms we encountered in the literature are
based on machine learning, e.g. incremental support vector machines [51] and
extreme learning machines [17]. Recently, the incremental ARIMA algorithm was
proposed for time series prediction [34].

Usually, the incremental learning algorithms alone cannot sufficiently treat
changes in the target variable. In order to cope with a changing environment,
groups of predictors, i.e. ensemble models, are used to achieve better predictions.

3.3 Ensemble Learning

Ensemble learning is an approach that uses a set of base models, where each
model provides an estimate of a target variable – a real number for a regression
task. The estimates are then combined to make a single ensemble estimate. The
combination of base estimates is usually made by taking a weighted sum of base
estimates. The idea behind it is that the combination of several models has the
potential to provide much more accurate estimates than single models. In addition,
they have several more advantages over single models, namely the scalability, the
natural ability to parallelize and the ability to quickly adapt to concept drift [52].
A great introduction to ensemble learning can be found in [32].

Several empirical studies showed that the accuracy of the ensemble depends on
the accuracy of base models and on the diversity among them [11], [12], [28]. The
diversity of base models may be accomplished by two different approaches –
homogeneous and heterogeneous ensemble learning [52]. In homogeneous

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 101 –

learning, the ensemble is formed by models of the same type that are learned on
different subsets of available data. The heterogeneous learning process applies
different types of models. The combination of homogeneous and heterogeneous
approaches was also presented in the literature.

The best known methods for homogeneous ensemble learning are bagging [6] and
boosting [13]. These approaches have been shown to be very effective in
improving the accuracy of base models. To accomplish adaptive ensemble
learning for online stream environments, two approaches are known from the
literature. The first one – incremental ensemble learning – learns the base methods
from different chunks of data. The second one – the ensemble of
online/incremental methods – uses adaptive base methods, that are updated in an
online (after each example) or incremental (after a chunk of data is available)
manner. Incremental ensemble learning employs non-incremental algorithms to
provide incremental learning. Wang et al. [46] proposed a general framework for
mining data streams using weighted ensemble classifiers. The proposed algorithm
adapts to changes in data by assigning weights to classifiers proportional to their
accuracy over the most recent data chunk. Another approach was published by
Kolter and Maloof [27]. They developed a dynamic weighted majority algorithm,
which creates and removes weighted base models dynamically based on changes
in performance.

Ensemble of online/incremental methods employ online/incremental base models.
These approaches include online versions of well-established approaches such as
online bagging and online boosting incorporating online base models [37], [38].
Another approach proposed by Ikonomovska et al. [24] introduces an ensemble of
online regression and option trees.

Heterogeneous ensemble learning represents a different way of introducing the
diversity of base models into ensemble, with the aim of combining the advantages
of base algorithms and to solve problems of concept drift [16], [54], [40].
Different models are trained on the same training dataset; in the case of stream
data on the up-to-date data chunk.

From the literature several combinations are also known of heterogeneous and
homogeneous learning. Zhang et al. [55] present aggregate ensemble learning,
where different types of classifiers are learned from different chunks of data.

The essential part of the ensemble learning approach is the method that is used to
combine estimates of base models. For regression problems, this is done by a
linear combination of the predictions. The sum of the weights which are used in
the combination is 1. The weights are computed by different methods, such as
basic or general ensemble methods, linear regression models, gradient descent or
by evolutionary or biologically inspired algorithms, e.g. particle swarm
optimization or “cuckoo search” [31], [30], [50].

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 102 –

Ensemble learning was also used to predict values of time series. Shen et al. [42]
apply an ensemble of clustering methods to cluster 24-hour segments. Based on
cluster labels, the segments are converted to sequences. Each testing sequence is
matched to the training subsequences, and matching subsequences are averaged to
make the prediction for a subsequent segment of the testing sequence. The
predictions based on 5 different clustering methods are combined in the ensemble,
where the weights are iteratively updated. Chitra and Uma [7] present an ensemble
of RBF-network, k-nearest neighbour and self-organizing maps for a time series
prediction. Wichard and Ogorzałek [47] describe the use of an ensemble method
for their time series prediction. They use an ensemble of linear and polynomial
models, k-nearest neighbour, nearest trajectory models and neural networks, with
an RBF-network for “one-step- ahead” prediction.

All of these approaches use ensembles of regression models for generating time
series predictions. They do not take explicitly any seasonal dependence into
account and do not use time series analysis methods to make predictions.

4 The Incremental Heterogeneous Ensemble Model

for Time Series Prediction

In this section we propose the incremental heterogeneous ensemble model for time
series prediction. The ensemble approach was chosen for its ability to adapt
quickly to changes in the distribution of a target variable and its potential to be
more accurate than a single method. Since we focus on time series with strong
seasonal dependence, in ensemble models we take into account different types of
seasonal dependencies. Models for yearly seasonal dependence need to be
computed based on one year of data. These models can be recomputed once a
year. The models coping with daily seasonal dependence need only data from one
to several days and can be computed in an incremental manner. The potential of
the proposed ensemble is its ability to deal with the scalability problems of big
data. Predictions of base models can be computed in parallel or in distributed
environment in order to reduce computation time and to scale up to incoming
amount of data which makes the proposed ensemble suitable for big streams of
data.

The base models used in the ensemble are of two types – regression models and
models for time series analysis. Regression models can potentially incorporate
additional dependencies, such as temperature. Time series analysis models are
suitable to capture seasonal effects.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 103 –

4.1 Incorporating Different Types of Models

The proposed ensemble model incorporates several types of models for capturing
different seasonal dependencies. The models differ in algorithm, size of data
chunk and training period (see Figure 1). Different algorithms are assumed in
order to increase the diversity of the models. The size of each data chunk is chosen
in order to capture particular seasonal variation, e.g. data from the last 4 days for
daily seasonal dependence. However, the model that is trained on a data chunk of
4 days’ data, can be trained again as soon as the data from the next day (using a 1-
day training period) are available. The new data chunk overlaps with the previous
one in 3 days.

Figure 1

Schematic of ensemble learning

The ensemble model is used to make one-day predictions. Let h be the number of
observations that are daily available. At day t, the ensemble makes h predictions
by the weighted average of predictions made by m base models. After the
observations for the current day are available, the prediction errors are computed.
Based on computed errors, the weights are updated and each base model i=1, ...,
m, for which t fits its training period pi, is retrained on a data chunk of size si.

Let 𝑌𝑡be the matrix of predictions of m base methods for the next h observations
at day t:

𝑌𝑡 = (𝑦11𝑡 ⋯ 𝑦1𝑚𝑡⋮ ⋱ ⋮𝑦ℎ1𝑡 ⋯ 𝑦hm𝑡) = (𝑦1𝑡 … 𝑦𝑚𝑡)

and 𝑤𝑡 = (𝑤1𝑡 … 𝑤𝑚𝑡)𝑇 is a vector of weights for m base methods at day t
before observations of day t are available. Weights 𝑤𝑗𝑡 are initially set to 1.

Weights and particular predictions are combined to make an ensemble prediction 𝑦𝑡 = (𝑦1𝑡 … 𝑦𝑚𝑡)𝑇. The ensemble prediction for k-th (k = 1, …, h) observation
is calculated by: 𝑦𝑘𝑡 = ∑ 𝑦kj𝑡 𝑤̄𝑗𝑡𝑚𝑗=1∑ 𝑤̄𝑗𝑡𝑚𝑗=1

where 𝑤̄𝑡is a vector consisting of weights rescaled to interval ⟨1, 10⟩.

alg m

.

.

.

alg 2

alg 1
1

ˆ
hy

2
ˆ

hy

hmŷ

integration

data 1

data 2
period 2

period 1

data m
period m

ŷ

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 104 –

After observations of day t are available, the weights vector can be recomputed.
From the prediction matrix 𝑌𝑡 and the vector of h current observations 𝑦𝑡 =(𝑦1𝑡 … 𝑦ℎ𝑡)𝑇 , the vector 𝑒𝑡 = (𝑒1𝑡 … 𝑒ℎ𝑡)𝑇 of errors for m methods is

computed. The error of each method is given by 𝑒𝑗𝑡 = median(|𝑦𝑗𝑡 − 𝑦𝑡|). A

vector of errors 𝑒𝑡 is used to update the weights vector of base models in the
ensemble. The weight for j-th method is calculated by: 𝑤𝑗𝑡+1 = 𝑤𝑗𝑡 median(𝑒𝑡)𝑒𝑗𝑡 The advantages of the presented type of weighting is its

robustness and the ability to recover the impact of base methods. The weighting
and integration method is robust since it uses the median absolute error and the
median of errors. In contrast to the average, the median is not sensitive to large
fluctuations and abnormal prediction errors. A rescaling method, one that does not
let the particular weights drop to zero, enables the ensemble to recover the impact
of particular base methods in the presence of concept drift.

4.2 Base Models

In heterogeneous ensemble models, it is important to integrate the results of
diverse base methods. We used 11 different algorithms. The methods are of
different complexity, from very simple, e.g. a naïve average long-term model, to
complex, such as support vector regression. They assume different seasonal
dependencies, from daily to yearly. The presented base methods can be divided
into the set of methods based on regression analysis and those based on time series
analysis.

4.2.1 Regression Algorithms

Multiple linear regression (MLR) attempts to model the relationship between two
or more explanatory variables and a response variable by fitting a linear equation
to observed data. Rather than modelling the mean response as a straight line, as it
is in simple regression, the model is expressed as a function of several explanatory
variables.

Support Vector Machines are an excellent tool for classification, novelty
detection, and regression (SVR). It is one of the most often used models for
electricity load forecasting. SVM is a powerful technique used in solving the main
learning problems. We have used the method based on epsilon-regression based
on the radial basis Gaussian kernel, and also tested it in combination with the
wavelet transform (𝜀 = 0.08 for deterministic part and 0.05 for fluctuation part)
[53].

4.2.2 Time Series Algorithms

The autoregressive model (AR) expresses the current value of electricity load as a
linear combination of previous electricity load values and a random white noise

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 105 –

[33]. The current value of the modelled function is expressed as a function of its
previous n values on which it is regressed.

Feed-forward neural networks (NNE) are biologically inspired universal
approximation routines [22]. They were successfully used for solving prediction
problems [43]. R package forecast [23] contains the nnetar method, which is a
feed-forward neural network with a single hidden layer and lagged inputs, for
forecasting univariate time series. It provides the capability to train a set of neural
networks on lagged values for one-step forecasting. The prediction is an average
of those neural networks predictions. Number of neurons in hidden layer was
determined as a half of the number of input nodes plus one.

The Holt-Winters exponential smoothing (HW) [20], [49] is a prediction method
applied to a time series, whereby past observations are not weighted equally, as it
is in ARMA models, but the weights decrease exponentially with time. So the data
that are closer in time can influence the modelling more strongly. We have
considered seasonal changes with and without any trend in triple exponential
smoothing (we have chosen the smoothing parameters 𝛼 = 0.15, 𝛽 = 0, 𝛾 = 0.95),
and combined this model with the wavelet transform (shrinkage method was
chosen soft thresholding and threshold estimation was universal). The original
load data series were decomposed into two parts - deterministic and fluctuation
components, and then the regression of both parts was calculated separately. The
resulting series were obtained with suitable wavelet coefficient thresholds and the
application of the wavelet reconstruction method.

Seasonal decomposition of time series by loess (STL) is a method [8] that
decomposes a seasonal time series into three parts: trend, seasonal and remaining.
The seasonal component is found by loess (local regression) smoothing the
seasonal sub-series, whereby smoothing can be effectively replaced by taking the
mean. The seasonal values are removed, and the remainder is smoothed to find the
trend. The overall level is removed from the seasonal component and added to the
trend component. This process is iterated a few times. The remaining component
represents the residuals from the seasonal plus trend fit.

STL decomposition works similarly to wavelet transform. For the resulting three
time series (seasonal, trend and remainder) the result is used separately for
prediction with Holt-Winters exponential smoothing and ARIMA model.

The ARIMA model has been introduced by Box and Jenkins [5] and is one of the
most popular approaches in forecasting [21]. It is composed of three parts:
autoregressive (AR), moving average (MA), and the differencing processes. In
the case of non-stationary processes, it is important to transform the series into a
stationary one and that is usually done by differentiation of the original series.

Seasonal naïve method-Random walk (SNaive) is only appropriate for time series
data. All forecasts are simply set to be the value of the last observation. It means
that the forecasts of all future values are set to be equal to the last observed value.

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 106 –

A similar method is also useful for highly seasonal data, where each forecast value
is set to be equal to the last observed value from the same season of the year (e.g.,
the same month of the previous year).

Double seasonal exponential smoothing (TBATS) forecasting is based on a new
state space modelling framework [10], incorporating Box-Cox transformations,
Fourier series with time varying coefficients and ARMA error correction. It was
introduced for forecasting complex seasonal time series that cannot be handled
using existing forecasting models. These types of complex time series include
time series with multiple seasonal periods, high frequency seasonality, non-integer
seasonality and other effects. The modelling is an alternative to existing
exponential smoothing models, and has many advantages.

Naïve average long-term method is based on the assumption that non-seasonal
patterns [36] and trends can be extrapolated by means of a moving-average or
smoothing model. It is supposed, that the time series is locally stationary and has a
slowly varying mean. The moving (local) average is taken for the estimation of the
current value of the mean and used as the forecast for the near future. The simple
moving average model predicts the next value as a mean of several values. This is
a compromise between the mean model and the random-walk-without-drift-model.

Naïve In median long-term method is an alternative to the previous method. The
use of a moving average is not able to react in the case of rapid shocks or other
abnormalities. In such cases a better choice is to take a simple moving median
over the last n time series’ items. A moving average is statistically optimal for
recovering the underlying trend of the time series when the fluctuations about the
trend are normally distributed. It can be shown that if the fluctuations are Laplace
distributed, then the moving median is statistically optimal [2].

5 Experimental Evaluation

In this section we describe how data is used for the evaluation of the ensemble
method; we provide details of the experiments and then we present the results.

5.1 Data

An experimental sample of data comes from smart meters installed in Slovakia
that perform measurements every 15 minutes. Currently, the smart meters operate
in around 20,000 consumers’ premises. Based on legislation, this number will
soon be higher and the amount of incoming data will significantly increase. The
data has the potential to become “big” and “fast”, because of its incremental and
stream character. The consumers are small and medium enterprises. The data are
anonymized and only postal codes are available. We created 10 samples by
grouping customers according to regions. By doing this we simulate electricity

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 107 –

load values at secondary distribution substations. We summed the quarter-hourly
data to predict the load of the regions. Table 1 describes the data samples. The
studied data samples show collected values from July 1st, 2013 to February 15th,
2015 (596 days, see Figure 2). The sudden changes in load were observed during
holidays (e.g., summer leave, and Christmas).

Figure 2
Electricity consumption for Bratislava region over period of 596 days (in kW per 15 minutes)

Table 1
Description of ten data samples and their electricity loads (in kW per 15 minutes)

postal
code

region
no of delivery
points

average
average per

delivery point

04 Košice 722 35,501.854 49.172

05 Poprad 471 17,135.133 36.380

07 Trebišov 382 11,571.184 30.291

08 Prešov 580 18,671.795 32.193

8 Bratislava 1314 119,691.911 91.090

90 Záhorie 773 41,402.715 53.561

92 Piešťany 706 74,340.781 105.296

93 Dunajská Streda 594 28,196.959 47.470

95 Partizánske 584 34,298.912 58.731

99 Veľký Krtíš 114 2,124.887 18.639

Figure 3

Average weekly electricity load (without holidays)

60000

100000

140000

180000

2013-07-01 2013-10-09 2014-01-17 2014-04-27 2014-08-05 2014-11-13 2015-02-21

Monday Tuesday—Friday Saturday Sunday

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 108 –

The load during the typical week (see Figure 3) consists of the four segments –
Mon, Tue—Fri, Sat and Sun. To minimize the noise in the data and to improve our
predictors we considered only the Tue—Fri segment, i.e. the days with similar
behaviour.

5.2 Measures of Prediction Accuracy

To measure prediction accuracy we utilize three measures. Mean absolute error
(MAE) and root mean squared error (RMSE) are commonly used measures of
prediction error in time series analysis. The main difference between RMSE and
MAE is that RMSE amplifies large errors. Symmetric mean absolute percentage
error (sMAPE) is an accuracy measure based on relative (percentage) errors that
enables us to compare percentage errors for any time series with different absolute
values:

sMAPE = 1𝑛 ∑ |𝑦𝑡 − 𝑦𝑡|(𝑦𝑡 + 𝑦𝑡)𝑛
𝑡=1

5.3 Experiments

To design the experiments, the best data chunk sizes for particular models were
found experimentally. The most precise predictions for regression methods (MLR
and SVR) were for days. Time series analysis models (AR, HW, STL+EXP,
STL+ARIMA) coping with daily seasonality and NNE performed the best with
data chunk size equal to 10 days. Based on its nature, SNaive needed only a 1-day
long data chunk. Long-term double seasonal exponential smoothing (TBATS),
incorporating two seasonal dependencies with 1 and -day periods, used data
chunks the size of 41days – 1/3 of days of the test set. Naïve average and median
log-term models use 1-year data chunks. In fact, in our experiments we had only
116 days in the test set for which observations from the previous year were
available. Thus, 116-days long data chunk was used.

The training period for methods working with short-term seasonal dependency
was 1 day. Models coping with yearly seasonal dependency have a 1 year period
and since we had less than 2 years of data available, they were trained only once
and were not further retrained.

Since there were only available data for training (both previous 10 days and
previous 1 year observations) for the period July 1st, 2014 – February 15th, 2015,
these were used as a test set. Namely: only non-holiday Tue-Fri days were
assumed. The test set consisted of 116 days each having 96 observations. Initially,
models were trained on respective chunks from a training set with equal weights
in the ensemble. Then, the models were incrementally retrained according to their
periods, while subsequently adding new data from the test set and ignoring the old
ones.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 109 –

The experiments were provided in an R environment. We used methods from a
standard stats package and from forecast [23] (STL+EXP, STL+ARIMA, NNE,
SNaive and TBATS), wmtsa [9] (wavelets) and kernlab [25] (SVR) packages.

5.4 Results

Figures 4 and 5 illustrate the incremental training process for a single region. It
presents predicted and measured electricity loads (Figure 4), history of weights
(Figure 5 top) and errors (Figure 5 bottom). An interesting observation of concept
drift can be seen at t=10 and t=22, when errors sharply rise. In the history of
weights, sharp changes can be seen, too. The concept drift was caused by the
summer leave in bigger enterprises, which consume most of the electricity.

Figure 4

Results of prediction for Bratislava region. Concept drift at times t=10 and t=22 was caused by the

summer leave in bigger enterprises, which consume the most of the electricity.

Tables 3 and 4 contain average errors of predictions and their standard deviations
measured by sMAPE for every region and every base method plus the ensemble
method. Tables show that there is no superior base method, which gives
justification for the ensemble method, where errors are, in all tested cases, smaller.

We used the Wilcoxon rank sum test [19] to evaluate the incremental
heterogeneous ensemble model for time series prediction against the best base
method. The Wilcoxon rank sum test tests the statistical hypothesis whether errors
of the ensemble are significantly lower than errors of the best base method used in
the ensemble. The test used is a nonparametric alternative to the two-sample t-test.
We used this nonparametric test because errors of predictions are not normally
distributed (tested with Shapiro-Wilk test [41] and Q-Q plot). The Base method
with the highest weight value at the end of the testing process is considered to be
the best base method in the ensemble. A Statistical test on significance level 𝛼=
0.05 showed that in 9 out of 10 regions the ensemble method was significantly

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 110 –

better than the best base methods in that region (see Table 5). The p-value exceeds
the significance level for all but one region with errors measured by MAE, RMSE
and sMAPE. Only for the Trebišov region, evaluated by RMSE measure, was the
ensemble evaluated as smaller, but not significantly so.

Figure 5

History of ensemble weights and prediction errors for Bratislava region. The legend belongs to both

plots. The results of ensemble and following models are shown: seasonal naïve method-random walk

(SNaive), seasonal decomposition of time series by loess plus Holt-Winters exponential smoothing

(STL+EXP), seasonal decomposition of time series by loess plus ARIMA (STL+ARIMA), multiple

linear regression (MLR), support vector regression (SVR), feed-forward neural networks (NNE) and

naïve average long-term method (Long-term).

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 111 –

Table 3

Average and standard deviation sMAPE (%) of methods, part 1.

The best base method and the ensemble are highlighted.

Method Bratislava Záhorie Košice Piešťany
Dunajská
Streda

AR 2.328 ±
1.45

2.484 ±
1.75

2.195 ±
1.30

1.876 ±
1.67

2.485 ±
1.58

HW 1.901 ±
1.46

2.744 ±
2.35

2.145 ±
1.59

1.892 ±
2.06

2.342 ±
1.83

STL+EXP 1.663 ±
1.54

2.537 ±
2.71

1.905 ±
1.62

1.759 ±
2.09

2.159 ±
1.86

STL+ARIMA 1.653 ±
1.53

2.433 ±
2.66

1.833 ±
1.60

1.666 ±
2.17

2.111 ±
1.79

NNE 1.695 ±
1.36

2.136 ±
1.88

1.985 ±
1.24

1.582 ±
1.73

2.325 ±
1.58

SNaive 1.561 ±
1.36

2.090 ±
1.92

1.912 ±
1.27

1.554 ±
1.72

2.299 ±
1.59

MLR 1.652 ±
1.85

1.994 ±
1.79

1.845 ±
1.34

1.696 ±
1.72

2.166 ±
1.69

SVR 1.773 ±
1.92

1.948 ±
1.80

1.902 ±
1.37

1.656 ±
1.63

2.278 ±
1.76

TBATS 2.581 ±
2.43

2.724 ±
2.73

2.157 ±
1.56

2.791 ±
2.46

5.091 ±
4.84

Float mean 1.939 ±
1.30

1.789 ±
1.34

1.806 ±
1.17

1.730 ±
1.47

2.377 ±
1.56

Float med 2.627 ±
1.46

1.912 ±
1.42

1.907 ±
1.20

1.807 ±
1.52

2.441 ±
1.55

Ensemble 1.417 ±
1.26

1.796 ±
1.64

1.643 ±
1.30

1.446 ±
1.65

1.899 ±
1.50

Table 4

Average and standard deviation sMAPE (%) of methods, part 2.

The best base method and the ensemble are highlighted.

Method Partizánske Prešov Poprad Trebišov
Veľký
Krtíš

AR 2.351 ± 1.21 2.512 ±
0.74

3.005 ±
2.03

2.221 ±
1.07

5.453 ±
2.46

HW 2.837 ± 2.10 2.145 ±
1.21

2.927 ±
2.22

2.316 ±
1.56

6.983 ±
4.00

STL+EXP 2.584 ± 2.63 1.969 ±
1.28

2.729 ±
2.50

2.158 ±
1.63

5.962 ±
3.78

STL+ARI
MA

2.367 ± 2.40 1.853 ±
1.15

2.487 ±
2.31

2.054 ±
1.52

5.712 ±
3.49

NNE 2.004 ± 1.43 2.077 ±
0.91

2.402 ±
1.75

2.079 ±
1.20

6.709 ±
3.30

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 112 –

SNaive 1.941 ± 1.49 1.870 ±
0.95

2.076 ±
1.74

2.006 ±
1.23

6.781 ±
3.36

MLR 1.766 ± 1.33 1.568 ±
0.73

2.301 ±
2.53

1.745 ±
0.93

5.658 ±
2.47

SVR 1.806 ± 1.35 1.742 ±
0.75

2.408 ±
2.68

1.823 ±
0.92

5.523 ±
2.72

TBATS 5.017 ± 2.70 2.009 ±
0.90

3.544 ±
4.27

2.641 ±
1.86

5.621 ±
3.36

Float mean 1.723 ± 1.16 1.978 ±
0.75

2.565 ±
1.27

2.250 ±
1.82

6.769 ±
2.48

Float med 1.794 ± 1.18 2.060 ±
0.79

3.263 ±
1.73

2.296 ±
1.68

6.600 ±
3.17

Ensemble 1.704 ± 1.43 1.483 ±
0.73

1.973 ±
1.74

1.656 ±
1.05

5.224 ±
2.67

Table 5

P-values for each region. The best base method compared to the ensemble method is in parentheses

Region MAE sMAPE RMSE

Bratislava (SNaive) 1.4*10-6 1.5*10-6 1.3*10-7

Záhorie (SVR) 0.0284 0.0267 0.0021

Košice (STL+ARIMA) 2.8*10-7 8.0*10-7 3.8*10-8

Piešťany (SNaive) 1.6*10-4 1.0*10-4 1.6*10-6

Dunajská Streda (STL+ARIMA) 0.0001 0.0001 0.0001

Partizánske (SVR) 0.0205 0.0132 0.0015

Prešov (MLR) 0.0046 0.0018 0.0153

Poprad (SNaive) 2.2*10-4 2.0*10-4 2.7*10-6

Trebišov (MLR) 0.0416 0.0324 0.0565

Veľký Krtíš (STL+ARIMA) 0.0388 0.0411 0.0110

We have used sMAPE measure because we tested our methods for single delivery
point predictions, too. Single delivery points, in general, have day parts with zero
consumption where MAPE evaluation fails. Comparison with other works dealing
with power consumption prediction is difficult because in our work we were
strongly focused on predictions during concept drifts. This is why direct error
evaluation comparison is not possible. Despite it, we present some recent works of
load forecasting, and try to compare them to our method.

He et al. [18] used SARIMA models to forecast the electricity demand in China.
They forecasted hourly and quarter-hourly demand for next few days ahead. The
MAPE error of the models was about 1.5 %. Trained models were validated on
real data.

Xiao et al. [50] presented ensemble learning method for a day-ahead consumption
prediction. A cuckoo search algorithm was used to find the optimal weights for

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 113 –

combining four forecasting models. Models were based on different types of
neural networks (namely BPNN, GABPNN, GRNN and RBFNN). Half-hourly
load data of February 2006 – 2009 in New South Wales in Australia were used for
verification. The forecasts of the ensemble model were significantly better in
comparison with the results of the individual models. The average MAPE was
approximately 1.3%.

Taylor and McSharry [44] presented an empirical study of various short-term load
forecasting methods, i.e. ARIMA model; periodic AR model; an extension for
double seasonality of Holt-Winters exponential smoothing; an alternative
exponential smoothing formulation; and a method based on the principal
component analysis (PCA) of the daily demand profiles. Selected methods were
evaluated on half-hourly and hourly load data from 10 European countries. The
evaluation showed that the Holt-Winters smoothing provided the best average
daily MAPE (ca 1.5%).

Presented works reach MAPE around 1.5%, some of them are using forecasting
methods, which are used as base methods in our ensemble model. Forasmuch as
our ensemble model delivers better results than single base methods, we can
assume that it would deliver better results on presented works’ datasets.

Conclusion

In this paper, we propose the incremental heterogeneous ensemble model for time
series prediction. The model was designed to make predictions for time series
with specific properties (strong seasonal dependence and concept drift) in the
domain of energy consumption. Its characteristics – robustness, natural ability to
parallelize and the ability to incrementally train the model – make the presented
ensemble suitable for processing streams of data in a “big data” environment. The
achieved results lead us to assume that the presented approach could be a
prospective direction in the choice of prediction models for time series with
particular characteristics.

In future work, we plan to incorporate dependencies into the model with external
factors such as meteorological data and information about holidays in big
enterprises in the different regions. Another interesting idea is to investigate
possible correlations between different regions. These aspects should also improve
the predictions.

Acknowledgement

This work was partially supported by the Research and Development Operational
Programme as part of the project “International Centre of Excellence for Research
of Intelligent and Secure Information-Communication Technologies and
Systems”, ITMS 26240120039, co-funded by the ERDF and the Scientific Grant
Agency of The Slovak Republic, grant No. VG 1/0752/14.

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 114 –

References

[1] A. S. Alfuhaid and M. A. El-Sayed, “Cascaded Artificial Neural Network
for Short-Term Load Forecasting,” IEEE Trans. Power Syst., Vol. 12, No.
4, pp. 1524-1529, 1997

[2] G. R. Arce, Nonlinear Signal Processing: A Statistical Approach. New
Jersey, USA: Wiley, 2005

[3] A. Benczúr, “The Evolution of Human Communication and the Information
Revolution — A Mathematical Perspective,” Mathematical and Computer
Modelling, Vol. 38, No. 7-9, pp. 691-708, 2003

[4] G. E. P. Box and D. R. Cox, “An Analysis of Transformations,” J. Roy.
Statistical Soc. Series B, Vol. 26, No. 2, pp. 211-252, 1964

[5] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and
Control. San Francisco, CA: Holden-Day, 1970

[6] L. Breiman, “Bagging Predictors,” Mach. Learning, Vol. 24, No. 2, pp.
123-140, 1996

[7] A. Chitra and S. Uma, “An Ensemble Model of Multiple Classifiers for
Time Series Prediction,” Int. J. Comput. Theory and Eng., Vol. 2, No. 3,
pp. 454-458, 2010

[8] R. B. Cleveland et al.: “Seasonal-Trend Decomposition Procedure based on
LOESS,” J. Official Stat., Vol. 6, pp. 3-73, 1990

[9] W. Constantine and D. Percival. (2015, February 20). Package ‘wmtsa’
[Online]. Available: http://cran.r-project.org/web/packages/wmtsa/

[10] A. M. De Livera et al., “Forecasting Time Series with Complex Seasonal
Patterns Using Exponential Smoothing,” J. American Statistical Assoc.,
Vol. 106, No. 496, pp. 1513-1527, 2011

[11] T. G. Dietterich, “Machine Learning Research: Four Current Directions,”
Artificial Intell., Vol. 18, No. 4, pp. 97-136, 1997

[12] T. G. Dietterich, “An Experimental Comparison of Three Methods for
Constructing Ensembles of Decision Trees: Bagging, Boosting, and
Randomization,” Mach. Learning, Vol. 40, No. 2, pp. 139-157, 2000

[13] Y. Freund and R. Schapire, “A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting,” J. Comput. and System
Sciences, Vol. 55, No. 1, pp. 119-139, 1997

[14] J. Gama, I. et al., “A Survey on Concept Drift Adaptation,” ACM Comput.
Surv., Vol. 46, No. 4, pp. 1-37, Mar. 2014

[15] J. Gama et al., “Learning with Drift Detection,” in Advances in Artificial
Intelligence – SBIA 2004, LNCS 3171, Springer, pp. 286-295, 2004

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 115 –

[16] J. Gao et al., “On Appropriate Assumptions to Mine Data Streams:
Analysis and Practice,” in 7th IEEE Int. Conf. Data Mining, 2007, pp. 143-
152

[17] L. Guo et al., “An Incremental Extreme Learning Machine for Online
Sequential Learning Problems,” Neurocomputing, Vol. 128, pp. 50-58,
2014

[18] H. He, T. Liu, R. Chen, Y. Xiao, and J. Yang, “High Frequency Short-Term
Demand Forecasting Model for Distribution Power Grid based on
ARIMA,” in 2012 IEEE International Conference on Computer Science
and Automation Engineering (CSAE), 2012, Vol. 3, pp. 293-297

[19] M. Hollander et al., Nonparametric Statistical Methods. Hoboken, NJ: J.
Wiley & Sons, 2014

[20] C. C. Holt, “Forecasting Trends and Seasonals by Exponentially Weighted
Moving Averages,” Office of Naval Research Memorandum, Vol. 52, 1957

[21] W. C. Hong, Intelligent Energy Demand Forecasting. London: Springer-
Verlag, 2013

[22] K. Hornik et al., “Multilayer Feedforward Networks are Universal
Approximators,” Neural Networks, Vol. 2, No. 5, pp. 359-366, 1989

[23] R. J. Hyndman et al. (2015, February 26). Package ‘forecast’ [Online].
Available: http://cran.r-project.org/web/packages/forecast/forecast.pdf

[24] E. Ikonomovska et al., “Learning Model Trees from Evolving Data
Streams,” Data Mining and Knowledge Discovery, Vol. 23, No. 1, pp. 128-
168, 2011

[25] A. Karatzoglou et al., “kernlab - An S4 Package for Kernel Methods in R,”
J. Statistical Software, Vol. 11, No. 9, pp. 1-20, 2004

[26] R. Klinkenberg and T. Joachims, “Detecting Concept Drift with Support
Vector Machines,” pp. 487-494, Jun. 2000

[27] J. Z. Kolter and M. A. Maloof, “Dynamic Weighted Majority: An
Ensemble Method for Drifting Concepts,” J. Mach. Learning Research,
Vol. 8, pp. 2755-2790, 2007

[28] L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in Classifier
Ensembles and their Relationship with the Ensemble Accuracy,” Mach.
Learning, Vol. 51, No. 2, pp. 181-207, 2003

[29] N. Liu et al., “Short-Term Forecasting of Temperature driven Electricity
Load using Time Series and Neural Network Model,” J. Clean Energy
Technologies, Vol. 2, No. 4, pp. 327-331, 2014

[30] J. Mendes-Moreira et al., “Ensemble Approaches for Regression: A
Survey,” ACM Computing Surveys, Vol. 45, No. 1, Article 10, 2012

G. Kosková et al. Incremental Ensemble Learning for Electricity Load Forecasting

 – 116 –

[31] C. J. Merz, “Classification and Regression by Combining Models,” Ph.D.
dissertation, University of California, USA, 1998

[32] L. L. Minku, “Online Ensemble Learning in the Presence of Concept Drift,”
Ph.D. dissertation, University of Birmingham, UK, 2011

[33] I. Moghram and S. Rahman, “Analysis and Evaluation of Five Short-Term
Load Forecasting Techniques,” IEEE Trans. Power Syst., Vol. 4, No. 4,
pp. 1484-1491, 1989

[34] L. Moreira-Matias et al., “On Predicting the Taxi-Passenger Demand: A
Real-Time Approach,” in Progress in Artificial Intelligence, LNCS 8154,
Springer, pp. 54-65, 2013

[35] A. Narasimhamurthy and L. I. Kuncheva, “A Framework for Generating
Data to Simulate Changing Environments,” in 25th IASTED Int. Multi-Conf.
Artificial Intell. and Applicat., Innsbruck, Austria, 2007, pp. 384-389

[36] R. Nau (2015, February 28) Moving Average and Exponential Smoothing
Models [Online] Available: http://people.duke.edu/~rnau/411avg.htm

[37] N. C. Oza, and S. Russell, “Experimental Comparisons of Online and Batch
Versions of Bagging and Boosting,” in Proc. 7th ACM SIGKDD Int. Conf.
Knowl. Disc. and Data Mining, San Francisco, CA, USA, 2001, pp. 359-
364

[38] N. C. Oza and S. Russell, “Online Bagging and Boosting,” in IEEE Int.
Conf. Syst., Man and Cybern., New Jersey, USA, 2005, pp. 2340-2345

[39] R. Polikar et al., “Learn++: An Incremental Learning Algorithm for
Supervised Neural Networks,” IEEE Trans. Syst., Man, and Cybern. Part
C, Vol. 31, No. 4, pp. 497-508, 2001

[40] S. Reid, A Review of Heterogeneous Ensemble Methods. University of
Colorado at Boulder: Department of Computer Science, 2007

[41] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality
(complete samples),” Biometrika, Vol. 52, No. 3-4, pp. 591-611, 1965

[42] W. Shen et al., “Ensemble Model for Day-Ahead Electricity Demand Time
Series Forecasting,” in Proc. 4th Int. Conf. Future Energy Syst., Berkeley,
CA, USA, 2013, pp. 51-62

[43] Md. Shiblee et al., “Time Series Prediction with Multilayer Perceptron
(MLP): A New Generalized Error-based Approach,” Advances in Neuro-
Information Processing, LNCS 5507, Springer, pp. 37-44, 2009

[44] J. W. Taylor and P. E. McSharry, “Short-Term Load Forecasting Methods:
An Evaluation Based on European Data,” IEEE Trans. Power Syst., Vol.
22, No. 4, pp. 2213-2219, Nov. 2007

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 117 –

[45] G. K. F. Tso and K. K. W. Yau, “Predicting Electricity Energy
Consumption: A Comparison of Regression Analysis, Decision Tree and
Neural Networks,” Energy, Vol. 32, No. 9, pp. 1761-1768, 2007

[46] H. Wang et al., “Mining Concept-Drifting Data Streams using Ensemble
Classifiers,” in Proc. 9th ACM Int. Conf. Knowledge Discovery and Data
Mining (KDD’03), Washington, DC, USA, 2003, pp. 226-235

[47] J. Wichard and M. Ogorzałek, “Time Series Prediction with Ensemble
Models,” in Proc. Int. Joined Conf. Neural Networks, Budapest, Hungary,
2004, pp. 1625-1630

[48] G. Widmer and M. Kubat, “Learning in the Presence of Concept Drift and
Hidden Contexts,” Mach. Learn., Vol. 23, No. 1, pp. 69-101, Apr. 1996

[49] P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving
Averages,” Management Science, Vol. 6, No. 3, pp. 324-342, 1960

[50] L. Xiao et al., “A Combined Model based on Data Pre-Analysis and Weight
Coefficients Optimization for Electrical Load Forecasting,” Energy, Vol.
82, pp. 524-549, 2015

[51] W. Xie et al., “Incremental Learning with Support Vector Data
Description,” in 2014 22nd Int. Conf. Pattern Recognition (ICPR), 2014, pp.
3904-3909

[52] W. Zang et al., “Comparative Study between Incremental and Ensemble
Learning on Data Streams: Case Study,” J. Big Data, Vol. 1, No. 1, 2014

[53] F. Zhang et al., “Conjunction Method of Wavelet Transform-Particle
Swarm Optimization-Support Vector Machine for Streamflow
Forecasting,” J. Appl. Math., Vol. 2014, article ID 910196, 2014

[54] P. Zhang et al., “Categorizing and Mining Concept Drifting Data Streams,”
in Proc. 14th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, Las Vegas, NV, USA, 2008, pp. 820-821

[55] P. Zhang et al., “Robust Ensemble Learning for Mining Noisy Data
Streams,” Decision Support Syst., Vol. 50, No. 2, pp. 469-479, 2011

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 119 –

Adaptive Flow QoS Management Model for

Wireless Communication in Mobile

Environments

Taeyoung Kim
1
, Youngshin Han

2
, Jaekwon Kim

1
, Jongsik Lee

1*

1Department of Computer and Information Engineering, INHA University, Seoul
402-751, Inha-ro 100, Nam-gu, Incheon, Republic of Korea, e-mail:
taeyoung.kim@selab.inha.ac.kr, jaekwonkorea@selab.inha.ac.kr, jslee@inha.ac.kr

2Department of Computer Engineering, Sungkyul University, Seoul 430-742,
Syunkyuldaehak-ro 53, Manan-gu, Anyang, Kyungi-do, Republic of Korea,
e-mail: hanys@sungkyul.ac.kr

Abstract: Mobile environments are based on wireless communication, and wireless
networks that provide communication services via radio signals. Although both mobile and
wireless systems may be free from space constraints, they suffer from certain unstable
characteristics. These problems can be compensated by applying some countermeasures to
the communication environment. This paper presents an adaptive communication
management model based on fuzzy logic. The proposed model includes an estimation
module to control the flow throughput, and adopts a policy of providing greater benefits to
better links. In addition, the model includes tuned snooping and retransmission schemes to
ensure the quality-of-service of wireless communication. Simulation results verify the
efficiency of the proposed model.

Keywords: Adaptive Flow Management; Fuzzy Logic; Mobile Wireless Network

1 Introduction

Information technology has advanced rapidly over the past two decades, with the
most notable advances in the field of mobile and wireless technology [1]. In the
past, a handheld device was a simple tool that performed a specific function. In
contrast, current devices are equivalent to a small computer, and mobile users are
able to access a range of services at any time [2]. Furthermore, wireless
technology can maximize the functionality of mobile devices. A wireless network
uses radio signals for communication, and devices can access the network from

*
 Corresponding Author. E-mail: hanys@sungkyul.ac.kr, jslee@inha.ac.kr

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 120 –

anywhere provided they can receive a sufficient signal. Thus, mobile and wireless
technologies enable users to overcome the limitations of time and space [2, 3].
However, there are several problems that users cannot recognize. Most of these
problems are related to wireless communication. A wireless signal is a radio wave
transmitted from a source to the atmosphere. The quality of the received signal
varies with the distance from the source. Moreover, the signal quality is
significantly influenced by the surroundings. To address these problems, a
supplementary method is required.

Many studies have attempted to ensure quality-of-service (QoS) in wireless
networks. Most of these studies have focused on improving the communication
protocol because conventional protocols are designed for wired environments. For
example, the Transport Communication Protocol (TCP) has been used to ensure
QoS in communication networks. However, some TCP functions may cause
performance degradation in a wireless environment. This problem arises from the
differences between wired and wireless environments [4]. Thus, various studies
have attempted to improve the protocol from the viewpoint of wireless networks.
A number of researchers have focused on the protocol itself, whereas others have
attempted to develop a supplementary method [5-9]. Although existing methods
have attempted to resolve the QoS issue for wireless networks, further
investigation is required to improve wireless QoS.

In this paper, we propose an adaptive QoS management model for wireless
communication that is based on fuzzy logic [10] and packet snooping [8, 9]. The
snooping method includes packet storage and local retransmission schemes. Both
schemes supplement the communication protocol to ensure packet delivery in a
wireless network. However, the conventional method always applies the snooping
scheme under the same conditions. Such fairness leads to a waste of resources
while providing average performance. Therefore, we add a fuzzy-based scheme to
estimate the link state. The state estimation serves as the basis for determining
flow QoS management. When a link is in a good state, it consumes additional
resources in the process of applying the scheme. In other words, the proposed
model performs adaptive flow management according to the link state. This
adaptive scheme allows for more efficient resource utilization in the snooping
process.

The remainder of this paper is organized as follows. Section 2 briefly reviews
related studies, before Section 3 describes the key concept of our fuzzy-based
adaptive scheme. Section 4 discusses the simulation design and presents
experimental simulation results. Finally, Section 5 summarizes our findings and
concludes the paper.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 121 –

2 Related Work

Reliability and QoS are the biggest problems in wireless communication, and
many studies have proposed techniques and methods to overcome these issues.
The focus of most studies is to improve the communication scheme in the protocol
via protocol-based supplements or supporting methods. The former studies focus
on the problem of conventional TCP in wireless communication, whereas the
latter emphasize supplementary measures to control the wireless communication
or network. In this section, we survey existing studies on wireless TCP and fuzzy-
based QoS management.

2.1 TCP in Wireless Networks

TCP enables reliable communication over a wired network. However, the error
occurrence probability in a wireless environment is higher than that in a wired
environment. In a wireless environment, the TCP scheme degrades the
communication QoS, because it repeats the entire transmission flow to recover
from an error. Most communication lines are based on wired networks, whereas
wireless communication only occurs between a device and an access point in a
wired network. Therefore, most existing studies have focused on improving the
TCP scheme for wireless networks.

The simplest solution is to use the TCP control packet. A mobile device is
connected to a wired network via a base station. Thus, the base station can
recognize the communication state of the mobile device. Therefore, it is possible
to deliver a failure notification to the fixed host in the control scheme. This
approach is referred to as mobile TCP (M-TCP). M-TCP uses a control packet to
notify the network of a transmission failure. The use of control packets leads to
increased network traffic [4]. To overcome this problem, a method that divides the
flow control scheme has been proposed. In this approach, which is referred to as
an indirect TCP strategy, the base station separately communicates with a fixed
host and a mobile host. A failure in the wireless network can be resolved between
the base station and the mobile host. The fixed host is only involved in the
recovery process in the event of total transmission failure at the base station [6].
However, this indirect strategy may reduce efficiency at the base station because
the base station is responsible for controlling the flow toward mobile devices.
Therefore, an efficient control strategy should be established at the base station.

A snooping TCP mechanism is a control technique that can be adopted by indirect
strategies to monitor packets in the network. For this purpose, the snooping
module can capture and analyze packets to supplement wireless flow control. The
base station can determine a packet's destination using the snooping module.
Moreover, the snooping module creates the opportunity of saving the packet
through the capture function. Thus, the base station gains the ability to control the

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 122 –

packet flow. In the event of a transmission failure, the base station may locally
attempt to resend the stored packet. The base station may also adjust the
transmission rate of packets according to the communication state. Therefore, the
design of the snooping policy is the most important factor in improving the QoS
[8, 9].

Existing studies have focused on improving the snooping policy. The objective of
the present study is to establish an adaptive snooping policy based on fuzzy logic
in order to impart greater flexibility to the snooping technique. Consequently, we
can improve wireless QoS.

2.2 QoS Management with Fuzzy Logic

In engineering, classical logic uses values of 0 (false) or 1 (true). With fuzzy logic,
however, the truth is a multi-valued state ranging from 0 to 1 [11]. Parameters in
fuzzy logic are indicated as a degree by a linguistic expression. The fuzzy system
includes specific functions to manage these linguistic values, and also contains a
rule-based engine to estimate the output result. These features are useful in
determining the system control with complicated and uncertain conditions [10].
Thus, most researchers have applied fuzzy-based methods to QoS management in
wireless environments [11-15].

In wireless sensor networks (WSNs), QoS is influenced by various factors [11].
Thus, the QoS management system should identify essential factors and deal with
them. WSNs are distributed networks that consist of a number of battery-powered
sensors. Energy efficiency is the most essential issue in WSNs. Thus, QoS
management has focused on improving throughput and traffic control, and fuzzy
logic has been used for congestion estimation [12], output QoS determination [11],
and traffic estimation [13]. Each method handles QoS by regulating the packet
generation rate, node transmission power, and traffic congestion [11-13].

Mobile (or wireless) ad hoc networks (MANETs) must consider routing and
scheduling issues, because these are closely related to QoS requirements.
Alternative methods that control the packet rate and flow admission also exist.
Under fuzzy logic, rate control allows every node to regulate the traffic, which
may have a positive effect on QoS management. The role of fuzzy logic is to
determine the regulation rate based on measurements of traffic delay [14].

The consideration of QoS in wireless networks (WNs) is similar to that in both
MANETs and WSNs. However, the presence of access points (APs) makes QoS
management for WNs slightly different. In WNs, QoS is managed by whichever
approach is associated with the AP, because the AP supervises all communication
between the mobile and fixed nodes. Load balancing can help improve the QoS in
WNs. The fuzzy logic may be notified that the mobile node’s AP has changed
using measured factors such as signal quality or transmission failure [15].

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 123 –

As described above, fuzzy-based approaches are widely used to overcome QoS
management issues. Therefore, the present study adopts fuzzy logic to regulate the
snooping scheme.

3 Adaptive Flow QoS Management

In this paper, we propose an adaptive management system to ensure the flow QoS
in WNs. The proposed model is based on the snooping mechanism for TCP
communication, and adopts fuzzy logic to control the communication flow. Figure
1 shows a schematic design of the proposed model.

Figure 1

Schematic design of the proposed model

Packets from each host are collected by a flow monitor in the base station. The
flow monitor includes two schemes for adaptive control.

The first scheme estimates the link state using fuzzy logic. The flow monitor must
obtain input values for this scheme. This is relatively simple because all packets
are directed to their destination via the flow monitor. Thus, the flow monitor can
measure statistical information for all links in real time. However, fuzzy-based
estimation is performed at regular intervals, and real-time estimation can
adversely affect the overall efficiency. For instance, assume that the environment
of a link changes rapidly. Under real-time estimation, the link state will be
updated to reflect these changes. Both estimation and state management are
service features of a base station, and so frequent state updates will increase the
base station’s overhead. Thus, the state estimation should only identify trends in
the link state.

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 124 –

The second scheme adjusts the snooping and transmission cycles on the basis of
the estimated link state. The snooping TCP mechanism uses a buffer to store
intercepted packets. The snooping module sends the packet to the mobile host, and
stores it for local retransmission in the event of a communication failure. The
proposed model uses this behavior to handle the transmission cycle. Figure 2
illustrates the logic of the snooping module in the proposed model.

Figure 2

Process diagram of the snooping module in the proposed model

The key factor in this process is the presence of the free space in the buffer. Extra
buffer space can provide additional benefits to the snooping process because the
module can request packets to fill the buffer. Using this behavior, the proposed
model can adjust the transmission cycle. The main concept of the adjustment
method is to control the probability of free space existing in the allocated buffer.
This probability is directly proportional to both the degree of the link state and the
buffer size. The link state is related to the speed with which packets are discarded
from the buffer. Thus, links in a better state are likely to have more free space in
the allocated buffer. The buffer size is associated with the number of packets that
can be imported from the fixed host. If packets continue to be discarded from the
buffer, the increased capacity can provide more space to the link. Ideally, the link
state and the buffer size will be regulated at the same time. However, the link state
has variable characteristics that cannot be controlled directly by this module.
Therefore, the proposed model adjusts the buffer size according to the link state
(Figure 3).

The link state is estimated using fuzzy logic. An increase in the buffer size
indicates an improvement in the link state. Thus, the flow module may request
additional packets owing to the increased capacity. In contrast, a decrease in the
buffer size indicates some deterioration in the link state. In this case, the buffer

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 125 –

may overflow. In general, the buffer discards packets that overflow from the
memory. However, in our design, all packets are retained regardless of the
overflow condition of the buffer. In the proposed model, the buffer is an area for
storing packets that have been intercepted in the transmission flow. Packets in the
buffer may be discarded in accordance with the results of wireless communication.
Because of this design, the buffer size must be adjusted carefully.

Figure 3

Adaptive buffer management based on link state

Further details of both schemes are provided in the following subsections.

3.1 Estimation of Link State using Fuzzy Logic

Various components of a communication link can be measured. However, it is
very difficult to define the link state using the measured values. The link state can
be quantified by a performance evaluation. For instance, it is easy to understand
the link speed in terms of values such as 10 Mbps. However, whether this speed is
fast or slow depends on the evaluation criteria. The measured values provide
clarity in the form of crisp values, but the evaluation is subject to bias. Therefore,
the control module requires a proper method to estimate the link state. Fuzzy logic
has been widely used to overcome such uncertainty, as discussed in Section 2.2.

Figure 4 shows the design of our fuzzy module for estimating the link state. We
have a total of four input variables: distance and signal strength, which are
physical factors, and loss rate and timeout, which are logical factors. Physical
factors are significantly influenced by user behavior and user circumstances. In
contrast, the logical factors are influenced by the type and manner of
communication. Each input element is assumed to be measured by the base station.
The fuzzy module converts the received input parameters into fuzzy values, and

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 126 –

the inference engine then determines the output according to the rules on the basis
of the converted input. Finally, the output is converted into a crisp value via
defuzzification.

Figure 4

Fuzzy module for estimating link state

Table 1

Fuzzy input and output parameters

Parameter Name Fuzzy Set

Distance {Near, Middle, Far }

Loss Rate {Very Small, Small, Large, Very Large}

Signal Strength {Negative, Unstable, Normal, Stable}

Timeout {Very Short, Short, Long, Very Long}

Estimated State {Disappointing, Questionable, Acceptable, Excellent}

Table 1, summarizes the fuzzy input and output parameters. Each input parameter
is converted into terms defined in the corresponding fuzzy set by a membership
function. The inference engine deduces the output term using defined rules. The
fuzzy rule table contains combinations of all input and output terms. Therefore,
our inference logic is based on a total of 192 individual rules. Some characteristic
samples of these rules are listed in Table 2. The samples show the effect of each
input variable on the output. In the proposed design, the logical factors have a
greater effect on the output than the physical factors. This design is based on the
influence that each factor has on the communication QoS. Physical factors are
relatively easy to control, i.e., users can move closer to the base station if required,
and the signal strength can be adjusted (not recommended for power saving and
safety purposes). However, it is difficult to control the logical factors. The result
generated by the inference engine is converted into a crisp value by a membership
function. This output is the estimated link state. The membership functions used in
the above-mentioned processes are illustrated in Figure 5. There are various
methods for obtaining the inferred result and its crisp output. We apply the most
popular method used in fuzzy-based studies, i.e., the rule-based reasoning of
Mamdani’s min-max method. The defuzzification result is obtained using the
center of gravity [16].

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 127 –

Table 2

Samples of defined rules

Rule # uA uB uC uD uE

#5 Near Very Small Unstable Very Short Excellent

#21 Near Small Unstable Very Short Acceptable

#24 Near Large Unstable Long Questionable

#65 Middle Very Small Negative Very Short Acceptable

#69 Middle Very Small Unstable Very Short Excellent

#89 Middle Very Small Normal Very Short Acceptable

#120 Middle Very Large Unstable Very Long Questionable

#125 Middle Very Large Stable Very Short Acceptable

#184 Far Very Large Unstable Very Long Disappointing

#185 Far Very Large Normal Very Short Acceptable

Figure 5

Membership functions for input and output parameters

3.2 Adaptive Control of Snooping Buffer Size

As discussed in Section 2.1, TCP is the most widely used protocol in
communication environments. However, conventional TCP is optimized to

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 128 –

support communication over-wired networks. A number of researches have
suggested variants to extend its applicability, with snooping-based TCP suggested
for wireless networks. The key features of the snooping mechanism are the packet
capture and analysis functions. Thus, the buffer is the most important resource for
the snooping module. This study adopts an adaptive scaling policy for the size of
the snooping buffer of each flow. Figure 5 describes the process of buffer size
rescaling.

Figure 5

Process of adaptive buffer rescaling

The process between measuring the link state and obtaining the current state
corresponds to the fuzzy-based estimation described in Section 3.1. The rescaling
process starts by comparing the current state with the historical state. The
historical state is used to identify the trend in state changes. Thus, a range of
historical states can be included. In this study, the historical state indicates the
center of gravity of the previous three phases. The comparison result is converted
to the state score, and this is utilized in the rescaling policy. The policy works to
reduce the size of the allocated buffer when the condition continues to worsen,
and vice versa.

The snooping buffer is a finite resource with a limited capacity for storage. Thus,
the rescaling policy must consider the available capacity and utilization of the
snooping buffer. If the buffer utilization is low, the utilization must be increased
by allocating more space for flows that are improving. In contrast, additional
allocation should be avoided if the buffer has a high utilization rate. Figure 6
presents these rescaling rules in two tables. Each table illustrates the decision-
making process of the buffer rescaling for the given conditions.

In Figure 6, we do not specify the magnitude of the change in buffer size, as this
can be changed according to the features, circumstances, and conditions of the
network. In this study, we apply a small differential to increase or decrease the
size depending on the state score and buffer utilization. However, the difference is
only a few packets.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 129 –

Figure 6

Rules for adjusting buffer size

This rescaling policy increases the circulation speed of the buffer. Thus, this
scheme provides more space to links that can discard packets rapidly. It is difficult
to predict and formalize the change in the link state, so we assume that the pattern
of change is similar to a mathematical curve such as a sine or cosine wave. This
curve is assumed to reflect the changes in transmission rate. The fixed buffer size
can then be represented by the horizontal line. When the curve is located above
the buffer size, there has been a failure to take full advantage of the transmission
rate. The opposite situation indicates a transmission delay in the buffer, which is
referred to as a bottleneck. Delayed packets can be transferred from the buffer
when the transmission rate has been restored. This situation leads to an overall
delay in transmission. The proposed scheme regulates the buffer size in
accordance with this curve. Although these adjustments cannot exactly match the
curve, they assist in minimizing inefficient movements.

4 Simulation Design and Results

We conducted simulations to evaluate the effectiveness of the proposed model.
The operation of communication can be expressed as a discrete event, and each
operation and device has a specific state corresponding to that event. Therefore,
we adopted the DEVS methodology [17, 18] for our analysis.

4.1 Simulation Design

Figure 7, shows a schematic of our simulation model. The model was designed
according to the configuration shown in Figure 1. Most of the modules shown in
Figure 7 were used to simulate the physical device; only the wireless link module
was used to simulate the environment. In addition, there was no module for wired
links in the overall structure because our study is focused on problems in wireless
communication. Thus, we included a separate module to simulate errors occurring
in wireless links.

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 130 –

Figure 7

Schematic of wireless flow simulation

The fixed host transmits a packet when the mobile host requests data. In this
process, the base station controls the overall flow for packet transmission. The
flow monitor plays the most important role in the base station, i.e., managing the
packet flow for communication links. For this purpose, the flow monitor receives
incoming packets and analyzes the flow. This analysis is based on fuzzy logic, as
discussed in Section 3. The estimated state determines the snooping mode to be
applied to the link. The base station sends the received packet to the destination
host. If the snooping mode is activated, the flow monitor temporarily stores the
packet in the buffer. The stored packet is used for local retransmission to correct
transmission errors. Therefore, if the acknowledgment packet is received, the base
station discards the packet stored in the buffer. The flow monitor then requests the
next packet to fill the empty space in the buffer. The mobile host simulates the
movement and operation of a handheld device using a map.

Figure 8 shows a virtual load map for simulating the node mobility of the mobile
host. Originally, we planned to conduct simulations using a real roadmap.
However, we decided to use a virtual map because of problems with the road and
base station locations. The map shows a virtual terrain in 7 × 7 grid form, with
four base stations. The map has an infinite loop structure, i.e., its opposite ends are
connected. All edges represent movement paths of nodes in the grid map. We
designed the node mobility model on the basis of the Manhattan model [19, 20].
The dotted circles in the figure represent the coverage area of each base station.
The nodes in overlapping coverage areas have to select a base station for
communication. A mobile device generally connects to a base station depending
on the signal strength. Thus, the handover situation arises when the base station
communicating with the node changes. However, this simulation does not
consider the handover situation. Therefore, we simplified the event generated at
the point of handover. Every node selects a base station that has a clear advantage
in terms of signal strength.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 131 –

Figure 8

Virtual map for node mobility simulation

The simulation settings were as follows. The fixed host provided all data services
from a single module. The base station and the mobile host constituted a single
physical module. However, these modules acted as multiple devices through
internal objects. The base station module set up each virtual device using four
objects. The behavior of the base station was implemented through the method
and operation of the objects, whereas handover was implemented as a data
exchange between the objects. The mobile host module represented individual
nodes through 128 objects. Every node sent a packet and updated its current
position. We applied the Manhattan model to implement node mobility. The
behavior design for communication was based on data collected from wireless
routers. In this process, we also referred to the Wikipedia page traffic statistics
[21].

4.2 Results and Discussion

Through our simulations, we compared three metrics for three models. The first
model represents normal TCP communication without the snooping scheme (N-
TCP) [22, 23]. The second model represents indirect TCP communication with the
typical snooping scheme (S-TCP) [8], and the third model represents the snooping
TCP mechanism for adaptive flow QoS control (AFQ-TCP). A description and the
measurement results of each model are presented in the following subsections.

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 132 –

4.2.1 Total Number of Packets Generated

Figure 9

Total number of packets generated

The first metric is the total number of packets generated. A packet is a
transmission unit for exchanging data and control messages. The number of
packets generated from the same data is closely related to the frequency of error
recovery. Therefore, an increase in the number of packets indicates inefficiency in
the error recovery scheme. This also degrades the communication efficiency
owing to the increase in network traffic. Figure 9 shows the number of packets
generated for each model for 10,000 discrete events. The generated packets may
include both data and control packets from each model.

As shown in Figure 9, N-TCP produced the largest number of packets because it
does not include any scheme for wireless environments. Both snooping-based
models used fewer packets than N-TCP. However, the proposed model displayed
a slight advantage over S-TCP. Although the proposed model and S-TCP are
based on the same snooping technique, the former includes adaptive schemes with
fuzzy logic and buffer management; in addition, AFQ-TCP controls the packet
flow according to the link state.

A bad link receives fewer opportunities to control packet flow based on buffer size
management. Thus, this adaptive scheme is responsible for the difference in
performance.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 133 –

4.2.2 Total Communication Time

Figure 10

Total communication time

The second metric is the total communication time, i.e., the time taken for data
transmission. The total communication time is a measure of the simulation time
for each model. We deployed the same dataset and communication behavior for
this measurement. The main factors that affect the communication time are packet
error and the processing time of the control schemes. Therefore, an increase in the
communication time indicates inefficiency in the control scheme. Figure 10 shows
the total communication time for each model for 10,000 discrete events. For this
measurement, we adjusted the simulation time ratio to be as high as possible. This
is because we faced some problems in measuring the runtime without scaling the
ratio.

Figure 10 indicates there was a notable gap between the runtimes of the three
models as the simulation progressed. This gap is associated with delays due to
transmission errors. N-TCP performs a recovery operation from a fixed host to the
mobile host to correct transmission errors. In contrast, snooping-based techniques
can correct packet errors at the base station. Thus, snooping-based TCP performs
faster retransmission than N-TCP.

Our model provides additional communication cycles and resources according to
the link state. The base station has limited resources, and S-TCP utilizes the
resources evenly for each link in the snooping cycle. Our model does not
guarantee a uniform distribution of resources to links. Instead, our scheme speeds
up the transfer by focusing on and selecting excellent links. As a result, the
communication time of the proposed model was observed to be faster than that of
S-TCP.

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 134 –

4.2.3 Throughput

0.5

0.51

0.52

0.53

0.54

0.55

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

N-TCP

S-TCP

AFQ-TCP

Simulation Event Count

T
h

r
o
u

g
h

p
u

t

Figure 11

Throughput
















s

a

s

a

x
X

X

)(

)(

 (1)

The third metric is the throughput. This was calculated using equation (1), where
T denotes the throughput, Tx denotes the throughput of the x-th node, Ps denotes
the total number of packets generated, Ps(x) denotes the Ps of the x-th node, Pa
denotes the number of successfully delivered packets, and Pa(x) denotes the Pa of
the x-th node. Thus, the throughput is obtained by dividing the number of
successfully delivered packets by the total number of packets generated. Higher
throughput can be achieved by using fewer packets for packet transmission, or by
reducing packet loss. In other words, high throughput indicates an efficient flow
control scheme. Figure 11 shows the throughput for each model for 10,000
discrete events.

As shown in Figure 9, N-TCP generated a greater number of packets than the
other models. Therefore, N-TCP exhibited the lowest throughput among the three
models. The difference between S-TCP and our model is attributable to their
respective snooping policies. The snooping module of S-TCP only supports the
enabled or disabled protocol for each link. However, the proposed model regulates

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 135 –

the snooping cycle in accordance with the link state. This minor difference has a
significant impact on the throughput. Thus, the proposed model displayed a higher
throughput.

Conclusions

We have presented a model for adaptive flow QoS management to overcome the
problems suffered by conventional networking in wireless environments.
Specifically, we have developed a link state estimation method based on fuzzy
logic, and designed an adaptive flow control method based on the estimated link
state. This approach allows the proposed scheme to increase the communication
efficiency by providing greater opportunities to better links. We conducted
simulations to evaluate the performance of the proposed model. The simulation
results showed that the proposed model improves the efficiency of wireless
communication, as it requires fewer packets and less communication time and
provides high throughput.

In future work, we will attempt to regulate the proposed scheme. The short-term
objective is to design a method for sharing the collected packets between base
stations. The present study does not address this issue in detail. Instead, we have
simply assumed that all base stations use the virtual shared repository within the
simulation constraints. The long-term objective is to conduct experiments using
realistic terrain and base station placements.

Acknowledgement

This work was supported by Defense Acquisition Program Administration and
Agency for Defense Development under the contract UD140022PD, Korea, and
funded by the Ministry of Science, ICT and Future Planning (NRF-
2013R1A1A3A04007527).

References

[1] Raychaudhuri, D. & Mandayam, N. B.: Frontiers of Wireless and Mobile
Communications, Proceedings of the IEEE, Vol. 100, No. 4, pp. 824-840,
2012

[2] Agrawal, D. & Zeng, Q. A.: Introduction to Wireless and Mobile Systems,
Cengage Learning, 2015

[3] Avestimehr, A. S., Diggavi, S. N., & Tse, D. N.: Wireless Network
Information Flow: A Deterministic Approach, Information Theory, IEEE
Transactions on, Vol. 57, No. 4, pp. 1872-1905, 2011

[4] Maisuria, J. V. & Patel, R. M.: Overview of Techniques for Improving QoS
of TCP over Wireless Links, In Communication Systems and Network
Technologies (CSNT), 2012 International Conference on. IEEE, pp. 366-
370, 2012

T. Kim et al. Adaptive Flow QoS Management Model for Wireless Communication in Mobile Environments

 – 136 –

[5] Dalal, P., Kothari, N., & Dasgupta, K. S.: Improving TCP Performance
over Wireless Network with Frequent Disconnections, International Journal
of Computer Networks & Communications, Vol. 3, No. 6, pp. 169-184,
2011

[6] Liu, C. P.: Adaptive Splitting TCP for Wireless Sensor Networks,
International Journal of Engineering and Industries (IJEI), Vol. 2, No. 2,
pp. 88-94, 2011

[7] Le, D., Fu, X., & Hogrefe, D.: A Cross-Layer Approach for Improving TCP
Performance in Mobile Environments, Wireless Personal Communications,
Vol. 52, No. 3, pp. 669-692, 2010

[8] Nguyen, T. H., Park, M., Youn, Y., & Jung, S.: An Improvement of TCP
Performance over Wireless Networks, In Ubiquitous and Future Networks
(ICUFN), 2013 Fifth International Conference on. IEEE, pp. 214-219, 2013

[9] Tiyyagura, S., Nutangi, R., & Reddy, P. C.: An Improved Snoop for TCP
Reno and TCP Sack in Wired-Cum-Wireless Networks, Indian Journal of
Computer Science and Engineering (IJCSE), 2, pp. 455-460, 2011

[10] Rajasekaran, S. & Pai, G. V.: Neural Networks, Fuzzy Logic and Genetic
Algorithms, PHI Learning Private Limited, 2011

[11] Sethis, K., Kole, A., & Bhattacharya, P. P.: Adaptive Fuzzy Logic-based
QoS Management in Wireless Sensor Network, Advanced in Electronics
and Electrical Engineering (AEEE), 2013 International Conference on, pp.
72-76, 2013

[12] Munir, S. A., Bin, Y. W., Biao, R., & Jian, M.: Fuzzy Logic-based
Congestion Estimation for QoS in Wireless Sensor Network, In Wireless
Communications and Networking Conference (WCNC), 2007 International
Conference on IEEE, pp. 4336-4341, 2007

[13] Teppala, K. & Kumar, K.: A Fuzzy Logic Control in Distributed Traffic
Management for Efficient Networks, International Journal of Scientific
Engineering and Technology Research, Vol. 3, No. 48, pp. 9788-9793,
2014

[14] Khoukhi, L. & Cherkaoui, S.: Experimenting with Fuzzy Logic for QoS
Management in Mobile ad hoc Networks. International Journal of
Computer Science and Network Security, Vol. 8, No. 8, pp. 372-386, 2008

[15] Collotta, M. & Scatà, G.: Fuzzy Load Balancing for IEEE 802.11 Wireless
Networks, IERI Procedia, Vol. 7, pp. 55-61, 2014

[16] Lee, C. C.: Fuzzy Logic in Control Systems: Fuzzy Logic Controller. II.
Systems, Man and Cybernetics, IEEE Transactions on, Vol. 20, No. 2, pp.
419-435, 1990

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 137 –

[17] Zeigler, B. P.: Hierarchical, Modular Discrete-Event Modeling in an
Object-oriented Environment, Simulation, Vol. 49, No. 5, pp. 219-230,
1987

[18] Zeigler, B. P., Moon, Y., Kim, D., & Ball, G.: The DEVS Environment for
High-Performance Modeling and Simulation, Computing in Science and
Engineering, Vol. 4, No. 3, pp. 61-71, 1997

[19] Lim, S., Yu, C., & Das, C. R.: Clustered Mobility Model for Scale-Free
Wireless Networks, In Local Computer Networks, Proceedings 2006 31st
IEEE Conference on. IEEE, pp. 231-238, 2006

[20] Lenders, V., Wagner, J., Heimlicher, S., May, M., & Plattner, B.: An
Empirical Study of the Impact of Mobility on Link Failures in an 802.11 ad
hoc network, Wireless Communications, IEEE, Vol. 15, No. 6, pp. 16-21,
2008

[21] Wikipedia Page Traffic Statics, https://aws.amazon.com/items/2596, 2009

[22] Padhye, J., Firoiu, V., Towsley, D. F., & Kurose, J. F.: Modeling TCP
Reno Performance: a Simple Model and its Empirical Validation,
IEEE/ACM Transactions on Networking (ToN), Vol. 8, No. 2, pp.133-145,
2000

[23] Khan, M. N. I., Ahmed, R., & Aziz, M.: A Survey of TCP Reno, New Reno
and Sack over Mobile ad-hoc Network, International Journal of Distributed
and Parallel Systems (IJDPS), Vol. 3, No. 1, pp.49-63, 2012

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 139 –

Conceptualization with Incremental Bron-

Kerbosch Algorithm in Big Data Architecture

László Kovács1, Gábor Szabó2

1University of Miskolc, Institute of Information Technology, H-3515 Miskolc-
Egyetemváros, Hungary, e-mail: kovacs@iit.uni-miskolc.hu

2University of Miskolc, Hatvany József Doctoral School of Information Sciences,
H-3515 Miskolc-Egyetemváros, Hungary, e-mail: szabo84@iit.uni-miskolc.hu

Abstract: The paper introduces a novel conceptualization algorithm optimized for a
distributed, Big Data environment. The proposed method uses a concept generation module
based on clique detection in the context graph. The presented work proposes a novel
incremental version of the Bron-Kerbosch maximal clique detection method. The efficiency
of the method is evaluated with random context tests. The presented incremental model is
even comparable with the usual batch methods. The analysis of the clique detection
algorithm in MapReduce architecture provides efficiency comparison for large scale
contexts.

Keywords: ontologization; clique detection; incremental clique generation; mapreduce
architecture

1 Introduction

One of the big challenges of current information technology is the efficient
information management and knowledge engineering in Big Data environment.
With the spread of new technologies like the Internet of Things, the amount of
gathered data steadily increases and new data repository techniques are needed to
provide an efficient data management. Another trend to be witnessed is the
increased demand on intelligent smart applications. The adaption of knowledge
engineering methods on Big Data collection is a real challenge for the IT
community. The term ’ontology’ in information science is defined as “a formal,
explicit specification of a shared conceptualization” [10]. The term
conceptualization refers to determination of the concept classes and concept
relationships at an abstract model level for the phenomenon in the domain world.
The ontology models cover not only concepts, but they also include the
corresponding constraints on their usage, too. The ontologies emphasize aspects,
such as, inter-agent communication and interoperability [25]. From the viewpoint

mailto:kovacs@iit.uni-miskolc.hu
mailto:szabo84@iit.uni-miskolc.hu

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 140 –

of engineering, the term 'concept' is used as an identifier or a descriptor for a
cluster of objects. In this sense, the concept describes besides the naming also the
properties of the cluster. In the history of knowledge engineering, a great variety
of data structures was developed to represent the meaning of concepts. Nowadays,
these models exist parallel and are used for different purposes.

According to [19], ontology models can be classified into very different model
categories, based on the purpose, specificity and expressiveness. Application
ontology is used to control some computational applications and has a
methodological emphasis on fidelity. Reference ontology has a theoretical focus
on representation and it is used primarily to reduce terminology ambiguity among
members of a community. Based on the abstraction level, generic (upper level)
and core and domain ontologies can be distinguished. According to [22], the main
representation levels of ontologies are ƒ

- Taxonomy: Objects are hierarchically classified, e.g. A is child of B.

- Thesaurus: Objects are related (e.g. A is a B; A is related with B). ƒ

- Logic-mathematical representation: Object relations are presented in
formal notations (e.g. synonym(a, b):=synonym(b, a);).

Analogously to a database, wherein structure and data form the whole, an
ontology consists of rules and concepts. Languages for the description of
ontologies are RDF-S, DAML+OIL, F-Logic, OWL, WSML or XTM. Using rule-
based representations in deductive databases ensures further facts can be deduced
from stored relations.

Current ontology languages, like OWL, provide efficient tools to perform
complex operations on the ontology database, like consistency verification, rule
induction or reasoning process. The main application area of ontology frameworks
is the area of knowledge engineering [11], where the ontology engine is integrated
into internal module of expert systems. The efficiency of the ontology engines is
based primarily on the correctness, completeness and integrity of the ontology
database. From this point of view, the key element in ontology management is
application of efficient and proper ontology database construction methods.

There are many difficulties in ontology construction, for instance, huge amounts
of information to be collected, huge diversity of information sources and
inconsistency within the different information sources. The ontology database
construction usually contains the following steps [23, 42]:

1. Ontology scope

2. Ontology capture

3. Ontology encoding

4. Ontology integration

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 141 –

5. Ontology evaluation

6. Ontology documentation.

The current ontology construction methods are mainly based on automated
ontology construction methods. In the automated ontology construction methods,
the information is usually extracted from documents in natural language. This step
requires a complex knowledge extraction engine including among others a natural
language processing (NLP) module and a concept identification module.

The main goal of the paper is to introduce a novel conceptualization algorithm
optimized for a distributed, Big Data environment. The next section provides a
survey on the development of the text to ontology methods. The main goal of text
to ontology module is to assign the best matching concept cluster to the new
words found in the source text. The third section introduces some approaches for
concept assignment. The most sophisticated and most complex one is based on
clique detection mechanism in the context graph. The paper presents a novel
incremental version of Bron-Kerbosch maximal clique detection method. The
efficiency of the method is evaluated with random context test. The fourth section
contains the analysis of the distributed Big Data architecture. This architecture
provides an efficient implementation framework to process a large amount of
heterogeneous text document sources. The proposed architecture and map-reduce
processing models are implemented in a test environment where the efficiency of
the prototype system could be evaluated.

2 Process of Word to Concept Mapping

The Word Sense Disambiguation (WSD) [18] is a method to select the appropriate
meaning for a given context. The Word Category Map method [13] clusters the
words based on their semantic similarity. The words having similar contexts
belong to the same cluster or they appear close to each other on the map. The
context of a word can be constructed in many different ways. In the simplest case,
the context is equal to the set of neighboring words within the sentences [21]. In
this model, the context is converted into a vector representation calculating the
average neighborhood vector. The main benefit of this method is the cost
efficiency and the simplicity. On the other hand, this model cannot manage the
ambiguity of the words, i.e. a word can carry many different meanings. In this
model, the semantic similarity is measured using the standard vector distance
methods. Beside the simple vector similarity methods, there are approaches to use
more sophisticated clustering methods, like the SOM method [21]. In the other
group of approaches, the context is given with a graph instead of a simple vector.
In ontology management, the thesaurus graphs are used to denote the higher level
semantics.

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 142 –

The WSD ontologization process can work in one the following modes [4]:
dictionary based, supervised, semi-supervised and unsupervised. In the first mode,
a dictionary containing the definitions of the different concepts is used as
background knowledge. The similarity of two words is measured with the overlap
of their dictionary definitions [16]. In the case of supervised mode, a background
ontology is referenced to get information on existing semantic clusters. In the
ontology database, a word can be assigned to several meanings. In order to
distinguish the different concepts related to a word, a specific component is
introduced which represents the meaning. The most widely used implementation
of this component is the synset component defined in a wordnet ontology
database.

Wordnets are usually based on architecture presented first in [8] and they organize
semantic-lexical knowledge into a graph knowledge base. Nowadays, Wordnet
knowledge bases are available for many different languages.

The synset can be considered as the set of words carrying a common meaning.
The elements of a synset are synonyms and a word can be an element of different
synsets. Using the wordnet knowledge base, the ontologization process performs a
pattern matching task, where the matching method locates the synset most similar
to the given word. Within this method, the key parameters refer to the similarity
measure applied to compare a word and a synset. In most approaches, the
similarity measure between the word and the synset is aggregated from the
similarity values between the target word and the words in the synset.

In the literature there are different approaches to measure similarity between a
word and a synset. The extension of the related proportion approach [20] yields
the neighborhood similarity measured with:

   


r Nv

Crw
r

wr C

n
Cwd

|)log(|1
),( .

Where

w: the target word

C: the synset

v: word in the knowledge base

r: relation in the semantic graph

nCrv : the number of edges from elements of C to v along with an edge type r

Nwr : the set of words connected to w along with an edge of type r

r: the weight factor of the relationship r.

The average cosine method (see for example [3]) calculates distance as the
average cosine value between the description vectors:

||

),cos(
),(

C

NN
Cwd Cc

wc  .

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 143 –

Where

vN : the adjacency vector for word v (describing the words connected to v).

Having an ontology graph, an important step in text to semantic conversion is to
select the proper meaning of the word.

The supervised approach requires the development of a background knowledge
base in the form of a dictionary or of an annotated text corpus. The quality of the
WSD process depends on the quality of the background knowledge base. The
main problem of this approach is the high cost in the generation of a
comprehensive and valid knowledge base. The unsupervised methods provide
automatic approaches for construction of the knowledge base.

The first important result on the field of unsupervised WSD was the semi-
supervised proposal in [27]. The proposed method is based on two main properties
of human languages:

- Nearby words provide strong and consistent clues as to the sense of a
target word

- The sense of a target word is highly consistent within any given
document.

The algorithm first generates a small set of seed representative of the different
senses of a word. This step is a supervised phase to assign the semantic label to
some of the word occurrences. In the next step, a supervised classification
algorithm is used to learn the differences between the contexts of the different
word senses. In the last step, all word occurrences are classified with the generated
classifier to one of the sense labels.

The unsupervised method of [4] requires only the WordNet sense inventory and
unannotated text to determine the meaning category of a target word. The
algorithm includes the following processing steps. First, a pool of application
context is collected from the web. In the next step, the sentences containing the
target word are parsed with the help of a dependency parser in a parser tree. The
third phase is used to merge these trees into a dependency graph. In the last step a
graph matching algorithm is applied to find the appropriate meaning. This phase is
based on the idea that if a word is semantically coherent with its context, then at
least one sense of this word is semantically coherent with its context.

In the case of fully unsupervised methods, no background knowledge base is
available, only an unannotated source text can be used. In this case, only the
unsupervised clustering method can be used to create synsets for the words in the
document pools. Clustering methods are used to partition objects into groups
where the objects within the same group are similar to each other while objects
from different groups are dissimilar. In general, the mentioned clustering methods
do not usually meet this basic constraint of clustering, as they allow building of
large clusters containing object pairs with low similarity. One way to provide

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 144 –

better clustering is the application of Quality Threshold Clustering [12]. The QTC
method ensures that the distance between any two elements within a cluster
should be below a given threshold.

All of the mentioned clustering algorithms generate non-overlapping clusters.
There are some application areas where the constraint that every element must
belong to only one cluster that is not met. In the semantic clustering, for example,
a word may belong to different clusters, i.e. to different meanings at the same
time. Clustering in social networks or in distributed networking are other
application areas where non-overlapping clustering yields in significant loss of
information. It is shown in [15] that overlapping improves the approximation
algorithms significantly for minimizing graph conductance.

Overlapping clustering can be considered as a generalization of the standard
clustering methods. The first important approach for overlapping clustering is
given in [14]. In this approach, the input structure is a graph where the edges
denote object pairs having a similarity value above a given threshold. A cluster is
considered as a maximal complete subgraph, i.e. all of the members are connected
to each other. The proposed cluster detection method is based on the k-
ultarmetrics.

Another group of approaches is based on the extension of the classical clustering
methods. In [5], the k-means method is adjusted for overlapping clustering.
Initially, random cluster centers are specified. In the next phase, the elements are
assigned to a subset of clusters. For a given element x, the set of container clusters
is generated in the following way. First, sort the cluster centers based on the
increasing distances from the given element. Calculate the set A of the first k
container clusters for which:

 
x

xx min||)(|| 2

is met, where

||
)(

A

m
x Ac c  ,

mc : the cluster prototype for cluster c.

In the third step, the new positions of the cluster centers are calculated. The
performed tests show that this method is a good alternative of the more
sophisticated complex techniques.

The third important category of overlapped clustering methods is based on the
mixture model. In general, the key input source for a mixture model is the
observation matrix X. The unknown parameter set is denoted with Θ. The basic
assumption is that each data Xi point belongs to the following probability density
[1]:

 


k

h hihhi XpXp
1

)|()|(

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 145 –

where

k: the number of mixture components

Θh: the parameters of the h-th mixture component

h: the probability of the h-th mixture component.

The parameter values are usually calculated with the EM method where the goal is
to maximize likelihood of the given observation set:

 


n

i iXp
1

)|(.

3 Incremental Bron-Kerbosch Algorithm

Our investigation focuses on the clustering with the clique detection approach
originated from the work of [14]. The observation graph can be considered as a
similarity graph. The nodes are objects of the problem domain and there is an
undirected edge between two vertices (vi,vj) if and only if the d(vi,vj) < ε for a
given threshold ε. A clique, i.e. maximal complete subgraph corresponds to a
cluster. A cluster symbolizes a concept in the target ontology knowledge base.
The goal of the investigated algorithm is to detect all maximal cliques in the
observation graph.

The Bron-Kerbosch algorithm is one of the most widely known and most efficient
algorithms for maximal clique detection. The algorithm was presented first in [2].
The Bron–Kerbosch algorithm uses a recursive backtracking method to search for
all maximal cliques in a given graph G(V,E). The pseudocode of the algorithm:

BronKerbosch(R, P, X):

if |P| = |X| = 0

report R as a maximal clique

v  P:

BronKerbosch(R ⋃ {v}, P ⋂ N(v), X ⋂ N(v))

P = P \ {v}

X = X ⋃ {v}

In the pseudocode, the following notations are used:

P: the subset of V that can have some common elements with the
investigated clique

R: the subset of V that share all of its elements with the investigated clique

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 146 –

X: the subset of V that is disjoint with the investigated clique

N(v): the set of vertices connected to v.

Initially, the set P contains all of vertices of G and both R and X are empty sets. In
every iteration call, an element of P is processed and the sets P, R, X are refined
based on the current neighborhood set. For the recursive call, the set of possible
clique members are restricted to the elements in the neighborhood set. Similarly,
the set of possible excluded elements are reduced to a subset of the neighborhood
set. In the main loop, the elements of P are tested in a predefined order. After
testing an element v from P, it will be removed from the set of candidate vertices.

The basic version of the Bron-Kerbosch algorithm uses a large number of
recursive calls, resulting in an execution complexity of worst-case running time
O(3n/3) [7] [24]. The updated method uses a specific pivoting strategy to cut
computational branches. The pivot element is selected as the element with highest
number of neighbors.

TomitaBronKerbosch(R, P, X):

if |P| = |X| = 0

report R as a maximal clique

let u P  X: |N(u)  P |  max

 v  P\N(u)

TomitaBronKerbosch(R ⋃ {v}, P ⋂ N(v), X ⋂ N(v))

P = P \ {v}

X = X ⋃ {v}

The presented methods generate the output structure for a fixed given input
context. This approach is used for static investigation when there is no change in
the input context. The incremental construction method is used for such problems
where the initial context is extended incrementally. The incremental methods are
used for applications where context changes from time to time. The modeling of
cognitive learning processes is a good example of such dynamic problem
domains.

Our investigation focuses on the incremental clique generation method. For the
analysis of the proposed method, the following initial notations are used:

G(V,E) : context graph

V : set of vertices in G

E : set of edges in G

N : number of vertices in V.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 147 –

It is assumed that there exists a total ordering of the vertices, .i.e.

]}..1[|{ NivV i  .

Taking only the first n elements of V, we get a reduced context graph Gn(Vn,En),
where

},|{ niVvvV iin 

},,),(|),{(njijijin VvvEvvvvE  .

Let C(Gn) denote the set of maximal cliques related to Gn. The cliques in C(Gn)
can be separated into two disjoint groups, depending on the property whether they
are new cliques or old cliques related to C(Gn-1).

)()()(n
o

n
u

n GCGCGC 

)}()(|{)(1 nnn
o GCGCccGC

)(C\)()(o
nnn

u GGCGC 

It can be easily verified that for every c  Cu(Gn),

cvn  .

Regarding Cu(Gn), the following proposition can be used in the incremental clique
generation method.

Proposition 1:

The set of new cliques of Gn is equal to the clique set generated for the inclusive
neighborhood of the new vertex.

)()(nSCGC n
u 

where

Sn(x) = (V'n, E'n)

V'n = {vi | vi  V, i < n, (vi, vn)  E} {vn}

E'n = {(x,y) | (x,y)  E, xV'n, y  V'n}.

The inclusive neighborhood set Sn is defined as the neighborhood of vn extended
with the element vn.

Proof.

Let us take a new clique in Gn:

)(n
u GCc .

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 148 –

It can be seen that

cvn  ,

i.e. vn is connected to all other elements of c. Thus, all elements of c are in the
inclusive neighborhood of vn and all the edges in Gn are also edges in Sn. This
means that c is a complete subgraph of Sn, too. As the assumption that c is
maximal in Gn and not maximal in Sn, imply a contradiction, the clique c is a
maximal complete subgraph in Sn. Thus

)()(nSCGC n
u  .

On the other hand, taking a c clique from C(Sn), c will be complete in Gn, because
all the edges in Sn are also edges in Gn. If c is not maximal in Gn then there exists a
vertex vi such that

nninii EvvVvcv ),(,, .

Thus, i < n and

n
n Vv  .

This means that c is not maximal in Sn, and this is a contradiction, i.e.

)()(nn
u SCGC  .

Based on the considerations shown in the proof, we get:

)()(nn
u SCGC  . ฀

Proposition 1 can be used to generate the new cliques in an effective way, but not
only the insertion of the new cliques is the required update operation on C(Gn-1).
Namely, some of the cliques in C(Gn-1) may become invalid as they are not
maximal anymore. For example, in Figure 1, the clique set of G4 is
{(1,3),(2,3),(3,4)}. After adding v5, S5 is equal to ({2,3,4,5}, {(2,3), (2,5), (3,4),
(3,5), (4,5)}). The clique set for S5 is {(2,3,5),(3,4,5)}. The resulting clique set for
G5 is {(1,3), (2,3,5), (3,4,5)}. Thus, the clique (2,3) is covered by (2,3,5) and (3,4)
is covered by (3,4,5).

Thus, the update of C(Gn-1) after generation of C(Sn) includes the removal of some
existing cliques and the insertion of some new cliques. As the covered clique is
the same as the new clique except the vn vertex, it is worth to reduce Sn to the
elements of the neighborhood and to exclude vn. This new graph is denoted with
Sn-.The incremental clique generation algorithm can be summarized in the
following listing:

IncrementalBronKerbosch(Gn-1, C(Gn-1), Sn):

C(Sn-) = BronKerbosch(Sn-)

C(Gn) = C(Gn-1)

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 149 –

 c  C(Sn-):

C(Gn) = C(Gn) \ {c}

c’ = c  {vn}

C(Gn) = C(Gn)  {c’}

return C(Gn)

The lookup operation in the set C(Gn) has a central role in optimization of the
algorithm. Instead of a naive sequential lookup operation having a cost O(D)
where D denotes the number of elements in the set, a prefix tree structure is used.
In the prefix tree structure, the clique sets are represented with an ordered list of
vertex identifiers. The tree stores these ordered lists where the lists having the
same prefix part share the same prefix segments in the tree.

Figure 1

Extension of the similarity graph

The results of the performed direct tests show that the proposed method provides
an efficient solution for incremental clique detection tasks. In Figure 2, the
comparison of the naive incremental method and the proposed incremental
method is presented. The time shows the execution time in logarithmic scale. As
the result shows, the proposed algorithm is about 100 times faster than the naive
method. In the naive method, for every new incoming object, the whole clique set
is recalculated from scratch. In Figure 2, the data set NI denotes the naive method
and symbol I is for the proposed incremental method.

Figure 2

The comparison of the naive and the proposed methods

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 150 –

The method outperforms not only the other incremental approaches but it has
better cost characteristics than the standard batch method. For larger input graphs,
the proposed method is significantly faster than the basic Bron-Kerbosch method
(see Table 1, Table 2). The runtime is displayed in seconds.

Table 1

Comparison of the basic Bron-Kerbosch and the proposed methods for edge probability 0.5

Vertices Cliques
BK

Runtime
Incremental

Runtime

100 5407 0.41 0.32

150 23440 2.47 1.91

200 76838 10.42 8.36

250 214457 38.1 28.6

300 496754 103.5 82.4

Table 2

Comparison of the basic Bron-Kerbosch and the proposed methods for edge probability 0.3

Vertices Cliques
BK

Runtime
Incremental

Runtime

100 749 0.04 0.04

150 2277 0.12 0.08

200 5126 0.18 0.12

250 9566 0.41 0.24

300 16858 0.80 0.51

The efficiency of the proposed incremental algorithm is based on the divide and
conquer paradigm. The algorithm generates the clique set only for the
neighborhood graph during each iteration. The size of the neighborhood graph
depends on the edge probability in the input graph. If the cost function of the basic
Bron-Kerbosch algorithm is denoted with

))((nCO b

then the complexity of the proposed incremental method belongs to

)))'()'(((nDnCnO bb 

where

n’ : the average size of the neighborhood graph,

Db(n): the number of cliques in a graph containing n vertices.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 151 –

The first term in the formula corresponds to the generation of the cliques for the
neighborhood graph while the second term relates to the elimination of the
covered cliques from the result set. The presented formula provides an acceptable
approximation of the measured cost values but further investigation is needed to
work out a more accurate cost function involving the additional parameters, too.

4 Implementation in the MapReduce Architecture

Although the speed of computers is increasing rapidly, the fact that using several
machines in an interconnected system can be more effective in certain cases was
recognized many years ago. There are many solutions in the literature that can be
used in Big Data analysis. MPP (Massively Parallel Processing) systems [29] store
data after splitting it according to its features, for example we could store regional
data split by the country or state. In-memory database systems [30] are very
similar, except that they store data in memory, thus speeding up the retrieval of
the records. This area is the topic of active research by Big Database vendors such
as Oracle. BSP (Bulk Synchronous Parallel) systems [31] use multiple
transformation processes that run in parallel on different nodes. Each process gets
data from a master node and then sends the result back. After this barrier-like
synchronization the next iteration can be executed.

The big breakthrough came when Google published their scientific article
involving a new architecture for processing huge amounts of data. This
architecture is called MapReduce. The article called MapReduce: Simplified Data
Processing on Large Clusters [28] created a whole new concept that became the
basis for the most popular framework of Big Data analysis to date. The concept
itself is very simple. We all know that parallel tasks are most effective when we
can run in parallel for a long time without any synchronization barriers. This
means that if we can divide our algorithms in such a manner, the result can
outperform the single-threaded version. Conversely, if we need to communicate
between the threads, these synchronization points can slow down the algorithm.

MapReduce got its name from its two most important phases: map and reduce.
The map phase produces key-value pairs which become the input of the reducer
phase that yields the final results. Although Google's implementation is not open
source, there are multiple open source implementations among which the most
popular one is Apache Hadoop. This framework is actively developed, constantly
improving and has many technologies built on top of it like Apache Pig (SQL-like
interface), Apache Hive (data warehouse infrastructure), Apache HBase
(distributed NoSQL database), etc. that specializes the Hadoop platform to more
specific problems.

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 152 –

The base concept of MapReduce and Apache Hadoop [32] is to split the incoming
data to multiple nodes and process them locally. This way ‒ after the initial data
copies ‒ the mapper tasks can work on their local data instead of retrieving them
during processing. To make sure that the data is not lost on node failures, every
data chunk is stored on multiple nodes, but in case of normal work without
failures every node works on its local hard disk. These low-level interactions are
abstracted by the Hadoop Distributed File System (HDFS), inspired by the Google
File System (GFS) [9]. This is the most important component of Hadoop as it
provides a distributed file system for the MapReduce tasks. The input data must
be copied to this file system ‒ which makes sure that every data chunk is persisted
on multiple nodes ‒, then the mappers get data from this file system and the
reducers write the results back to HDFS. Figure 3 displays an overall view of a
very simplified MapReduce task. On the left side of the image we can see the
input records that come from HDFS. Next to them there are some mapper tasks
that receive one input record at a time and produce key-value pairs from them. For
simplicity the figure only has two types of keys (green and blue). The reducers
receive objects with common keys and create the final output of the application
that is persisted back to HDFS.

Figure 3

The MapReduce architecture

There are many scientific research areas that are directly or indirectly related to
MapReduce and Apache Hadoop. During literature research we can find scientific
articles from the area of agriculture [33] through telecommunication [34] to AI-
based recommendation systems [35] that use Hadoop as the application platform.
It is not surprising that graph algorithms can be ported to this parallel architecture
and thus speeds up different search methods.

The main research areas of Hadoop based graph processing are the semantic web
related problems and processing of social network data. This work [36] tries to
solve the problem of maintaining and querying huge RDF graphs by using
Hadoop, and provides an interface on top of it to answer SPARQL queries.
(SPARQL [37] is the W3C standard language for querying ontologies based on

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 153 –

RDF triplets.) This is a classic ontology related problem that can be integrated
with MapReduce to make the processing distributed.

There are also proposals [38] on a Hadoop based solution to the problem of
processing huge graphs in parallel. Unlike most solutions that try to separate the
nodes in the form of classic MapReduce jobs, this article presents a system that
has a highly flexible self-defined message passing interface that makes it easier to
port graph algorithms on top of the MapReduce platform. GPS (Graph Processing
System) [39] is a complete open-source system similar to Google's Pregel [40],
extending it to provide an interface for processing huge graphs in parallel with
global communication among the nodes. As we can see, these two research results
combine Big Data analysis with graph processing, thus connecting to our research
area and results presented in this article.

The Spider system [41], tries to solve the problem of processing data on the
semantic web. The system has two modules: one that loads the graph and one that
can query the previously loaded graph leveraging the Hadoop framework.

Considering the implementation of the clique detection algorithm, two different
approaches were tested. In the first approach, the task unit is the processing of the
neighborhood graph of a node. Here, for every node a separate task is generated.
The mapper calculates the clique set in the neighborhood. The drawback of this
approach is that it generates the same clique several times. The main benefit of the
method is that every node can work separately with a smaller amount of local
data.

In the second approach, all of the nodes work with the global data set and, share
the global graph. The work is separated in such way that every clique is generated
only once. Here, the merging process can be executed with low cost. Alternately,
every node requires the whole dataset.

Regarding the first approach (A), the full graph is divided by its nodes. After the
GraphRecordReader reads the input file from HDFS and reconstructs the graph
object, it takes each node from the graph and all of its neighbors and yields a new
subgraph from these nodes. This way if we find a maximal clique in the subgraph,
it will be a maximal clique of the full graph as well. The Hadoop framework
distributes these subgraphs based on the system configuration and it makes sure
that every mapper node gets approximately the same number of subgraphs. Each
mapper process gets one subgraph at a time with a null key, and executes one of
the Bron-Kerbosch variations on it. After getting the maximal cliques, it calculates
the hash code of the resulting cliques and yields key-value pairs consisting of the
hash code as the key and the clique as the value. Since the mapper node might
produce the same clique multiple times, a combiner is used on each node that
drops every repeated result to optimize speed so that these don’t have to be sent
over the network to the reducer nodes.

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 154 –

The reducer then gets one hash code at a time and the list of cliques that have that
hash code. Ideally this list only contains one clique, but if multiple mappers
produced the same clique, the size of the list can be more than one. Therefore the
reducer yields only the first element of the list. The Hadoop framework then
writes the resulting cliques from the reducer’s output to HDFS.

In the second approach (B), the set of cliques is divided by the smallest node
index value within the clique. This method yields in a disjoint partitioning, thus
the merge phase can be implemented with a minimal cost. In the implementation
of the method a shared HDFS storage is used to store the input similarity graph.
The map component performs a Bron-Kerbosch clique detection algorithm where
the main loop is restricted to the nodes assigned to this mapper process. The key
value in the MapReduce framework is equal to the set of minimum index values
assigned to a node for processing. Every mapper node works with the common
shared input graph to generate the corresponding clique set.

We tested the two approaches on randomly generated graphs with fixed node
counts and edge probabilities to verify their correctness in practice. Although we
didn’t have a full Hadoop cluster up and running, we simulated such environments
with the help of Docker, a lightweight virtualization software. We set up two
docker images and initiated one master and related slave containers, both
executing map and reduce tasks. In the future we would like to set up a physical
Hadoop cluster and verify our assumptions in a real distributed environment.

The cost models of the proposed methods can be approximated with the following
formulas:

NNNCNNC
L

N
t nnA )()(cos

NL
L

NC
tB 

)(
cos

where

N: the number of nodes in the input graph

Nn : the number of nodes in a neighborhood graph

L: the number of mapper nodes

C(n) : the number of cliques for a graph having n vertices.

The formula is based on the fact that the cost of clique detection algorithm is a
linear function of the number of generated cliques. The experimental function of
C(N) is shown in Figure 4, while Figure 5 presents the corresponding execution
costs. These formulas and the test results show that method A is suitable for those
architectures where the neighborhood graph is relatively small (sparse input
graph) and the L value is large. The method B is optimal for the cases where L is
small and the graph is relatively dense.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 155 –

Figure 4

The number of generated cliques

Figure 5

The cost function of the proposed iterative method

Conclusions

One option to generate concepts in an ontology framework, is to build clusters of
similar objects. The cliques in a similarity graph can be considered as overlapping
quality threshold clusters. The proposed incremental clique detection algorithm
provides an efficient clustering method for dynamic contexts changing from time
to time. The presented incremental model is comparable even with the usual batch
methods. The cost analysis for large contexts shows that the optimal
implementation in the MapReduce architecture depends on the basic parameters of
the input similarity graph.

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 156 –

References

[1] Banerjee A., Krumpelman C., Basu S., Mooney R.: Model-based
Overlapping Clustering, Proc. of Eleventh ACM SIGKDD, pp. 532-537

[2] Bron C., Kerbosch J., "Algorithm 457: Finding All Cliques of an
Undirected Graph", Communications of ACM 16 (9): 1973, pp. 575-577

[3] Caraballo S.: Automatic Construction of Hypernym-Label Noun Hierarchy
from Text, Proc. of Annual Meeting ACL, 1999, pp. 120-126

[4] Chen P, Ding W, Bowes C, Brown D: A Fully Unsupervised Word Sense
Disambiguation Method Using Dependency Knowledge, The 2009 Annual
Conference of the North American Chapter of the ACL, pp. 28-36

[5] Cleuziou G.: An Extended Version of the k-means Method for Overlapping
Clustering, Pattern Recognition, ICPR 2008, pp. 1-4

[6] Dean J., Ghemawat S.: MapReduce: Simplified Data Processing on Large
Clusters, Proc. of OSDI 2004, pp. 10-20

[7] Eppstein D., Löffler M., Strash D.: Listing all Maximal Cliques in Sparse
Graphs in Near-Optimal Time, Proc. of ISAAC 2010, pp. 403-414

[8] Fellbaum C.: WordNet: An Electronic Lexical Database (Language, Speech
and Communication), MIT Press, 1998

[9] Ghemawat S., Gobioff H., Leung S.: The Google File System. Proc. of the
19th SOSP 2003, pp. 29-43

[10] Gruber T.: A Translation Approach to Portable Ontology Specifications,
Knowledge Acquisition, 5(2): 1993, pp. 199-220

[11] Happel H., Seedorf S.: Applications of Ontologies in Software Engineering.
Proc. of SWESE 2006, Athens, GA, USA

[12] Heyer L., Ramakrishanan R., Livny M.: BIRCH: An Efficient Data
Clustering Method for Very Large Databases, Genome Research, Vol. 9,
1999, pp. 1106-1115

[13] Honkela T: Comparisons of Self-Organized Word Category Maps, In
Proceedings of WSOM'97, pp. 298-303

[14] Jardine N., Sibson R.: Mathematical Taxonomy, John Wiley and Sons Publ.

[15] Khandekar R, Kortsarz G., Mirrokni V.: On the Advantage of Overlapping
Clusters for Minimizing Conductance. Algorithmica, 69(4), 2014, pp. 844-
863

[16] Lesk M.: Automatic Sense Disambiguation using Machine Readable
Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone. In Proc. of
SIGDOC ’86

http://en.wikipedia.org/wiki/David_Eppstein

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 157 –

[17] Moon, J. W., Moser, L., "On Cliques in Graphs", Israel J. Math. 3:, 1965,
pp. 23-28

[18] Navigli R.: Word Sense Disambiguation: A Survey, ACM Computing
Surveys, 41(2), pp. 1-69

[19] Oberle D.: Semantic Management of Middleware, Volume I of The
Semantic Web and Beyond Springer, New York (2006)

[20] Pennacchiotti M., Pantel P.: Ontologizing Semantic Relations, Proc. of 21st
COLING ACL, 2006, pp. 793-800

[21] Ritter H., Kohonen T.: Learning 'Semantotopic Maps' from Context. In
Proc. IJCNN- 90-WASH-DC, Int. Conf. on Neural Networks, Vol. I, pp.
23-26

[22] Sieber T., Kovács L.: Mapping XML-Documents into Object-Model, Proc.
of CINTI 2005, pp. 343-354

[23] Subhashini R., Akilandeswari J.: A Survey on Ontology Construction
Methodologies, International Journal of Enterprise Computing and
Business Systems, Vol. 1, Issue 1, 2011

[24] Tomita E., Tanaka A., Takahashi H., The Worst-Case Time Complexity for
Generating all Maximal Cliques and Computational Experiments,
Theoretical Computer Science 363 (1): 2006, pp. 28-42

[25]. Uschold M., Gruninger M.: Ontologies: Principles, Methods, and
Applications. Knowledge Engineering Review 11 (1996) pp. 93-155

[26] Wood D.: On the Maximum Number of Cliques in a Graph, Graphs
Combin. 23 (2007) pp. 337-352

[27] Yarowsky D.: Unsupervised Word Sense Disambiguation Rivaling
Supervised Methods, Proc. of ACL’95, 1995, pp. 189-196

[28] Dean J., Ghemawat S.: Mapreduce: Simplified Data Processing on Large
Clusters. Commun. ACM 2008, 51(1), pp. 107-113

[29] Simon, H. D.: Partitioning of Unstructured Problems for Parallel
Processing. Computing Systems in Engineering, 2(2), 1991, pp. 135-148

[30] Berkowitz, B. T., Simhadri, S., Christofferson, P. A., and Mein, G. In-
Memory Database System. US Patent 6, 2002, 457,021

[31] Gerbessiotis, A. V. and Valiant, L. G.: Direct Bulk-Synchronous Parallel
Algorithms. Journal of Parallel and Distributed Computing, 22(2):1994, pp.
251-267

[32] Wadkar, S., Siddalingaiah, M., and Venner, J.: Pro Apache Hadoop.
Apress, 2014

http://en.wikipedia.org/wiki/Leo_Moser

L. Kovács et al. Conceptualization with Incremental Bron-Kerbosch Algorithm in Big Data Architecture

 – 158 –

[33] Yang, F., Wu, H.-R., Zhu, H.-J., Zhang, H.-H., and Sun, X.: Massive
Agricultural Data Resource Management Platform Based on Hadoop [J].
Computer Engineering, 2011, 12:083

[34] Yang, G., Shu, M., Wang, X., and Xiong, A.: Application Practice of
Hadoop Platform for Telecommunication Enterprise. Digital
Communication, 4:019, 2014

[35] Wang, C., Zheng, Z., and Yang, Z.: The Research of Recommendation
System Based on Hadoop Cloud Platform. In Computer Science &
Education (ICCSE), 2014 9th Int. Conference on, pages 193-196. IEEE

[36] Husain, M. F., Doshi, P., Khan, L., and Thuraisingham, B.: Storage and
Retrieval of Large RDF Graph Using Hadoop and MapReduce. 2009, pp.
680-686

[37] Quilitz, B. and Leser, U.: Querying Distributed RDF Data Sources with
SPARQL. In The Semantic Web: Research and Applications, Vol. 5021 of
Lecture Notes in Computer Science, 2008, pp. 524-538

[38] Pan, W.; Li, Z.-H.; Wu, S.; Chen, Q.:Evaluating Large Graph Processing in
MapReduce Based on Message Passing. Chinese Journal of Computers.,
2011, pp. 1768-1784

[39] Salihoglu, S. and Widom, J.: GPS: A Graph Processing System. In
Proceedings of the 25th International Conference on Scientific and
Statistical Database Management, SSDBM, 2013, pp. 22:1-22:12

[40] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser,
N., and Czajkowski, G. (2010) Pregel: A System for Large-Scale Graph
Processing. In Proc. of ACM SIGMOD 2010, pp. 135-146

[41] Choi, H., Son, J., Cho, Y., Sung, M. K., and Chung, Y. D.: Spider: A
System for Scalable, Parallel/Distributed Evaluation of Large-Scale RDF
Data. In Proceedings of ACM Conference on Information and Knowledge
Management, 2009, pp. 2087-2088

[42] Furdik K., Tomasek M., Hreno J.: A WSMO-based Framework Enabling
Semantic Interoperability in e-Government Solutions, Acta Polytechnica
Hungarica, Vol. 8, No. 2, 2011, pp. 61-79

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 159 –

Visualising Software Developers' Activity Logs

to Facilitate Explorative Analysis

Alena Kovarova, Martin Konopka, Lukas Sekerak,

Pavol Navrat

Slovak University of Technology, Ilkovicova 2, 84216 Bratislava, Slovakia
alena.kovarova@stuba.sk, martin_konopka@stuba.sk, xsekerakl1@stuba.sk,
pavol.navrat@stuba.sk

Abstract: In this paper, we discuss whether data collected from monitoring software
developers' logs can be considered big. We hypothesize that it falls within the category of
Big Data. The main topic of our paper however, is how to facilitate analysis of such data.
Due to the specificity of the monitored activity, the analysis is at least partially explorative
in its nature. We hypothesize that visualisation can be a productive approach in such a
case. We present several visualisation schemes (diagram types) and show those applied to
explorative analysis of data gathered within one four year project that we have been
participating in.

Keywords: Activity log; log stream; Programmer; Software development; Visualisation;
Big data

1 Introduction

Let us consider a serious creative human activity, which is supposed to result in
developing a very complex technical product. The human activity is inherently
individual by definition and at the same time, due to the nature of the task, it can
rarely be accomplished by a single person because of task complexity, delivery
time requirements, etc. Thus, we envisage a complex process of multi-human
activity that requires coordinated cooperation over a long period of time, with a
collective very structured outcome.

There are many occasions during the development of a software product, when it
is desirable to know what a particular developer was doing and how they
performed, what they were doing with a particular part of the product being
developed, or any other similar question. But perhaps, the nature of the technical
product is such that it evolves over time or users of the product change their
expectations. This translates to modifications of product requirements and
specifications, and thus, onward to redeveloping the product, which may be a very

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 160 –

complicated endeavour. Certain questions arise, such as “Who of the original
developers should be assigned the task?” or “In which place should they attempt
to make an amendment?”

To find answers to these and similar questions, we need to know more about the
developers' activity. But do we know exactly what the required information is? On
the side of data, assume that the development process takes place for several
months and there are several, or even a few dozen developers involved. Let us
consider that we are able to monitor developer’s activity at the granularity of
elementary steps taken once a few seconds if not more frequently. No matter how
small the single record is, recording it every few seconds over a period of time, for
example, several months for several developers will definitely surpass any
reasonable volume of data storage available for the usual data processing tasks.
More importantly, that would not be a reasonable modus of operation. The data
are required to be processed in real-time so that we have the information when
needed. Recently, it has become fashionable to describe such data as Big Data [5].

The outcome of software development is a software system, which is by itself a
very complex product. The development process as a rule involves activities of
several programmers, or more generally software developers, over a period of
several months, sometimes years. Their work is essentially writing or modifying
texts in a source programming language, and also writing a documentation,
solving problems that occur during development, or communicating with each
other. However, their actions can be logged at a very low level, way below the
level of the programming language, not to speak of the level of developers'
actions.

Currently, it is technically feasible to monitor not only when and which text
(source code) they write, but also how they write it and which information and
communication technology tool they employ. Monitoring generates a lot of data.
In this paper, we discuss if data collected from monitoring software developer’s
logs can be considered big. We hypothesize that it falls within the category of Big
Data. The main topic of our paper is, however, how to facilitate analysis of such
data. Due to specificity of the monitored activity, the analysis is at least partially
explorative in its nature. We hypothesize that visualisation can be a productive
approach in such a case. We present several visualisation schemes (diagram types)
and show those applied to an explorative analysis of data gathered within one four
year project that we have been participating in.

The rest of the paper is structured as follows. In Section 2, we discuss whether
data collected on software development can be considered Big Data. We identify
so-called interaction data to be such data. In Section 3, we discuss what
information could be extracted by visualising data and by what approaches this
can be accomplished. We present our approach in Section 4. First, we describe
what data is potentially the most interesting in the logs, and then we show our
visualisation schemes. We evaluate the approach in Section 5. The paper is
concluded in Section 6 where we also suggest some possibilities for future work.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 161 –

2 Big Data in Software Engineering

In order to evaluate actual status and progress of a software project, it is required
to monitor it on a suitable level of detail, from the lowest hardware interactions up
to the highest level with performed development tasks [10]. Current research in
empirical measurements and evaluation of software development focuses on
monitoring developers on the level of interactions, which brings us into dealing
with Big Data in software engineering. More precisely, interaction data fulfils the
4 Vs rule of Big Data [24] and also occurs in real-time, thus the sensible approach
is to represent this as a data stream that may be computationally analysed to reveal
patterns [12], trends, and associations, especially related to human behaviour and
interactions [21]. The motivation for gathering, processing and evaluating such
streams of interaction data in software engineering is to get a detailed overview of
the developers' work [14], to understand how they behave individually or in
groups, and to avoid problems in development.

2.1 Interaction Data in Software Development

Traditional methods of evaluating progress on software projects are based on
monitoring completion of development tasks by developers in task management
systems. Developers are given tasks to complete, or they identify the tasks
themselves, and then update the status of a task in the course of the work [14].
Team leaders are able to observe progress on a project, communicate the current
status with developers, or reason upon it. However, this approach fails to identify
causes of developers’ mistakes, faults, or delays in completion of tasks. A more
detailed approach is to monitor and evaluate a software project on the level of
source code [14]. However, this still does not resolve the aforementioned
problems.

Practical research in software engineering requires the monitoring of software
developers in a greater detail [1, 10]. Evaluating software projects and developers
through tasks and source code is limited to observing the results of the work only,
not the processes that led to those results. Software developers interact with tools
to fulfil a task assignment and are affected and surrounded by several different
contexts. We summarize this information under the name interaction data [14].
The main sources of interaction data are tools and systems that developers work
with during software development and maintenance, such as IDE – integrated
development environments (Microsoft Visual Studio, Eclipse), revision control
systems (Git, Microsoft Team Foundation Server, SVN), task management
systems (Redmine, Atlassian Jira), software CASE tools (Sparx Enterprise
Architect, IBM Rational Software Architect), operating systems and many other
tools, e.g., a web browser, instant messaging, or e-mail client, note-taking
software, etc.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 162 –

As pointed out by the authors in [14], interaction data encompasses mainly the
following four types of data:

 Interactions – observable actions of a developer within tools, e.g.,
navigation in source code, code editing, mouse movements, committing
changes to a source code repository, etc.

 Artefacts – entities that a developer interacts with, e.g., source code
documents, documentation web pages, physical artefacts or even people.

 Tools – software applications and systems that a developer works with.

 Contexts – decisions, reasons and other circumstances of developer’s
work, e.g., what, when, how, and why affected them during their work.

As can be seen, interaction data cover almost everything that developers may
come into interaction with, and also how they interact in that situation. Although
developers’ interactions are monitored at the lowest possible level of detail, they
can still be used to track development tasks (as artefacts) in task management
systems/tools, as well as source code (artefacts) and changes (interactions) within
revision control systems/tools. Recording this amount of data about software
developers allows us to attempt to identify their expertise or familiarity with code
[13, 14], to annotate source code with important information [19], or even search
for unknown or hidden connections between source code documents [11]. Several
other approaches based on utilizing interaction data nowadays arise using the
proposed systems [14], although always with predefined assumptions.

2.2 Monitoring Software Developer’s Activity

Many approaches and systems have been proposed for monitoring interaction data
in software development [1, 6, 10, 18]. However, many operate at different levels
of detail. We can observe developers’ activity at the following levels [21] (starting
with the lowest level):

 Hardware interactions, e.g., mouse moves, key presses, touch gestures.

 Widget interactions – a developer interacts with areas (widgets) of a tool.

o Single widget interactions, e.g., scrolling in code editing
window in an IDE, copying code fragments, selecting a text.

o Multi widget interactions, e.g., searching for references of
a source code entity and using them in a code editing window.

 Activities – enclosed parts of developer’s work on a task, e.g., studying
a code, adding a new code, debugging, documenting completed work.

 Tasks – described with a goal which a developer is about to accomplish,
e.g., fix a bug no. 324, added service endpoint ABC.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 163 –

Based on the employed level of interactions, we encounter problems with the
collecting, processing and storing of interaction data [14]. For example,
Mylyn [10] aggregates interaction events in an IDE into five pre-selected types of
activities, the IDE++ project [6] records even the key presses and mouse events.
However, although authors of IDE++ record almost every event in Eclipse IDE,
they do not attempt to store them due to a high volume of data. PerConIK [1]
records various interaction events in an IDE. At first, authors in PerConIK
attempted to persistently store compressed keyboard button presses and mouse
events, but later left them out for the same reasons, despite it being the finest
grained data. Such data could help us determine user activity duration or some
individual characteristics of either the user or the domain. IDE++ alternatively
records all available data and redirects it to other connected tools that examine
these events.

Monitoring a developer on the hardware and widget levels is possible thanks to
available application programming interfaces in operating systems and
development tools. However, identification of activities is not possible with tools
because of a vague notion of what an activity in fact is. The authors in [19]
attempted to automatically identify activities using Hidden Markov Models,
because this technique matched attributes of difference between activity and
interaction. Activity is composed of interactions, but only those of a certain
intention for a developer, which they had to undertake during their work on a task.
From the automation viewpoint, we are not able to unambiguously distinguish
between types of activities, e.g., adding a new functionality or refactoring.
Because a developer’s interactions occur in real-time, we may attempt to
incrementally identify developer’s activities in real-time as well [12]. The
motivation behind identifying activities is to better describe development tasks or
untangle them when they appear to be overlapping [12, 20].

Whether we monitor developers’ interactions, activities or tasks, the motivation
remains the same: to understand how developers approach work on a software
project individually and/or cooperatively, how they progress, and how they
identify issues with respect to finishing their work in the desired quality and on
time. Interaction data occurs in real-time and may be used for identifying patterns,
trends or associations in developers’ interactions and activities.

2.3 Software Developer Interaction Data Can Become Big

Interaction events occur very fast during a developer’s work, from the finest level
of granularity with recording of every keystroke, up to recording changes in
source code contents after every widget interaction, e.g., navigation or scrolling in
a document. Using the 4 Vs characteristics of Big Data, we may look upon
interaction data as Big Data as well [24]:

 Volume – recording interactions in tools, e.g., every change in a source
code document after navigation, mouse button presses and moves.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 164 –

 Velocity – multiple interactions may occur within a second, or changes in
mouse coordinates may be recorded with high frequency (1000 positions
per second), multiplied by large development teams.

 Variety – monitoring various keystrokes, mouse, or events in an IDE,
e.g., from opening a source code document, through to adding a new line
of code, to identifying changes in abstract syntax trees of source code.

 Veracity – monitoring of IDE events cannot be predicted – a developer
may study code while not interacting with tools or a computer in any
way, thus unexpectedly not generating any data.

Our work is part of the research project PerConIK [1] where we monitor software
developers at a medium size software company. Besides, we monitor students of
Masters study programmes in Software Engineering and Information Systems who
develop their semester projects. For the monitored interaction events within the
infrastructure of PerConIK, see section 3.1. Also, note that we do not monitor
mouse movements and key strokes that IDE++ does (but without storing them)
[6], only interactions in tools because of the high volume which has to be stored if
doing so. As an example of a possible data flow, consider the following statistics
even for 10 developers monitored within the PerConIK project during 38
workdays in February and March 2015:

 Average velocity if any interaction event occurred in a time frame:

o 3.682 per second and 18.893 per minute,

 Average velocity if over 10 interactions occurred in that time frame:

o 71.351 per second and 42.849 per minute.

Although data of 10 developers may not seem really big, we use them as a
representative sample from our dataset because of different work habits and
experiences that students have, and because the setup of the PerConIK
infrastructure has evolved over time. During this period, there were exactly 27,994
interactive minutes (i.e. minutes with at least 1 recorded interaction; if counting
only interactive seconds, there were exactly 29,628 of such seconds). Pointedly,
monitoring more developers for a longer time would increase these numbers in
orders of magnitude.

Because of complying with the 4 Vs characteristics, interaction data and
developers' activity are often subject to visualisation. Omoronyia et al. provide a
good overview of 12 tools [18] visualising developers’ activity. One example is
the visualisation tool Team Tracks that displays the current activity of a developer,
or which files are currently edited and who altered them. Their plugin to an IDE
monitors which files were frequently visited and assumes that these files can be
problematic. However, none of the mentioned tools [18] dealt with the
visualisation of software development from a perspective similar to ours. This
paper indicates the importance of capturing data for tracking developers' activity
and, of course, the visualisation of this data.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 165 –

3 Visualisation of Software Developers’ Activity

In order to record huge amounts of data, it is usually required to choose a form of
representation that facilitates eliciting important information. The information
may be in the form of patterns, trends or associations found in raw data. There
exists a variety of methods for acquiring such information based on statistics,
artificial intelligence, machine learning, or formal concept analysis. In most of the
cases, we need two things to choose the right method – 1. to have the data, and 2.
to know what we are looking for in the data (either exact or abstract). For
example, we can track certain quantities of events, or find certain patterns in them,
and so on. But there are moments when we do not know the data and/or we do not
know what we are looking for – we just want to find something new. Existing
methods often fail if they do not have a goal set beforehand. In such a case, an
explorative analysis (visual data mining) can be very useful. In general, it is the
first step on the following path (see Figure 1):

 Step 1: In the case that data contains unknown information, it is
visualised using different graphs or visualisation approaches. One can
find, by inspecting them, something interesting and set it as an
assumption.

 Step 2: In the case that there has been formulated an assumption (either
resulting from the first step or simply from knowing a domain), this can
be verified either by an experiment or by broader systematic data
analysis. This verification can either support or refute the assumption and
thus can be reformulated or accepted for the next step (e.g. as a new part
of user or domain model).

 Step 3: In the case that it is already known what information is contained
in the old data (either resulting from the first two steps or simply from
knowing the data domain), there is a chance that it will be contained in
the new data. To find it there, one can reason upon the live (streaming)
data, and log only the found (derived) information – metadata.

In our work, we deal only with the first step of this (meta) information retrieval.
Therefore, to maximize the success of a search, the visualisation has to follow the
type by task taxonomy (TTT) of information visualisations proposed by
Shneiderman [23]. It has its roots in the Visual Information Seeking Mantra:
“Overview first, zoom and filter, then details-on-demand,” and contains the
following seven tasks:

 Overview: Gain an overview of the entire collection.

 Zoom: Zoom in on items of interest.

 Filter: Filter out uninteresting items.

 Details-on-demand: Select an item or group and get details when needed.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 166 –

 Relate: View relationships among items.

 History: Keep a history of actions to support undo, replay, and
progressive refinement.

 Extract: Allow extraction of sub-collections and of the query parameters.

Figure 1

Exploratory analysis of logged data involving assumption formation based on visualisation

On the other side, the goal of a visualisation must be clear. Maletic, et al. [15]
proposed that each software visualisation system supporting large-scale software
development and maintenance has to have the following five dimensions. These
dimensions reflect the why, who, what, where and, how questions to be addressed
for the developed software visualisation:

 Tasks – why is the visualisation needed?

 Audience – who will use the visualisation?

 Target – what is the data source to represent?

 Representation – how to represent it?

 Medium – where to represent the visualisation?

In our case we answer these questions: Tasks – find new information in the data
that could possibly improve software development, Audience – software
development analysts, researchers, possibly project managers, Target –
developers' interactions, Representation – graphs, Medium – computer monitor.

Searching for relevant information (metadata)

Logging

 Data

stream

 Logged

data

1. Visuali-

sation
Assumption

2. Verifi-

cation

Important

information

3. Stream

reasoning

Logged

metadata

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 167 –

There are various approaches to visualisation in the domain of software
development. Most of them visualise code structure [9] and/or source code
metrics, and/or tasks (Gantt chart), e.g., Source Miner Evolution [17], YARN [8],
Forest Metaphor [4], ClonEvol [7], GEVOL [3], EPOSee [2]. Some visualisations
are even animated in time. DFlow [16] visualises developer’s interactions during
the development process, it is oriented only to navigating, writing, and
understanding the source code and thus miss the wider context of developers’
work. More complex tools, which are more similar to our solution, can be found in
the time management domain, e.g., ManicTime1 application.

3.1 Data Available on Software Developers' Activity

We monitor interaction events in tools that a software developer interacts with
during their work. Although we may record even elementary events such as key
presses or mouse movements that make our data big, we empirically selected only
some of the events provided by tools (Microsoft Visual Studio, Eclipse, Git, Bash
shell, and Mozilla Firefox). An interaction event is reported by a tool noting that a
developer performed a meaningful operation. For each developer we also log
which processes and applications were running in the operating system.

With a web browser we record navigation to URL addresses (through a link/URL
bar/bookmark/other), actions with tabs (switch to/open/close), saving a document
(and its name), or even creating a bookmark (with its name).

In an IDE we record interactions with source code documents (add, open, close,
switch to, remove, save, rename), projects and solutions (add, open, close, switch
to, remove, rename, refresh). We also record source code content interactions,
specifically code fragments manipulation (copy, paste, cut, paste from a webpage)
and searching in source code (searched expression, used search options, number
of searched documents and results). We are also interested in a work to Git
(commits) or Microsoft Team Foundation Server (check-ins). Because developers
also use bash shell during their work, thus we record executed bash commands.

Recording of interaction events in tools is realized by custom plugins that
communicate with local client application, called UACA, running on a
developer’s workstation. This application sends recorded data in chunks to a
centralized repository using REST web services. With this approach we are able to
monitor high quantities of interesting and very detailed data about software
development, but still use it for evaluation, visualisation, or further processing.
Further details on the PerConIK infrastructure can be found in [1].

Countless numbers of charts can be devised from the listed data and source code
of monitored software projects. In this paper, we cannot discuss all the devised

1 http://www.manictime.com/

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 168 –

data or graphs, and in any case, we did not employ all of them. However, to
explain our visualisation approach in a simple and comprehensible manner, while
still showing the potential of such visualisations, we include only charts that
contain two activities – those of a developer interacting with a web browser and
with an IDE. These are not further fragmented. We also did not include activities
of bash commands because of their insufficient number. Answers to these
questions can be found in such graphs: When and which developer was the most
active? Is it always at the same time? Do all of the developers use a web browser
and IDE by the same share? Is there a pattern or dependency at work in a web
browser or an IDE? Which web sites were visited by developers the most? Is there
a relation between the amount of time spent in a web browser during a work in an
IDE, to the number of source code changes by a developer?

The graphs may also contain various metrics, e.g., for source codes: time spent by
a developer typing them, studying them (reading without changing them), number
of functions edited, how many times and how long a certain file was opened, the
number of time the file was changed, etc. For web browsing: the ratio between the
number of web pages related to work and private purposes, the ratio between the
time spent on work vs. private web pages, the absolute number of web pages or
absolute time spent on work/private web pages, correlation of these numbers with
other quantities, the number of copied elements, etc.

Other potential graphs using mentioned metrics may answer the following
questions: Can we categorize developers according to their read/edit/copy/paste
behaviour? Can we evaluate their productivity? Is there any correlation between
different types of activities that help us to indicate developers’ experience, their
strengths and weaknesses? Is there any harmful behaviour occurring in specific
situations, e.g., introducing a bug by the end of a project? Is there any visible trend
or pattern between the number of source code changes and other situations?

Answers to some of these questions can be found only if data is from a long
enough period of time, which could take many years.

3.2 Graphs Devised from Software Developer’s Activity

In order to identify any information from interaction data, it is necessary to
combine events into higher level activities [12, 20] and then to visualise them. It is
not easy to determine which actions form an activity. One way to do so is to apply
a time threshold, as we describe in more detail in [22]. The visualisation graphs
themselves should be transparent, readable and adaptable. We propose three kinds
of graphs:

1) Timeline graphs, which depict selected type of activities – e.g., when and how
long a developer worked in a certain application (see ManicTime graph in
Figure 2); here it cannot easily be seen how many of them there are or how
much time is spent in total. This type of graph can be found also in [16]

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 169 –

2) Scatter graphs – the dependency of selected activities (see Figure 6)

3) Column graphs – the cumulative numbers of the selected types of activities:

a. One column is for one time step – e.g., it depicts number of web and
IDE activities done within an hour; columns are ordered by time and
have the same width (see Figure 3 and 4).

b. One column is for one type of activity – e.g., it depicts the number of
visits on stackoverflow.com domain; columns are ordered by height
and have the same width.

c. One column is for one block of activity – e.g., it depicts the number
of changed lines in source code; columns are ordered by time and
each block has a different width equal to the duration of a depicted
block (see Figure 5)

Our implementation of the visualisation allows the user an interactive modifying
time axis scale for each graph with a time axis. It is possible to choose time units
to be used for data accumulation in the graph. By clicking on a column in a graph,
a new graph with a finer time scale will open.

4 Evaluation

In order to be able to evaluate our proposed approach, we devised a prototype tool
IVDA (Interactive Visualisation of Developers' Actions). It is implemented as
a service that provides visualisations of logged data [22]. The visualisations are
shown directly on the web browser, while computation takes place on the server.

There are tools that are able to monitor a software developer, but not to visualise
their activity. There are also tools, on the other hand, that visualise software
development but do not monitor the software developer so closely. Since our tool
IVDA is no exception to this, some experiments are by design not fully supported.

For comparison with existing systems, we compared our tool with several other
similar tools that were compared in [18]. Moreover, we also include the tool
ManicTime in the comparison.

The tool is not from the domain of software development, but from the more
general domain of time management. It monitors computer usage in any work. It
is oriented toward applications or environments used, and documents (context)
that the user is working within the given application (see Figure 2). The tool
monitors how long activities lasted. Recorded data can be seen on the time axis.
They serve the user as an overview of their work with the computer. The tool also
offers cumulative results, albeit only in numerical form.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 170 –

Figure 2

Timeline in ManicTime interface

See Table 1 for results of the comparison with our IVDA tool with existing tools
mentioned in [18] that monitor developers' work, along with ManicTime. The
comparison is done by classification based on workspace awareness elements and
does not take into account visualisation ability. The number of individual elements
across all 14 tools represents the need of developers to know that information. As
we can see, IVDA offers the five most wanted elements. ManicTime offers three
of them, although this tool is not specific to the domain of software development.

Table 1

Omoronyia, et al. [18] classification of visualisation tools with added IVDA and ManicTime

Tool I
d

en
ti

ty

 L
o

ca
ti

on

 A
ct

iv
it

y
le

v
el

 A
ct

io
n

s

 I
n

te
n

ti
o

n
s

 C
h

an
g

es

 O
b

je
ct

s

 E
x

te
n

ts

 A
b

il
it

ie
s

 I
n

fl
u

en
ce

 E
x

p
ec

ta
ti

o
n

s

TagSEA x x x x

Jazz x x x x x x

Expertise browser x x x x x

Sysiphus x x x x

Hipikat x

Palantír x x x x x

FASTDash x x x x x

Team tracks x x x

CASS x x x x

Augur x x x x

Ariadne x x

Mylyn x x x x x x

ManicTime x x x

IVDA x x x x x

14 tools 12 6 6 2 5 10 8 3 1 3 2

To proceed with the evaluation of our approach, we performed a user test aimed at
its visualisation quality. The tools from Table 1 do not provide visualisation as
IVDA or ManicTime. Therefore we needed to choose other tools. As we already

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 171 –

mentioned, there are tools, which visualise code structure and/or source code
metrics, and/or tasks [2, 3, 4, 7, 8, 9, 16, 17], but they do not visualise
programmer’s activities with their context. This led us to find a tool for
visualisation of activities, but from another domain, e.g., ManicTime, and to
compare it with IVDA. The test included 10 test cases (TC) of differing difficulty
(see Table 2). We conducted this test with 7 participants (4 males and 3 females)
ages 19-35, with a university degree in an engineering field. None of them had
previous experience with visualisations or tools that monitor time spent with
a computer, and they use a web browser for 2 to 8 hours a day.

Table 2

10 test cases (TC1-TC10) conducted for evaluation of the IVDA tool

TC1 Inspect activity of any developer over the previous week.

TC2 Determine by inspection, for any developer, what activities prevailed during
the previous day.

TC3 Find out which processes were run on the user’s computer on a given day.
TC4 During which part of the last 3 days was the developer most productive?

TC5 Which files and environments did the developer work with yesterday?

TC6 Which particular file has been the most frequently modified one by
a developer during the whole previous year?

TC7 Did the developer write source code over the last week more frequently in the
mornings or in the evenings?

TC8 For how long did the developer use the browser after 11 o’clock?

TC9 Try to identify some habit in the developer’s behaviour within the last month.
TC10 There are a developer’s activities that do not relate to the actual development.

If they indeed occur, find out when they started, how long they lasted and
what is their nature. Choose a single August day in 2014.

Table 3 shows the success rates of tasks completion (within the allotted time limit)
– the test participants completed most of the required tasks on time for both of the
compared tools. Moreover, we noticed that the test participants frequently had
problems with initial tasks, which took them longer than expected. This may be
caused by a lack of intuitiveness of the tool in the initial phase. Keeping the main
goal of this research in mind, i.e., to facilitate explorative analysis, the TC9 task
was the most critical one. Our IVDA tool has higher potential to analyse
monitored and visualised data, and to seek new information from it. Moreover,
IVDA offers information, which other visualising tools do not. One of the
interesting feedbacks from one participant was that she became curious after
experiments and started to explore the data herself to answer her own questions.

In Figure 3, the graphs reveal information about the logged developer “Puma”. It
appears “Puma” mostly writes code during working days. There are a few days
when “Puma” works really hard (maybe refactoring some code since a lot of lines
of the code were changed). But there are also days (and even weeks), when
“Puma” uses only the web browser. The gap in August suggests that Puma was on
vacation.

A
. K

ovarova e
t a

l.
V

isualising S
oftw

are D
evelopers’ A

ctivity Logs to F
acilitate E

xplorative A
nalysis

– 172 –

Figure 3

Overview of work by a developer “Puma” within a timeframe of 6 months –

columns in graphs depict cumulated number of visited domains and edited lines of code per day

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 173 –

Table 3

Success rate of tasks TC1-TC10 completion in IVDA and ManicTime (%)

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10

IVDA 85 100 85 100 57 100 100 85 100 100

ManicTime 100 100 100 57 100 85 85 85 57 71

Graphs in Figure 4 show that different developers work differently during the
same time period. “Jaguar” edited hundreds lines of code during selected days.
“Puma” worked a lot with a browser – probably searching for something. In both
graphs it is clearly visible that both of them are more active during the day and
resting during the night. No regularities like lunch breaks, meetings, etc. can be
found in this part of a year, but in our dataset there are other time periods, where
such events are visible.

Figure 4

Comparison of two developers “Puma” and “Jaguar” over one week –the number of visited domains

together with the number of edited lines, both cumulated per hour

Graphs in Figure 5 depict columns of different widths since the activities are
cumulated per continuous activity (either continuous in a web browser or
continuous in IDE). This type of visual representation helps the explorer quickly
find the most active periods in a developer’s working day – the highest and the
widest columns. As the example of the developer “Puma” shows, developers' days
can vary widely – there is a different time of day for the highest number of edited
lines of code, different amounts of visited domains and different ratios of these
two activities. Although these three days look so different, they have also
something in common – the Pareto principle also plays a role here: it looks like
the most active periods cover 20% of the developer’s working day and during
these peaks, 80% of their activities are completed.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 174 –

In another type of graph one can try to find an answer to the following question:
“Does the number of edited lines of the code depend on the time the developer
spent using a web browser when writing it?” As we can see in Figure 6, there is no
dependency. However, we can postulate that when this developer spends more
than 20 minutes using a browser, they are probably not writing a code.

Figure 5

Number of visited domains together with number of edited lines by developer “Puma”,
both cumulated per continuous activity, within three subsequent days

Figure 6

Scatter graph, where every point represents the duration of the web browser activity which was

immediately followed by a depicted amount of source code changes in IDE

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 175 –

Conclusions

The work presented in this paper contributes to the methods of better
understanding a software developer’s activities. Understanding them is vitally
important during software evolution. In development, a project manager can better
reassign tasks and allocate resources. In maintenance, any revealed code
dependencies suggest places for a possible remedy. Activities emerge as high level
outcomes of exploratory analysis of low level data, logging a developer’s rather
elementary actions. These elementary actions are such that many of them occur
within small periods of time. As a result, logging them also requires some kind of
pre-processing, since without reduction, storing them would be too prohibitive.
This is essentially one of the characteristics of Big Data.

Software development is a creative process, which together with maintenance are
the two most extensive elements of a software project. A software developer, as an
executor committed to bringing specifications and ideas into usable product, is
often difficult to monitor, evaluate and reason upon identified information, in
order to support the particular software project meeting the deadlines on time and
in acceptable quality. As we pointed out, this motivates current research in
software engineering to employ new approaches for monitoring software
development directly on the level of interaction events performed by developers in
tools that they use during their work.

Our contribution is to transform low level logged data into higher level
information on activities and then to attempt various schemes of visualisation in
order to facilitate better understanding of the data. We employ interactive
visualisation in a customizable manner to find answers to various interested
questions of team leaders or software developers. We understand visualisation as
a tool to open the way to explorative analysis of a software developer’s activity.
We described explorative analysis as a three step process, depicting the
importance of a proper visualisation tool. We devised a number of simple graph
schemes. They visualise the partially processed data and allow a human analyst to
make assumptions by generalising what they see in visualising graphs. We applied
the devised graph schemes to data gathered within the project PerConIK that we
have been participating in over the last four years. We devised and implemented
the interactive visualisation tool IVDA. User-defined graphs generated by the tool
show information about activities, developers' actions and their metrics, which a
team leader may use to identify possible causes of problems, delays in delivering
results, anomalies and trends in activities of developers in a team. Furthermore,
this tool may help any scientist to endorse or refute assumptions about a software
developer’s activity. By inspecting the visualised data, the analyst is able to gain
much useful information on the software development of a particular project.

Since data that can be received by logging is way below the level any analysis of
software development should be performed, one challenge for future work is to
further automate identification of developers' activities from interactive events.

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 176 –

Such identification, especially when accomplished in real-time during
a developer’s work, may support not only a team leader or scientist in answering
hypotheses, but also developers themselves before committing their results to
revision control systems or when describing completed tasks in task management
systems. Developers often work on several development tasks, more or less
arbitrarily, that may tangle them into composite change (commit) in the end. Such
tangled changes in an RCS are difficult to review, describe, or merge with other
changes. Existing approaches attempt to identify and untangle such changes by
analysing a static snapshot of commit history. However, we argue that the
approach of doing so in real-time is required, to prevent a software developer from
tangling their changes even before committing them to an RCS.

Acknowledgement

This work was supported by the Research and Development Operational
Programme for the project Research of methods for acquisition, analysis and
personalized conveying of information and knowledge, ITMS 26240220039, co-
funded by the ERDF. This work was also partially supported by the Scientific
Grant Agency of The Slovak Republic, Grant No. VG 1/0752/14.

References

[1] Bieliková, M., Polášek, I., Barla, M., Kuric, E., Rástočný, K., Tvarožek, J.,
Lacko, P.: Platform Independent Software Development Monitoring:
Design of an Architecture. In: Proc. of 40th International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM
2014) Springer-Verlag, 2014, pp. 126-137

[2] Burch, M., Diehl, S., Weissgerber, P.: EPOSee – A Tool For Visualizing
Software Evolution. In: Proc. of the 3rd IEEE International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT 2005)
IEEE, 2005, pp. 1-2

[3] Collberg, C., Kobourov, S., Nagra, J., Pitts, J., Wampler, K.: A System for
Graph-based Visualization of the Evolution of Software. In: Proc. of the
2003 ACM Symposium on Software Visualization (SoftVis ’03) ACM,
2003, pp. 77-86

[4] Erra, U., Scanniello, G., Capece, N.: Visualizing the Evolution of Software
Systems Using the Forest Metaphor. In: Proc. of the 16th International
Conference on Information Visualisation (IV 2012) IEEE, 2012, pp. 87-92

[5] Garzo, A., Benczur, A. A., Sidlo, C. I., et al.: Real-time Streaming Mobility
Analytics. In: Proc. of the 2013 IEEE International Conference on Big
Data, IEEE, 2013, pp. 697-702

[6] Gu, Z., Schleck, D., Barr, E. T., Su, Z.: Capturing and Exploring IDE
Interactions. In: Proc. of the 2014 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software
(Onward! 2014) ACM, 2014, pp. 83-94

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 177 –

[7] Hanjalic, A.: ClonEvol: Visualizing Software Evolution with Code Clones.
In: Proc. of the 1st IEEE Conference on Software Visualization (VISSOFT
2013) IEEE, 2013, pp. 1-4

[8] Hindle, A., Ming Jiang, Z., Koleilat, W., Godfrey, M. W., Holt, R. C.:
YARN: Animating Software Evolution. In: Proc. of the 4th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT 2007) IEEE, 2007, pp. 129-136

[9] Kapec, P.: Knowledge-based Software Representation, Querying and
Visualization. In: Information Sciences and Technologies. Bulletin of the
ACM Slovakia, Vol. 3, No. 2, Slovak University of Technology Press,
Bratislava, Slovakia, 2011, pp. 1-11

[10] Kersten, M., Murphy, G.C.: Using Task Context to Improve Programmer
Productivity. In: Proc. of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (SIGSOFT ‘06/FSE-14) ACM,
2006, pp. 1-11

[11] Konôpka, M., Bieliková, M.: Software Developer Activity as a Source for
Identifying Hidden Source Code Dependencies. In: Proc. of the 41st
International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2015) Springer-Verlag, LNCS 8939, 2015,
pp. 449-462

[12] Konôpka, M., Návrat, P.: Untangling Development Tasks with Software
Developer’s Activity. To appear in: Proc. of the 2nd International Workshop
on Context for Software Development (CSD 2015) in companion with the
37th International Conf. on Software Engineering (ICSE 2015) IEEE Press,
Florence, Italy, 2015, 2 p.

[13] Kuric, E., Bieliková, M.: Estimation of Student’s Programming Expertise.
In: Proc. of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM ’14) ACM, 2014, Article
No. 35

[14] Maalej, W., Fritz, T., Robbes, R.: Collecting and Processing Interaction
Data for Recommendation Systems, in Recommendation Systems in
Software Engineering, Robillard, M. P., Maalej, W., Walker, R.J.,
Zimmermann, T. (Eds.) Springer Berlin Heidelberg, 2014, pp. 173-197

[15] Maletic, J. I., Marcus, A., Collard, M. L.: A Task Oriented View of
Software Visualization. In: Proc. of the 1st Int. Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT 2002) IEEE, 2012, p.
32

[16] Minelli, R., Mocci, A., Lanza, M.: Visualizing Developer Interactions. In:
Second IEEE Working Conference on Software Visualization (VISSOFT
2014) IEEE, 2014, pp. 147-156

[17] Novais, R., Lima, C., de F. Carneiro, G., Paulo, R. M. S., Medonca, M.: An

A. Kovarova et al. Visualising Software Developers’ Activity Logs to Facilitate Explorative Analysis

 – 178 –

Interactive Differential and Temporal Approach to Visually Analyze
Software Evolution. In: Proc. of 6th IEEE International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT 2011)
IEEE, 2011, pp. 1-4

[18] Omoronyia, I., Ferguson, J., Roper, M., Wood, M.: Using Developer
Activity Data to Enhance Awareness during Collaborative Software
Development. In: Computer Supported Cooperative Work (CSCW) Vol.
18, Issue 5-6, Springer Netherlands, 2009, pp. 509-558

[19] Rástočný, K., Bieliková, M.: Enriching Source Code by Empirical
Metadata. In: Proc. of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM ’14) ACM,
2014, Article No. 67

[20] Roehm, T., Maalej, W.: Automatically Detecting Developer Activities and
Problems in Software Development Work. In: Proc. of 33rd International
Conference on Software Engineering (ICSE 2012) IEEE, 2012, pp. 1261-
1264

[21] Roehm, T., Gurbanova, N., Bruegge, B., Joubert, C.: Monitoring User
Interactions for Supporting Failure Reproduction. In: Proc. of the 21st IEEE
International Conference on Program Comprehension (ICPC 2013) IEEE,
2013, pp. 73-82

[22] Sekerák, L.: Interactive Visualization of Developer’s Actions. In: Proc. of
the 11th Student Research Conf. on Informatics and Information
Technologies (IIT.SRC 2015) Slovak University of Technology Press,
Bratislava, Slovakia, 2015, pp. 281-286

[23] Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations. In: Proc. of the 1996 IEEE Symposium on
Visual Languages, IEEE, 1996, pp. 336-343

[24] Zhang, J., Huang, M. L.: 5Ws Model for Big Data Analysis and
Visualization. In: Proc. of 16th IEEE International Conference on
Computation Science and Engineering (CSE 2013) IEEE, 2013, pp. 1021-
1028

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 179 –

Adaptive Collaborative Filtering Based on

Scalable Clustering for Big Recommender

Systems*

O-Joun Lee†, Min-Sung Hong†, and Jason J. Jung‡

School of Computer Engineering, Chung-Ang University
Heukseok-Dong, Dongjak-Gu, 156-756, KS013, Seoul, Korea
E-mail: {concerto34, minsung87, j3ung}@cau.ac.kr

Juhyun Shin

Department of Control and Measuring Robot Engineering, Chosun University
Seoseok-dong, Dong-gu, 501-759, KS008, Gwangju, Korea
E-mail: jhshinkr@chosun.ac.kr

Pankoo Kim

Department of Computer Engineering, Chosun University
Seoseok-dong, Dong-gu, 501-759, KS008, Gwangju, Korea
E-mail: pkkim@chosun.ac.kr

Abstract: The large amount of information that is currently being collected (the so-called
“big data”), have resulted in model-based Collaborative Filtering (CF) methods to
encountering limitations, e.g., the sparsity problem and the scalability problem. It is
difficult for model-based CF methods to address the scalability-performance trade-off.
Therefore, we propose a scalable clustering-based CF method in this paper that can help
provide a balance by re-locating elements in the cluster model. The proposed method is
evaluated by performing a comparison against existing methods in terms of measurements
for the Mean Absolute Error (MAE) and response time to assess the performance and
scalability. The experimental results show that the proposed method improves the MAE and
the response time by 50.79% and 48.25%, respectively.

*
 This paper is significantly extended from an earlier version presented at the 3rd

International Conference on Smart Media Applications in December 2014.
†
 These authors contributed equally to this work as the first author.

‡
 Corresponding author.

O-J. Lee et al. Adaptive Collaborative Filtering Based on Scalable Clustering for Recommender Systems

 – 180 –

Keywords: Big data; Recommender System; Adaptive System; Clustering-based
Collaborative Filtering; Scalable System

1 Introduction

Collaborative filtering (CF) can be used to find a set of the relevant items that are
assumed to be the most appropriate for a target user. Most CF approaches have
analyzed user ratings to discover the various relationships between users, between
items, and between users and items [1-4]. Since these methods mainly focus on
collecting more user ratings (without integrating much external knowledge of a
specific domain), we have realized that they have some fundamental limitations.
The first limitation is the sparsity problem (which is also called the cold-start
problem and first-users/items problem). If the density of the user rating matrix is
too low and cannot represent users’ preferences, the performance of the CF
method will decrease [2].

The second limitation lies in the scalability problem (particularly, the big data
issue). As the number of users and the number of items in a CF-based
recommender system increase, the computation time to build user/item subsets
exponentially increases [5].

A number of methods have been proposed to solve these problems, and these
methods can be categorized into two main groups: model-based CF methods and
hybrid CF methods [6-7]. Table 1 shows the advantages and disadvantages of
these [8].

Table 1

Advantages and disadvantages of model-based CF and hybrid CF

 Advantages Disadvantages

Model-
based
CF

∙ better addresses the sparsity,
scalability and other problems

∙ improves performance

∙ expensive model-building
process

∙ trade-off between performance
and scalability

Hybrid
CF

∙ improves performance

∙ overcomes CF problems, such as
sparsity and gray sheep

∙ increased complexity

∙ needs external information that is
usually not available

As can be seen, these cannot solve all the fundamental problems of the CF
method, i.e., data sparsity problem and scalability problem. For the Model-based
CF, these methods exhibit a trade-off between the predictive performance and the
scalability since a reduced coverage results in a rating table that is relatively
sparse. Furthermore, the cold-start problem still exist. The cold-start problem and
the first-user/item problem are simply caused by the absence of 1data, so the
model-based CF cannot be a fundamental solution.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 181 –

Hence, the various hybrid CF methods that combine model-based CF and
Content-Based Filtering (CBF) have been proposed in order to address these
problems. However, most of these methods are too complicated to implement and
external knowledge or data are required. If an excess of external data is necessary,
then the applicable domain for the system will be restricted.

This paper proposes Adaptive Collaborative Filtering Based on Scalable
Clustering (ACFSC) which is focusing on solving scalability problem by reducing
time complexity to compose neighborhood. Also, it improves the data sparsity
problem by making users’ and items’ feature vectors incrementally learning.

This method adopts three major policies: the use of minimal external data,
combining, and re-locating. First, to maximize the adaptable domain of the
system, we use the minimal external data, such as the user profile and the item
metadata. Second, rating data and external data are combined to solve the cold-
start problem and the first user/item problem. Third, newly-arrived rating data is
used to re-locate users and items to form more appropriate clusters in order to
solve the reduced coverage issues.

Based on the fore-mentioned policies, implementation of this method is composed
of four parts, as shown in Fig. 1. The parts interact with each other following a
cyclic architecture. It makes user ratings gradually improve the cluster models.

Figure 1

Conceptual Composition of the ACFSC

1) Scalable clustering: this step creates a cluster model for users/items that
is based on feature vectors of them. It reduces the time complexity to
produce user/item subsets. Feature vectors of these are composed by
combining user profile data, item metadata, and user ratings. This step is
intended to solve the cold-start and first-user/item problems.

2) Recommendation: this step recommends the top-N items that are
selected according to the preference of the users who are included in the
same user subsets. In order to minimize the system load, most tasks to
create subsets proceed as in the first step.

3) Preference prediction: this step predicts users’ missing preference
information by using clusters of users and items to resolve the problems
caused by the sparsity of the user rating matrix.

O-J. Lee et al. Adaptive Collaborative Filtering Based on Scalable Clustering for Recommender Systems

 – 182 –

4) Learning: this step resolves the difficulty in quantifying the qualitative
characteristic of the users and items through the use of learning feature
vectors of users and items.

The remainder of this paper is organized as follows. In Section 2, we present an
outline of related work. In Section 3, we introduce the Scalable clustering method
to create the recommendation model as described in the first step above. In
Section 4, the other steps are described to implement the Scalable Collaborative
Filtering techniques. In Section 5, we evaluate the performance by comparing the
results for the proposed method against those of others, and we discuss the results
of the experiments. Finally, the conclusion provides a summary of the proposed
algorithm and outlines future work.

2 Related Work

2.1 Model-based CF

In order to solve the scalability problem, various model-based CF methods based
on machine learning or data mining models have been proposed, e.g., Bayesian
belief nets, clustering models, latent semantic indexing, sparse factor analysis, and
dimensional reduction. These use rating data to estimate or learn a model to
predict users’ preferences and can partially mitigate the scalability problem and
the sparsity problem and improve the performance of the recommender systems.
However, these have not yet been able to overcome the trade-off between
performance and scalability and the cold-start problem still exists. The cold-start
problem and the first-user/item problem are caused by the absence of data. Thus,
model-based CF is not enough to solve them. For the moment, we introduce two
representative approaches for these methods: clustering-based methods and
dimensional reduction-based methods.

Clustering-based methods that use a cluster model to reduce the time complexity
have been proposed. These methods build a cluster model by using correlations
and similarities and use clusters that are built as subsets of users or items. Li and
Murata [22] presented a CF method that is based on multi-dimensional clustering
which involves clustering user/item profiles that are generated as background data,
followed by clustering pruning and preference prediction through the weighted
average of neighbors. This method has an advantage in that it maintains the
balance in the performance of the recommendations, even when a growing
diversity of items is handled. However, it still has the same limitations as the
model-based CF method. Bellogin and Parapar [23] implemented in a normalized
cut (N-Cut), a graph cut-based clustering solution, to facilitate the formation of
similar user groups. Despite the improvement in performance over existing CF
methods, the solution was unable to address the reduced coverage issue. Although

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 183 –

these kinds of methods are effective in solving the scalability problem of CF, they
have two additional limitations. First, the costs of building cluster models are
higher than for CF, so the models are hard to update dynamically. Second, since
the target areas to compose the user/item subsets are restricted by the clusters, a
reduced coverage problem occurs and the performance of the system deteriorates.

Dimensional reduction-based methods have also been proposed. These methods
aim to cancel the noise in the rating matrices. Buried correlation information is
generated between the users and the items underline. Zhong and Li [10] suggested
a unified method that combines the latent and external features of users/items to
ensure the accuracy in the predictive preference. A probabilistic latent semantic
analysis is used to extract the latent features of the historical rating data. Luo et al.
[11] implemented an incremental CF recommender system based on Regularized
Matrix Factorization. This method supports incremental updates for the trained
parameters as new ratings arrive. These methods partially solve the sparsity
problem, including the cold-start problem and the first-user/item problem.
However, the scalability problem becomes aggravated.

2.2 Combining Model-based CF and Content-based Filtering

The data sparsity problem in the model-based CF can be addressed through hybrid
CF methods, which have been widely studied by combining model-based CF and
Content-Based Filtering (CBF). These methods use external data to address the
cold-start problem and the first-user/item problem of the model-based CF.

Parallel methods that use model-based CF and CBF at the same time have been
suggested. These methods print out top-N items by integrating the results of
model-based CF and CBF. Park et al. [13] suggested single-scaled hybrid filtering
that uses a weight decided through an experiment, and this method showed a
slight improvement in performance. Shen et al. [14] presented a hybrid filtering
method that applied an optimized weight. This method used a simple learning
algorithm based on user feedback to find more optimized weights. These methods
are effective in solving the remaining problems for model-based CF. However,
these methods do not provide improvements in terms of the trade-off between
performance and the scalability, and also introduce two additional problems. First,
they depend on the CBF at the initial time and for the first-user/item, so the
overall performance can be comparatively decreased. Second, they need to
dynamically update the weights as the data grows, but it is difficult to dynamically
allocate time to update or optimize the system.

At the same time, other methods have been proposed to use external data to build
corresponding models. These methods initially use external data when rating data
does not yet exist, and the system functions by using rating data after the model
has been built. Cho et al. [9] proposed a map-based personalized recommender
system that uses Bayesian Networks built by an expert with a parameter that was
learned from the dataset. Contextual information was collected (e.g., location,

O-J. Lee et al. Adaptive Collaborative Filtering Based on Scalable Clustering for Recommender Systems

 – 184 –

time, weather), and the user request was provided a mobile device. Campos et al.
[17] employed Bayesian networks to combine the characteristics of both CBF and
CF and to generate more accurate recommendations by using probabilistic
reasoning to compute the probability distribution over the expected rating. These
methods are remarkable in solving the cold-start problem. However, it is hard to
find external data that can be adapted to the appliance domain. If the external data
is not adaptable, the performance of the system will severely decline.

On the other hand, other methods that integrate external data with user rating data
have been presented. These methods use external data as the rating data or
transform the external data into rating data. Bogers and Bosch [16] combined CF
and CBF by using tags in social bookmarking websites. They examined how to
incorporate tags and other metadata into a hybrid CBF/CF algorithm by
overlapping the traditional user-based and item-based similarity measures with the
tags. Hu and Pu [18] proposed a method that combines the personality
characteristics of the users into traditional rating-based similarity computations for
user-based collaborative filtering systems. Kim et al. [19] proposed a new
approach to model users in a collaborative manner by using user-generated tags.
This can be exploited in a recommender system by leveraging user-generated tags
as preference indicators. These methods therefore effectively improve the sparsity
problem. However, logistic evidence to transform external data as rating data are
insufficient, and in addition, the scalability problem is not solved.

3 Scalable clustering with Data Streams

The scalable clustering method is conducted in three steps. In the first step, each
cluster model for users and items is created according to their feature vectors. This
step creates their clusters using the Expectation Maximization (EM) algorithm.
The maximum likelihood is estimated based on the Gaussian-Bayesian
Probabilistic Model and the cosine similarity, and it is formulated as 𝐿𝐶𝑖,𝑥𝑗 = 𝑓(𝑥𝑗 , 𝜇𝑖 , 𝜎𝑖) × 1𝑁𝐶𝑖 ∑ 𝑅𝑗∙𝑅𝑙∥𝑅𝑗 ∥ ∥𝑅𝑙∥𝑁𝐶𝑖𝑙=1 , (1)

where 𝐶𝑖 indicates the 𝑖 -th cluster, 𝑥𝑗 indicates the 𝑗 -th element, 𝜇𝑖 and 𝜎𝑖 represent the average and the standard deviation of the elements in the 𝑖-th
cluster 𝐶𝑖 , and 𝑅𝑗 is a rating vector of element 𝑗. 𝑁𝐶𝑖 represents the number of

elements included in the 𝑖-th cluster. 𝑓(𝑥𝑗 , 𝜇𝑖 , 𝜎𝑖) indicates the probability that the 𝑗 -th element is included in the 𝑖 -th cluster. 𝐿𝐶𝑖,𝑥𝑗 indicates the maximum

likelihood of the 𝑗-th element for the 𝑖-th cluster.

In the second step, the inter-cluster preferences between each of the user-clusters
and item-clusters are estimated. This indicates the representative value of the
preference of a particular user cluster for particular item-cluster, and it is
formulated as

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 185 –

𝐶𝑃𝑖,𝑗 = ∑ ∑ 𝑊𝑈𝐶𝑖 ,𝑢𝑙 × 𝑊𝐶𝐶𝑗,𝑐𝑛 𝑁𝑐𝑐𝑗𝑛𝑁𝑢𝑐𝑖𝑙 × 𝑅𝑢𝑙, 𝑐𝑛, (2)

where 𝑈𝐶𝑖 and 𝐶𝐶𝑗 indicate the 𝑖-th user-cluster and the 𝑗-th item-cluster. 𝑢𝑙 and 𝑐𝑛 indicate the 𝑙-th user and the 𝑛-th item. 𝑅𝑢𝑙 ,𝑐𝑛 indicates the rating for user 𝑢𝑙
and item 𝑐𝑛 , 𝑊𝑈𝐶𝑖,𝑢𝑙 represents the likelihood of the user 𝑢𝑙 for the user-cluster 𝑈𝐶𝑖, and 𝑊𝐶𝐶𝑗,𝑐𝑛 is the likelihood of the item 𝑐𝑛 for the item-cluster 𝐶𝐶𝑗. 𝐶𝑃𝑖,𝑗 is

the inter-cluster preference for the user-cluster 𝑈𝐶𝑖 for item-cluster 𝐶𝐶𝑗.

In the third step, a user-item preference matrix is created. This matrix marks the
preferences that are predicted using the proposed method, and it is different from
the rating matrix that simply marks the rating score entered by the users. The
prediction of the user-item preference is estimated according to the inter-cluster
preferences and the user ratings, and it is formulated as 𝑃(𝑖𝑗|𝑢𝑖)(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝑃(𝑈𝐶𝑙|𝑢𝑖)𝑃(𝐼𝐶𝑚|𝑖𝑗)𝐶𝑃𝑙,𝑚𝑅𝑖,𝑗, (3)

where 𝑢𝑖 and 𝑖𝑗 indicate the 𝑖 -th user and the 𝑗 -th item, the user-cluster 𝑈𝐶𝑙
includes the 𝑢𝑖, and the item-cluster 𝐼𝐶𝑚 includes the 𝑖𝑗. In addition, 𝑃(𝑈𝐶𝑙|𝑢𝑖) is

the probability that 𝑢𝑖 belongs to the 𝑈𝐶𝑙, and 𝑃(𝐼𝐶𝑚|𝑖𝑗) is the probability that 𝑖𝑗

belongs to the 𝐼𝐶𝑚. 𝐶𝑃𝑙,𝑚 is the inter- cluster preference of the 𝑈𝐶𝑙 for the 𝐼𝐶𝑚. 𝑃(𝑐𝑗|𝑢𝑖)(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) represents the predicted preference for the 𝑢𝑖 corresponding

to 𝑖𝑗.

4 Scalable Collaborative Filtering

The scalable collaborative filtering is composed of three modules. 1) The first
module recommends the top-N items based on the user-item preference matrix, 2)
the second module predicts the missed rating scores in the rating matrix, and 3)
the third module enables the feature vectors of the users and the items that are
learned by using feedback from the users.

4.1 Recommendation Module

This module chooses the top-N items in order to recommend a particular user. To
improve scalability, a ranking of the item-clusters is referenced for a user-cluster
that includes the user. This process consists of two steps.

1) In the first step, the item-clusters are ordered according to the inter-cluster
preferences for the user-cluster that includes the target user.

2) In the second step, the items are added to the top-N list sequential search of
the ordered item-clusters. The items that previously received a high
preference are selected, and if no items received a preference in the search
range, the search range is shifted to the next item-cluster.

O-J. Lee et al. Adaptive Collaborative Filtering Based on Scalable Clustering for Recommender Systems

 – 186 –

4.2 Preference Prediction Module

This module predicts the missed rating scores through a hybrid preference
prediction. The prediction is performed by using the weighted average of two
widely used prediction methods: user-oriented prediction and item oriented
prediction. This process is composed of three steps.

In the first step, similarity matrices are created for both the users and the items.
Each component of the matrices has a similarity between the users or items, and
the similarity is measured by using a cosine coefficient of the rating vectors.

In the second step, the two previously mentioned prediction methods make each of
the prediction results by using the weighted average of the similarities. This step is
formulated as 𝑝𝑎,𝑚(𝑢) = 𝑅𝑎̅̅̅̅ + ∑ (𝑅𝑛,𝑚− 𝑅𝑎̅̅ ̅̅)×𝑢𝑤𝑎,𝑛𝑛∈𝑈𝐶𝑎 ∑ 𝑢𝑤𝑎,𝑛𝑛∈𝑈𝐶𝑎 (4) 𝑝𝑎,𝑚(𝑖) = ∑ 𝑅𝑎,𝑙 𝑐𝑤𝑚,𝑙𝑙∈𝐶𝐶𝑚∑ 𝑐𝑤𝑚,𝑙𝑙∈𝐶𝐶𝑚 , (5)

where 𝑈𝐶𝑎 indicates the user-cluster that includes user 𝑎, and 𝐶𝐶𝑚 indicates the
item-cluster that includes item 𝑚 . 𝑢𝑤𝑎,𝑛 and 𝑐𝑤𝑚,𝑙 represent the similarities

between users 𝑎 and 𝑛 and between items 𝑚 and 𝑙. 𝑅𝑎̅̅̅̅ represents the average of
the ratings inserted by user 𝑎. 𝑅𝑛,𝑚 and 𝑅𝑎,𝑙 indicate ratings of user 𝑛 for the item 𝑚 and of user 𝑎 for the item 𝑙 , respectively. 𝑝𝑎,𝑚(𝑢) and 𝑝𝑎,𝑚(𝑖) indicate the

predicted rating scores for user 𝑎 and item 𝑙 estimated by the user-oriented and
item oriented method, respectively.

In the third step, the hybrid preference prediction method deducts the predicted
rating score by combining the results of the preceding step according to the
weighted average. The weighting is dynamically decided based on the consistency
of the source datasets. This step is formulated as 𝑝𝑎,𝑚(ℎ𝑦𝑏𝑟𝑖𝑑) = 𝛼 × 𝑝𝑎,𝑚(𝑢) + (1 − 𝛼) × 𝑝𝑎,𝑚(𝑖) (6) 𝛼 = 𝜎(𝐶𝐶𝑚) 𝜎(𝑈𝐶𝑎) + 𝜎(𝐶𝐶𝑚)⁄ , (7)

where 𝜎(𝑈𝐶𝑎) and 𝜎(𝐶𝐶𝑚) are standard deviations of the clusters that include
user 𝑎 and the item 𝑚, respectively. 𝑝𝑎,𝑚(ℎ𝑦𝑏𝑟𝑖𝑑) is the predicted rating score for

user 𝑎 and item 𝑚, and 𝛼 is the dynamic weighting.

4.3 Learning Module

This module provides the feature vectors of users and items that are learned
according to the rating data. This process consists of three steps: normalizing,
learning, and re-locating.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 187 –

In the first step, the newly-arrived ratings are normalized by the Gaussian
Probability Model that is composed of the historical user ratings. Since standard
points and measures of the rating scores vary across individuals, we need to unify
these. This step is formulated as 𝑝𝑟𝑒𝑅𝑎,𝑚 = (𝐹𝑎,𝑚 − 𝐹𝑎⃗⃗ ⃗) 𝜎(𝐹𝑎)⁄ (8)

𝑅𝑎,𝑚 = { 1, 𝑖𝑓 𝑝𝑟𝑒𝑅𝑎,𝑚 ≥ 10𝑝𝑟𝑒𝑅𝑎,𝑚/20 + 0.5, 𝑖𝑓 |𝑝𝑟𝑒𝑅𝑎,𝑚| < 100, 𝑖𝑓 𝑝𝑟𝑒𝑅𝑎,𝑚 ≤ −10 (9)

where 𝐹𝑎,𝑚 represents a newly arrived rating for user 𝑎 and item 𝑚, 𝐹𝑎⃗⃗ ⃗ and 𝜎(𝐹𝑎)

are the average and standard deviation of the historical ratings for user 𝑎 ,
respectively, 𝑝𝑟𝑒𝑅𝑎,𝑚 indicates the preprocessed and non-normalized rating, and 𝑅𝑎,𝑚 indicates the normalized rating.

In the second step, mutual complementary learning between the feature vector of
the user who inserted the rating and the item which was rated by user is performed.
This step uses the normalized rating as a weighting and is formulated as 𝑈𝑉𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑅𝑎,𝑚 × 𝐶𝑉𝑚 + (1 − 𝑅𝑎,𝑚) × 𝑝𝑟𝑒𝑈𝑉𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗ (10) 𝐶𝑉𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑅𝑎,𝑚 × 𝑈𝑉𝑎 + (1 − 𝑅𝑎,𝑚) × 𝑝𝑟𝑒𝐶𝑉𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , (11)

where 𝑈𝑉𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 𝐶𝑉𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ are feature vectors for user 𝑎 and item 𝑚.

In the third step, the user who inserted the rating and the item which is rated by
user are re-located to more suitable clusters. This step does not rebuild the cluster
model, but rather just searches the clusters with greater likelihood following the
change in the feature vectors.

5 Evaluation and Discussion

In this section, we present the results for two experiments that aimed to investigate
two different issues: the cold-start problem and the scalability problem. In the first
experiment, ACFSC is compared against existing methods to assess whether the
proposed method provides better performance with a sparse rating table. Our
conjecture is that the ACFSC should show better performance during the initial
stage, and the gap between the ACFSC and the other methods should subsequently
become smaller.

In the second experiment, ACFSC is compared against existing methods to verify
whether these have an improved robustness for a high-load environment. Our
hypothesis is that when a larger scale is obtained, this system should be more
robust than the others. In summary, the experiments address the following
research questions.

O-J. Lee et al. Adaptive Collaborative Filtering Based on Scalable Clustering for Recommender Systems

 – 188 –

 Q1: Can ACFSC improve the performance of an initial system that has an
extremely sparse rating matrix?

 Q2: Is ACFSC robust for use in the high-load environment of a large-scale
system?

5.1 Experimental Environment

The experiments were conducted on representative service over 6 months based
on the Ameba recommendation engine that was developed by the authors for a
service providing wellness content. As a comparison group, we selected the
following hybrid CF methods: Single-Scaled Hybrid Filtering (SSF) [13], Hybrid
Recommendation System Based on Usage frequency (HFUF) [21], and
Reinforcement Learning Algorithm Based Hybrid Filtering (RLHF) [14]. We then
implemented a simulator based on Ameba for the subject methods.

The environment for the experiments consisted of an Android application and
Windows server. A server was implemented with Apache Tomcat 7.0 and
Windows 7. The DBMS of the server was MySQL 5.5. The integrated
development environment (IDE) of the server was Visual Studio 2010, and the
language used was Visual C++. A client was implemented on Android, and
Eclipse Indigo was the IDE for the client with JAVA as the language for the
Android SDK.

For the experimental settings, the subject user group was composed so that the age
of the subjects was evenly distributed. This group consisted of the 150 people
between 20 and 60 years of age who were randomly selected from students and
faculty members of Dankook University. The subject item set was composed in
such a way for the characteristics of the subjects to be spread over various areas.
The set consisted of the 347 wellness content items, including cultural, tourism,
and leisure content that were spread over the metropolitan areas of South Korea.

5.2 Improvement of Cold-start Problem

In order to assess the improvement in the cold-start problem, we measured the
Means Absolute Error (MAE) as the number of users increased. The MAE is
widely used to measure the performance of recommender systems [20, 21]. It is an
average of the absolute deviations between a predicted ranking and an actual
ranking for the recommended items. This measure is formulated as 𝑀𝐴𝐸 = ∑ |𝑟𝑖 − 𝑝𝑖|𝑁𝑖=1 𝑁⁄ , (12)

where 𝑁 is the number of items, and 𝑝𝑖 and 𝑟𝑖 represent the predicted ranking and
the real ranking of 𝑖-th item. To obtain the experimental data, we make the subject
user group, excluding the ordinary users, insert rating scores for all items that
were recommended.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 189 –

Figure 2

MAE of each Method according to users’ number

Fig. 2 shows the MAE for each method with respect to the number of users. In
addition, Table 2 represents the average, standard deviation, and range of the
MAE for the selected methods.

As shown in Fig. 2, ACFSC exhibits its greatest performance during the initial
time and also shows a comparatively steady performance after that. However, the
gap between ACFSC and the other methods gradually decreases as the number of
users increases. When the number of users is greater than 500, the methods show a
performance similar to that of RLHF, which shows a comparatively higher
performance than the other two methods. Also, when the number of users is higher
than 1000, the proposed method exhibits a lower performance than RLHF.

As shown in Table 2, ACFSC presents a more stable performance than the other
methods and also shows a slight improvement on average. ACFSC shows an
improvement of 50.79% relative to RLHF over the given range. Also, the average
MAE improved by 22.48%. In addition, we can make sure that the performance is
stable for the proposed method in terms of the standard deviation.

Table 2

Average, Standard Deviation and Range of MAE for selected methods

 SSF HFVF RLHF ACFSC

Average 2.516 1.956 1.899 1.472

Standard Deviation 0.778 0.907 1.038 0.562

Range 2.678 2.650 3.132 1.540

O-J. Lee et al. Adaptive Collaborative Filtering Based on Scalable Clustering for Recommender Systems

 – 190 –

With respect to Q1, we can claim that the proposed method improves the cold-
start problem. Also, since the problem of the first-user/item is caused by similar
reasons as the cold-start problem, we can say that the proposed method probably
can resolve the first-user/item problem as well. Nevertheless, we find that the
proposed method is not able to improve the performance of the CF in an
environment without the influence of cold-start problem. If we proceeded with the
experiment for over 1000 users, the proposed method would not show an
improvement in performance in this manner.

5.3 Robustness for Large Scale Service

In order to compare the robustness in a high-load environment, we measured the
average response time as the number of users increased. The response time is a
critical requirement for web-based services, such as a search engine and a
recommender system. This method is defined as the amount of time that is
required to provide a service. The gradient in the response time for the number of
users can reveal how scalable a recommender system actually is. The average of
the response time is then calculated based on the historical log of the server.

Fig. 3 represents the average for the response time of each method according to
the number of users. Table 3 shows the average, standard deviation, and the range
of the response time for the selected methods.

Figure 3

Average Response Time of each method according to the number of users

As shown in Fig. 3, we find that ACFSC shows a much shorter response time than
the other methods by excluding the initial time. In addition, it exhibits a
remarkably low and steady gradient. When the number of users is greater than 100,
it has much shorter response time than HFVF, which shows a shorter response

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 191 –

time than the other two methods. Furthermore, when the number of users is
greater than 900, ACFSC shows a stable gradient while the response time of
HFVF starts to exponentially increase. In particular, as mentioned above, when
the number of users is greater than 500, RLHF shows similar values as MAE with
the proposed method while we can see that the response time for RLHF
exponentially increases. On the other hand, ACFSC shows a linear increase at that
time.

In addition, as shown in Table 3, ACFSC presents a more stable response time
than the other methods, and also shows a remarkable improvement on average.
Our method improves by 48.25% on average, as compared with HFVF. Also, the
range improved by 74.18%, and furthermore, we can see clear improvement in the
standard deviation.

Table 3

Average, Standard Deviation and Range of Response Time for selected methods

 SSF HFVF RLHF ACFSC

Average 0.672 0.485 0.894 0.251

Standard Deviation 0.359 0.267 0.531 0.093

Range 1.131 0.980 1.587 0.253

With respect to Q2, we can make sure that the proposed method improves the
robustness of the system for use in a large-scale service. At the initial time,
ACFSC shows a similar response time as the others, but this is caused by the fact
that all of the other methods have extremely sparse rating matrices at that time.

5.4 Discussion

As comparing with SSF and RLHF, the proposed method (ACFSC) outperforms
the existing contents-based CF methods with respect to the data sparsity problem
and the scalability problem. SSF and RLHF tried to improve the data sparsity
problem by building CBF model based on metadata of items (i.e., genre, running
time, and so on). However, as shown in Fig. 2, the metadata cannot improve the
data sparsity problem enough since it can only reflect superficial features of items.
The proposed method solved this issue based on mutual learning between the
feature vectors of items and users. It makes an accuracy of the feature vectors
gradually better.

Also, in terms of the scalability problem, ACFSC overcomes a limitation of the
existing contents-based CF methods. As shown in Fig. 3, SSF and RLHF cannot
improve the scalability problem since they estimate user preference by combining
two independent filtering methods which are CF and CBF. On the other hand, the
proposed method improved the scalability problem based on cluster models of
items and users. It reduces time complexity to compose neighborhoods of items or
users. In case of original CF methods, the time complexity to build model is

O-J. Lee et al. Adaptive Collaborative Filtering Based on Scalable Clustering for Recommender Systems

 – 192 –

directly proportional to the number of items and users. However, in case of the
proposed method, the time complexity to build model is directly proportional to
the number of clusters of items and users.

Furthermore, as comparing with HFVF, ACFSC outperforms the existing rule-
based CF methods with respect to the fore-mentioned two problems. HFVF used
usage frequencies of items to improve the scalability problem. It extracted
association rules from the usage frequency and applied them to reduce the number
of target items to recommend (called as a coverage). As shown in Figs. 2 and 3, it
can improve the scalability problem partially, but it cannot improve the data
sparsity problem. Also, the proposed method reduces the coverages for both items
and users. However, it improves both the data sparsity problem and scalability
problem, since it reduces the coverages based on the cluster models built by
preferences of users and improves them gradually.

Conclusion

The exponential increase in information (the so-called “Big Data paradigm”) has
caused difficulties in searching for desirable information and in addressing the
increase in content. Therefore, the necessity of developing scalable recommender
systems is on the rise. In this paper, we have proposed a highly scalable method
(Adaptive Collaborative Filtering Based on Scalable Clustering) to guarantee
stable performance and robustness of a recommender system for use in a large-
scale system.

With respect to the two research questions that were previously mentioned, the
proposed method performed outstanding improvements. With respect to Q1, we
can claim that the proposed method improves system performance when there is a
cold-start problem. Also, since the first-user/item problem is caused due to reasons
similar to those of the cold-start problem, we can say that the proposed method
can probably resolve the first-user/item problem, too. With respect to Q2, the
proposed method was found to improve robustness for use in large-scale services.

Nevertheless, we also find that the proposed method cannot improve performance
in a CF environment that does not have the influence of the cold-start problem.
Our future work will therefore improve the clustering algorithm to improve
system performance not only during the initial time.

Acknowledgement

This Research was supported by the Chung-Ang University Research Scholarship
Grants in 2015. Also, this work was supported by the Human Resource Training
Program for Regional Innovation and Creativity through the Ministry of
Education and National Research Foundation of Korea (NRF-
2014H1C1A1066494).

References

[1] Lee, O. J., Hong, M. S., Lee, W. J., and Lee, J. D.: “Scalable Collaborative
Filtering Technique based on Scalable Clustering,” Journal of Intelligence
and Information Systems, Vol. 20, No. 2, 2014, pp. 73-92 (in Korean)

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 193 –

[2] Adomavicius, G., and Tuzhilin, A.: “Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and Possible
Extensions,” IEEE Transactions on Knowledge and Data Engineering, Vol.
17, No. 6, 2005, pp. 734-749

[3] Pirasteh, P., Hwang, D., and Jung, J. J.: “Exploiting Matrix Factorization to
Asymmetric User Similarities in Recommendation Systems,” Knowledge-
Based Systems, Vol. 83, 2015, pp. 51-57

[4] Pham, X. H., Nguyen, T. T., Jung, J. J., and Nguyen, N. T.: “<A, V>-Spear:
A New Method for Expert Based Recommendation Systems,” Cybernetics
and Systems, Vol. 45, No. 2, 2014, pp. 165-179

[5] Bhosale, N. S., and Pande, S. S.: “A Survey on Recommendation System
for Big Data Applications.” Data Mining and Knowledge Engineering, Vol.
7, No. 1, 2015, pp. 42-44

[6] Lee, N., Jung, J. J., Selamat, A., and Hwang, D.: “Black-Box Testing of
Practical Movie Recommendation Systems: A Comparative Study,”
Computer Science and Information Systems, Vol. 11, No. 1, 2014, pp. 241-
249

[7] Ren, X., Lin, J., Yu, X., Khandelwal, U., Gu, Q., Wang, L., and Han, J.:
“ClusCite: Effective Citation Recommendation by Information Network-
based Clustering,” Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 821-830

[8] Su, X., and Khoshgoftaar, T. M.: “A Survey of Collaborative Filtering

Techniques,” Advances in Artificial Intelligence, Vol. 2009, 2009, Article
421425

[9] Cho, S.B., Hong, J. H., and Park, M. H.: “Location-based Recommendation
System using Bayesian User’s Preference Model in Mobile Devices,”
Proceeding of the 4th International Conference on Ubiquitous Intelligence
and Computing (UIC 2007), Lecture Notes in Computer Science, Vol. 4611,
Hong Kong, China, July 11-13, 2007, pp. 1130-1139

[10] Zhong, J., and Li, X.: “Unified Collaborative Filtering Model based on
Combination of Latent Features,” Expert Systems with Applications, Vol.
37, No. 8, 2010, pp. 5666-5672

[11] Luo, X., Xia, Y., and Zhu, Q.: “Incremental Collaaborative Filtering
Recommender based on Regularizad Matrix Factorization,” Knowledge-
Based Systems, Vol. 27, 2012, pp. 271-280

[12] Cacheda, F., Carneiro, V., Fernandez, D., and Formoso, V.: “Comparison
of Collaborative Filtering Algorithms: Limitations of Current Techniques
and Proposals for Scalable, High-Performance Recommender Systems,”
Journal ACM Transactions on the Web, Vol. 5, No. 1, 2011, Articl 2

O-J. Lee et al. Adaptive Collaborative Filtering Based on Scalable Clustering for Recommender Systems

 – 194 –

[13] Park, K. S., Choi, J. M., and Lee, D. H.: “A Single-Scaled Hybrid Filtering
Method for IPTV Program Recommendation,” International Journal of
Circuits, Systems and Signal Processing, No. 1, Vol. 4, 2010, pp. 161-168

[14] Shen, Y., Shin, H. C., Kim, D. G., Hong, Y. H., and Rhee, P. K.:
“Reinforcement Learning Algorithm Based Hybrid Filtering Image
Recommender System,” Journal of the Institute of Webcasting, Internet and
Telecommunication, Vol. 12, No. 3, 2012, pp. 75-81

[15] Tewari, A. S., Kumar, A., and Barman, A. G.: "Book Recommendation
System Based on Combine Features of Content Based Filtering,
Collaborative Filtering and Association Rule Mining," Proceedings of the
2014 IEEE International Advance Computing Conference (IACC) 2014, pp.
500-503

[16] Bogers, T., and Van Den Bosch, A.: “Collaborative and Content-based
Filtering for Item Recommendation on Social Bookmarking Websites,”
Proceedings of the ACM RecSys'09 Workshop on Recommender Systems
& the Social Web, 2009, pp. 9-16

[17] Campos, L. M., Fernandez-Luna, J. M., Huete, J. F., and Rueda-morales, M.
A.: “Combining Content-based and Collaborative Recommendations: a
Hybrid Approach based on Bayesian Networks,” International Journal of
Approximate Reasoning, Vol. 51, No. 7, 2010, pp. 785-799

[18] Hu, R., and Pu, P.: “Using Personality Information in Collaborative
Filtering for New Users,” Proceedings of the 2nd ACM RecSys’10
Workshop on Recommender Systems & the Social Web, 2010, pp. 17-24

[19] Kim, H. N., Alkhaldi, A., El Saddik, A., and Jo, G. S.: “Collaborative User
Modeling with User-generated Tags for Social Recommender Systems,”
Expert Systems with Applications, Vol. 38, No. 7, 2011, pp. 8488-8496

[20] Goldberg, K., Roeder, T., Gupta, D., and Perkins, C.: “Eigentaste: a
Constant Time Collaborative Filtering Algorithm,” Information Retrieval,
Vol. 4, No. 2, 2001, pp. 133-151

[21] Kim, Y., and Moon, S. B.: “A Study on Hybrid Recommendation System
Based on Usage Frequency for Multimedia Contents,” Journal of the
Korean society for information management, Vol. 23, No. 3, 2006, pp. 91-
125 (in Korean)

[22] Li, X., and Murata, T.: “Using Multidimensional Clustering-based
Collaborative Filtering Approach Improving Recommendation Diversity,”
Proc. IEEE/WIC/ACM Int. Joint Conf. Web Intell. Intell. Agent Technol.,
(2012) 169-174

[23] Bellogin, A., and Parapar, J.: “Using Graph Partitioning Techniques for
Neighbor Selection in User-based Collaborative Filtering”. Proceedings of
the 6th ACM conference on Recommender systems, ACM, (2012) 213-216

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 195 –

Ontology-based Multilingual Search in

Recommendation Systems

Xuan Hau Pham
1
, Jason J. Jung

2*, Ngoc Thanh Nguyen
3
,

Pankoo Kim
4

1QuangBinh University, Vietnam
2Chung-Ang University, Korea
3Wroclaw University of Technology, Poland, ngoc-thanh.nguyen@pwr.edu.pl
4Chosun University, Korea, pkkim@chosun.ac.kr

Abstract: The information on the web is not only published by an original language, but
also expressed in many different languages. Almost recommendation systems also lack
mechanisms to support users overcoming the language problem. In these systems, it is
difficult to search a specific value (e.g., movie artist, movie title in movie domain) by using
native language. In this paper, we present our approach to deal with this problem. We
develop an ontology-based multilingual recommendation system using integrated data from
Linked Open Data to support user with in different languages on movie domain.
Multilingual Movie Recommendation System (MMRS) for searching as a case of study is
developed. In this system, we illustrate a more comfortable and flexible implementation.

Keywords: multilingual entities; Linked Open Data; interlink; movie; recommendation
system

1 Introduction

Nowadays, user acquire information, including attributes within various media
(e.g., television, radio, news paper, blog, and social networks) by a native
language. The traditional recommendation systems cannot usually be applied, for
efficiently searching the various media. Traditional systems have some (a few)
languages to switch amoungst, however, the languages have been obtained from
translation machines. This leads to connection data between certain languages and
other languages that is not easy. With the developed open data system, it allows
connection multiple data in different languages.

In recommendation systems, most users face language problems. They want to
search some content in either their native language or some other learned

*
 Corresponding author

X. H. Pham et al. Ontology-based Multilingual Search in Recommendation Systems

 – 196 –

languages. The information is often published on the web by original language
and expressed in different languages. After publishing, it will be translated to
different languages by themselves or a community. In fact, it is always difficult to
search a specific entity when users do not remember the original name (e.g.,
English name), they only know your country name. For example, Cameron, J. is a
famous director, in Korea some people want to search about him, but they have a
problem, they do not remember his English name. How to search in this case? In
this paper, we present our approach to deal with this problem.

Multilingualism becomes an important task in natural language processing.
Multilingual systems have been designed either by the system (i.e., user has to
switch among languages and number of languages is limited) or the community,
group users (i.e., there are a lot of languages that are published). For example,
Wikipedia 1 is a huge open data source that is edited and developed by a
community of volunteers in the world. Its contents are described with in many
different languages, including movie.

Multilingualism is an interesting topic on the web [5, 17]. Data will be integrated
from multi-resources, associated with multilingual content. Each content is
expressed in different languages. However, in this paper, we only take into
account multilingual searches, based on integrated data based on LOD [2, 3, 8].
Linked Open Data (LOD), provides an effective mechanism to connect data from
multiple data resources by using the Resource Description Framework (RDF) and
the Hypertext Transfer Protocol (HTTP). We will extract data on a movie domain.
There are several LOD of movies on the web and many other movie-related data
(e.g., IMDB2, LinkedMDB3, DBpedia4,...).

Our proposal focuses on the integrated information from multi-resources to put
them into MMRS. It will help the user overcome the language problem. In this
paper, we propose and develop a onotology-based multilingual search, to support
the user when searching the entities in different languages in the system. Our
approach is illustrated using “movie domain”. In this system, users can search a
certain entity, within 145 different languages.

The outline of paper is organized as follows. In Sect. 2, we present related work
about multilingual entities and ontology-based multilingual systems. In Sect. 3, we
present integrated data based on LOD and ontology-based multilingual entity in
recommendation systems. In Sect. 4, we develop our system and how it works.
Finally, we talk about the major conclusions and future of our work herin.

1 http://www.wikipedia.org/
2 http://www.imdb.com/
3 http://data.linkedmdb.org/
4
 http://dbpedia.org/

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 197 –

2 Related Work

Multilingual search is a challenge for social network (Facebook, Twitter, Flickr)
and also open web (Wikipedia) [12, 7, 6] and recommendation systems [13, 19,
21]. Almost systems only take into account switching different languages by
translating [4, 20]. The system quality depends on the translation quality. In the
fact, as we know the translation machine makes a lot of mistakes. Thus, using
multilingual entities based on ontology and integrated data from Linked Open
Data (LOD) will improve the representation on the systems.

Ontology-based multilingual models are also proposed by [9, 15, 18]. In [9],
authors proposed a new multilingual retrieval model, named CL-ESA. This model
exploits the multilingual alignment of Wikipedia to represent a document as a
concept vector and the similarity between two vectors can computed with the
cosine similarity. In [15], the system, LabelTranlator, was proposed as an
ontology to identify different languages labels. In [18], authors presented the
translation-tree technique, that is based on an ontological representation for
multilingual information retrieval. Each language is built as a multilingual
onlology to map corresponding terms.

A multilingual search model for Flickr was proposed by Peinado et al. [7] and
they called it FlickLing. This system allows to search monolingual and
multilingual images and return a set of images with annotation in different
languages. However, it can support six languages and applies a term-by-term
translation for the multilingual search.

A fuzzy-based method for multilingual patent search, Fuzzy Logic Decision
Support, is proposed by Segev et al. [11]. The patents are represented by a set of
concepts related to a multilingual knowledge ontology. The model analyzed a
several patents from Korean, US and Chinese as support for a multilingualism
process.

The most important task in the multilingualism problem, is to extract name entity
matching. In Wikipedia, the multilingual entity is represented as a set of
InterLanguages-Links (ILL). A multilingual named entity recognition from
Wikipedia is proposed by [6]. In this paper, the authors classify each article into
“name entity”, in nine languages and project the links onto name entities. In [10],
they introduce a fuzzy-based method to extract metadata automatically and
cognitive metadata generation. They also apply different document parsing
algorithms to extract rich metadata from multilingual content. This framework is
evaluated on three languages, English, German and French. In order to measure
the similarity between multilingual sentences, Adafre et al. investigated
multilingual analysis to generate similar sentences in different languages [1].

The multilingual search does not only find related results that a user needs, but
also returns new information for the user. It is also a challenge for novelty mining
[14]. In our approach for multilingual search within recommendation systems; the

X. H. Pham et al. Ontology-based Multilingual Search in Recommendation Systems

 – 198 –

results can contain multilingual entities, where users can understand their content.
For example, a user enters a query to find the director Cameron J., in Korean, the
system will return a lot of information about this name in different languages (e.i.,
not only Korean but also other languages such as Japanese, German, Vietnamese
and so on) and user can get several information.

In [8], we have applied integrated data from LOD to recommend not only a movie
domain, but also books and music. The representation data on recommendation
systems in different languages that are based on integrated data from LOD, will be
better and more flexible, than traditionl systems.

3 Ontology-based Multilingual Recommendation

Systems for Searching

3.1 Multilingual Concepts and Integrated Data on Movie

Domain

The main contribution of this paper is to propose a multilingual search process to
match an search entity to its corresponding concept in different languages. In our
approach, we try to implement the system in a movie domain. User do not need to
remember the original names of any artist or any title (e.g., English name). User
can enter their language and search a certain value.

Bilingualism and multilingualism are being discussed and developed within social
networks and economic systems. For movie domains, they also try to fully support
users. Most systems are monolingual, such as IMDB, LinkedMDB, MusicBrainz,
etc. and a few arevmultilingual systems, such as, BDpedia, Wikipedia.

IMDB is a huge moviedata repository. It describes a vast number of movies, with
full information (e.g., title, genre, actor, director, music, URI, company, rating,
runtime, and so on). Each entity is accessed by using URI, for example, the link
http://www.imdb.com/name/nm0000116 describes “James Cameron” director and
http://www.imdb.com/title/tt0499549/ is an URI that describes about “Avatar”
movie.

LinkedMDB describes movie information based on movie entities, namely
interlink. Movie entities have been extracted from IMDB, DBpedia and other
sources.

DBpedia is open dataset on the Internet. It is organized by categories (e.g., movie,
book, music and so on). Its information is extracted from Wikipedia. Users can
easy access data by using the interlinks. In DBpedia, the entities matching are
based on its properties. Table 1 shows properties on movie domain. For example,
in order to find the matching between two entities, on actor or director, we have to

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 199 –

take into account dbpedia-owl:starring or dbpedia-owl:director. The name of
director or starring will be represened as a list of entities in different languages.

Table 1

The properties on DBpedia and LinkedMDB for movie domain

DBpedia LinkedMDB

Property Attribute Property Attribute

dbpedia-
owl:work/runtime

Runtime movie:actor Starring

dbpedia-owl:abstract Abstract movie:cinematographer Cinematographer

dbpedia-
owl:cinematography

Cinematographer dc:date Event

dbpedia-owl:director Director movie:director Director

dbpedia-
owl:distributor

Distributor movie:editor Editor

dbpedia-owl:editing Editing movie:genre Genre

dbpedia-
owl:musicComposer

Composer
movie:initial_release_d
ate

Release date

dbpedia-owl:producer Producer movie:language Movie language

dbpedia-owl:writer Writer foaf:page IMDB link

dbpedia-owl:starring Starring movie:producer Producer

rdfs:comment User comment movie:runtime Runtime

rdfs:label Title dc:title Title

owl:sameAs Multilingism rdf:type Type

dbpprop:language Original language movie:writer Writer

dbpprop:country Country movie:actor_name Actor name

dbpedia-owl:abstract Abstract movie:director_name Director name

dbpedia-owl:alias Alias
movie:film_genre_nam
e

Genre name

dbpedia-
owl:birthDate

Birthday movie:editor_name Editor name

dbpedia-
owl:birthName

Name

dbpedia-
owl:birthPlace

Birthplace

dbpedia-
owl:birthYear

Birthyear

dbpedia-
owl:education

Education

rdfs:comment Comment

foaf:givenName Given name

dbpprop:occupation Occupation

http://live.dbpedia.org/ontology/Work/runtime
http://live.dbpedia.org/ontology/Work/runtime
http://data.linkedmdb.org/resource/movie/actor
http://live.dbpedia.org/ontology/abstract
http://data.linkedmdb.org/resource/movie/cinematographer
http://live.dbpedia.org/ontology/cinematography
http://live.dbpedia.org/ontology/cinematography
http://purl.org/dc/terms/date
http://live.dbpedia.org/ontology/director
http://data.linkedmdb.org/resource/movie/director
http://live.dbpedia.org/ontology/distributor
http://live.dbpedia.org/ontology/distributor
http://data.linkedmdb.org/resource/movie/editor
http://live.dbpedia.org/ontology/editing
http://data.linkedmdb.org/resource/movie/genre
http://live.dbpedia.org/ontology/musicComposer
http://live.dbpedia.org/ontology/musicComposer
http://data.linkedmdb.org/resource/movie/initial_release_date
http://data.linkedmdb.org/resource/movie/initial_release_date
http://live.dbpedia.org/ontology/producer
http://data.linkedmdb.org/resource/movie/language
http://live.dbpedia.org/ontology/writer
http://xmlns.com/foaf/0.1/page
http://live.dbpedia.org/ontology/starring
http://data.linkedmdb.org/resource/movie/producer
http://www.w3.org/2000/01/rdf-schema#comment
http://data.linkedmdb.org/resource/movie/runtime
http://www.w3.org/2000/01/rdf-schema#label
http://purl.org/dc/terms/title
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://live.dbpedia.org/property/language
http://data.linkedmdb.org/resource/movie/writer
http://live.dbpedia.org/property/country
http://data.linkedmdb.org/resource/movie/actor_name
http://live.dbpedia.org/ontology/abstract
http://data.linkedmdb.org/resource/movie/director_name
http://live.dbpedia.org/ontology/alias
http://data.linkedmdb.org/resource/movie/film_genre_name
http://data.linkedmdb.org/resource/movie/film_genre_name
http://live.dbpedia.org/ontology/birthDate
http://live.dbpedia.org/ontology/birthDate
http://data.linkedmdb.org/resource/movie/director_name
http://live.dbpedia.org/ontology/birthName
http://live.dbpedia.org/ontology/birthName
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/birthPlace
http://live.dbpedia.org/ontology/birthYear
http://live.dbpedia.org/ontology/birthYear
http://live.dbpedia.org/ontology/education
http://live.dbpedia.org/ontology/education
http://www.w3.org/2000/01/rdf-schema#comment
http://xmlns.com/foaf/0.1/givenName
http://live.dbpedia.org/property/occupation

X. H. Pham et al. Ontology-based Multilingual Search in Recommendation Systems

 – 200 –

In our scenario, each entity (label, concept) will be detected by URI on the
resource systems. It will identify the languages, contents, description and
interlinks. In multilingual recommendation systems, each value of an item, as a
concept, takes the information from resource data and has a list of corresponding
different languages for the concept. This list is automatically detected and
obtained from multilingual systems.

The following algorithm is used for integrating data:

Input: a list of movies, I
Output: a set of multilingual movie concepts
Algorithm:
Foreach𝑖 ∈ 𝐼

V = a set of movie concepts from IMDB
 Foreach𝑣 ∈ 𝑉
 Mapping into LinkedMDB

Extracting data from DBpedia
 Return E = a set of multilingual movie concepts

Figure 1 shows the relationships between Korean information and English
information of “The Spy” movie based on DBpedia properties (e.g., dbpedia-
owl:director, owl:sameAs, dbpedia-ko and so on). We can see that each value of
movie will be expressed by its corresponding properties. Since DBpedia data is
extracted from Wikipedia, some contents are inconsistent. Thus, we use movie
data from IMDB as standard information for integrating data.

Figure 1

Multilingual entities matching

3.2 Multilingual Recommendation System

The aims of the recommendation system is not only suggest a set of new items
based on user preference, but also explore the relationship among users and items.
Therefore, multilingual recommendation systems will produce more interesting
items in different languages and support users in overcoming the language
problem. In order to understand our proposal we present some definitions for the
multilingual concept and our model as follows:

http://live.dbpedia.org/ontology/director
http://live.dbpedia.org/ontology/director

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 201 –

Definition 1 (Multilingual Recommendation System Framework) A
multilingual recommendation system is defined as a 6-tuple: 𝑆 = 〈𝑈, 𝐼, 𝐴, 𝑉, 𝐿, 𝑅〉 (1)

where U is a set of users, I is a set of items, A is a set of attributes, V is a set of
concepts, L is a set of languages and 𝑅 ⊆ 𝐴 × 𝑉 × 𝐿 is a set of links. Rcan be
represented as a set of interlink-languages (ILL).

Each 𝑖 ∈ 𝐼, we can extract: 𝑅𝑖 = {(𝑎, 𝑣, 𝑙)|𝑎 ∈ 𝐴, 𝑣 ∈ 𝑉: 𝑙 ∈ 𝐿} (2)

For example, considering the movie Titanic, we obtain:

- (Title, “Titanic”, “en”, “http://dbpedia.org/page/Titanic_(1997_film)”),

- (Direktor, “Cameron, J.”, “de”, “http://dbpedia.org/page/James_Cameron”),

- (Acteur, “LeonardoDiCaprio”, “fr”,

 “http://dbpedia.org/page/Leonardo_DiCapri”),

- (Genre, “Adventure”, “en”, “http://data.linkedmdb.org/page/film_genre/31”).

LOD provides a mechanism to connect data from multiple resources. The
connections can be established by links In LOD, each concept is described by its
content and interlink. We will use interlinks to find out the entities matching.

Definition 2 (Concept Matching) Let 𝑣1, 𝑣2 ∈ 𝑉and 𝑖 ∈ 𝐼, the matching between
two concepts is computed as follows: 𝑀(𝑣1, 𝑣2) = {−1 𝑖𝑓𝑣1, 𝑣2 ∈ 𝑅𝑖0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

Searching on multilingual systems takes into account the entities matching. Each
concept will have a set of different multilingual concepts which have the same
description. For example, we consider the “Titanic” title, in other languages, in
Table 2.

Table 2

The “Titanic” title in different languages

Title Language Interlink

Titanic French http://fr.dbpedia.org/resource/Titanic_(film,_1997)

Titanic German http://de.dbpedia.org/resource/Titanic_(1997)

타이타닉 Korean http://ko.dbpedia.org/resource/타이타닉_(1997년_영화)

タイタニック Japanese http://ja.dbpedia.org/resource/タイタニック_(1997年の映画)

Titanic Italian http://it.dbpedia.org/resource/Titanic_(film_1997)

Each concept will have a set of corresponding entities. A set of concepts will have
a set of corresponding interlinks. It will help improve the matching.

http://fr.dbpedia.org/resource/Titanic_%28film,_1997%29
http://de.dbpedia.org/resource/Titanic_%281997%29
http://ko.dbpedia.org/resource/%ED%83%80%EC%9D%B4%ED%83%80%EB%8B%89_%281997%EB%85%84_%EC%98%81%ED%99%94%29
http://ja.dbpedia.org/resource/%E3%82%BF%E3%82%A4%E3%82%BF%E3%83%8B%E3%83%83%E3%82%AF_%281997%E5%B9%B4%E3%81%AE%E6%98%A0%E7%94%BB%29
http://it.dbpedia.org/resource/Titanic_%28film_1997%29

X. H. Pham et al. Ontology-based Multilingual Search in Recommendation Systems

 – 202 –

Definition 3 (Multilingual Search)

Given v is a search entity, the result of this search, is represented as follows: 𝑀(𝑣) = {(𝑣′, 𝑙, 𝑟)|𝑣′ ∈ 𝑉, 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅: 𝐿𝑒𝑥(𝑣) ⊂ 𝑉} (4)

where Lex(v) is a function to return a set of result concepts.

In recommendation systems, the most important task is to build the user profile
(user preferences). Each user will record all of their interactions and all the
information in a session. The systems will discover these data to understand what
user needs and predict recommendation for next time.

Definition 4 (User Preference) Give certain 𝑢 ∈ 𝑈, the ontological user profile
in the recommendation system is expressed as follows: 𝑓(𝑢) = {(𝑣, 𝑙)| ∀𝑣 ∈ 𝑉, ∃𝑙 ∈ 𝐿: (𝑣, 𝑙) ⊂ 𝑅} (5)

Definition 5 (User Similarity) Given two users 𝑢1, 𝑢2 ∈ 𝑈 .T the similarity
between two users based on user preference is defined as follows: 𝑆𝑖𝑚(𝑢1, 𝑢2) = 𝑠𝑖𝑚(𝑣𝑢1,𝑣𝑢2)𝑓(𝑢1)∩𝑓(𝑢2)𝑠𝑖𝑚(𝑣𝑢1,𝑣𝑢2)𝑓(𝑢1)∪𝑓(𝑢2) (6)

4 Multilingual Search Movie Recommendation

System: a case of study

In this paper, we propose multilingual searches in a movie recommendation
system, as a case study. Figure 2 shows the main the interface of our system. It is
easy to input a name (e.g., movie, artist) and search. The result will be represented
related-movie blocks.

- Number of results

- List of results

- <name, language>

- Related-contents

(e.g. a list of movies for an artist, list of artists for a movie)

- Multilingual entities, languages and interlinks

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 203 –

Figure 2

Main interface of multilingual movie search

In order to implement our system, we have extracted the dataset as Section 3.1.
Table 3 expresses the multilingual entities in the system.

Table 3

The multilingual entities statistic in our system

Languages #Artist #Title

English 10845 1888

German 6614 1165

French 6877 1170

Russian 4546 998

Italian 5933 1100

Korean 3703 162

Japanese 4411 815

Vietnamese 795 61

Chinese 2237 281

Figure 3 shows the results of a search for the movie, “Titanic” in English, Korean
and Russian languages.

We can extract the relationships among different languages for one movie. For
example, we can extract 15 languages for the Titanic movie and 59 languages, for
Morgan Freeman, the actor. When a user searches a certain name of movie, the
system will show the movie information (e.g., director(s), actors, actresses) and a
list of the same names in different languages (English (en), French (fr), German
(de), Chinese (zh), Korean (ko), Japanese (ja), Vietnamese (vi), and so on). Also,
when a user searches a certain name of an artist, it will show a list of movies that
they were in and a list of the same their names. Figure 4 shows the connection
between Titanic in English and Cameron, J. director, in Korean on multilingual
movie search.

X. H. Pham et al. Ontology-based Multilingual Search in Recommendation Systems

 – 204 –

Figure 3

Representing “Titanic” movie on multilingual movie

Figure 4

The connections between multilingual entities on multilingual search

When a user searches a movie title, the system will return a set of movies
including artists and multilingual titles. It will return a set of artist names in
multiple languages and a set of movies that this artist was involved in when the
user searches movie artist.

In order to develop multilingual search systems, that we have implemented on a
movie domain. Movie information is extracted from IMDB and DBpedia. The
quality and number of languages for multilingualism depend on data in those
sources. It means that if the entities are well-known, then the multilingual entities
will be more accurate.

In addition, the system will build user profiles for the various users. The
recommendation processing is based on an ontological user preference, to predict

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 205 –

which is a better search item for each user. Figure 5 shows the recommendation
interface in 3 languages (English, German, Vietnamese).

Figure 5

The recommendation interface

Concluding remarks

Multilingual searches in a movie recommendation system will bring a more
flexible interaction for users. Users can overcome language problems. Each item
not only is described on bilingual data, but also expressed in various languages. In
this paper, we presented our approach to discover the relationships among
multilingual concepts for searching on a movie domain and ontological user
preferences are also considered in recommendation processing. We also
developed a demo system for our proposal. However, the integrated data, based on
LOD, is extracted offline and several languages are not available in the data
resources. Thus, returned results are not a full expression.

As for future work, we will increase the number of entities and the number of
movies. We would also like to show a comparision with other current approaches.

Acknowledgement

This research is funded by Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under grant number 102.01-2013.12.
Also, this work was supported by the Human Resource Training Program for
Regional Innovation and Creativity through the Ministry of Education and
National Research Foundation of Korea (NRF-2014H1C1A1066494). This work
was supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIP) (NRF-2014R1A2A2A05007154).

X. H. Pham et al. Ontology-based Multilingual Search in Recommendation Systems

 – 206 –

References

[1] Adafre S. F., and De Rijke M.: Finding Similar Sentences across Multiple
Languages in Wikipedia, Proceedings of the 11th Conference of the
European Chapter of the Association for Computational Linguistics, 2006,
pp. 62-69

[2] Bizer C., Heath T. and Berners-Lee T.: Linked Data - the Story so Far,
International Journal on Semantic Web and Information Systems, Vol. 5
(3), 2009, pp. 1-22

[3] Hassanzadeh O. and Consens MP.: Linked Movie Data Base, Proceedings
of the WWW2009 Workshop on Linked Data on the Web (LDOW 2009),
Spain, 2009

[4] Hillier M.: The Role of Cultural Context in Multilingual Website Usability,
Electronic Commerce Research and Applications, Vol. 2 (1), 2003, pp. 2-
14

[5] Jung J. J.: Cross-Lingual Query Expansion in Multilingual Folksonomies:
A Case Study on Flickr, Knowledge-based Systems, Vol. 42, 2013, pp. 60-
67

[6] Nothman J., Ringland N., Radford W., Murphy T. and Curran J. R.:
Learning Multilingual Named Entity Recognition from Wikipedia,
Artificial Intelligence Vol. 194, 2013, pp. 151-175

[7] Peinado V., Artiles J., Gonzalo J., Barker E. and López-Ostenero F.:
Flickling: a Multilingual Search Interface for Flickr, Proceedings of CLEF
2008 Workshop Notes, Aarhus, Denmark, 2008

[8] Bello-Orgaz G., Jung J. J., Camacho D.: Social Big Data: Recent
Achievements and New Challenges, Information Fusion, Vol. 28, 2016, pp.
45-59

[9] Potthast M., Stein B. and Anderka M.: A wikipedia-based Multilingual
Retrieval Model, Proceedings of the IR Research, 30th European
Conference on Advances in Information Retrieval, ECIR’08, Springer-
Verlag, Berlin, Heidelberg, 2008, pp. 522-530

[10] Sah M., and Wade V.: Automatic Metadata Mining from Multilingual
Enterprise Content, Web Semantics: Science, Services and Agents on the
World Wide Web, Vol. 11, 2012, pp. 41-62

[11] Nguyen D. T., Jung J. E.: Real-Time Event Detection on Social Data
Stream, Mobile Networks and Applications, Vol. 20 (4), 2015, pp. 475-486

[12] Yarowsky D., Ngai G., and Wicentowski R.: Inducing Multilingual Text
Analysis Tools via Robust Projection across Aligned Corpora, Proceedings
of the First International Conference on Human Language Technology
Research, HLT ’01, Association for Computational Linguistics,
Stroudsburg, PA, USA, 2001, pp. 1-8

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 207 –

[13] Lops P., Musto C., Narducci F., De Gemmis M., Basile P., and Semeraro
G.: Mars: a Multilanguage Recommender System, Proceedings of the 1st

International Workshop on Information Heterogeneity and Fusion in
Recommender Systems, ACM, pp. 24-31

[14] Zhang Y., Tsai F. S., and Kwee A. T.: Multilingual Sentence
Categorization and Novelty Mining, Information Processing and
Management, Vol. 47 (5), 2011, pp. 667-675

[15] Espinoza M., Gómez-PérezA., and Mena E.: Enriching an Ontology with
Multilingual Information, Springer Berlin Heidelberg, 2008, pp. 333-347

[16] Embley D. W., Liddle S. W., Lonsdale D. W., and Tijerino Y.: Multilingual
Ontologies for Cross-Language Information Extraction and Semantic
Search. Conceptual Modeling–ER 2011, Springer Berlin Heidelberg, 2011,
pp. 147-160

[17] Gracia J., Montiel-Ponsoda E., Cimiano P., Gómez-Pérez A., Buitelaar P.,
and McCrae J.: Challenges for the Multilingual Web of Data, Web
Semantics: Science, Services and Agents on the World Wide Web, 2012,
pp. 63-71

[18] Guyot J., Radhouani S., and Falquet G.: Ontology-based Multilingual
Information Retrieval, CLEF Workhop, Working Notes Multilingual Track,
2005, pp. 21-25

[19] Luberg A., Järv P., Schoefegger K. and Tammet T.: Context-Aware and
Multilingual Information Extraction for a Tourist Recommender System,
Proceedings of the 11th International Conference on Knowledge
Management and Knowledge Technologies, ACM, 2011

[20] Zahed F., Van Pelt W. and Song J.: A Conceptual Framework for
International Web Design, Professional Communication, IEEE
Transactions, Vol. 44 (2), 2001, pp. 83-103

[21] Pham X. H., and Jung J. J.: Recommendation System Based on
Multilingual Entity Matching on Linked Open Data, Journal of Intelligent
and Fuzzy Systems, Vol. 27(2), 2014, pp. 589-599

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 209 –

Scalable co-Clustering using a

Crossing Minimization ‒

Application to Production Flow Analysis

Csaba Pigler, Ágnes Fogarassy-Vathy*

Department of Computer Science and Systems Technology,
University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
piglercs@dcs.uni-pannon.hu, vathy@dcs.uni-pannon.hu

János Abonyi
Department of Process Engineering, University of Pannonia
Egyetem u. 10, H-8200 Veszprém, Hungary
Institute of Advanced Studies Kőszeg, Chernel u. 14, H-9730 Kőszeg, Hungary
janos@abonyilab.com

Abstract: Production flow analysis includes various families of components and groups of
machines. Machine-part cell formation means the optimal design of manufacturing cells
consisting of similar machines producing similar products from a similar set of
components. Most of the algorithms reorders of the machine-part incidence matrix. We
generalize this classical concept to handle more than two elements of the production
process (e.g. machine - part - product - resource - operator). The application of this
extended concept requires an efficient optimization algorithm for the simultaneous
grouping these elements. For this purpose, we propose a novel co-clustering technique
based on crossing minimization of layered bipartite graphs. The present method has been
implemented as a MATLAB toolbox. The efficiency of the proposed approach and
developed tools is demonstrated by realistic case studies. The log-linear scalability of the
algorithm is proven theoretically and experimentally.

Keywords: cell formation; co-clustering; co-crossing minimization

*
 Corresponding author

mailto:vathy@dcs.uni-pannon.hu

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 210 –

1 Introduction

Industry 4.0 is focused on smart production in smart factories where there is direct
communication between humans, machine, and resources. Smart products know
their manufacturing process and future application [16, 25]. With this knowledge,
they actively endorse the production process and the documentation (“when was I
made, which parameters am I to be given, where I am supposed to be delivered.”).
Thanks to these developments that can be represented by 5C keywords
(Connection, Cloud, Content, Community, and Customization) [17], complex
production systems generate and store huge datasets, which has a high potential
for productivity improvement. All these factors raise the question: “How can we
increase productivity of manufacturing systems by the analysis of the huge
amount of available data?”

There exists several potentials for Big Data, in manufacturing, such as, production
management [24], supply chain planning [12], maintenance, and sales [8, 9].
Among these, production management is the most complex problem as it includes
scheduling, optimization, (human) resource management, warehouse logistic, and
manufacturing cell formation. Once this enormous amount of information is
available from the components, the systems will be processed at the same time
and the optimization of the manufacturing systems can significantly improve.

Cell formation (CF) is a widely studied topic in production systems optimization
circles. The aim of cell formation is to create manufacturing cells from a given
number of machines and products, by partitioning similar machines producing
similar products. Since the formation of optimal manufacturing cells contributes
significantly to the increased production, several different approaches have been
proposed for the solution of a CF problems [5, 11, 15, 18, 23, 34]. Since, it can be
difficult to find an optimal solution, in an acceptable amount of time, especially
for large scale problems, usually heuristic approaches are used [19-22, 32, 33].

Furthermore, all these methods work only with relationships of machines and
products (or with relationships of machines and parts). As these relationships can
be represented by a two-layered bipartite graph or by an incidence matrix, the
classical cell formation process can be considered as a biclustering task [1, 7].

Although, in complex manufacturing processes machines should be characterized
by numerous properties, like the type of products, resources, and required skills
from operators. To handle these elements of the production line, the traditional
cell formation problem should be extended, and instead of the biclustering task, a
co-clustering problem should be solved.

While biclustering algorithms can solve classical manufacturing CF process [1],
we try to handle the extended multidimensional problem as a co-clustering task
[10] based on crossing minimization of multipartite graphs. Since NP-hard
problem, we utilize the widely applied heuristic barycentric method.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 211 –

In a traditional cell formation problem, crossing minimization reorders the
machines into cells, based on their similar part usage. As we mentioned before,
cell formation problems can be more complex and they can require more
properties to describe the whole production process. While dealing with these
complex datasets, we developed a new crossing minimization method for multi-
partite graphs. The proposed method sequentially reorders the elements of the
node sets, thereby it relocates the elements of the connectivity matrix into a block-
diagonal way. As result, the cell formation problem is handled in his original
complexity.

Crossing minimization heuristics have been a subject of many years [4, 6, 13, 14,
28, 30, 31]. The complexity of these heuristics are linear or log-linear [26, 27].
This clearly indicates that the proposed problem formulation can lead to efficient
solution for the multivariate cell formation problem.

Graphical representation of the manufacturing cell formation may also support
optimization of production systems. Approaches like hierarchical clustering or
Visual Assessment of Cluster Tendency (VAT) [2] are able to visualize the
similarities of the elements, but by default they take only one or two variables into
account. Nevertheless, complexities of these methods are not appropriate for Big
Data [3], as the time complexity of VAT is O (N2), and the complexity of

agglomerative clustering is O (N3), where N is the number of objects to be

clustered.

In this article, we aim to present a novel production process optimization method
which is able to accomodate more aspects (machines, suppliers, human resources,
bill of materials, etc.) simultaneously and still be able to visualize the cell
formation problem and it’s solution accordingly for human interpretation. The
optimization method is based on a newly developed co-crossing minimization
method that solves the co-crossing minimization problem between O (N) and

O (N log N) time, and therefore, able to process the Big Data rapidly and

concurrently, the productivity of manufacturing systems can be significantly
increased.

In the following we formulate the extended cell formation problem, then we
present the novel co-crossing minimization algorithm that is able to handle this
complex problem. The algorithm provides easy implementation and low
computing complexity. Finally, we present the capability of our new method on
different cell formation examples. Firstly, we compare our approach with the
popular hybrid-heuristic cell formation algorithm [33] and show the applicability
of the proposed performance measures. This will be followed by the numerical
analysis of the scalability. Finally, an illustrative real-life example will be given.

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 212 –

2 Multidimensional Representation of the

Cell Formation Problem

2.1 Classical Bipartite Graph-based Representation

Traditional cell formation problems are represented by bipartite graphs (V,E),
where V represents the set of vertices and E the set of edges. V is partitioned into

two adjacent subsets. 𝑉0 = {𝑣0,1, 𝑣0,2, … , 𝑣0,𝑁0} represents the set of machines, and 𝑉1 = {𝑣1,1, 𝑣1,2, … , 𝑣1,𝑁1} the set of parts (see Figure 1

Figure 1

The classical cell formation problem is based on the crossing minimization of a bipartite graph,

where V0 represents the sets of machines and V1 the set of the parts

The cell formation is based on the rearrangement of the order of the vertices. 𝒐𝑖 ,𝑖 = 0,1, where 𝒐𝑖 represents the sequence of all vertices of Vi . E.g. after the
minimization of the crossings in the illustrative problem shown in Figure 1a, the
sequence of the vertices becomes 𝒐0 = [2,4,1,3].
The bipartite graph of the machine - part connections can also be represented by
an interconnection matrix, A[o0,o1]. The 𝑎𝑖𝑗 element of A[o0,o1] is 1 when the o0,i

-th machine uses the o1,j -th part as input and otherwise 0. Please note, that the 𝑘-th
element of these 𝒐𝑖 vectors is the index which row (i=0) or column (i=1) is placed
at the 𝑘-th place in the ordering. Later we are going to also use vector, 𝒑i to show
the position of the vertices, vi,j. In our illustrative example as the first vertex, v0,1, is
placed in the third place p0,1=3, 𝒑0 = [3,1,4,2].
From this viewpoint, the crossing minimization can be considered as reordering
the rows and columns of the interconnection matrix to explore the hidden block-
oriented structure of the matrix.

v0,1 v0,2 v0,3 v0,4

 v
1,1

v
1,2

v
1,3

 v
1,4

 v
1,1

v
1,2

v
1,3

 v
1,4

(a) initial problem (b) after crossing minimization

V
1

V
0

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 213 –

E.g. the initial problem is represented as: 𝑨[𝒐0, 𝒐1] = [0 01 1 1 10 00 01 1 1 10 0] (1)

After crossing minimisation: 𝑨[𝒐0, 𝒐1] = [𝟏 𝟏𝟏 𝟏 0 00 00 00 0 𝟏 𝟏𝟏 𝟏] (2)

As this simple illustrative example shows, minimization of the crossings provides
not only a better visualization of the bipartite graph, but it also reorders the rows
and columns of the incidence matrix in a block-diagonal way. With this order,
similar nodes are placed next to each other, so they can form blocks that can be
used to define manufacturing cells.

2.2 The Proposed Multidimensional Representation

In complex manufacturing processes, machines are characterized by numerous
properties, like the type of products, resources, and the required skills of the
operators. To handle all elements of the production line we extended the
conventional cell formation task into a multidimensional problem. According to
this goal, our key idea is to represent the cell formation problems by multi-layered
graphs (see Figure 2).

The proposed n-dimensional representation is based on n sets of vertices 𝑉 = 𝑉0 ∪ 𝑉1 ∪ 𝑉2 ∪ … 𝑉𝑛 , 𝑉𝑖 ∩ 𝑉𝑗 = ∅ , ∀𝑖 ≠ 𝑗 (3)

where each set represents possible values/categories of an attribute/feature of the
machine. E.g. V0 represents the set of machines, V1 the parts, V2 the products, V3
the resources, V4 skills of the operators.

Relationships between the machines and the 𝑖-th attribute of the production line
can also be represented by a sparse matrix, 𝑨(𝒊)[𝒐𝟎, 𝒐𝒊] , 𝑖 = 1 … 𝑛, where the
dimensions of these matrices are 𝑁0 × 𝑁𝑖.
The second fundamental idea is that the simultaneous re-ordering of the rows and
columns of these matrices clusters the machines and supports the formulation and
optimization of the manufacturing cells, as seen in Figure 2

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 214 –

Figure 2

Representation of the multidimensional cell formation problem

The visualized benchmark cell formation problem has N0=20 machines processing
N1=34 different parts, utilizing N2=31 different resources, while working N3=37
operators. The structure of this problem can be seen in the first row in Figure 3.
The second row of this figure shows the rearranged data after the proposed co-
crossing minimization algorithm which will be presented in the following section.

Figure 3

The benchmark cell-formation problem and the result of co-crossing minimization

V
0

V
1

V
n

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 215 –

3 Co-Crossing Minimization Algorithm

3.1 Barycentric Ordering of Crossing Minimization

The classical heuristic barycentric method iteratively reorders the o0 row and the
o1 column orders of A[o0,o1] to reduce the number of the crossings. The reordering
is based on the row and column barycenters of the A interconnection matrix.
Barycenter heuristic assigns a new rank to each node based on the mean of ranks
of its neighbor nodes.

The third key contribution of our paper is that we formulated the algorithm with
the help of matrix operations to support compact, sparse matrix representation
based implementation in of data analysis tools, like MATLAB.

The column barycenters are calculated as the mean of the places of the
neighboring vertices 𝒃𝑖𝐶 = 𝒑𝑖𝑻𝑨(𝒊)./𝒔𝑖𝐶 (4)

where 𝒑𝑖 represents the vector of the places of the vertices, 𝒔𝑖𝐶 represents a row

vector of the sum of the connections calculated as the sum of the columns of 𝑨(𝒊) 𝒔𝑖𝐶 = 𝒖0𝑅𝑨(𝒊) (5)

with the help of the 𝒖0𝑅, which is an 𝑁0 sized unitary row vector.

With this formulation the j-th element of the 𝒃𝑖𝐶 vector, 𝑏𝑖,𝑗𝐶 , can be interpreted as

the average of the places of the machines that are connected to the j-th element of
the i-th feature, vi,j.

The row barycenters of 𝑨(𝒊)[𝒐0, 𝒐𝑖] are calculated similarly, 𝒃𝑖𝑅 = 𝑨(𝒊)𝒑0 ./𝒔𝑖𝑅 (6)

where 𝒔𝑖𝑅 represents the sum of rows of 𝑨(𝒊), calculated as 𝒔𝑖𝐶 = 𝑨(𝒊)𝒖𝒊𝑪 (7)

where 𝒖𝒊𝑪 is an 𝑁𝑖 sized unitary column vector.

The standard crossing minimization algorithm iteratively reorders 𝒐0 based on
shorting 𝒃𝑖𝑅 and generates A[o’0,o1], than reorders 𝒐1 to generate 𝒐′1 based on the
shorting the 𝒃1𝐶 barycenters of the columns of A[o’0,o1]. The number crossings is
minimised by repeating these orderings till convergence.

3.2 The Co-Crossing Minimization Algorithm

The key idea of the algorithm is that we simultaneously arrange the rows and the
columns of the A

(i)[o0,oi] matrices. Since the row-orders of these matrices are

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 216 –

identical, the row barycenters are calculated as the weighted sum of the row
barycenters of the individual matrices: 𝒃𝑅 = ∑ 𝒃𝑖𝑅𝒏𝒊=𝟏 𝑤𝑖 = ∑ 𝑨(𝒊)𝒑0 ./𝒔𝑖𝑅𝑛𝑖=1 𝑤𝑖 (8)

The 𝑤𝑖 weight can represent the importance of the features to their contribution to
the cell-formation problem. When all features have equal importance, 𝑤𝑖 should
set as 𝑤𝑖 = 1/𝑁𝑖 to ensure that features with different number of categorical
values have the same weight.

The steps of our new method can be seen in Algorithm 1.

initialize the row orders: 𝒐𝑖 , 𝑖 = 0 … 𝑛 as 1 ∶ 𝑁𝑖
calculate the sum of the columns and rows: 𝒔𝑖𝐶 , 𝒔𝑖𝑅 𝑖 = 1 … 𝑛
while converge do

calculate 𝒃𝑖𝑅 , 𝑖 = 1, … , 𝑛, and 𝒃𝑹

calculate the new o0 row order by shorting 𝒃𝑅
calculate the new p0 places of the vertices of V0
for 𝑖 = 1: 𝑛 do

calculate 𝒃𝑖𝐶 , 𝑖 = 1, … , 𝑛

calculate the new oi row order by shorting 𝒃𝑖𝐶
calculate the new pi places of the vertices of Vi

end for

end while

Algorithm 1

The proposed co-crossing minimization algorithm

Please note that the 𝒑𝑖 vectors are generated by sorting 𝒐𝑖 the order vectors. The
use of these vectors is important since the algorithm does not modify the original 𝑨(𝒊) space matrices, which ensures fast and memory effective implementation.

The algorithm stops when the ordering is converged or the maximum iteration
number is reached.

3.3 Complexity Analysis

The complexity of the classical barycenter technique is O (|E|+|V| log V) [1,30].

It should be noted that since we decomposed the problem into n almost
independent subproblems as 𝑉 = 𝑉0 ∪ 𝑉1 ∪ … 𝑉𝑛 , 𝑉𝑖 ∩ 𝑉𝑗 = ∅ , ∀𝑖 ≠ 𝑗 and 𝐸 = 𝐸1 ∪ … 𝐸𝑛 , 𝐸𝑖 ∩ 𝐸𝑗 = ∅ , ∀𝑖 ≠ 𝑗, the complexity of the algorithm is smaller

than if we would handle the standard classical problem with the same size. By
decreasing the sparsity of the problem (increasing the number of edges) the
complexity linearly increases, while the increase of the number of vertices has

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 217 –

log-linear effect as the critical step in the algorithm is, that it requires 2(n+1) sorts
of the nodes in each iteration.

When this advantageous O (N log N) scaling of the quicksort algorithm is not

enough, to achieve speed proportional to the size of the data O (N), binsort can be

applied. However, this requires auxiliary storage and memory for the bins.
Because quicksort manipulates the data in place, it can sort larger arrays, albeit
somewhat a bit slower. Another sorting option, is the application of the O (N)

counting sort algorithm. It should be noted, that this and another advanced integer
sorting algorithm requires the calculation of the median instead of the mean or
rounding the ranks into integers. To scale the algorithm, it is possible to execute
the loop iterations in parallel.

The algorithm solves the crossing minimization problem rapidly. Similarly to
multi-layered application of crossing minimizatuion usually it stops after 5-10
iterations [1, 30]. It calculates the node ranks in each set of nodes linear algebraic
way with matrix and vector multiplication. It should be noted, that matrices
describing the cell formation problem are sparse, so they can be stored and
handled efficiently.

Concluding, the proposed algorithm can be implemented in Big Data
environments, as it supports sparse matrices, parallel computing (thanks to the
barycenters of the interconnection matrices can be independently calculated), and
the application of advanced (integer) sorting algorithms.

3.4 Performance Evaluation

The proposed method can be considered as a visualization tool, similarly to VAT
(Visual Assessment of clustering Tendency) [2]. Although the resulted plots are
informative, in most of the cases the numerical evaluation of the results is also
necessary.

The first and most obvious measurement of the performance of the crossing
minimization algorithms is based on the counting of the edge crossings. If we
denote the rearranged A(i)[o0,oi] matrix as M(i) , the number of crossings of the vi,j -
th and vi,k - th vertices (represented by the j - th and k - th rows of the matrix) can
be calculated as 𝑛𝑐(𝑖)(𝑗, 𝑘) = ∑ ∑ 𝑚𝑗𝑏(𝑖)𝑁𝑖𝑏=𝑎+1𝑁𝑖−1𝑎=1 𝑚𝑘𝑎(𝑖)

 (9)

The total number of crossings of M(i) can be calculated based on the sum of these 𝑛𝑐(𝑖)(𝑗, 𝑘) values: 𝑛𝑐(𝑖) = ∑ ∑ 𝑛𝑐(𝑖)(𝑗, 𝑘)𝑁0𝑘=𝑗+1𝑁0−1𝑗=1 (10)

Since the crossings of the 𝐸𝑖 and 𝐸𝑗 ∀𝑖 ≠ 𝑗 edges are not taken into account, the

total number of crossings is calculated as

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 218 –

𝑛𝑐 = ∑ 𝑛𝑐(𝑖)𝑛
𝑖=1

The effectiveness of the ordering from the expected block-diagonality of the
resulted M(i) matrices can be measured based on the distance of the nonnegative
elements from the diagonal 𝑑𝑗,𝑘(𝑖) = 𝑚𝑗𝑘(𝑖) | 𝑗𝑁0 − 𝑘𝑁𝑖|.
The percentage of the non-negative neighbors is also informative to represent the

coherence of the resulted “maps”, 𝑛𝑛𝑗,𝑘(𝑖)
. Based on the combination of these two

measures the we propose the following “goal-oriented” measure of the M
(i)

ordering:

𝑞(𝑖) = ∑ ∑ (1 − 𝑛𝑛𝑗,𝑘(𝑖))𝑑𝑗,𝑘(𝑖)𝑚𝑗,𝑘(𝑖)
𝑁1

𝑘=1
𝑁0

𝑗=1

It is also important to note, that the smaller the q value the better the ordering is in
the data matrix.

4 Case Studies

Manufacturing cell formation is widely studied and well-documented problem of
process flow analysis. In this session, we provide several reproducible
comparisons based on the most widely applied benchmark problems. The
MATLAB implementation of the algorithm and the related datasets are
downloadable from the website of the authors (www.abonyilab.com).

Firstly, we compare our approach with the popular hybrid-heuristic cell formation
algorithm [33] and show the applicability of the proposed performance measures.
This will be followed by the numerical analysis of the scalability. Finally, an
illustrative real-life example will be given.

4.1 Application on Benchmark Problems

Since there are several two-dimensional examples for manufacturing cell
formation problems in the literature, we first applied our method on one of those
available [33]. The chosen dataset consists of 14 machines and 24 parts. The
sparsity pattern of the incidence matrix is depicted in Figure 4(a). The hybrid
heuristic algorithm is one of the recently published methods which combines the
simulated annealing with genetic methods. This method in many cases
outperforms the performance of the classical methods [33]. Solutions provided by

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 219 –

the hybrid heuristic algorithm and our method can be seen in Figure 4. As it can
be seen, our new approach provides much better block-diagonal ordered solution.

(a) Original dataset
(b) Result of hybrid

heuristic method

(c) Result of the

proposed method

Figure 4

The original data set and two orderings provided by the hybrid heuristic

and our new crossing minimization algorithm

Using the number of edge crossings the hybrid heuristic and the proposed method
can be numerically compared. While the original dataset has 674 edge crossings,
and the result of the hybrid heuristic method has 256, the proposed crossing
minimization algorithm provided an ordering only with 95 edge crossings.

We also compared crossing numbers of another eight benchmark datasets. The
results are showed in Figure 5a, where the blue bars show the original, the red bars
the hybrid heuristic, and the green ones the number of the crossings of the
proposed algorithm. As it can be seen our method outperforms the hybrid heuristic
method in every benchmark examples.

A summary of the previously presented cn crossing number and q block-diagonal
ordering results can be seen in Table 1. As this table and Figure 5b show, the
crossing minimization also ensures effective block-oriented orderings of these
benchmark problems.

Figure 5

The number of the edge crossings (a) and the measure

of the block-diagonal (b) ordering of the benchmark datasets

nc q

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 220 –

Table 1

Block-diagonal ordering (q) and crossing number (nc) results on different datasets

 Dataset Original Hybrid heuristic Proposed method

 q cn q cn q cn

 P1(61) 0.2057 674 0.0756 256 0.0351 95

 P2(62) 0.1954 2785 0.1580 1900 0.1336 1506

 P3(63) 0.1900 4612 0.1083 2508 0.0826 1688

 P4(64) 0.2840 4221 0.1708 2443 0.1193 1467

 P5(65) 0.2201 11224 0.1564 7810 0.0948 4258

 P6(66) 0.2713 3644 0.0775 1313 0.0422 653

 P7(67) 0.2388 5150 0.0991 2283 0.0328 585

 P8(68) 0.2675 6221 0.1811 4267 0.0966 2019

 P9(69) 0.0786 229570 0.0782 173961 0.0373 131472

4.2 Crossing Minimization of Multidimensional Datasets –

Numerical Analysis of the Complexity

While there are only 2D examples in the literature, we have generated several
multidimensional benchmark problems to test the presented algorithm. After
applying the previously mentioned iterative co-crossing minimization algorithm
on the given multidimensional cell formation problem the results are seen in
Figure 3, in the second row. As results, each matrix is reordered in a block-
diagonal way.

In the following, we validate the log-linear scalability of the algorithm. We
defined problems with 10, 100 and 500 properties/categories (𝑁𝑖) of i=1-6
features. Figure 6 shows the computational costs of these cases as we increased
the number of objects (𝑁0) from 10 to 1.000.000. These graphs on the log-log
scale show the log-linear complexity of the algorithm.

Figures 6-8 present similar results where the effects of increasing the number of
machines, categories and properties are shown.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 221 –

Figure 6

The computational costs of the proposed co-crossing minimization algorithm on different datasets

Figure 7

The increase of the number of machines linearly increases the computational complexity

10
2

10
3

10
4

10
5

10
6

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Number of machines(N
0
)

C
o
m

p
u
ta

ti
o
n
a
l
c
o
s
t

N
1,2

=100

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 222 –

Figure 8

The increase of the number of categories linearly increases the computational complexity

Figure 9

Effect of the increase of the number of properties (n)

As we will see, the results confirm the theoretical considerations and the
industrial-scale applicability of the method.

10
1

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

Number of categories (size of N
1,2

)

C
o
m

p
u
ta

ti
o

n
a

l
c
o

st

N
0
=1000

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

Number of properties

C
o
m

p
u
ta

ti
o

n
a

l
c
o

st

N
0
=1000

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 223 –

4.3 Application on Real Life Problem

The previously presented multivariate co-crossing minimization method was
applied on a real life example as well. We used this method on a production line
analysis problem, where the primary task is the optimization of the production line
of that produces over 5000 types of products assembled from several parts.
Assuming that the switching time between similar products is less than the
switching time between more different products, our aim was to analyze
interconnections between parts and products. Since there are several stages of the
production and different types of parts are used in different stages we formulated
the multivariate model based on the hierarchy of the bill of materials (BOM) [29].
As Fig. 10 illustrates the methodology worked perfectly, we were able to sort the
products according to their similarity.

Figure 10

Real-life example for shorting products based on bill of materials

Conclusions

Thanks to the fourth industrial revolution production processes are becoming
more and more integrated. This integration allows the simultaneous optimization
of the whole supply chain. From this viewpoint production flow analysis is
becoming an important tool since the analysis of the integrated marketing, design,
production, logistic and sales data can effectively support production scheduling
and flexible manufacturing cell formation.

Complex and integrated manufacturing processes require more detailed problem
representation than used in classical manufacturing cell formation. This means,
production lines should be characterized by several features that should be
simultaneously analysed. We proposed a novel multipartite graph based
representation of these complex production flow analysis problems and proposed

0 50 100

0

1000

2000

3000

4000

5000

Property #1

O
b
je

c
ts

0 50

0

1000

2000

3000

4000

5000

Property #2

0 10 20

0

1000

2000

3000

4000

5000

Property #3

0 5 10

0

1000

2000

3000

4000

5000

Property #4

0 5

0

1000

2000

3000

4000

5000

Property #5

0 10 20

0

1000

2000

3000

4000

5000

Property #6

0 10 20

0

1000

2000

3000

4000

5000

Property #7

0 5

0

1000

2000

3000

4000

5000

Property #8

0 1 2 3

0

1000

2000

3000

4000

5000

Property #9

0 10 20

0

1000

2000

3000

4000

5000

Property #10

0 5

0

1000

2000

3000

4000

5000

Property #11

0 50 100

0

1000

2000

3000

4000

5000

O
b
je

c
ts

0 50

0

1000

2000

3000

4000

5000

0 10 20

0

1000

2000

3000

4000

5000

0 5 10

0

1000

2000

3000

4000

5000

0 5

0

1000

2000

3000

4000

5000

0 10 20

0

1000

2000

3000

4000

5000

0 10 20

0

1000

2000

3000

4000

5000

0 5

0

1000

2000

3000

4000

5000

0 1 2 3

0

1000

2000

3000

4000

5000

0 10 20

0

1000

2000

3000

4000

5000

0 5

0

1000

2000

3000

4000

5000

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 224 –

an efficiently scalable clustering and visualization algorithm that sequentially
reorders the edge crossings of bipartite graphs. The barycentric heuristic based co-
crossing minimization method is simultaneously reorders the rows and columns of
the interconnection matrices of the features to highlight their hidden block-
diagonal structure, which structure supports data visualization easier. The
applicability of the proposed co-crossing minimization is illustrated by several
case studies.

We also showed that the proposed algorithm requires low computational
capacities as it uses simple linear algebraic operations defined on sparse matrices.
Another advantage of the method is its capability of parallelization and handling
multi-dimensional sparse datasets. Considering these benefits, the proposed co-
crossing minimization method can be scaled and used efficiently when we are
dealing with large databases.

Acknowledgement

This publication/research has been supported by the National Research,
Development and Innovation Office – NKFIH, through the project OTKA –
116674 (Process mining and deep learning in the natural sciences and process
development).

Notations

 Representation

 G graph

V vertex set of a G graph 𝑉𝑖 set of vertices, set of objects/properties vi,j j-th vertex (node) of the i-th set of vertices

N number of nodes in a network/graph

Ni number of nodes in the i-th set of vertices

E edge set of a G graph

e
ij

 edge between node i and j

A(i) incidence (interconnection) matrix 𝑨(𝒊)[𝒐0, 𝒐𝑖] ordered interconnection matrix 𝒐𝑖 ordering of the i-th vertex set 𝒑𝒊 positions of the vertices according to the oi ordering

 Crossing minimization 𝒃𝑖𝐶 , 𝒃𝑖𝑅 column and row barycenters (vectors) 𝒔𝑖𝐶 , 𝒔𝑖𝑅 sum of the coumns and rows of A(i

 Metrics 𝑛𝑐(𝑖)(𝑗, 𝑘) number of crossings of the vi,j - th and vi,k - th vertices 𝑑𝑗,𝑘(𝑖)
 diagonal distance 𝑞(𝑖) block-oriented quality of the ordering of the i-th intterconneciton

matrix

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 225 –

References

[1] Ahmad, W., & Khokhar, A., cHawk : An Efficient Biclustering Algorithm
based on Bipartite Graph Crossing Minimization. Computer Engineering,
(May 2008) 249-263, http://doi.org/10.1021/es0602492, 2007

[2] Bezdek, J. C., Hathaway, R. J.: Vat: A Tool for Visual Assessment of
(Cluster) Tendency, International Joint Conference on Neural Networks
IJCNN'02, Vol. 3, pp. 2225-2230, 2002

[3] Chen, C. L. P., Zhang, C.-Y.: Data-Intensive Applications, Challenges,
Techniques and Technologies: A Survey on Big Data, Information Sciences
Vol. 275, pp. 314-347, 2014

[4] Chimani, M., Mutzel, P., & Bomze, I., A New Approach to Exact Crossing
Minimization. Proc. of European Symposium on Algorithms (ESA~2008),
284-296, http://doi.org/10.1007/978-3-540-87744-8_24, 2008

[5] Dimopoulos, C., Mort, N.: A Hierarchical Clustering Methodology based
on Genetic Programming for the Solution of Simple Cell-Formation
Problems. International Journal of Production Research, Vol. 39, pp. 1-19,
2001

[6] Eiglsperger, M., Siebenhaller, M., & Kaufmann, M., An Efficient
Implementation of Sugiyama’s Algorithm for Layered Graph Drawing.
Journal of Graph Algorithms and Applications, 9(3), 305-325,
http://doi.org/10.7155/jgaa.00111, 2005

[7] Erten, C., & Sözdinler, M., A Robust Biclustering Method Based on
Crossing Minimization in Bipartite Graphs. 16th International Symposium
on Graph Drawing, 5417, 439-440-440, http://doi.org/10.1007/978-3-642-
00219-9_45, 2009

[8] Fan, C.-Y., Fan, P.-S., Chan, T.-Y., & Chang, S.-H., Using Hybrid Data
Mining and Machine Learning Clustering Analysis to Predict the Turnover
Rate for Technology Professionals. Expert Systems with Applications,
39(10), 8844-8851. http://doi.org/10.1016/j.eswa.2012.02.005, 2012

[9] Gansner, E. R., Koutsofios, E., North, S. C., & Vo, K. P. a V. K. P., A
Technique for Drawing Directed Graphs- A Technique for Drawing
Directed Graphs. Software Engineering, IEEE Transactions on, 19(3), 214-
230, http://doi.org/10.1109/32.221135, 1993

[10] Gao, B., Liu, T.-Y., Zheng, X., Cheng, Q.-S., Ma, W.-Y.: Consistent
Bipartite Graph Co-Partitioning for Star-structured High-Order
Heterogeneous Data Co-Clustering, Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data
Mining, 2005

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 226 –

[11] Goncalves, J. F., Resende, M. G. C.: An Evolutionary Algorithm for
Manufacturing Cell Formation. Computers and Industrial Engineering, Vol.
47, pp. 247-273, 2004

[12] Hazena, B. T., Booneb, C. A., Ezellc, J. D., Jones-Farmerc, L. A.: Data
Quality for Data Science, Predictive Analytics, and Big Data in Supply
Chain Management: An Introduction to the Problem and Suggestions for
Research and Applications, International Journal of Production Economics
Vol. 154, pp. 72-80, 2014

[13] Jünger, M., & Mutzel, P. 2-Layer Straightline Crossing Minimization:
Performance of Exact and Heuristic Algorithms. Journal of Graph
Algorithms and Applications, 1(1), 1-25, http://doi.org/10.7155/jgaa.00001,
1997

[14] Khan, S., Bilal, M., Sharif, M., & Khan, F. A., A Solution to Bipartite
Drawing Problem using Genetic Algorithm. Lecture Notes in Computer
Science (including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 6728 LNCS(PART 1), 530-538,
http://doi.org/10.1007/978-3-642-21515-5_63, 2011

[15] Kusiak, A., Cho, M.: Similarity Coefficient Algorithms for Solving the
Group Technology Problem, International Journal of Production Research
Vol. 30, pp. 2633-2646, 2007

[16] Lee, J., Kao, H.-A., Yang, S.: Service Innovation and Smart Analytics for
Industry 4.0 and Big Data Environment, Procedia CIRP Vol. 16, pp. 3-8,
2014

[17] Lee, J., Lapira, E., Bagheri, B., & Kao, H., Recent Advances and Trends in
Predictive Manufacturing Systems in Big Data Environment.
Manufacturing Letters, 1(1), 38-41,
http://doi.org/10.1016/j.mfglet.2013.09.005, 2013

[18] Li, S., & Mehrabadi, H., Generation of Block Diagonal forms Using
Hierarchical Clustering for Cell Formation Problems. Procedia CIRP, 17,
44-49, http://doi.org/10.1016/j.procir.2014.01.143, 2014

[19] Mahdavi, I., Teymourian, E., Baher, N. T., & Kayvanfar, V., An Integrated
Model for Solving Cell Formation and Cell Layout Problem
Simultaneously Considering New Situations. Journal of Manufacturing
Systems, 32(4), 655-663, http://doi.org/10.1016/j.jmsy.2013.02.003, 2013

[20] Naadimuthu, G., Gultom, P., & Lee, E. S., Fuzzy Clustering in Cell
Formation with Multiple Attributes. Computers and Mathematics with
Applications, 59(9), 3137-3147,
http://doi.org/10.1016/j.camwa.2010.02.038, 2010

[21] Oliveira, S., Ribeiro, J. F. F., & Seok, S. C., A Comparative Study of
Similarity Measures for Manufacturing Cell Formation. Journal of

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 227 –

Manufacturing Systems, 27(1), 19-25,
http://doi.org/10.1016/j.jmsy.2008.07.002, 2008

[22] Oliveira, S., Ribeiro, J. F. F., & Seok, S. C., A Spectral Clustering
Algorithm for Manufacturing Cell Formation. Computers & Industrial
Engineering, 57(3), 1008-1014, http://doi.org/10.1016/j.cie.2009.04.008,
2009

[23] Onwubulo, G. C., Mutingi, M.: A Genetic Algorithm Approach to Cellular
Manufacturing Systems. Computers and Industrial Engineering, Vol. 39,
pp. 125-144, 2001

[24] Sagiroglu, S., Sinanc, D.: Big Data: A review, International Conference on
Collaboration Technologies and Systems, pp. 42-47, 2013

[25] Schuh, G., Potente, T., Wesch-Potente, C., Weber, A. J., Prote, J.-P.:
Collaboration Mechanisms to increase Productivity in the Context of
Industrie 4.0, ScienceDirect Procedia CIRP Vol. 19, pp. 51-56, 2014

[26] Shahrokhi, F., Sýkora, O., Székely, L. A., & Vrťo, I., On Bipartite
Drawings and the Linear Arrangement Problem. SIAM Journal on
Computing, 30(6), 1773, http://doi.org/10.1137/S0097539797331671, 2001

[27] Shiyas, C. R., & Madhusudanan Pillai, V., A Mathematical Programming
Model for Manufacturing Cell Formation to Develop Multiple
Configurations. Journal of Manufacturing Systems, 33(1), 149-158,
http://doi.org/10.1016/j.jmsy.2013.10.002, 2014

[28] Stallmann, M., Brglez, F., & Ghosh, D., Heuristics, Experimental Subjects,
and Treatment Evaluation in Bigraph Crossing Minimization. Journal of
Experimental Algorithmics, 6(212), 8–es,
http://doi.org/10.1145/945394.945402, 2001

[29] Stonebraker, P. W.: Restructuring the Bill of Material for Productivity: A
Strategic Evaluation of Product Configuration, International Journal of
Production Economics Vol. 45, pp. 251-260, 1996

[30] Sugiyama, K., Tagawa, S., & Toda, M., Methods for Visual Understanding
of Hierarchical System Structures. IEEE Transactions on Systems, Man,
and Cybernetics, 11(2), 109-125,
http://doi.org/10.1109/TSMC.1981.4308636, 1981

[31] Warfield, J. N., Crossing Theory and Hierarchy Mapping. IEEE
Transactions on Systems, Man, and Cybernetics, 7(7), 505-523,
http://doi.org/10.1109/TSMC.1977.4309760, 1977

[32] Wu, T.-H., Chang, C.-C., & Chung, S.-H., A Simulated Annealing
Algorithm for Manufacturing Cell Formation Problems. Expert Systems
with Applications, 34, 1609-1617,
http://doi.org/10.1016/j.eswa.2007.01.012, 2008

Cs. Pigler et al. Scalable co-Clustering using a Crossing Minimization - Application to Production Flow Analysis

 – 228 –

[33] Wu, T.-H., Chang, C.-C., & Yeh, J.-Y., A Hybrid Heuristic Algorithm
Adopting both Boltzmann Function and Mutation Operator for
Manufacturing Cell Formation Problems. International Journal of
Production Economics, 120(2), 669-688,
http://doi.org/10.1016/j.ijpe.2009.04.015, 2009

[34] Wu, T.-H., Low, C., Wu, W.-T.: A Tabu Search Approach to the Cell
Formation Problem. International Journal of Advanced Manufacturing
Technology Vol. 23, pp. 916-924, 2004

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 229 –

Conceptual Design of Document NoSQL

Database with Formal Concept Analysis

Viorica Varga, Katalin Tünde Jánosi-Rancz, Balázs Kálmán

Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
Sapientia Hungarian University of Transilvania, Corunca 1C, 540485 Târgu
Mureş, Romania
Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
ivarga@cs.ubbcluj.ro, tsuto@ms.sapientia.ro, kbim1225@scs.ubbcluj.ro

Abstract: Early Big Data solutions were not based on database management system
principles. As the popularity of these solutions have increased and are applied in more data
management scenarios in the recent years, DBMS principles, are being recognized as
important factors and are becoming important in newly developed solutions. Big Data
collections do not enforce document structure, but just because a data store is schema-less,
it does not mean the structure of the stored documents will not play an important role in the
overall performance and flexibility of an application. In this paper we will explore a
method for the conceptual modeling for document based databases, using Formal Concept
Analysis (FCA). We have shown that FCA is a valuable visual analyzer for large-scale
data, for example, offering a means of reading the possibility of nested scheme design from
the built concept lattice. Results of experiments using our method have proven that
decisions affecting the modeling of data can affect application performance and database
capacity.

Keywords: conceptual design; NoSQL database; document store; Formal Concept Analysis

1 Introduction

Data is growing exponetially in the digital world, increasing in volume, variety
(structured, un-structured or hybrid) and velocity (high speed of growth). This
phenomenon is refered to as ‘Big Data’. This growing data collection is so large
that it can not be effectively managed using conventional relational data
management tools. To handle this problem, traditional RDBMS are complemented
with rich set systems: NoSQL [1, 4, 20] data stores, NewSQL and Search-based
systems.

NoSQL systems generally have some common features. The first is the ability to
horizontally scale simple operations over many servers. They can replicate and
partition data over many servers with a simple call level interface. These new

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 230 –

systems accept a weaker concurrency model, than the ACID transactions of
relational database systems. They are often flexible enough to accommodate semi-
structured and sparse data sets [20]. NoSQL data stores vary in their data and
query model. The most common categorization of these systems is by data model,
distinguishing key-value stores, document stores, column-family stores, and graph
databases [4]. Key-value stores data structure is composed of a unique key and an
opaque value. Document based NoSQL systems also store key-value pairs, but the
values are structured as documents. The document is a set of name-value pairs,
usually in JSON (JavaScript Object Notation) [8] format or the binary
representation BSON. Name-value pairs represent the properties of data objects.
Values can be scalar or appear as lists, but may contain nested documents too.
Column-family stores manage records with properties. A schema for a column-
family declares property families, and new properties can be added to a property
family ad hoc. Graph databases represent data in graph format; objects are stored
in nodes and their relationships in the edges.

Most NoSQL data stores do not enforce any structural constraints on the data; they
are usually referenced as schema-less data. But programmatically accessing this
data, it is important to have some notion about its structure. Without knowing the
general structure of the data, it is nearly impossible to perform any application
development or data analysis [15]. Many NoSQL data stores provide a declarative
query language. Developers need to know which attributes are present (or absent)
in persisted objects in order to formulate queries. For OLAP-style data analysis,
developers also need to know which structure to expect when parsing JSON
documents. So, these tasks require some form of schema description. The
structure of the stored documents plays an important role in the overall
performance of the application.

In this paper we focus on designing document stores, which are based on a semi-
structured data model, implemented as JSON, XML or BSON format. The design
of any database follows a well-defined methodology for conceptual, logical, and
physical data modeling. A prevalent model in the conceptual database design is
the Entity-Relationship (E-R) model. The semi-structured data has a loose
schema: a core of attributes is shared by all objects, but many individual variants
are possible. A hierarchical structure of the data is a common design opportunity
for embedding complex entities.

Formal Concept Analysis (FCA) [11] supports knowledge discovery and
knowledge representation [14]. Current FCA methods have the capabilities for
taking into account the presence and management of relational attributes or links
in the data [18, 19].

In this paper a Formal Concept Analysis (FCA) approach for conceptual modeling
of document based databases is proposed. A mapping from Entity-Relationship
model to a schema for semi-structured data in the form of concept lattices are
presented for relations of type One-to-One, One-to-Many and Many-to-Many. For

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 231 –

different relationship types we obtain different concept lattices [22]. The
possibility of nested scheme design can be read from the lattices.

We propose a Relational Concept Analysis (RCA) grounded approach to
conceptual document based NoSQL database design, one which is a data model,
for the systems that can store and manage Big Data.

In Section 2, we assume familiarity with the basic notions of FCA and RCA and
after that, in Section 3, we discuss how relational modeling can be emulated in the
case of document databases using RCA. Section 4 presents the experiments on
DBLP [6] bibliography dataset. Finally, we finish our work with conclusions.

2 Preliminaries and Basic Notions in FCA and RCA

Our research is mainly based on the mathematical foundations of FCA and in this
section we introduce the necessary formal background.

FCA is a data analysis method which enables the discovery of knowledge hidden
within data, such as association rule mining, ontology engineering, machine
learning. FCA actually provides support for processing large dynamic complex
data.

In FCA, data are represented by a formal context, which will contain objects and
attributes. From the context, formal concepts are generated by grouping objects
which have the same set of attributes. Each formal context is transformed into a
concept lattice, which forms the basis for further data analysis.

Definition 1. (𝐹𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑥𝑡). A formal context 𝐾 = (𝐺,𝑀, 𝐼) consists of two
sets 𝐺 and 𝑀 and a binary relation 𝐼 between 𝐺 and 𝑀. Elements of 𝐺 are called
objects while elements of 𝑀 are called attributes of the context. The fact (𝑔,𝑚) ∈𝐼 is interpreted as "the object 𝑔 has attribute 𝑚".

Example 1. Consider the set of objects 𝐺 = {𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐶ℎ𝑎𝑟𝑖𝑜𝑡, 𝐵𝑜𝑎𝑡, 𝐶𝑎𝑟,𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒}. Consider the set of attributes 𝑀 = {𝐻𝑎𝑠 𝑤𝑖𝑛𝑔𝑠, 𝐻𝑎𝑠 𝑒𝑛𝑔𝑖𝑛𝑒,𝐻𝑎𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 𝐻𝑎𝑠 𝑤ℎ𝑒𝑒𝑙𝑠} that are properties that vehicles may have or not.
Table 1 gives an example of formal context (𝐺,𝑀, 𝐼), the X indicates that a certain
object has a certain attribute.

Table 1

An example of formal context 𝐾 = (𝐺,𝑀, 𝐼)
 Has wings Has engine Has windows Has wheels

Bicycle X

Chariot X

Boat X X

Car X X X

Airplane X X X X

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 232 –

Definition 2. (𝐹𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑝𝑡). A formal concept of a context (𝐺,𝑀, 𝐼) is a pair (𝐴, 𝐵) with A ⊆ G, B ⊆ M, A' = B and 𝐵′ = 𝐴. 𝐴 is called the extent of the concept (𝐴, 𝐵) while 𝐵 is called its intent. A' and 𝐵′ define a Galois connection between
the power sets of G and M. The set of all formal concepts of a context (𝐺,𝑀, 𝐼) is
written Ɓ(𝐺,𝑀, 𝐼). Concepts are partially ordered by (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2) ⇔𝐴1 ⊆ 𝐴2 (⇔ 𝐵2 ⊆ 𝐵1). (𝐴1, 𝐵1) is called sub-concept and (𝐴2, 𝐵2) a super-
concept.

Example 2. From the previous example, it directly follows that the pair ({𝐵𝑜𝑎𝑡, 𝐶𝑎𝑟, 𝐴𝑖𝑟 − 𝑝𝑙𝑎𝑛𝑒}, {𝐻𝑎𝑠 𝑒𝑛𝑔𝑖𝑛𝑒, 𝐻𝑎𝑠 𝑤𝑖𝑛𝑑𝑜𝑤𝑠}) is a formal concept. A
Galois connection implies that if one makes the sets of one type larger, they
correspond to smaller sets of the other type, and vice versa. Using this concept, if 𝐻𝑎𝑠 𝑤𝑖𝑛𝑔𝑠 is added to the list of attributes, the set of vehicles reduces to {𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒}.
FCA organizes the information through concept lattices, which fundamentally
comprises a partial order, modeling the subconcept-superconcept hierarchy.
Concept lattice is the common name for a specialized form of Hasse diagram that
is used in conceptual data processing.

Definition 3. (𝐶𝑜𝑛𝑐𝑒𝑝𝑡 𝑙𝑎𝑡𝑡𝑖𝑐𝑒). The set of all formal concepts from a context 𝐾 = (𝐺,𝑀, 𝐼) ordered with the relation ≤ form a complete lattice called concept
lattice of (𝐺,𝑀, 𝐼) and denoted by Ɓ(𝐺,𝑀, 𝐼).

Figure 1

Concept lattice raised from Table 1

Figure 1 shows the concept lattice, associated with Table 1. A line diagram
consists of circles, lines and the names of all objects and all attributes of the given
context appearing as labels. Each node in the lattice corresponds to a formal
concept while a line denotes an order relation between two concepts. An object 𝑔
has an attribute 𝑚 if and only if there is an upwards leading path from the circle
named by 𝑔 to the circle named by 𝑚.

Real-life data are often more complex than those given by a formal context. There
are several extensions of FCA to handle complex data, such as Conceptual scaling
[23] (where complex data are turned into binary contexts by using scales), Pattern
structures [24] (a general approach to conceptual scaling by giving a direct
method of knowledge discovery in complex data such as logical formulas, graphs,
strings, tuples of numerical intervals), Power Context Families [25], Relational
Concept Analysis [18] and Logical Concept Analysis (for analyzing arbitrary

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 233 –

relations between objects), Triadic Concept Analysis [26] (to analyze three-
dimensional data), Fuzzy FCA [23] and Rough FCA [16] (were developed to work
with uncertain data and approximations). These papers have proven that FCA is
feasible for Big Data. The approach in [16] makes FCA useful for analyzing
extremely large data. Also, FCA contributes to the analysis and mining of social
networks [27] such as affiliation and interaction networks and possibly more
complex structures using this theory and some of its extensions. [17] gives an
overview of several extensions of the main FCA model, and shows that FCA
algorithms are efficient from both theoretical and practical points of view [25]. Its
time complexity and performance proves its supremacy over concurrent methods
and allows us to use it for Big Data problems.

In this paper, to cope with complex data, we use the following FCA extensions:
conceptual scaling [23] and Relational Concept Analysis (RCA) [18, 19]. The
process of deriving a one-valued context from a many-valued context is called
conceptual scaling.

Definition 4. (𝑀𝑎𝑛𝑦 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝑐𝑜𝑛𝑡𝑒𝑥𝑡). A many-valued context (𝐺,𝑀,𝑊, 𝐼)
consists of sets 𝐺,𝑀 and 𝑊 and a ternary relation 𝐼 between those three sets, i.e. 𝐼 ⊆ 𝐺 ×𝑀 ×𝑊, for which it holds that (𝑔,𝑚,𝑤) ∈ 𝐼 𝑎𝑛𝑑 (𝑔,𝑚, 𝑣) ∈ 𝐼 always
imply 𝑤 = 𝑣.

Elements of 𝐺 are still called objects. Elements of 𝑀 are called (many-valued)
attributes. Elements of 𝑊 are called attribute values. Accordingly, the fact (𝑔,𝑚,𝑤) ∈ 𝐼 means "the attribute 𝑚 takes value 𝑤 for object 𝑔", simply written
as 𝑚(𝑔) = 𝑤.

Standard FCA is restricted to data sets that are either already represented as binary
relations or that can be easily transformed into such a representation [14].
Relational Concept Analysis (RCA) [18, 19] extends standard FCA by taking
relations between objects into account.

The objective of RCA is to build a set of lattices whose concepts are related by
relational attributes, similar to UML associations.

In RCA, data are organized within a structure composed of a set of contexts and a
set of binary relations.

Definition 5. (𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑓𝑎𝑚𝑖𝑙𝑦). A relational context family 𝐹 is a
pair (𝐾, 𝑅), where 𝐾 is a set of contexts 𝐾𝑖 = (𝐺𝑖 , 𝑀𝑖 , 𝐼𝑖) - with objects 𝐺𝑖,
properties 𝑀𝑖 and a relationship 𝐼𝑖 between these objects and properties; and 𝑅 is a
set of Object-Object relations 𝑟𝑘 ⊆ 𝐺𝑖 × 𝐺𝑗 where 𝐺𝑖 and 𝐺𝑗 are the object sets of

the formal contexts 𝐾𝑖 and 𝐾𝑗. The structure (𝐾, 𝑅) can be compared to a

relational database schema, including both classes of individuals and classes of
relations.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 234 –

For example Table 2 shows two Object – Attribute contexts of some authors and
their papers presented in different conferences. Table 3 represents the Object-
Object context related to Table 2.

In RCA data tables are iteratively merged into one in the following way: in each
step all formal concepts are computed of one data table and these concepts are
used as additional attributes for the merged data table. After obtaining a final
merged data table, all formal concepts are extracted.

The RCA methodology is the following: given the RCF Object-Attribute contexts
and Object-Object contexts - the concept lattice is built for each Object-Attribute
context at first, then relational scaling is applied to all Object-Object contexts and
relational extension of each Object-Attribute context is built. Finally the concept
lattice for each relational extension is constructed, thus a concept lattice family is
obtained.

Table 2

RCF: Object-Attributes contexts

Author

L
ec

tu
re

r

P
h

D

S
tu

d
en

t

P
ro

fe
ss

o
r

Adam X

Tom X

Jack X

Lena X

Jim X

Sophia X

Lucia X

Mike X

Table 3

 RCF: Object-Object context

 FESTA RK ELKA OpenR XKENA

Adam X X X

Tom X X

Jack X

Lena X

Jim

Sophia X X

Lucia X

Mike X X

Paper
IC

F
C

A

A
D

B
IS

V
L

D
B

S
IG

M
O

D

K
D

D

FESTA X

RK X

ELKA X

OpenR X

XKENA X

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 235 –

3 Document Store Data Modeling using RCA

In this section we investigate the architectural challenges in document based
NoSQL database design. The Entity-Relationship diagram is the most common
tool for conceptual schema design. It is independent of the physical
implementation of the database. It can be transformed to any other data model:
relational, object oriented, hierarchical, semi-structured etc. In relational data
model design, the tables obtained from the E-R diagram can be analyzed for
different normal forms. If an E-R diagram is carefully designed, identifying all
entities correctly, the tables generated from the E-R diagram should not need
further normalization.

Documents using the semi-structured data model may contain redundant
information and may be prone to update anomalies. Such problems are caused by
some functional dependencies. XML Functional Dependency (FD) and normal
form XNF for XML documents were defined by Arenas and Libkin introducing
the so-called tree tuple approach [2]. Yu and Jagadish [13] show, that these XML
FD notions are insufficient and propose a Generalized Tree Tuple (GTT) based
XML functional dependency and key notion, which includes particular
redundancies involving set elements. Based on these concepts, they present the
GTT-XNF normal form. We offer some FCA based tools for finding functional
dependencies in XML documents and propose a correct XML scheme in [14, 5].

Our FCA based method gives a mapping of E-R diagrams to RCA, using a
graphical representation of binary relationships having two cardinalities. We
consider that carefully designed relationships using our method will produce a
document in XNF normal form. The method is simpler than the normalization
process of semi-structured data.

3.1 Conceptual Design of Semi-structured Data

We model the Entity-Relationship (E-R) schema as a Relational Context Family
as follows: The E-R schema consists of entity sets, attributes, and relationships
between entity sets. Since attributes are properties representative of real world
objects, they are many-valued, hence we can represent every entity set of the E-R
model as a many-valued context. Let 𝐸1, 𝐸2, … , 𝐸𝑛 be entity sets of an E-R
diagram. Every entity set 𝐸𝑖, 𝑖 = 1,… , 𝑛 will be modelled as a many-valued
context. The objects of the many-valued context modelled for entity set 𝐸𝑖 will be
the entities from 𝐸𝑖. Let us denote by 𝐴𝑖1 , 𝐴𝑖2 , … , 𝐴𝑖𝑘 the attributes of entity set 𝐸𝑖,
which will be the attributes of the many-valued context. Entity sets are connected
by relations. The relationship between entities from 𝐸𝑖 and 𝐸𝑗 will be represented

using their entity keys in a formal context.

Let 𝑅𝑖𝑗 be a relation between the entity sets 𝐸𝑖 and 𝐸𝑗. The Object-Object context

of 𝑅𝑖𝑗 is defined as the context having as object sets different key values of 𝐸𝑖 and

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 236 –

𝐸𝑗 . The relationship between objects of 𝐸𝑖 and objects of 𝐸𝑗 is given in the

incidence table.

The simplest form of a relationship is the binary relation. Relationships involving
more than two entity sets are called n-ary relations. Binary relationships have two
cardinality constraints [9] of the form (x; y), where x, y are natural numbers, x
specifies the minimum cardinality and y the maximum participation constraint. Let
us consider two entity sets 𝐸1 and 𝐸2 and a binary relation R between them with
left cardinality constraint (x1; y1) and right cardinality constraint (x2; y2) denoted

with: 𝐸1 (𝑥1,𝑦1)↔ 𝑅 (𝑥2,𝑦2)↔ 𝐸2.

Based on their maximum cardinality constraints binary relationships are:

(i) One-to-One, if both roles have maximum cardinality 1

(ii) One-to-Many, if one role has maximum cardinality 1 and the other one
has maximum cardinality N

(iii) Many-to-Many, if both roles have maximum cardinality N

The same E-R conceptual schema can be mapped into a different schema for semi-
structured data. We consider two alternative ways of mapping E-R conceptual
schemas into schema for semi-structured data: a relational-style (flat) design
methodology and a nesting (or embedding) approach. In the flat schema model
each entity is at the same level of the hierarchy and uses references to another
entity as foreign keys in relational databases, the schema never nests. The nested
schema embeds entities as much as possible. M. Franceschet et al. in [10] proved
that both validation of data and query processing are globally more efficient with
nested schemas than with flat ones. Highly nested XML schemas reduce the
number of expensive join operations.

To optimize application performance and reliability, a NoSQL schema must be
driven by the application’s intended purpose; it is about our data and how it is
used. In the design process one has to decide whether flat or nested structuring
optimizes one’s schema. Both designs have advantages and disadvantages. The
main advantage of the nested data model is that one can retrieve the complete
class master information with one query. The main disadvantage of it is that there
is no way of accessing the nested details as stand-alone entities.

In our method we will first create the Object-Object context of our data, build the
concept lattice related to that context and read its background knowledge. From
the graphical representation of the built concept lattice, one can discover and
understand the conceptual relationships within a given set of data. Reading the
built concept lattice we can decide if nesting is feasible or not based on Algorithm
1. We distinguish between the nodes of the Object-Object lattice the top node, the
bottom node and intermediate nodes. The concept nodes of the Object-Object
lattice are labeled with the keys of the entities.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 237 –

Algorithm 1.
Input: a concept lattice

Output: nesting is possible or not
begin
if intermediate nodes are situated in one level then
 if intermediate nodes are labeled with utmost one key from 𝐸1
 and utmost one key from 𝐸2 then

 the relationship is One-to-One;
 if top node has labels and bottom node has labels then

 nesting is not possible;
 else
 nesting is possible;
 end;

 end;

 if intermediate nodes are labeled with more keys from 𝐸1
 and utmost one key from 𝐸2 then
 the relationship is Many-to-One;
 if top node has labels from 𝐸1 or bottom node has labels from 𝐸1 then
 nesting is not possible;
 else

 nesting is possible; // 𝐸1 nested in 𝐸2;
 end;

 end;

else
 the relationship is Many-to-Many;
 nesting is not possible;
end;

end;

Next, we will discuss in detail each of these three basic forms of relations: One-to-
One, One-to-Many and Many-to-Many.

3.1.1 One-to-One Relationship Mapping

In general, the nested data model is the most advantageous, but when modeling
One-to-One relationships, we have to carefully think through the structure of our
data. Let 𝑬𝟏 and 𝑬𝟐 be two entity sets and R a One-to-One relationship between
them. The question is how to nest them: 𝑬𝟏 in 𝑬𝟐 or 𝑬𝟐 in 𝑬𝟏? If we are using a
nested data model and there are elements of 𝑬𝟏 which are not related to any
element of 𝑬𝟐, or elements of 𝑬𝟐 which are not related to any element of 𝑬𝟏, then
we may lose some elements of 𝑬𝟏 or 𝑬𝟐. Our method, using RCA helps one to
decide if nesting is possible and provides the answer as how the entities should be
nested.

In order to decide which data model to use we will firstly create the Object-Object
context of our data and build the related concept lattice. The concept lattice will be
the basis of further analysis. (We will present the Object-Object contexts only in
case of One-to-Many relationships).

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 238 –

Depending on its cardinality the One-to-One relationship has four cases. Table 4
gives examples of these cases. We can observe, that for every concept (excepting
the top and bottom of the lattice) there exists one element from 𝑬𝟏 and one
element from 𝑬𝟐. The concept lattices vary only in bottom and top elements, but
these are decisive in the nested data scheme. The elements of 𝑬𝟏 and 𝑬𝟐, which
are not related to each other, will appear in the top or bottom of the lattice.

Table 4

Concept lattices of Object-Object context in case of One-to-One relationships

a) Men 𝒔𝒑𝒐𝒖𝒔𝒆 ↔ (𝟎,𝟏)
 ↔ (𝟎,𝟏)

Women

There are dangling entities in 𝑴𝒆𝒏 and 𝑾𝒐𝒎𝒆𝒏, the top and bottom of the lattice
contains non empty intent/extent, thus
nested design is not possible. The inclusion
of 𝑾𝒐𝒎𝒆𝒏 in 𝑴𝒆𝒏 would lead to the loss
of 𝑾𝒐𝒎𝒆𝒏 elements which are not related
to elements of 𝑴𝒆𝒏 and vice-versa.

b) Teacher 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒊𝒃𝒍𝒆 ↔ (𝟎,𝟏) ↔ (𝟏,𝟏)
 Class

Every element of Class is related with one
element of 𝑇𝑒𝑎𝑐ℎ𝑒𝑟. The nested design is
possible, including Class in 𝑇𝑒𝑎𝑐ℎ𝑒𝑟, but
not the inverse.

c) Department 𝒎𝒂𝒏𝒂𝒈𝒆𝒅 ↔ (𝟏,𝟏)
 ↔ (𝟏,𝟏)

Manager

The intent of the top element and extent of
the bottom element of the concept lattice are
empty, thus both nesting is correct, we can
include 𝑫𝒆𝒑𝒂𝒓𝒕𝒎𝒆𝒏𝒕 in 𝑴𝒂𝒏𝒂𝒈𝒆𝒓 or 𝑴𝒂𝒏𝒂𝒈𝒆𝒓 in 𝑫𝒆𝒑𝒂𝒓𝒕𝒎𝒆𝒏𝒕.

d) Passport 𝒎𝒂𝒏𝒂𝒈𝒆𝒅 ↔ (𝟏,𝟏)
 ↔ (𝟎,𝟏)

 Person

This case allows the existence of elements
of 𝑷𝒆𝒓𝒔𝒐𝒏 not related to elements of 𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕, but every element of 𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕 is related to one element of 𝑷𝒆𝒓𝒔𝒐𝒏. The nested design is possible, 𝑷𝒂𝒔𝒔𝒑𝒐𝒓𝒕 can be included in 𝑷𝒆𝒓𝒔𝒐𝒏,
but not the inverse.

When one knows how to read a concept lattice, it can indeed provide valuable
information. In [14] we have shown that an XML database can be translated into a
power context family and that the functional dependencies of such a database

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 239 –

correspond to FCA implications in a certain formal context. We are also able to
visualize the structures of the different normal forms in a lattice. In Table 4 the
possibility of nested scheme design can be read from the lattices. At this point,
FCA proves to be a valuable tool for the design of such schemas. It gives an
expressive graphical representation of the relationships between entities. This
paper does not claim that these visualizations solve any computational problem or
create new means for practical implementations. Instead, the visualizations are
meant to serve as explanatory aids, to help us to decide which schema design to
choose. NoSQL data modeling often requires a deeper understanding of data
structures and algorithms than relational database modeling does. To the best of
our knowledge, currently there are no applications which help in choosing
between NoSQL data modeling techniques. Thus an FCA based visual aid is
beneficial.

3.1.2 One-to-Many Relationship Mapping

In general, the N-side of a relationship is nested, if there is no need to access the
embedded object outside the context of the parent object or one can use an array
of references to the N-side objects if the N-side objects must stand alone, but we
have to carefully think through the structure of our data.

In order to decide which data model to use we will first create the Object-Object
context of our documents and build the related concept lattice. Then we analyze
the obtained lattice, reading the background knowledge from it, using Algorithm
1, to determine if nesting is possible.

Depending on its cardinality the One-to-Many relationship has four cases. We
present three of them in Table 6. We denote 𝑬𝟏 the entities of the left hand side of
the One-to-Many relation and 𝑬𝟐 the right hand side respectively, as a working
example to generate the concept lattice, 𝑬𝟏 representing the N side of the One-to-
Many relationship. If we analyze the obtained lattices (Table 5) we can observe,
that for every concept (excepting the top and bottom) there exists one element
from 𝑬𝟐 and N elements from 𝑬𝟏. This illustrates the relationship between
elements of 𝑬𝟏 and elements of 𝑬𝟐.

For the sake of simplicity, in the following examples we have presented very
small concept lattices, but it has been shown in [3, 12] that readable lattices can be
produced from real data sets with a straightforward process of creating sub-
contexts.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 240 –

Table 5

Object-Object contexts and their concept lattices in case of One-to-Many relationships

e) Persons 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒅 ↔ (𝟎,𝟏)
 ↔ (𝟎,𝑵)

Employers

There are elements of 𝑷𝒆𝒓𝒔𝒐𝒏𝒔 which are not related to elements 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒓𝒔 being
displayed at the top of the lattice, as well as elements of 𝑬𝒎𝒑𝒍𝒐𝒚𝒆𝒓𝒔 which are not
related to elements of Persons, appearing at the bottom of the lattice. Having elements in 𝑷𝒆𝒓𝒔𝒐𝒏𝒔 representing the 𝑵 side not related to a parent, hierarchical design is not
possible. There can be persons who are not employed and employers who have no
employed person.

f) Orders 𝑶𝒓𝒅𝒆𝒓𝒆𝒅 ↔ (𝟏,𝟏)
 ↔ (𝟎,𝑵)

 Customers

There are elements of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 which are not related to elements of 𝑂𝑟𝑑𝑒𝑟𝑠,
appearing in the bottom of the lattice, but every element of 𝑂𝑟𝑑𝑒𝑟𝑠 is related with one
element of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠. Hierarchical design is possible, including 𝑂𝑟𝑑𝑒𝑟𝑠 in 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠.

g) Papers 𝑨𝒑𝒑𝒆𝒂𝒓𝒆𝒅 ↔ (𝟏,𝟏)
 ↔ (𝟏,𝑵)

 Proceedings

There are no dangling entities: every element of 𝑷𝒂𝒑𝒆𝒓𝒔 is related to one element of 𝑷𝒓𝒐𝒄𝒆𝒆𝒅𝒊𝒏𝒈𝒔, and also every element of 𝑷𝒓𝒐𝒄𝒆𝒆𝒅𝒊𝒏𝒈𝒔 is related with elements of 𝑷𝒂𝒑𝒆𝒓𝒔. Nested structure is possible.

3.1.3 Many-to-Many Relationship Mapping

Concepts of conceptual lattices which represent Many-to-Many relationships are
on more hierarchical levels. The top and bottom of the concept lattice are labeled
if there are dangling elements in the entity sets A and B.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 241 –

Example 3. Consider the Many-to-Many relation between Students and Courses:

Students Choose ↔ (0,𝑁)
 ↔ (0,𝑁)

 Courses. One course can be chosen by 0 or more students
and there can be students who choose 0 or more courses.

Figure 2

Concept lattice of Many-to-Many relationship

Nested design is not possible in this case.

In the case of Many-to-Many relationships, one can use bi-directional referencing
if you are willing to pay the price of not having atomic updates or use of
application-level joins, they are barely more expensive than server-side joins if
you index correctly and use the projection specifier.

4 Experimental Evaluation

In the following we will use MongoDB for our discussion as it is one of the
leading open-source NoSQL databases due to its simplicity, performance,
scalability, and active user base. It has to be emphasized that our aproach is
available in all semistructured datastores, not only in MongoDb.

We use the DBLP [6] bibliography dataset imported in MongoDB to test queries
on flat versus nested structure of the documents. Our experiments were conducted
on three computers, both with i7 processors and 4 GB RAM, running with a
Windows 7 (64bit) OS.

3.2 Data Structure of Experimental Data

The structure of DBLP data is described in [7], where the flat representation of
XML data is used. We import 1.559.572 conference proceedings and 1.232.729
journal articles from DBLP dataset. An inproceeding document is designed for the
paper and a proceeding document for the volume. The journals are also stored in
the proceeding collection with key value beginning with journal. We have 25593
proceedings and journal documents. Journal articles are also stored in the
inproceeding collection.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 242 –

The relationship between papers and proceeding is presented in Table 5 case g)
from 3.1.2. Using Algorithm 1 we can see that nesting is possible.

We import the DBLP XML data in MongoDB in flat style first. In case of flat
representation the key and crossref fields were used in order to map the one to
many relationship between proceeding and the papers published in it, see
Example 4. Then we constructed the nested representation in MongoDB using as
input the flat MongoDB data. We used indexes for crossref field of inproceeding
collection in flat style data to improve the retrieval of papers for one proceeding.

Example 4. Consider the flat structure: one conference proceeding and two
inproceeding documents:

PROCEEDING:
{ "_id" : ObjectId("54d61a311ba3b50d0c1f5a20"),
 "key" : "conf/cla/2007",
 "editor" : ["Peter W. Eklund", "Jean Diatta", "Michel Liquiere"],
 "title" : "Proceedings of the Fifth International Conference on Concept Lattices
 and Their Applications, CLA 2007, Montpellier, France, October 24-26, 2007",
 "booktitle" : "CLA",
 "publisher" : "CEUR-WS.org",
 "volume" : "331",
 "year" : "2008",
 "series" : "CEUR Workshop Proceedings",
 "url" : "db/conf/cla/cla2007.html" }

INPROCEEDING:
{ "_id" : ObjectId("54d61a311ba3b50d0c1f59e4"),
 "author" : ["Radim Belohlvek", "Bernard De Baets", "Jan Outrata", "Vilm

 Vychodil"],
 "title" : "Inducing Decision Trees via Concept Lattices.",
 "year" : "2007",
 "ee" : "http://ceur-ws.org/Vol-331/Belohlavek3.pdf",
 "crossref" : "conf/cla/2007",
 "url" : "db/conf/cla/cla2007.html#BelohlavekBOV07" }
{ "_id" : ObjectId("54d61a311ba3b50d0c1f59f4"),
 "author" : ["Laszlo Szathmary", "Amedeo Napoli", "Sergei O. Kuznetsov"],
 "title" : "ZART: A Multifunctional Itemset Mining Algorithm.",
 "year" : "2007",
 "ee" : "http://ceur-ws.org/Vol-331/Szathmary.pdf",
 "crossref" : "conf/cla/2007",
 "url" : "db/conf/cla/cla2007.html#SzathmaryNK07" }

Example 5. Consider the nested structure: two inproceeding documents nested in
a conference proceeding:

NESTEDPROCEEDING:
{ "_id" : ObjectId("54d61a311ba3b50d0c1f5a20"),
 "key" : "conf/cla/2007",
 "editor" : ["Peter W. Eklund", "Jean Diatta", "Michel Liquiere"],
 "title" : "Proceedings of the Fifth International Conference on Concept Lattices

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 243 –

 and Their Applications, CLA 2007, Montpellier, France, October 24-26, 2007",
 "booktitle" : "CLA",
 "publisher" : "CEUR-WS.org",
 "volume" : "331",
 "year" : "2008",
 "series" : "CEUR Workshop Proceedings",
 "url" : "db/conf/cla/cla2007.html",
 "inproceedings" :
 [{ "author" : ["Radim Belohlvek", "Bernard De Baets", "Jan Outrata", "Vilm

 Vychodil"],
 "title" : "Inducing Decision Trees via Concept Lattices.",
 "year" : "2007",
 "ee" : "http://ceur-ws.org/Vol-331/Belohlavek3.pdf",
 "url" : "db/conf/cla/cla2007.html#BelohlavekBOV07" },
 { "author" : ["Laszlo Szathmary", "Amedeo Napoli", "Sergei O. Kuznetsov"],
 "title" : "ZART: A Multifunctional Itemset Mining Algorithm.",
 "year" : "2007",
 "ee" : "http://ceur-ws.org/Vol-331/Szathmary.pdf",
 "url" : "db/conf/cla/cla2007.html#SzathmaryNK07" }] }

3.2.1 Testing the Queries

We test ten queries for a single server MongoDB configuration and the same
queries for three servers. In the case of three servers the queries were executed by
one and three different users. The queries were executed with different parameters
in different order more times. In the graphic representation we consider the
average of the execution times.

The first five queries do not involve both proceeding and inproceeding type
documents, only one of them. In the last five queries both - proceeding and papers
needs to be accessed. In the case of nested design, the paper documents are
embedded in the containing proceeding document. We create index on crossref
field of inproceeding collection in case of flat representation to improve the 'join'
operation, which has to be solved programmatically.

The queries were:

Query 1: Select the conference papers and journal articles for one author.

Query 2: Select the journal articles written by author1 and written by author2 in a
given year or articles written by author1 and not written by author3 in a given
year.

Query 3: Select the conference papers and journal articles in 3 given year.

Query 4: Select conference proceeding or journal information given a booktitle
value. The booktitle is the same for a series of conferences which are held every
year or a journal which appears more times in a year.

Query 5: The same as Query 4 complemented with a condition excluding a given
year.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 244 –

Query 6: Select conference or journal from proceedings collection given a
booktitle value and a year value, together with papers from the selected
proceeding.

Query 7: Given a paper title finds the paper and the proceeding where the paper
was published.

Query 8: Given a part of a paper title finds the papers and the proceedings where
the papers were published.

Query 9: Given a part of a proceeding title finds the corresponding proceedings
and the papers published in these proceedings.

Query 10: Select journal articles of a given author in a given journal, in a given
volume, for a given year and the corresponding journal.

Figure 3

Execution time of queries on a local machine

The execution time for every query in nested design mode of data is between 0.01
and 0.02 sec in every case, using local machine or 3 servers. The execution time in
flat structure of data for queries 6-10 is between 0.04 and 1.89 sec. Queries 1-5 are
executed nearly at the same time in embedded and non-embedding cases.

In Figure 3 we can see the average execution time on a local machine for the ten
queries in flat (Example 4) and nested (Example 5) structure of the data. The
experiments for queries 6-10 show that the nested design mode of data is more
suitable. The execution of the first five queries on one machine does not depend
on the structure of the data.

Figure 4 presents the results of query execution on three servers with one user. In
this case, the results are nearly the same, for queries 1-5 the structure of the data is
not relevant, but for queries 6-10 the nested design of the data is more appropriate.

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 245 –

Figure 4

Execution time of queries on three servers one user

Figure 5 illustrates the execution time of the same queries on three servers by
three different users concurrently. The results are nearly the same, nested structure
of data is superior in this case as well.

Figure 5

Execution time of queries on three servers with three users

Figure 6 presents the execution times for the three different architectures in the
case of flat data structure. The differences are not relevant between the local
machine and distributed architectures.

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 246 –

Figure 6

Execution time of queries for flat data structure

Figure 7 compares the query execution time for the nested structure of the data on
different system architecture.

Figure 7

Execution time of queries for nested data structure

Our method of using RCA helps us to decide if nesting is feasible or not. We
tested all queries in flat and nested versions and the results show that if we choose
the design method, which is suggested by our algorithm, the execution time will
be more efficient. Results of experiments using our method have proven that
decisions affecting the modeling of data can affect application performance and
database capacity.

Conclusions

In this paper we have proven that the more knowledge we have concerning a
target domain, the better that certain tools can support the domain's analyses.
Decisions that affect how we model data, can affect application performance and
database capacity. We have covered the basics of data modeling for document

Acta Polytechnica Hungarica Vol. 13, No. 2, 2016

 – 247 –

based data stores. The three basic types of relations were discussed and illustrated
with the help of examples.

We used FCA methods to visually analyze the schema of large-scale data. We
proposed an RCA based approach to document based NoSQL database design.
The possibility of nested scheme design can be read from the lattices. Results of
experiments using our method have validated the feasibility of our approach.

References

[1] V. Abramova, J. Bernardino, NoSQL Databases: MongoDB vs Cassandra,
Proceedings of the International C* Conference on Computer Science and
Software Engineering, ACM, 2013, pp. 14-22

[2] M. Arenas, L. Libkin, A Normal Form for XML Documents. TODS 29(1),
2004, pp. 195-232

[3] S. Andrews, C. Orphanides, Analysis of Large Data Sets using Formal
Concept Lattices, CLA 2010, pp. 104-115

[4] R. Cattell, Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record
39.4, 2011, pp. 12-27

[5] K. T. Janosi Rancz, V. Varga, XML Schema Refinement Through Formal
Concept Analysis, Studia Univ. “Babeş-Bolyai” Cluj-Napoca, Informatica,
vol. LVII, No. 3, 2012, pp. 49-64

[6] M. Ley, DBLP Computer Science Bibliography. http://dblp.uni-trier.de/

[7] M. Ley, DBLP — Some Lessons Learned, Proc. VLDB Endowment, Vol.
2, Nr. 2, 2009, pp. 1493-1500

[8] Ecma International. The JSON Data Interchange Format, 2013, www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf

[9] R. Elmasri, S.B. Navathe: Fundamentals of Database Systems, Addison
Wesley (2010)

[10] M. Franceschet, D. Gubiani, A. Montanari, C. Piazza: A Graph-Theoretic
Approach to Map Conceptual Designs to XML Schemas, ACM
Transactions on Database Systems, 2013, Vol. 38, pp. 6-44

[11] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations,
Springer, 1999

[12] D. V Gnatyshak, D. I. Ignatov, S. O. Kuznetsov, L. Nourin, A One-Pass
Triclustering Approach: Is There any Room for Big Data?, Proceedings of
the 11th International Conference on CLA, 2014, pp. 231-242

[13] C. Yu, H. V. Jagadish, XML schema refinement through redundancy
detection and normalization. VLDB J. 17(2), 2008, pp. 203-223

V. Varga et al. Conceptual Design of Document NoSQL Database with Formal Concept Analysis

 – 248 –

[14] K. T. Janosi-Rancz, V. Varga, T. Nagy, Detecting XML Functional
Dependencies through Formal Concept Analysis, ADBIS 2010, Novi Sad,
Serbia, LNCS 6295, pp. 595-598

[15] M. Klettke , U. Störl, S. Scherzinger: Schema Extraction and Structural
Outlier Detection for JSON-based NoSQL Data Stores, 16th Conference
on Database Systems for Business, Technology, and Web (BTW), 2015

[16] B. Ganter, C. Meschke, A Formal Concept Analysis Approach to Rough
Data Tables. Trans Rough Sets 2011, 14:37–61

[17] S. O. Kuznetsov, J. Poelmans, Knowledge Representation and Processing
with Formal Concept Analysis, Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, Vol. 3, Issue 3, pp. 200-215, 2013

[18] M. Rouane-Hacene, M. Huchard, A. Napoli, P. Valtchev, A Proposal for
Combining Formal Concept Analysis and Description Logics for Mining
Relational Data, ICFCA'07, France. Springer, LNAI 4390, pp. 51-65

[19] M. Rouane-Hacene, M. Huchard, A. Napoli, P. Valtchev, Relational
Concept Analysis: Mining Concept Lattices from Multi-Relational Data,
Annals of Mathematics and Artificial Intelligence 67, 1, 2013, pp. 81-108

[20] S. Tiwari, Professional NoSQL, O’Reilly, 2013

[21] S. Václav, H. Zdenek, A. Ajith, Understanding Social Networks Using
Formal Concept Analysis, Proc. WI-IAT '08, Volume 03, pp. 390-393

[22] V. Varga, Ch. Sacarea, An FCA Driven Analysis of Mapping Conceptual

Designs to XML Schemas, Studia Univ. “Babeş-Bolyai” Cluj-Napoca,
Informatica, Vol. LIX, No. 1, 2014, pp. 46-57

[23] R. Belohlavek, Fuzzy Galois Connections. Math Logic Q 1999, 45:497–
504

[24] B. Ganter, S. O. Kuznetsov, Pattern Structures and their Projections. Proc.
of 9th ICCS’01. LNAI, 2120; July 30-August 3, 2001; Stanford University,
CA. Berlin, Heidelberg: Springer 2001, 129-142

[25] D. Gnatyshak, D. I. Ignatov, S. O. Kuznetsov, L. Lourine: A One-pass
Triclustering Approach: Is There any Room for Big Data?, CLA 2014, 231-
242

[26] F. Lehmann, R. Wille, A Triadic Approach to Formal Concept Analysis.
ICCS; August 14-18; Santa Cruz, CA. Berlin, Heidelberg: Springer; 1995,
32-43

