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Abstract

Aim: Higher educational attainment is associated with a lower risk of periodontitis,

but the extent to which this association is causal and mediated by intermediate

factors is unclear.

Materials and Methods: Using summary data from genetic association studies from

up to 1.1 million participants of European descent, univariable and multivariable

Mendelian randomization analyses were performed to infer the total effect of educa-

tional attainment on periodontitis and to estimate the degree to which income,

smoking, alcohol consumption, and body mass index mediate the association.

Results: The odds ratio of periodontitis per 1 standard deviation increment in geneti-

cally predicted education was 0.78 (95% CI: 0.68–0.89). The proportions mediated of

the total effect of genetically predicted education on periodontitis were 64%, 35%,

15%, and 46% for income, smoking, alcohol consumption, and body mass index,

respectively.

Conclusions: Using a genetic instrumental variable approach, this study triangulated

evidence from existing observational epidemiological studies and suggested that

higher educational attainment lowers periodontitis risk. Measures to reduce the

burden of educational disparities in periodontitis risk may tackle downstream risk

factors, particularly income, smoking, and obesity.
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Clinical Relevance

Scientific rationale for study: Lower levels of education are related to a higher risk of periodonti-

tis, but it is unclear whether this association is causal and the connecting pathways are

unknown.
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Principle findings: Higher education lowers periodontitis risk. Income, smoking, and body weight

mediate the effect of education.

Practical implications: Periodontitis attributable to lower levels of education can be reduced by

intervening on these risk factors.

1 | INTRODUCTION

Oral conditions disproportionally affect socially disadvantaged mem-

bers of society. A strong and consistent social gradient exists between

socio-economic position and the prevalence and severity of oral dis-

eases (Peres et al., 2019). Socio-economic position refers to the

socially derived economic factors that influence what positions indi-

viduals or groups hold within the structure of a society and is typically

characterized along the dimensions of education, income, and occupa-

tional position or prestige (Berkman et al., 2014; Siegrist & Marmot,

2006). Major oral health inequalities prevail along all three dimensions

(Borrell & Crawford, 2012; Schwendicke et al., 2015; Singh et al.,

2018, 2019). Even in high-income countries where absolute poverty is

rare, there is a fine and graduated pattern of disparity in health across

the full socio-economic spectrum, suggesting that there is not a

threshold of absolute deprivation but rather a linear relation between

socio-economic position and health outcomes (Heckman, 2012).

Observational research has consistently shown that individuals with

lower educational attainment are at increased risk to develop peri-

odontitis and suffer from more rapid progression (Borrell & Crawford,

2012; Schuch et al., 2017; Singh et al., 2019). While there is little con-

troversy that poorly controlled diabetes or smoking causally increase

the risk of periodontitis (Chapple et al., 2017), although there is a sub-

stantial indication from observational studies, few studies have pro-

vided a strong foundation for the causal effect of educational

attainment on periodontal disease.

The socio-economic inequalities in oral diseases have been exten-

sively described and are consistent across countries; however, few

studies have examined whether socio-economic factors are a cause

(rather than merely a correlate) of oral health. Despite recognition of

the long-standing history of epidemiological studies, plausible causal

inference approaches in this area of research are elusive, and in

perennial contention with selection bias, reverse causation, and con-

founding by unobservables (McMartin & Conley, 2020). Researchers

have been able to overcome some of the challenges by taking advan-

tage of natural experiments, such as changes in compulsory schooling

laws, desegregation policies, and seasonal breaks in school attendance

or natural disasters, to estimate the effects of educational achieve-

ments on downstream health outcomes (Galama et al., 2018). One

notable exemplar in dental research is a study leveraging the Japanese

earthquake and tsunami of 2011 as an instrumental variable (IV) to

study the causal effect of socio-economic circumstances on tooth loss

(Matsuyama et al., 2017). More recently, studies have attempted to

estimate the effect of education on health outcomes using Mendelian

randomization (MR; Anderson et al., 2020; Carter et al., 2019;

McMartin & Conley, 2020). MR is a form of IV analysis, in which

genetic variants are used as proxies for environmental exposures

(Burgess et al., 2019). Because of the random allocation at concep-

tion, genetic variants associate with a particular risk factor largely

independent of potential confounders that might otherwise bias

the association of interest when using observational study data.

Genetic variants also cannot be modified by subsequent disease,

thereby minimizing potential bias by reverse causation. MR is not

used to identify the presence of a genetic effect on a trait but,

rather, uses genetic variation as a natural experiment to investigate

the causal relationship between phenotypic traits (Davies

et al., 2018).

An understanding of the mechanisms underlying the association

between educational position and periodontal health is likely to be

helpful to address social disparities in periodontitis. Mediation analysis

can help identify factors that facilitate the association between educa-

tion and periodontitis, enabling intervention on modifiable mediators

to reduce the effects of lower educational position (T. VanderWeele,

2015). Traditional observational mediation methods use snapshots of

risk factors, which could incompletely capture a person's cumulative

lifetime exposure (Carter et al., 2019). Multivariable MR for mediation

analysis (Burgess, Thompson, et al., 2017) can help uncover the link

between educational position and periodontal health that is typically

thought to be due to environmental factors, including access to

resources, exposure to harmful or stressful environments, and adverse

health behaviours, such as smoking, poor diet, and excessive alcohol

consumption (Phelan et al., 2010; Watt & Sheiham, 2012; Schuch

et al., 2017; Singh et al., 2019). We are interested in the mechanisms

or pathways through which educational attainment acts to affect peri-

odontitis. We use MR mediation analysis in an attempt to unpick the

total effect of educational attainment on periodontitis risk and deter-

mine the connecting pathways. Understanding the structure of this

relationship is particularly important because modifying the educa-

tional attainment is difficult once adulthood is reached. Mediation

analysis can thus help identify modifiable intermediate targets that

can enable intervention to mitigate the adverse effects of lower edu-

cational attainment.

2 | MATERIALS AND METHODS

The study was conducted using publicly available genome-wide asso-

ciation studies (GWAS) summary data. The study was reported based

on recommendations by STROBE-MR and “Guidelines for performing

Mendelian randomization investigations” (Burgess et al., 2020;

Skrivankova et al., 2021). The study protocol and details were not

pre-registered.
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2.1 | Data sources

Genetic association estimates for educational attainment were

obtained from a Social Science Genetics Association Consortium

GWAS meta-analysis of 1,131,881 individuals of European descent

(Lee et al., 2018). Educational attainment was defined as the number

of years of education and was unified across the included studies

according to the International Standard Classification of Education.

Genetic association estimates for income were obtained from a

GWAS of 332,050 European-ancestry individuals in the UK Biobank

(Hill et al., 2019). Self-reported household income was collected using

a 5-point scale corresponding to the total household income before

tax, 1 being less than £18,000, 2 being £18,000–£29,999, 3 being

£30,000–£51,999, 4 being £52,000–£100,000, and 5 being greater

than £100,000. The GWAS of the number of cigarettes per day

included 337,334 individuals from the Sequencing Consortium of

Alcohol and Nicotine use (GSCAN), UK Biobank, and 23andMe. Ciga-

rettes per day (referred to hereon as smoking) was defined as the

average number of cigarettes smoked per day, either as a current

smoker or former smoker (Liu et al., 2019). The GWAS of alcohol con-

sumption was based on the number of drinks consumed per week in

941,280 individuals from several cohorts including 23andMe, UK Bio-

bank, and deCODE. Drinks per week was defined as the number of

drinks a study participant reported drinking each week, aggregated

across types of alcohol (Liu et al., 2019). Genetic association estimates

for body mass index were obtained from the GIANT Consortium

GWAS meta-analysis of 806,834 European-ancestry individuals (Pulit

et al., 2019). We extracted estimates of the effects of exposure- and

mediator-associated variants on periodontitis from a GWAS of

European studies contributing to the GeneLifestyle Interactions in

Dental Endpoints (GLIDE) consortium, totaling 17,353 clinical peri-

odontitis cases and 28,210 controls (Shungin et al., 2015; Shungin

et al., 2019). Periodontitis cases were classified by either the Centers

for Disease and Control and Prevention/American Academy of Peri-

odontology (Page & Eke, 2007) or the Community Periodontal Index

(CPI; World Health Organization, 2013) case definition (Shungin et al.,

2015). More details on the population characteristics and specific trait

definitions relating to all these summary genetic association estimates

are available in their original publications.

2.2 | Selection of genetic instrumental variables

Single-nucleotide polymorphisms (SNPs) serving as IV in the MR anal-

ysis to estimate the total effect of education on periodontitis were

selected at genome-wide significance (p-value <5 � 10�8) and were in

pairwise linkage disequilibrium (LD) r2 < .001. To select instruments

for mediation analysis, all non-overlapping SNPs for educational

attainment or mediators at genome-wide significance were pooled

and clumped to pairwise LD r2 < .001. For the analyses performed in

this current work, genetic variants from different studies were harmo-

nized by their effects, and exclusions were made for palindromic vari-

ants. Only variants for which genetic summary statistics were

available for all the traits being examined in a given analysis were con-

sidered. Thus, to maintain consistency in variants used as instrumental

variables across different analyses, proxies were not used. The SNP–

educational attainment and SNP–periodontitis estimates are provided

in Table S1.

2.3 | Statistical analysis

MR applies IV estimation by leveraging genetic information as an

effective random source of variation in the exposure such that the

source of variation is unrelated to the counterfactual value of the out-

come under any particular value of the exposure (Didelez & Sheehan,

2007). The IV approach was developed a century ago and is

widely applied in economics (Wooldridge, 2010) and epidemiology

(Greenland, 2000; Hernán & Robins, 2006). MR can be used to evalu-

ate a causal effect of an exposure X on an outcome Y even when

there is unmeasured confounding or selection bias of the exposure–

outcome relationship in non-experimental data. The genetic variants

are randomized at conception and therefore largely inherited indepen-

dently from other variants affecting confounding factors. These vari-

ants are also unchanged throughout the lifetime and so are unlikely to

be affected by Y, therefore reducing bias from reverse causation.

IV estimation can be used to falsify the sharp null hypothesis that

there is no effect of the exposure on the outcome for any individual

in the study and to quantify the magnitude of the exposure–outcome

relationship (Swanson et al., 2018). Three conditions are required for

the genetic variant to qualify as a valid IV: (1) the IV G is robustly asso-

ciated with X (“relevance”); (2) no back-door paths are linking G and Y,

for example, no shared causes of G and Y (“exchangeability”); and
(3) there are no paths via which G influences Y that do not pass

through X (“exclusion restriction”; Labrecque & Swanson, 2018).

The IV assumptions can be formalized with directed acyclic graphs

(DAGs), following the rules of causal DAGs (Pearl, 2009; Labrecque &

Swanson, 2018).

In the causal DAG in Figure 1, G fulfils the IV conditions above

with respect to X and Y. These assumptions are all that is needed to

evaluate the sharp null hypothesis of no effect in any individual. The

sharp null implies that G is d-separated from, and therefore indepen-

dent of, Y. This sharp null can be assessed even if X is unmeasured

since it only requires information on G and Y (Didelez & Sheehan,

2007; T. J. VanderWeele et al., 2014). The standard (univariable) MR

analysis can be conducted with either individual-level or summary

F IGURE 1 Directed acyclic graph showing causal assumptions
under which G is a valid instrument for the effect of exposure X on
outcome Y, despite the presence of shared common causes
U (i.e., unmeasured confounders) of the X–Y association
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data from GWAS, which provides the estimated effect of each SNP

on X and Y. When genetic, exposure, and binary outcome data are

available on the individual level, a two-stage residual inclusion or a

logistic structural mean model can be used for IV analysis (Burgess,

Small, & Thompson, 2017). In the present two-sample, summary data

MR analysis, the total effect of educational attainment on periodonti-

tis was investigated using the Wald ratio method (SNP–outcome esti-

mate divided by the SNP–exposure estimate) with standard errors

estimated using the delta method (Burgess, Small, & Thompson,

2017). We used multiplicative random-effects inverse-variance

weighted (IVW) meta-analysis to pool the individual SNP effects for

estimating the total association of genetically predicted educational

attainment on periodontitis risk (Burgess et al., 2019). IVW estimates

are presented as odds ratios (OR) per 1 standard deviation (SD) incre-

ment in educational attainment (corresponding to a 4.2 year increase

in years of education). Following the advice by Burgess et al. (Burgess

et al., 2021), we separate the description of MR analysis results from

the inference that is made. We, therefore, report on associations of

genetically predicted exposure values with an outcome.

For the univariable MR analysis to provide a valid estimate of the

exposure on the outcome, the three IV assumptions, outlined above,

must be satisfied. To satisfy the first MR assumption, we chose SNPs

that were associated with educational attainment at a level of

genome-wide significance. To further verify the assumption, we com-

puted the F-statistic and the percentage of variance in educational

attainment explained by the variants (Burgess & Thompson, 2011). To

verify the second and third MR condition, we examined potential plei-

otropy by testing for heterogeneity of the individual SNP effects using

the Cochran Q and IGX
2-statistics, applied the MR Egger intercept test

of directional pleiotropy, the global outlier test using the MR Pleiot-

ropy Residual Sum and Outlier (MR-PRESSO), and performed leave-

one-out analysis to assess whether the IVW estimate was driven by a

single SNP (Hemani et al., 2018; Verbanck et al., 2018). The penalized

weighted median, IVW radial regression, and MR-PRESSO were used

in sensitivity analyses to explore the robustness of the estimates to

potential horizontal pleiotropic effects, which may result from viola-

tions of the IV assumptions 2 or 3 (Bowden et al., 2018; Hemani et al.,

2018; Verbanck et al., 2018; Slob & Burgess, 2020). The penalized

weighted median method gives consistent effect estimates under the

assumption that no more than 50% of the weight of the MR effect

estimate comes from pleiotropic SNPs, where weight is determined

by the strength of their association with the exposure. The contribu-

tion of heterogeneous SNP-specific estimates to the overall estimate

is further minimized by a penalization parameter. Radial regression

uses modified second-order weights to detect and remove outlying

SNPs. In MR-PRESSO, the IVW method is implemented by regression,

and the residual sum of squares (RSS) is calculated as a heterogeneity

measure. If the RSS is decreased compared to a simulated expected

distribution, then the SNP is removed from the analysis.

Univariable MR analysis estimates the total effect of X on Y. We

additionally performed multivariable MR, an extension of the standard

MR approach, to investigate potential intermediate factors that are on

the causal pathway from educational attainment to periodontitis.

Mediation analysis can help improve the aetiological understanding

and identify variables as potential intervention targets when interven-

ing on an exposure (such as educational attainment in mid-adulthood)

is not easily feasible. It allows for the decomposition of a total effect

into the direct and indirect effects (T. VanderWeele, 2015). Three

parameters are estimated in traditional (observational) mediation anal-

ysis: (1) the total effect of X on Y through all pathways); (2) the direct

effect, either controlled or natural (the effect of X on Y remaining and

acting through other pathways after conditioning on a mediator M);

and (3) the indirect effect (the path from X to Y that acts through M).

A common approach to estimate the indirect effect in a non-IV

observational regression-based mediation analysis is the “difference
method” (T. VanderWeele, 2015). The approach first regresses Y on X,

adjusting for observed confounders C. The estimated parameter for

X from this regression gives the total effect of X on Y. A second model

refits the regression after additionally including one or more

prespecified mediators as covariates. The estimated parameter for

X gives the direct effect of X on Y that does not act through M.

An estimate of the proportion of the total effect that is mediated

by the mediators is computed by subtracting the regression coeffi-

cient of the second from the coefficient of the first model. Figure 2

provides DAGs of the classical difference-in-coefficients method of

mediation analysis for non-experimental data.

We performed MR for mediation analysis to estimate the direct

effect of genetically predicted educational attainment on periodontitis

that was not mediated by the investigated intermediate factors

(Burgess, Thompson, et al., 2017; Carter et al., 2021; Sanderson,

2021). Multivariable MR estimates the direct effect of an exposure,

conditioning for one or more mediating traits. The natural direct and

F IGURE 2 Decomposed effects in a non-IV regression-based
mediation analysis where β represents the total effect, β0 represents
the direct effect and the indirect effect can be estimated by
subtracting β0 from β (difference method)
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indirect effects when M takes its natural level given X are estimated in

multivariable MR (T. VanderWeele, 2015; Carter et al., 2021). It condi-

tions the SNP–exposure effects on their corresponding effects on

other putative risk factor traits that are on indirect pathways by

regressing the summary genetic associations with the outcomes on

the genetic associations with the exposure and mediator(s) using a

weighted regression model (Burgess, Thompson, et al., 2017). The

genetic variants for X and M are included as IV.

Univariable MR estimates the total effect of X on Y, and multi-

variable MR estimates the direct effect of X on Y conditional on

the mediators. The difference between these estimates gives the

indirect effect of X on Y via the mediators (Figure 3; Sanderson,

2021). When using multivariable MR for mediation, genetic variants

included as IV for X and M should be independent (Carter et al.,

2021). In contrast, when multivariable MR is used to adjust for hori-

zontal pleiotropic pathways, variants associated with X and the

confounder of the X–Y relationship should be included (Sanderson

et al., 2019). As with univariable MR, the three IV assumptions are

to be satisfied.

The SNP–outcome association estimates were regressed on the

SNP–exposure and SNP–mediator estimates, with the intercept fixed

at zero, to adjust for genetically predicted income, smoking, alcohol,

and body mass index. Figure S1 shows a causal DAG of the mediat-

ing pathways. The available empirical evidence for each of the

education–mediator and mediator–periodontitis arrows is provided in

Table S2. We reported log OR per 1 SD increment in educational

attainment after adjustment for mediators separately and together in

the same multivariable MR model. We presented log OR as measures

for the direct effects because of the non-collapsibility of ORs, mean-

ing that the association between the exposure and outcome would

not be constant on the OR scale by strata of covariates (Greenland

et al., 1999). Multivariable MR analysis was performed to estimate

the proportion of the total effect of education on periodontitis that

was mediated through each of the considered mediators, and all

mediators combined. In particular, the indirect effect of genetically

predicted education on periodontitis was divided by the total effect

(Burgess, Thompson, et al., 2017; Carter et al., 2021). The propor-

tions mediated of separate multivariable MR analyses do not neces-

sarily add to 100% owing to possible vertical pleiotropy, where the

genetic instrument affects a cascade of mediators along a pathway.

We performed the analysis using R version 4.0.5 (R Foundation for

Statistical Computing) using the TwoSampleMR (0.5.6), MRPRESSO

(1.0), and MendelianRandomization (0.5.1) packages.

3 | RESULTS

Phenotypical descriptive statistics of studies included in the exposure,

mediator, and outcome GWAS are provided in Table S3. The sample-

F IGURE 3 (a) Univariable Mendelian randomization for estimating
the total effect β. (b) Multivariable Mendelian randomization for
estimating the direct effect β0

TABLE 1 Univariable MR analysis for the association of
genetically predicted educational attainment on periodontitis

Method OR (95% CI) p-Value

Inverse variance weighted 0.78 (0.68–0.89) .0004

Penalized weighted median 0.75 (0.59–0.96) .0242

Radial regression 0.78 (0.68–0.89) .0004

MR-PRESSO 0.78 (0.68–0.89) .0004

Note: OR (odds ratio) per 1 standard deviation increase in years of

education..

Abbreviations: CI, confidence interval; MR-PRESSO, MR Pleiotropy

RESidual Sum and Outlier.

TABLE 2 Direct effect of genetically predicted educational attainment on periodontitis, after adjustment for mediators separately and
together in the same multivariable MR model

Log OR (95% CI) p-Value Proportion mediated

Total effect from univariable MR �0.25 (�0.38 to –0.11) .0004 –

Direct effect after adjustment for mediator

Income �0.09 (�0.26 to 0.08) .2973 63.6

Cigarettes per day �0.16 (�0.30 to –0.02) .0206 35.1

Drinks per week �0.21 (�0.34 to –0.08) .0018 14.6

Body mass index �0.13 (�0.32 to 0.05) .1594 45.9

All mediators �0.02 (�0.24 to 0.20) .8322 90.4

Note: Log odds ratio (OR) per 1 standard deviation increase in years of education. Proportion mediated (as a percentage) computed as indirect effect (log

OR total effect – log OR direct effect)/total effect (log OR).

Abbreviation: CI, confidence interval.
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size-weighted mean of education was 16.8 years of schooling with an

SD of 4.2 years.

The main univariable MR analysis for the total effect showed that

higher genetically predicted educational attainment was associated

with a reduced periodontitis risk [IVW OR per SD = 0.78; 95% confi-

dence interval (CI): 0.68–0.89; p-value = .0004; Table 1]. The 332 SNPs

selected as IVs for educational attainment explained 5.2% of the

variance (Table S1). The minimum F-statistic was 29.6. There was no

evidence of heterogeneity between Wald ratios in the main IVW analy-

sis for the total effect (Table S4). The intercept estimated from the MR

Egger regression was centred around zero and provided no support for

unbalanced pleiotropy (Table S4). Using MR-PRESSO, we found no evi-

dence for pleiotropy (p-value global test = .999). IVW leave-one-out

analysis did not identify any leverage points with high influence. There

was consistent evidence across estimates from IVW, penalized weighted

median, radial regression, and MR-PRESSO (Table 1).

There was attenuation in the association between genetically

predicted education and periodontitis after adjustment for geneti-

cally predicted income, smoking, alcohol consumption, and body

mass index (Table 2). The log OR of �0.25 (95% CI: �0.38 to –

0.11) for the total effect on periodontitis associated with a 1 SD

increment in educational attainment attenuated to �0.09 (95% CI:

�0.26 to 0.08) after adjusting for income, to �0.16 (95% CI: �0.30

to –0.02) after adjusting for smoking, to �0.21 (95% CI: �0.34 to –

0.08) after adjusting for alcohol, and to �0.13 (95% CI: �0.32 to

0.05) after adjusting for body mass index. Adjusting for all media-

tors together in the same model, the OR attenuated to �0.02 (95%

CI: �0.24 to 0.20). The percentage attenuation in the total effect

of genetically predicted educational attainment was 64%, 35%,

15%, and 46%, for income, smoking, alcohol, and body mass index

(Table 2). All mediators together accounted for 90% of the total

effect of genetically predicted educational attainment on periodon-

titis risk.

4 | DISCUSSION

Using large-scale genetic association data within an MR framework,

we found support for a robust inverse association of higher educa-

tional attainment with lower periodontitis risk. The results suggest

that most of the total effect of educational attainment on periodonti-

tis is mediated through risk factors. The study supports mechanisms

whereby education may be reducing periodontitis risk by facilitating

higher income, minimizing exposure to tobacco smoking and alcohol,

and reducing excess body weight.

The findings of previous systematic reviews of observational

studies suggested that lower socio-economic position increases the

risk and progression of periodontitis, regardless of which indicator of

socio-economic position is used (Boillot et al., 2011; Borrell &

Crawford, 2012; Schuch et al., 2017). Boillot and colleagues pooled

confounder-adjusted regression model estimates from two cross-

sectional and two longitudinal studies published before 2011 and

reported a summary OR of 0.65 (95% CI: 0.54–0.77) for periodontitis

associated with higher compared to lower educational attainment

(Boillot et al., 2011). Previous work further suggested pathways con-

necting educational position and periodontal disease through income,

access to dental care, health behaviours, body fat, glycaemic traits,

and stress-induced inflammation (Boillot et al., 2011; Schuch et al.,

2017; Singh et al., 2019). The level of education attained by an indi-

vidual captures the aspects of social opportunities for education, and

parent's choices and constraints over how they can influence their

children's socio-economic circumstances, as education will be a strong

determinant of the individual's future employment and income

(Klinge & Norlund, 2005; Siegrist & Marmot, 2006; Berkman et al.,

2014; Gunderson & Oreopolous, 2020). Income influences health

through enabling access to material resources, health insurance, and

health services (Pourat et al., 2015; Singh et al., 2019). Income is also

assumed to modify health outcomes through stress, locus of control,

and health literacy and behaviours (Hill et al., 2019). Systemic reviews

concluded that a lower income is associated with a higher risk of peri-

odontal disease (Borrell & Crawford, 2012; Schuch et al., 2017; Singh

et al., 2019).

The existing observational literature also clearly demonstrates

socio-economic gradients in the potential mediators examined in

the present study. Smoking is socio-economically patterned and a

well-established risk factor for periodontitis (Hiscock et al., 2012;

Leite et al., 2018; Baumeister et al., 2021). Those in higher socio-

economic strata are more likely to drink alcohol and tend to drink

more excessively (Gilmore et al., 2016). Alcohol consumption is

positively associated with periodontitis risk (Pulikkotil et al., 2020;

Baumeister et al., 2021). Lower educational attainment has been

consistently related to higher obesity risk in developed countries,

and there is moderate certainty evidence from observational and

MR studies that overweight or obesity is linked to a higher risk of

periodontitis (Shungin et al., 2015; Shungin et al., 2019; Jepsen

et al., 2020). Health behaviours are an expression of the social cir-

cumstances that condition and constrain people's behaviours. Peo-

ple respond to psychological stress and adverse circumstances by

smoking, excessive alcohol consumption, risk-taking, and comfort

eating (Phelan et al., 2010; Watt & Sheiham, 2012; Deary et al.,

2021). The clustering of health behaviours can be viewed as a way

in which social groups translate their socio-economic situation into

patterns of behaviour, indicating that these behaviours are formed

by the social environments and social conditions in which people

live. Better social conditions affect access to social networks, social

capital, occupations, and living environments that are less stressful

and lead to benefits that translate into better oral health by

enabling them to act on health-related knowledge about risk and

protective factors. People with less optimal social conditions have

increased exposure to occupational, environmental, and behav-

ioural health hazards, less sense of control, and chronic stress.

Those in lower socio-economic groups are in less favourable mate-

rial circumstances than higher socio-economic groups and more

often tend to engage in damaging health behaviours. The unequal
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distribution of these mediating factors is associated with differen-

tials that generate oral health inequities (Singh et al., 2019).

Several potential limitations need to be considered. First, our

analysis assumes a linear relationship between the risk factors and the

outcome. Quantitative estimates may be misleading if the true rela-

tionship is non-linear; although estimates are still reflective of the

presence and direction of the population-averaged causal effect

(Burgess et al., 2020). Second, the genetic associations were drawn

from European populations and should be interpreted with caution

when extrapolating to other ethnic groups. Third, in the presence of

weak instruments, sample overlap in two-sample MR can bias esti-

mates towards the observational estimate. There were no overlapping

samples in the univariable MR analysis of educational attainment and

periodontitis risk, but there was overlap in the samples used to select

IVs for multivariable MR. Given that all IVs in the analysis were strong

(associated with the risk factors at p-value <5 � 10�8; F-statistic >20),

any bias should be minimal (Minelli et al., 2021). Fourth, a theoretical

weakness that potentially threatens the validity of all MR studies is

bias from undiscovered horizontal (biological) pleiotropy of the

genetic variants used as IVs for the phenotypes under study,

whereby they may directly affect the outcome through pathways

independent of the exposure or mediators being examined.

Although horizontal pleiotropy cannot be excluded entirely, it is

reassuring that our sensitivity analysis did not indicate pleiotropy,

and estimates from pleiotropy-robust and standard IVW analyses

were similar. Fifth, there is a potential for dynastic effects, whereby

the genotype of the parent, including alleles that are not passed to

offspring, influences the phenotype of the offspring (“genetic nur-

ture”; McMartin & Conley, 2020; Deary et al., 2021). This can take

the form of parental genetics influencing the environment that a

child is raised in and, in turn, affects outcomes, violating the

exchangeability assumption. A future MR study on educational

attainment and periodontitis conducted within families could avoid

issues arising from dynastic effects. Finally, our SNPs instrumented

educational attainment assessed using the number of years of

schooling at academic institutions. Thus, it is unclear whether the

same variants would be associated with skills and values learned

outside of formal academic training or other types of formal educa-

tion (e.g., vocational training).

In conclusion, our MR analyses align with previous observational

studies suggesting that educational attainment reduces the risk of

periodontitis among individuals of European ancestry. Using the multi-

variable MR mediation framework, this work further suggests that a

majority of the effect of education on periodontitis risk is mediated

through income, smoking, and body weight.
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