
Benchmarking Perturbation-based Saliency Maps for Explaining Atari Agents

Tobias Huber1∗ , Benedikt Limmer1 , Elisabeth André1
1University of Augsburg

Abstract

One of the most prominent methods for explain-
ing the behavior of Deep Reinforcement Learn-
ing (DRL) agents is the generation of saliency
maps that show how much each pixel attributed to
the agents’ decision. However, there is no work
that computationally evaluates and compares the fi-
delity of different saliency map approaches specif-
ically for DRL agents. It is particularly challeng-
ing to computationally evaluate saliency maps for
DRL agents since their decisions are part of an
overarching policy. For instance, the output neu-
rons of value-based DRL algorithms encode both
the value of the current state as well as the value
of doing each action in this state. This ambigu-
ity should be considered when evaluating saliency
maps for such agents. In this paper, we compare
five popular perturbation-based approaches to cre-
ate saliency maps for DRL agents trained on four
different Atari 2600 games. The approaches are
compared using two computational metrics: depen-
dence on the learned parameters of the agent (san-
ity checks) and fidelity to the agent’s reasoning (in-
put degradation). During the sanity checks, we en-
counter issues with one approach and propose a so-
lution to fix these issues. For fidelity, we identify
two main factors that influence which saliency ap-
proach should be chosen in which situation.

1 Introduction
With the rapid development of machine learning methods,
Deep Reinforcement Learning (DRL) agents are making their
way into increasingly high-risk applications, such as health-
care and robotics. However, this comes with an increasing
complexity of state spaces and algorithms, making it hardly
if at all possible to comprehend the decisions of these agents
[Heuillet et al., 2021]. The research areas of Explainable Ar-
tificial Intelligence (XAI) and Interpretable Machine Learn-
ing aim to shed light on the decision-making process of such
black-box models. In the case of DRL agents, which utilize

∗Contact Author

neural networks with visual inputs, the most common expla-
nation approach is the generation of saliency maps that high-
light the most relevant input pixels for a given decision. In
general, there are three main ideas on how to create saliency
maps. The first idea is to use the gradient with respect to
each input to see how much small changes of this input influ-
ence the prediction. The second group of methods uses mod-
ified propagation rules to calculate how relevant each neu-
ron of the network was, based on the intermediate results of
the prediction. Finally, perturbation-based approaches per-
turb areas of the input and measure how much this changes
the output of the network. Both gradient and modified prop-
agation saliency maps have been applied to DRL agents [Za-
havy et al., 2016; Huber et al., 2019]. However, recent years
saw a trend towards perturbation-based saliency maps [Grey-
danus et al., 2018; Puri et al., 2020]. The major advantage
of perturbation-based approaches is their model agnosticism.
Since they only use the in- and outputs of the agent, they can
be applied to any agent without adjustments.

If saliency maps are used to analyze DRL agents in high-
risk applications, it is crucial that we can rely on the informa-
tion provided by the saliency map. That is, the most relevant
pixels should actually be the most relevant input regions for
the agent’s strategy. This is often called fidelity of an explana-
tion technique [Mohseni et al., 2020]. The need for evaluat-
ing the fidelity of saliency maps was further demonstrated by
Adebayo et al. [2018]. They proposed sanity checks which
showed that for some saliency approaches, there is no strong
dependence between the learned parameters of image classi-
fiers and the saliency maps that analyze their underlying neu-
ral network. Surprisingly, there are no computational evalua-
tions that assess and compare the fidelity of different saliency
maps for DRL agents. This is despite the fact that DRL agents
are more challenging to analyze than classification models
[Heuillet et al., 2021]. The decisions of a DRL agent are not
isolated but are part of an overarching policy and might be in-
fluenced by delayed rewards, which may not be discernible in
the current state. This makes it even more challenging to ver-
ify whether a saliency map matches the internal reasoning of
a DRL agent. In the prominent family of value-based DRL al-
gorithms, for example, the output values do not only describe
the probability of choosing an action. They also encode the
estimated value of the input state for the current policy. This
ambiguity is often ignored when saliency maps are applied to

ar
X

iv
:2

10
1.

07
31

2v
3

 [c
s.L

G
]

2
Fe

b
20

22

analyze the decisions of value-based DRL agents.
In this paper, we present, to the best of our knowledge,

the first computational fidelity evaluation of different saliency
maps for DRL agents. In particular, we make the follow-
ing contributions. By focusing on five perturbation-based
saliency approaches, this work gives an overview of which
approaches should be used in what situation by practitioners
who don’t have full access to their DRL agent’s model. One
drawback of perturbation-based saliency maps is that they de-
pend on a choice of parameters. To ensure that all of the
algorithms tested in this paper perform reasonably well, we
present a novel methodology to fine-tune the parameters of
perturbation-based saliency maps for DRL agents. Further-
more, we propose a way to separately measure how well a
saliency map captures an agent’s respective action- and state-
value estimation. We demonstrate that the performance of
saliency map approaches differs considerably when measur-
ing state-values compared to action-values.

As test-bed for our evaluation, we use the Atari 2600 envi-
ronment. As metrics, we use the sanity checks proposed by
Adebayo et al. [2018] and an insertion metric that measures
if the most relevant pixels, according to the saliency map,
actually influence the agent’s decision. As far as we know,
this is the first time that sanity checks are done for different
perturbation-based saliency maps for any kind of model.

2 Related Work
In general, evaluation metrics for XAI approaches can be
separated into two broad categories: human user studies and
computational measurements [Mohseni et al., 2020]. So far,
DRL agents are mostly evaluated with user studies. Hu-
ber et al. [2021] and Anderson et al. [2019] conduct user
studies to evaluate a single variant of modified propagation
and perturbation-based saliency maps respectively, with re-
gards to mental models, trust, and user satisfaction. Puri
et al. [2020] investigate whether perturbation-based saliency
maps can help participants with chess puzzles, by high-
lighting which pieces were relevant for an agent’s solution
for these puzzles. Greydanus et al. [2018] test whether
participants can identify overfit policies with the help of
perturbation-based saliency maps. However, exclusively re-
lying on user studies might only measure how convincing the
saliency maps look but not how much they reflect the agent’s
internal reasoning. Therefore, it is important to additionally
evaluate the fidelity of saliency maps through computational
measurements [Mohseni et al., 2020]. Such measurements
also provide an easy way to collect preliminary data before
recruiting users for a user study.

There is a growing body of work on computationally eval-
uating the fidelity of saliency maps for image classification
models. The most common measurement is input degrada-
tion. Here, the input of the model is gradually perturbed,
starting with the most relevant input features according to
the saliency map. For visual input, this is either done by
perturbing individual pixels per step [Petsiuk et al., 2018;
Ancona et al., 2018] or by perturbing patches of the image
in each step [Samek et al., 2017; Kindermans et al., 2018;
Schulz et al., 2020]. If the saliency map matches the model’s

reasoning, then the model’s confidence should fall quickly. In
addition to perturbing features, some newer approaches also
propose an insertion metric where they start with fully per-
turbed inputs and gradually insert relevant features [Ancona
et al., 2018; Petsiuk et al., 2018; Schulz et al., 2020]. Re-
cently, Tomsett et al. [2020] demonstrated that input degra-
dation can be unreliable and is sensitive to implementation
details like the type of perturbation. They conclude that re-
searchers should employ several versions of this metric and
try to understand potential reasons for unreliability.

Another prominent computational measurement for
saliency maps for image classification models are the
so-called sanity checks proposed by Adebayo et al. [2018].
These tests measure whether the saliency maps are dependent
on what the model’s neural network learned. One method for
this is gradually randomizing the layers of the neural network
and measuring how much this changes the saliency maps. If
the saliency maps are faithful to what the network learned
then they should change considerably for each randomized
layer. Adebayo et al. did this for various gradient-based
approaches and Sixt et al. [2020] additionally tested mod-
ified propagation methods. Both groups found that some
approaches did not really depend on the parameters of the
network and therefore can’t faithfully reflect the model’s
internal reasoning. As far as we know, there is no work that
verified whether different perturbation-based saliency maps
depend on the network’s learned parameters even though this
is one of the most popular saliency map approaches.

For DRL agents, there is very little work on computation-
ally evaluating the fidelity of saliency maps. Puri et al. [2020]
recorded which chess pieces human experts identified as im-
portant in a set of chess puzzles. This allows them to com-
putationally compare these pieces to the pieces that saliency
maps identify as relevant for an agent. However, this does not
measure the saliency maps’ fidelity to the agent’s reasoning,
but whether the saliency maps coincide with human reason-
ing. Huber et al. [2021] calculate sanity checks for a single
modified propagation saliency approach. Atrey et al. [2020]
conduct experiments to verify hypotheses that are generated
from observing saliency maps. However, both the formula-
tion of hypotheses as well as their verification rely on manual
inspection of the saliency maps. In this sense, we see our
paper as the first computational evaluation to benchmark the
fidelity of different saliency map approaches for DRL agents.

3 Experiments
The test-bed in our paper is the Atari Learning Environment
[Bellemare et al., 2013]. Four DRL agents were trained on
the games MsPacman (simplified to Pac-Man in this work),
Space Invaders, Frostbite, and Breakout using the Deep Q-
Network (DQN) [Mnih et al., 2015] implementation of the
OpenAI Baselines Framework [Dhariwal et al., 2017]. We
chose the DQN because it is the most basic DRL architecture
which most other DRL agents build upon. The games were
selected because the DQN performs very well on Breakout
and Space Invaders but performs badly on Frostbite and Pac-
Man. We slightly adjusted the reward function compared to
Mnih et al. [2015] to enhance the performance of our agents.

The reward is given by the change in in-game score since the
last state, which we scaled such that the minimal possible re-
ward is 1. All experiments were done on the same machine
with an Nvidia GeForce GTX TITAN X GPU to ensure com-
parability of the results. Our code is available online.1

As saliency map approaches, we chose Occlusion Sensi-
tivity [Zeiler and Fergus, 2014] since it is the first and most
basic perturbation-based saliency approach. Furthermore, we
use LIME [Ribeiro et al., 2016] and RISE [Petsiuk et al.,
2018] which are two of the most popular perturbation-based
saliency maps in general. Finally, we chose two approaches
that were specifically proposed for DRL: Noise Sensitivity
[Greydanus et al., 2018] and SARFA [Puri et al., 2020]. De-
tailed descriptions of the different approaches can be found
in Appendix A. We evaluate the generated saliency maps us-
ing two different computational metrics: Sanity checks and
an insertion metric.

The sanity checks proposed by Adebayo et al. [2018] mea-
sure the dependence between the saliency maps and the pa-
rameters learned by the neural network of the agent. To this
end, the parameters of each layer in the network are random-
ized in a cascading manner, starting with the output layer.
Every time a new layer is randomized, a saliency map for this
version of the agent is created. The resulting saliency maps
are then compared to the saliency map for the original net-
work, using three different similarity metrics (Spearman rank
correlation, Structural Similarity (SSIM), and Pearson corre-
lation of the Histogram of Oriented Gradients (HOGs)). Fol-
lowing Sixt et al. [2020], we account for saliency maps that
differ only in sign by additionally computing similarity with
an inverse version of the saliency maps and using the max-
imum similarity. We tuned the similarity metrics analogous
to Adebayo et al. [2018] (see Appendix B.1). If the saliency
maps depend on the learned parameters of the agent then the
saliency maps for the randomized model should vastly differ
from the ones of the original model. For our tests, we calcu-
late the sanity checks for 1000 states of each game.

If a saliency map is faithful to the agent, then the most
relevant pixels should have the highest impact on the agent’s
decision. To test this property, we use a insertion metric sim-
ilar to Petsiuk et al. [2018]. We do not use a deletion metric,
since we feel that it is too similar to the way that perturbation-
based saliency maps are created. The insertion metric starts
with a fully perturbed state. In each step, 84 perturbed pixels
(approx. 1.2% of the full state) are uncovered, starting with
the most relevant pixels according to the saliency map. For
LIME, the superpixels are sorted by their relevance but the
order of pixels within superpixels is randomized. The partly
uncovered state is then fed to the agent and its output for the
original action, which the agent chooses in the unperturbed
state, is measured. If the saliency map correctly highlights
the most important pixels, then the agent’s confidence should
increase quickly for each partly uncovered image. Plotting
the agent’s confidence in each step of the insertion metric re-
sults in an insertion metric curve (Fig. 1). If the confidence
increases quickly, then the area under the insertion curve is
high. Therefore, the Area Under the insertion metric Curve

1https://github.com/belimmer/PerturbationSaliencyEvaluation

Figure 1: A schematic representation of the insertion metric curve.

(AUC) is used to represent the result of the insertion metric
for a single state. Before we can apply the insertion metric to
our DRL agents, we have to decide how to perturb the input
and which output value we measure in each step.

Tomsett et al. [2020] found that the choice of perturba-
tion has a high impact on the result of the metric. To be
more robust against this influence, we use two different per-
turbations: black occlusion and uniform random perturbation.
Black is similar to the background color in most Atari games
and therefore acts as “deleting” features from the state. Uni-
form random perturbation performed well for Tomsett et al..

Next, we have to decide which output we want to measure.
This comes with two challenges. First, the output q-values of
value-based reinforcement learning algorithms like the DQN
do not directly describe the agent’s confidence in particular
actions. Instead, they approximate the value of the current
state in combination with each action. To disentangle this
ambiguity, we propose to use two different sub-metrics. One
measures how well the saliency map identifies features rele-
vant to the state-value, and the other measures the same for
the action-value. For the action-value, we propose to use the
advantage as defined by Wang et al. [2016]. For the state-
value, we suggest using the q-value. The second challenge is
that a reliable metric should not be distorted by outliers. For
our Pac-Man agent, for example, we observed states with q-
values around 1 and other states with q-vales around 50. To
reduce the effect of outlier states, we tested several methods
of normalizing the agent’s output during the insertion metric.
To this end, we used 28 different variants of Occlusion Sen-
sitivity saliency maps. For each variant, we calculated dif-
ferently normalized insertion metrics over 1000 states of the
Pac-Man environment. Tomsett et al. [2020] suggest using a
low Standard Deviation (SD) as an early indicator for reliable
saliency map metrics. Therefore, we chose the normalization
method that resulted in the lowest SD of the area under the
insertion curve across the 1000 states. For the advantage, we
obtained the lowest SD if we did not use any normalization.
The q-values got the lowest SD when we divided each inser-
tion metric step by the result of the original state. For more
details about the normalization tests see Appendix B.2.

For our final evaluation of the different saliency methods,
we use 1000 states of each of the four Atari games. For each
of those states, we calculated the insertion metric in four dif-
ferent variants: measuring the advantage of the chosen action
with random and black perturbation, and measuring the nor-
malized q-value with random and black perturbation.

https://github.com/belimmer/PerturbationSaliencyEvaluation

4 Parameter Tuning

One of the biggest drawbacks of perturbation-based saliency
map approaches is that they depend on a choice of param-
eters. Before we can run our experiments we have to find
suitable parameters. This is often done by manually tuning
the parameters until the resulting saliency maps look reason-
able. However, tuning the parameters in this way does not
guarantee that the saliency maps match the agent’s internal
reasoning. To obtain a fidelity benchmark for saliency maps,
we computationally tune the parameters to perform well in
the insertion metric. We do not tune the parameters for the
sanity checks, since sanity checks do not measure how well a
saliency map approach performs. Instead, they identify which
approaches do not work at all. To tune the parameters for our
final tests we need to decide on two things: which states we
test the parameters on and how we combine the results from
the four different insertion metric variants.

To combine the results of the random and black insertion
metric variants, we measure the mean of the area under the
insertion curve over both the black and the random perturba-
tion insertion metric. For our evaluation, we would also like
to find parameters that are able to analyze both the agent’s
action-value and state-value estimation. To this end, we stan-
dardize the mean results of the aforementioned tests for the
advantage and q-values measurements respectively. The sum
of these standardized values is then used as a single value that
measures the performance of the parameters. Finally, to en-
sure comparability between approaches and to be able to run
our final experiment in a reasonable amount of time, we did
not choose the top parameters. Instead, we use the best pa-
rameters that needed up to three seconds to compute a single
saliency map.

As test set for our parameter tuning, it is not feasible to use
the full stream of 1000 states that we want to use in our final
evaluation. LIME and RISE in particular have long computa-
tion times and a large number of possible parameter combina-
tions. This would make the run-time of the parameter test ex-
plode. For more information on the run-time of each saliency
approach, see Appendix D. Therefore, we need to find a suit-
able subset of states (we used 10 states) that represent as
many states as possible. Since there are no test- or validation-
sets in reinforcement learning we have to choose these sub-
sets from the full stream of gameplay. As potential candi-
dates, we tested 10 randomly selected subsets of states and
12 subsets selected by different variants of the HIGHLIGHT-
DIV algorithm. This algorithm selects a diverse set of states
that give a good overview of the agent’s policy [Amir and
Amir, 2018]. To compare how well these subsets represent
the full stream of gameplay, we calculated the combined in-
sertion metric results, as described above, for the full 1000
states of Pac-Man using 28 different parameter combinations
of Occlusion Sensitivity. The particular parameters were cho-
sen since they are fast to compute. Based on these results
we obtained a “ground truth” for how those 28 parameters
for Occlusion Sensitivity should be ranked. Now, a subset
of states is suited for searching parameters if the parameter
ranking obtained by the subset is similar to the ranking ob-
tained by the full 1000 states. To calculate the similarity of

Input State Occlusion NS Sarfa

RISE LIME Felz LIME Quick LIME SLIC

Figure 2: Example saliency maps for a Pac-Man game state gen-
erated by each of the approaches investigated in this paper (NS is
Noise Sensitivity).

1.0

0.6

0.0
Spearman SSIM Pearson

Figure 3: Results of the sanity checks for the different saliency map
approaches. Measured for 1000 states of each of the 4 tested games.
Starting from the left, each mark represents an additional random-
ized layer starting with the output layer. The y-axis shows the av-
erage similarity values (Spearman rank correlation, SSIM, Pearson
correlation of the HOGs). High values indicate a low parameter de-
pendence. The translucent error bands show the 99% CI but are
barely visible due to low variance in the results.

different rankings we used both Spearman’s and Kendall rank
correlation coefficients. We found that HIGHLIGHTS-DIV
only performed well when the diversity threshold was very
high. This threshold makes sure that the selected states are
not too similar to each other. When the threshold was low
the HIGHLIGHTS-DIV states performed worse than the ran-
dom ones. We got the best results when the threshold was
so high that increasing the threshold resulted in subsets with
less than 10 states since the algorithm could not find any more
states that could be added to the subset. For the exact corre-
lation values and the HIGHLIGHTS-DIV variants see Ap-
pendix C.1.

In total, we tested 4918 parameter combinations across all
three methods. Since LIME is very dependent on the choice
of a segmentation function, we tested parameters for the three
most common Segmentation techniques SLIC, Quickshift and
Felzenszwalb. The final parameters that we used in our exper-
iments, together with all the parameter ranges that we tested
can be found in Appendix C.2.

5 Results
Fig. 2 shows example saliency maps for a Pac-Man state
(saliency maps for the remaining agents are shown in Ap-
pendix E). To prevent cherry-picking, the state is chosen by
the HIGHLIGHTS-DIV algorithm [Amir and Amir, 2018].

The results of the sanity checks test are shown in Fig. 3.

The lower the scores the higher the dependence on the agents’
learned parameters. An example for the different saliency
maps during a single run of the sanity check can be seen in
Appendix E. Notably, LIME has a very high Pearson correla-
tion of HOGs. Furthermore, the original Noise Sensitivity
has low dependence on the parameters of the output layer
when compared to Occlusion Sensitivity. Since those two
approaches are very similar in theory, we implemented two
modifications of Noise Sensitivity to investigate the reason
for this difference in parameter dependence. First, Noise Sen-
sitivity Black occludes the circles in the Noise Sensitivity ap-
proach with black color instead of blurring them. Second,
Noise Sensitivity Chosen Action changes the way that the im-
portance of each pixel is calculated from the original equation
(Eq. A (2)), which takes all actions into account, to the one
used by Occlusion Sensitivity (Eq. A (1)), which focuses on
the chosen action. We did not test a combination of black
circles and the Occlusion Sensitivity importance calculation
since that would be equivalent to Occlusion Sensitivity with
circles instead of squares. While the black occlusion did not
really change the sanity check results, the change of the im-
portance calculation immensely increased the dependence on
the learned parameters.

Table 1 reports the insertion metric results for 1000 states
of each game and each saliency map approach. To get a base-
line performance, we also calculated the insertion metric with
random saliency maps. For some games and sub-metrics, the
mean area under the insertion curve is negative. This is due
to the fact that some agents assign high negative q-values and
advantages to the fully perturbed state. For most games, RISE
has the best results for measuring the raw q-values on random
perturbation. However, the results for measuring advantage
with random perturbation are poor for all approaches. For
Frostbite and Space Invaders the random saliency maps even
performed better than all other approaches. For the other two
games, RISE has the highest values. When using black color
perturbation during the insertion metric, Occlusion Sensitiv-
ity obtained very good results for measuring the state-value,
and SARFA worked best for the advantage. However, their
results for random perturbation were very poor. From our pa-
rameter tuning, we knew that this depended on the color of
perturbation used during the saliency map generation. There-
fore, we additionally tested Occlusion Sensitivity with gray
color and SARFA with noise perturbation as used by Noise
Sensitivity. With this, Occlusion Sensitivity got the highest q-
value random insertion results in Pac-Man (2.98±3.5), Frost-
bite (3.54±2.3), and Space Invaders (0.07±0.7). SARFA got
the best advantage results for random insertion for Pac-Man
(1.12±1.0) and Frostbite (0.73±1.2) only losing to Occlu-
sion Sensitivity with gray color in Space Invaders (1.02±3.7
compared to 1.04±3.5). The performance of both approaches
on black perturbation fell to a level similar to the random
baseline. For the full results see Appendix E. The excep-
tion to most observations described above is Breakout. Here,
the LIME variants performed the best across most metrics.
SLIC segmentation in particular achieves at least the second-
highest score in each metric. Notably, this game has the high-
est SD values.

6 Discussion
The results of our sanity checks show that most of the
perturbation-based saliency map approaches tested in this pa-
per are dependent on the learned parameters of the agent’s
neural network. The results are generally comparable to
the best gradient-based approaches tested by Adebayo et
al. [2018] and the best modified propagation approaches
tested in Sixt et al. [2020]. The only exceptions to this are
Noise Sensitivity and LIME.

Noise Sensitivity showed little dependence on the param-
eters of the output layer (Fig. 3). Since the output layer has
the highest impact on the actual decision of a network, it is
crucial that a faithful saliency map depends on the weights
learned in this layer. Our results empirically show that re-
placing the original equation of Noise Sensitivity to calculate
the importance of each pixel with the equation used by Occlu-
sion Sensitivity greatly increases the parameter dependence.
We think that this is due to the fact that the original equation
takes all actions into account and therefore measures a gen-
eral increase in entropy within the activations of the output
layer. In contrast, Occlusion Sensitivity only measures the
action which is actually chosen and therefore captures a more
specific change in the output layer activation. Recently, Puri
et al. [2020] also criticized that the saliency maps by Grey-
danus et al. [2018] take all actions into account. The results
of our sanity checks provide the first computational evidence
for this critique.

LIME performed well in the sanity check measurements
using SSIM and Spearman correlation. Only the Pearson cor-
relation of the HOGs was very high between LIME saliency
maps for the trained and randomized agents. However, the
reason for this is not necessarily a low dependence on the
agent’s learned weights. More likely it is due to the fact
that all LIME saliency maps for a given state work with the
same superpixels. Since every pixel inside a superpixel has
the same value there are hard edges between the superpix-
els. These edges are captured by the HOGs and result in high
values of the Pearson correlation of the HOGs.

The insertion metric results are more nuanced. During
our parameter tuning, we tried our best to find parameters that
result in saliency maps that work for both black and random
perturbation and capture both the agent’s action-value as well
as state-value estimation. Despite these efforts, no saliency
map approach performed well across all sub-metrics. The
best results for measuring the state-value were obtained by
Occlusion Sensitivity and the best results for the action-value
were obtained by SARFA. This distinction is illustrated by
the fact that no SARFA salience map, which we looked at,
identified the in-game score as relevant (e.g. Fig. 2). The
score is a good indicator for the value of the current state and
is regularly highlighted by all other approaches we tested.

Additionally, the saliency maps’ fidelity depended on the
type of perturbation. The area under the insertion curve
with black perturbation was the highest when the saliency ap-
proaches used black occlusion. To mitigate this effect some
saliency approaches utilize blurring during their perturbation.
Surprisingly, this was also sensitive to the perturbation type
of the insertion metric in our tests. Similar to gray occlusion,

Metric Occlusion Noise SARFA RISE LIME Felz LIME quick LIME slic Baseline

Pac-Man:
Q-val rand 0.54±1.3 0.75±0.7 0.76±1.2 1.1±2.0 0.46±0.7 0.67±1.1 0.62±1.1 0.85±1.5
Adv rand -0.52±1.2 -0.03±0.8 -0.74±1.3 -0.01±1.1 -0.43±1.2 -0.44±1.0 -0.36±1.1 -0.22±1.0
Q-val black 3.08±3.2 0.66±0.8 0.83±1.8 1.01±1.8 2.83±5.3 2.49±4.7 2.47±4.4 0.53±0.8
Adv black 1.23±1.6 0.15±0.3 1.7±0.8 0.21±0.4 0.64±0.7 0.94±0.5 0.67±0.5 0.06±0.3
Breakout:
Q-val rand -0.72±2.5 -1.01±3.0 -3.19±3.9 -0.97±2.7 -0.98±2.7 -0.48±4.1 -0.53±3.2 -2.21±2.9
Adv rand -0.42±4.7 -1.52±8.4 -0.92±8.4 0.85±6.1 -0.7±6.5 -0.54±5.4 -0.05±4.8 -0.76±5.8
Q-val black 3.16±4.2 3.04±4.2 1.97±2.0 3.39±4.2 7.48±9.6 5.8±8.7 6.12±9.7 2.13±3.1
Adv black 0.02±0.5 0.19±0.6 0.53±1.1 0.29±0.6 0.24±0.6 0.24±0.4 0.71±1.4 0.07±0.2
Frostbite:
Q-val rand 0.56±1.0 0.83±1.0 0.73±1.0 0.92±1.1 0.75±0.9 0.37±1.0 0.36±1.0 0.88±1.1
Adv rand 0.31±1.1 0.38±1.2 0.2±1.2 0.35±0.9 0.2±0.9 0.24±1.3 0.23±1.3 0.4±1.2
Q-val black 5.65±3.1 0.58±0.2 1.53±1.6 2.4±1.7 2.71±2.4 5.12±4.1 3.25±2.5 0.51±0.4
Adv black 0.59±0.9 0.2±0.2 1.22±0.9 0.25±0.3 0.26±0.3 0.28±0.4 0.26±0.3 0.16±0.2
Space Invaders:
Q-val rand -0.7±0.6 -0.6±0.6 -0.8±0.6 -0.39±0.4 -1.12±0.9 -0.81±0.7 -0.88±0.7 -1.1±0.8
Adv rand 0.76±3.5 0.83±3.4 0.79±3.7 0.66±2.8 0.87±4.3 0.76±3.7 0.87±3.6 0.89±4.2
Q-val black 1.01±0.2 0.73±0.1 0.74±0.2 0.89±0.1 1.02±0.2 1.08±0.2 1.11±0.3 0.56±0.1
Adv black 0.28±0.4 0.26±0.3 0.59±0.4 0.21±0.2 0.24±0.2 0.25±0.2 0.29±0.2 0.13±0.2

Table 1: The mean and SD of the insertion metric curve for 1000 states of each game. Q-val and Adv measure the change of the normalized
q-value and advantage respectively. Rand and black use random and black perturbation respectively during the insertion metric.

blurring performed best for the random perturbation insertion
metric and did not do well on black perturbation. The clos-
est thing to a saliency map approach that fits all sub-metrics
was RISE. However, the results here were considerably worse
than the results for Occlusion Sensitivity and SARFA with
parameters that fit the respective sub-metric, especially when
analyzing the action-value estimation.

Limitations We used four different variants of the inser-
tion metric to get a good estimate of saliency approaches’
fidelity in different situations. Between those variants, we
already found distinct differences. This fact reinforces the
findings by Tomsett et al. [2020] that current fidelity met-
rics for saliency maps can be very sensitive to specifics of
their implementation. For value-based RL in particular, we
extend the results of Tomsett et al. by demonstrating that
there are also considerable differences between metrics that
measure the action-value and metrics that measure the state-
value. However, it can not be ruled out that other fidelity
metric variants might result in even more insights. To ease
future evaluations and parameter searches, a great challenge
for XAI research will be the development of more general
fidelity metrics for saliency maps.

Another potential limitation of our results is that recent
work indicates that simply displaying saliency maps to end-
users might not be suited as a final explanation [Huber et al.,
2021; Danesh et al., 2021]. However, saliency maps are still
often used as primary components of more sophisticated ex-
planation frameworks (e.g. [Danesh et al., 2021]). We argue
that it is even more crucial to evaluate the fidelity of saliency
maps in situations where their information is used as an inte-
gral component of more complex explanation mechanisms.

7 Conclusion
This paper compared five different perturbation-based
saliency map approaches measuring their dependence on the
agent’s parameters and their fidelity to the agent’s reasoning.

Most of the approaches tested in this work do depend on the
agent’s learned parameters. Only Noise Sensitivity showed
less dependence on the learned parameters of the output
layer. We empirically show that replacing Noise Sensitivity’s
original importance calculation with a calculation that only
takes the chosen action into account, drastically increases pa-
rameter dependence of the output layer.

Regarding fidelity, there is no single saliency map ap-
proach that fits every situation. For value-based DRL agents,
there are considerable differences between analyzing the
agent’s action-value and state-value estimation. While this
distinction is hidden within the agent’s output q-values, fu-
ture practitioners should be aware of which of the two they
want to analyze and choose their saliency maps accordingly.
In our tests, SARFA worked best to capture the action-value
while Occlusion Sensitivity and RISE were more suited for
the state-value. Depending on which perturbation method the
approaches use, the resulting saliency maps only analyze how
sensitive the agent is with regard to specific types of pertur-
bation. While this seems obvious, it was true even for per-
turbation methods that utilized blurring specifically to reduce
their dependence on a choice of occlusion color. In contrast
to the action- and statue-value distinction, this is not an inher-
ent property of the DRL agents but might be seen as a flaw
of current perturbation-based saliency approaches. Our re-
sults demonstrate that there is still a need to further develop
perturbation-based saliency approaches. For now, researchers
have to decide which types of perturbation are meaningful

and interesting for their application. Based on this, they can
choose an appropriate perturbation method. For example, by
performing a parameter search similar to the one conducted
in this work.

References
[Adebayo et al., 2018] Julius Adebayo, Justin Gilmer,

Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been
Kim. Sanity checks for saliency maps. In Advances in
Neural Information Processing Systems, 2018.

[Amir and Amir, 2018] Dan Amir and Ofra Amir. HIGH-
LIGHTS: summarizing agent behavior to people. In AA-
MAS, 2018.

[Ancona et al., 2018] Marco Ancona, Enea Ceolini, Cengiz
Öztireli, and Markus Gross. Towards better understand-
ing of gradient-based attribution methods for deep neural
networks. In ICLR, 2018.

[Anderson et al., 2019] Andrew Anderson, Jonathan Dodge,
Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed
Irvine, Souti Chattopadhyay, Alan Fern, and Margaret
Burnett. Explaining reinforcement learning to mere mor-
tals: An empirical study. In IJCAI, 2019.

[Atrey et al., 2020] Akanksha Atrey, Kaleigh Clary, and
David Jensen. Exploratory not explanatory: Counter-
factual analysis of saliency maps for deep reinforcement
learning. In ICLR, 2020.

[Bellemare et al., 2013] Marc G. Bellemare, Yavar Naddaf,
Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
J. Artif. Intell. Res., 47:253–279, 2013.

[Danesh et al., 2021] Mohamad H. Danesh, Anurag Koul,
Alan Fern, and Saeed Khorram. Re-understanding finite-
state representations of recurrent policy networks. In
ICML, 2021.

[Dhariwal et al., 2017] Prafulla Dhariwal, Christopher
Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor,
Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[Greydanus et al., 2018] Samuel Greydanus, Anurag Koul,
Jonathan Dodge, and Alan Fern. Visualizing and under-
standing atari agents. In ICML, 2018.

[Heuillet et al., 2021] Alexandre Heuillet, Fabien
Couthouis, and Natalia Dı́az Rodrı́guez. Explain-
ability in deep reinforcement learning. Knowl. Based
Syst., 214:106685, 2021.

[Huber et al., 2019] Tobias Huber, Dominik Schiller, and
Elisabeth André. Enhancing explainability of deep rein-
forcement learning through selective layer-wise relevance
propagation. In KI, pages 188–202, Cham, 2019. Springer
International Publishing.

[Huber et al., 2021] Tobias Huber, Katharina Weitz, Elisa-
beth André, and Ofra Amir. Local and global explana-
tions of agent behavior: Integrating strategy summaries
with saliency maps. Artif. Intell., 301:103571, 2021.

[Kindermans et al., 2018] Pieter-Jan Kindermans, Kristof T.
Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru
Erhan, Been Kim, and Sven Dähne. Learning how to ex-
plain neural networks: Patternnet and patternattribution.
In ICLR. OpenReview.net, 2018.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540), 2015.

[Mohseni et al., 2020] Sina Mohseni, Niloofar Zarei, and
Eric D. Ragan. A multidisciplinary survey and framework
for design and evaluation of explainable ai systems, 2020.

[Petsiuk et al., 2018] Vitali Petsiuk, Abir Das, and Kate
Saenko. RISE: randomized input sampling for explana-
tion of black-box models. In BMVC. BMVA Press, 2018.

[Puri et al., 2020] Nikaash Puri, Sukriti Verma, Piyush
Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krish-
namurthy, and Sameer Singh. Explain your move: Under-
standing agent actions using specific and relevant feature
attribution. In ICLR. OpenReview.net, 2020.

[Ribeiro et al., 2016] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. ”Why should i trust you?” Explain-
ing the predictions of any classifier. In ACM SIGKDD,
2016.

[Samek et al., 2017] Wojciech Samek, Alexander Binder,
Grégoire Montavon, Sebastian Lapuschkin, and Klaus-
Robert Müller. Evaluating the visualization of what a deep
neural network has learned. IEEE Trans. Neural Networks
Learn. Syst., 28(11), 2017.

[Schulz et al., 2020] Karl Schulz, Leon Sixt, Federico
Tombari, and Tim Landgraf. Restricting the flow: Infor-
mation bottlenecks for attribution. In ICLR, 2020.

[Sixt et al., 2020] Leon Sixt, Maximilian Granz, and Tim
Landgraf. When explanations lie: Why many modified
BP attributions fail. In ICML, 2020.

[Tomsett et al., 2020] Richard Tomsett, Dan Harborne,
Supriyo Chakraborty, Prudhvi Gurram, and Alun D.
Preece. Sanity checks for saliency metrics. In AAAI.
AAAI Press, 2020.

[Wang et al., 2016] Ziyu Wang, Tom Schaul, Matteo Hes-
sel, Hado van Hasselt, Marc Lanctot, and Nando de Fre-
itas. Dueling network architectures for deep reinforcement
learning. In ICML, 2016.

[Zahavy et al., 2016] Tom Zahavy, Nir Ben-Zrihem, and
Shie Mannor. Graying the black box: Understanding dqns.
In ICML, 2016.

[Zeiler and Fergus, 2014] Matthew D Zeiler and Rob Fergus.
Visualizing and understanding convolutional networks. In
European conference on computer vision. Springer, 2014.

https://github.com/openai/baselines

A Saliency Map Approaches
The basic saliency map generation process is the same be-
tween all four approaches compared in this work. Let π :
RH×W×c → Rm be the agent that takes a visual input state
I and maps it to a q-value q(I, a) for each possible action.
To ease notation we use q(I) to describe the q-value of the
action that the agent chose in the unperturbed input I . To
determine the relevance of each pixel λ for the prediction of
the agent, all five approaches feed perturbed versions of I to
the agent and then compare the resulting q-values with the
original results. However, the approaches widely differ in the
way the input is perturbed and how the relevance per pixel is
computed:

Occlusion Sensitivity [Zeiler and Fergus, 2014]: This
approach creates perturbed states I ′ by shifting a n×n patch
across the original state I and occluding this patch by set-
ting all the pixels within to a certain color (e.g., black). The
importance S(λ) of each pixel λ inside the patch is then com-
puted based on the agents’ confidence after the perturbation

S(λ) = 1− q(I ′). (1)

Since the original source does not go into details about the al-
gorithm, we use the tf-explain implementation as reference2.
As long as the saliency maps are normalized this is equivalent
to q(I)−q(I ′) since all values in the saliency map are shifted
by the same constant q(I)− 1.

Noise Sensitivity [Greydanus et al., 2018]: Instead of
completely occluding patches of the state, this approach adds
noise to the state I by applying a Gaussian blur to a circle
with radius r around a pixel λ. The modified state I ′(λ) is
then used to compute the importance of the covered circle by
comparing the agent’s logit units π(I):

S(λ) =
1

2
||π(I)− π(I ′(λ))||2 (2)

This is done for every rth pixel, resulting in a temporary
saliency map smaller than the input. For the final saliency
map, the result is up-sampled using bilinear interpolation.

RISE [Petsiuk et al., 2018]: This approach uses a set of
N randomly generated masks {M1, ...,MN} for perturba-
tion. To this end, temporary n × n masks are created by set-
ting each element to 1 with a probability p and 0 otherwise.
These temporary masks are upsampled to the size of the input
state using bilinear interpolation. The states are perturbed by
element-wise multiplication with those masks I �Mi. The
relevance of each pixel λ is given by

S(λ) =
1

p ·N

N∑
i=1

q(I �Mi) ·Mi(λ), (3)

where Mi(λ) denotes the value of the pixel λ in the ith mask.
LIME [Ribeiro et al., 2016]: The original state is divided

into superpixels using segmentation algorithms. Perturbed
variations of the state are generated by “deleting” different
combinations of superpixels (i.e., setting all pixels of the su-
perpixels to 0). The combination of occluded states and the

2Available under: https://github.com/sicara/tf-explain

corresponding predictions by the agent are then used to train
a locally weighted interpretable model for N steps. Analyz-
ing the weights of this local model provides a relevance value
for each superpixel.

SARFA [Puri et al., 2020]: This approach does not
use a specific perturbation method. Puri et al. test noise
perturbation for Atari games and occlusion for other do-
mains. Given a perturbed sate I ′, SARFA measures the
information specific to the chosen action a′ by calculating
∆p = softmax(π(I))a′−softmax(π(I ′))a′ . To only mea-
sure relevant information, they additionally calculate K =
KL(softmaxa′(π(I ′)), softmaxa′(π(I))), where KL is
the Kullback–Leibler divergence and softmaxa′ is the soft-
max over all outputs except the chosen action a′. The final
score for the perturbed state I ′ is then given by:

S(λ) =
2K∆p

K + ∆p
(4)

Fig. 4 shows an example for the different perturbation
methods used by the saliency map approaches in this work.

B Tuning The Metrics
B.1 Calibration for Similarity Metrics
The sanity checks use three similarity metrics: Spearman
rank correlation, Structural Similarity (SSIM), and Pearson
correlation of the Histogram of Oriented Gradients (HOGs).
We need to calibrate these metrics such that high similarity
values actually indicate similar saliency maps. Analogous to
Adebayo et al. [2018], we do this by calculating the similar-
ity of 100 pairs of randomly generated saliency maps (Uni-
form and Gaussian). Since randomly sampled saliency maps
should be very different on average, the mean of these simi-
larities should be low. Using an SSIM window size of 7 and
a HOG function with (3, 3) pixels per cell, two randomly
sampled saliency maps with uniform distribution had mean
similarity values (0.0087, 0.0136, 0.0096) and two random
saliency maps with Gaussian distribution had mean similar-
ity (0.0093, 0.0374, 0.0087).

B.2 Normalizing The Insertion Metric Results
To be more robust against outlier states, we tested two dif-
ferent ways to normalize the q-values and advantage values
during the insertion metric. The first normalization method
we tested was inspired by Sixt et al. [2020] and forces each
insertion curve to start at 0 and finish at 1. This is achieved
by applying f(x) = x−b

t−b to each insertion step result, where
b is the output of the fully perturbed state and t is the output
of the original state. As the second method, we only divided
each insertion step by the output of the original state t. In
this way, all insertion curves finish at the value of 1. Table 2
shows the range of standard deviations (SD) of the area un-
der the insertion curve of 28 variants of Occlusion Sensitivity
saliency maps on 1000 Pac-Man states for each normaliza-
tion method. Interestingly, the full normalization to curves
between 0 and 1 resulted in the highest SD. We think that this
comes from the fact that our agents sometimes assign higher
values to the fully perturbed state than to the original state.
In these cases, t − b is negative, and applying f(x) actually
inverts the insertion curve.

https://github.com/sicara/tf-explain

Input State Black
Occlusion

Grey Occlusion Noise
Sensitivity

RISE LIME
Segmentation

LIME Perturbed

Figure 4: An example of the different types of perturbation used by the saliency map approaches in our work. The parameters are chosen in
such a way that the idea of the perturbation can be easily identified. For Occlusion and Noise, the disturbed area is marked with a red circle.

Normalization Function Minimum SD Maximum SD

Measuring Q-Values
No Normalization 5.16 10.17
f(x) = x

t 1.14 2.06
f(x) = x−b

t−b 10.33 48.56
Measuring Advantage
No Normalization 0.84 1.42
f(x) = x

t 1.99 3.78
f(x) = x−b

t−b 9.45 165.20

Table 2: The minimum and maximum SD when evaluating 28 differ-
ent parameter combinations of Occlusion Sensitivity saliency maps
with an insertion metric using different normalization functions.

C Parameter Tuning Details

C.1 State selection

To tune the parameters of our perturbation-based saliency
map approaches, we needed to find a subset of 10 states
that represent the 1000 states used in our final evalua-
tion. In addition to 10 randomly generated subsets, we
used the HIGHLIGHTS-DIV algorithm to generate subsets.
HIGHLIGHTS-DIV assigns an importance value to each
state that measures how important that state was for the
agent’s strategy. Then the states with the highest importance
values which are additionally less similar than a predefined
diversity threshold are chosen for the subset. For the diver-
sity threshold, we tested the 10,20,25,28,30,32,33,35, and 40
percentile of the distribution of the similarity values of the full
1000 states stream. To get even more diverse sets of states, we
additionally tested two novel variations of HIGHLIGHTS-
DIV: one variant where we used 5 of the most important and 5
of the least important states and one variant where we sorted
all 1000 states by importance and chose every 100th state to
obtain states of all importance levels.

The highest correlation to the ranking obtained by the full
stream was achieved by the 30 percentile HIGHLIGHTS-DIV
variant. For the action-value, the Spearman’s rank correlation
was 0.96 and the Kendall rank correlation was 0.85. For the
state-value, the Spearman’s rank correlation was 0.95 and the
Kendall rank correlation was 0.81. The correlations for the
other subsets can be seen in our repository. 3

3https://github.com/belimmer/PerturbationSaliencyEvaluation

C.2 Saliency map parameters.
For all perturbation-based saliency maps, we tested several
parameter combinations as described in Section 4. As final
parameters, we chose the parameters that obtained the best
combined insertion metric AUC and needed a maximum of
3 seconds to compute each saliency map. The full results of
our tests can be viewed in our repository. 4

For Occlusion Sensitivity, we tested patches of size 1 to 10,
black and gray occlusion color, and whether applying a soft-
max layer to the output q-values before creating the saliency
map improves results. The top five results are shown in Table
3.

For Noise Sensitivity, we tested circles with a radius of 1
to 10. The top five parameters are shown in Table 4.

SARFA was not introduced with a specific perturbation
method. Analogous to Puri et al., we test blurred circles of
radius 1 to 10 as used in Noise Sensitivity. Additionally, we
also use circles that are occluded with black color. The top
five results are shown in Table 5.

For RISE we tested 500, 1000,...,3000 masks of size 4 to
24. The probability p with which each pixel is occluded var-
ied between 0.1 and 0.9 in steps of 0.1. Analogous to Occlu-
sion Sensitivity, we also investigated whether it makes sense
to add a softmax layer after the output during the saliency
map creation. The top five results are shown in Table 6.

For LIME we tested the three most common Segmentation
techniques SLIC, Quickshift and Felzenszwalb and varied the
number of samples on which the local interpretable model is
trained. For the number of learning steps we took the default
number of samples (1000) and increased it in steps of 500
up to 3000. To determine which parameter ranges we should
explore for each segmentation algorithm, we performed pre-
liminary tests where we visually checked which parameters
resulted in different segmentation. For Felzenszwalb segmen-
tation we used a scale factor of 1,21,...,101, a minimum com-
ponent size from 1 to 8 and Gaussian smoothing kernels with
width σ of 0,0.25,...,1. The top results are shown in Table 7.
For SLIC we tested 40,60 to 240 segments, a compactness
factor of 0.001,0.01,...,10 and Gaussian smoothing kernels
with width σ of 0,0.25,...,1. The top five parameter combi-
nations can be seen in Table 8. Finally, we tested Quickshift
with a color ratio of 0.0,0.33,0.66 and 0.99, a kernel size from
1 to 6 and a max distance of kernelsize∗i, where i goes from
1 to 4. The top results are shown in Table 9.

4https://github.com/belimmer/PerturbationSaliencyEvaluation

https://github.com/belimmer/PerturbationSaliencyEvaluation
https://github.com/belimmer/PerturbationSaliencyEvaluation

AUC Patch Size Color Softmax Time

6.76 1 Black No 10.94
3.44 1 Gray No 11.09
3.42 1 Black Yes 11.51
3.03 1 Gray Yes 11.50
2.33 2 0.0 No 2.80

Table 3: Best parameters for Occlusion Sensitivity. The final param-
eters are marked in bold.

AUC Radius Time

3.08 2 5.79
2.21 1 22.84
0.94 3 2.62
0.68 9 0.38
0.48 10 0.31

Table 4: Best parameters for Noise Sensitivity. The final parameters
are marked in bold.

D Run-time Analysis
The run-time of an algorithm can be an important aspect
when choosing between different approaches. We computed
the mean time it took each algorithm to create a single
saliency map using the timeit python library. To get a feeling
of how this is affected by different parameters of the saliency
approaches, we measured the time during our parameter tun-
ing process where each parameter combination was used on
10 different states.

The fastest approach was Occlusion Sensitivity which uses
simple color occlusions followed by the more complex blur
perturbation of SARFA and Noise Sensitivity. However, this
was strongly dependent on the size of the perturbation patches
and circles respectively. Using a patch size or radius of 1,
these approaches were among the slowest with a mean run-
time of around 22s for the blur perturbation and approxi-
mately 11s for the black occlusion variant. However, increas-
ing the patch size and radius to 2 already drastically reduced
the run-time as can be seen in the tables of Section C.2.

For RISE, the run-time mainly depends on the number of
masks. With 3000 masks the run-time was always close to 5s
per saliency map. However, compared to the aforementioned
saliency approaches, this did only decrease slowly when de-
creasing the number of masks. Thus, the average and the
fastest run-time were much slower for RISE than for SARFA,
and Occlusion and Noise Sensitivity.

The slowest approach we tested was LIME. However, this
was strongly influenced by the number of segments that the
segmentation functions generated and the number of learning
steps for the locally interpretable classifier. For SLIC, which
creates relatively big segments, LIME was quite fast with a
maximum run-time of 3.87s with the slowest parameters. In
contrast, the run-time for Felzenswalb easily exploded and
reached a maximum of 33.64s per saliency map. Quickshift
was in the middle of those two approaches with a maximum
run-time of 12.50s which did not decrease as quickly as the

AUC Radius Perturbation Time

7.03 1 Black 12.05
1.46 2 Black 3.00
1.09 1 Blur 23.70
0.57 8 Blur 0.46
0.55 2 Blur 6.12

Table 5: Best parameters for SARFA. The final parameters are
marked in bold.

AUC p Mask
Size

Masks Softmax Time

3.21 0.8 11 3000 Yes 5.09
3.04 0.7 13 3000 No 4.76
2.99 0.9 24 2500 Yes 3.98
2.94 0.8 4 3000 No 4.66
... Skipping 9 parameters that took

more then 3 seconds.

2.66 0.5 8 1000 No 1.54

Table 6: Best parameters for RISE. The final parameters are marked
in bold.

run-time of Occlusion and Noise Sensitivity, and SARFA.
The exact run-times for our top parameters can be seen in

Appendix C.2 and the values for all the parameters we tested
can be found in our repository 5

E Additional Results
In this section, we show some additional results that did not
fit in the main paper. Fig. 5 shows example saliency maps for
HIGHLIGHT-DIV states of the remaining three games apart
from Pac-Man. Fig. 6 shows an example of the saliency maps
generated during a sanity check.

To properly investigate observations made during the pa-
rameter tuning, we additionally calculated the insertion met-
ric for Occlusion Sensitivity with gray occlusion and SARFA
with blur. All other parameters were the same as the ones
used in section 5. The results are shown in Table 10.

5https://github.com/belimmer/PerturbationSaliencyEvaluation

https://github.com/belimmer/PerturbationSaliencyEvaluation

Input State Occlusion
Sensitivity

NS Original SARFA RISE LIME
Felzens.

LIME
Quickshift

LIME SLIC

Figure 5: Example saliency maps for the remaining games we tested. From top to bottom: Breakout, Space Invaders and Frostbite. NS is
Noise Sensitivity.

AUC Scale Sigma Min-
imum
Size

Num
Sam-
ples

Time

4.35 21 0.5 0 3000 10.73
3.58 21 0.75 2 3000 7.38
3.53 1 1.0 0 2000 22,03
3.29 21 0.5 0 2500 8.95
... Skipping 14 parameters that took

more then 3 seconds.

2.55 21 0.5 4 1000 1.71

Table 7: Best parameters for LIME with Felzenszwalb segmenta-
tion. The final parameters are marked in bold.

AUC Number
of
Seg-
ments

Com-
pact-
ness

Sigma Num
Sam-
ples

Time

3.99 200 10.0 1.0 3000 3.13
3.86 200 10.0 0.25 2000 2.08
3.48 200 10.0 0.0 3000 3.11
3.46 200 0.001 0.25 3000 2.36
3.44 200 10.0 0.5 1000 1.06

Table 8: Best parameters for LIME with SLIC segmentation. The
final parameters are marked in bold.

AUC Kernel
Size

Max
Dis-
tance

Ratio Num
Sam-
ples

Time

6.24 1 1 0.0 3000 11.38
4.97 1 1 0.0 2500 9.57
4.80 1 2 0.0 2500 4.46
4.50 1 2 0.0 3000 5.39
4.23 1 2 0.0 1500 2.75

Table 9: Best parameters for LIME with Quickshift segmentation.
The final parameters are marked in bold.

Original
Saliency Map

Randomized
up to FC2

Randomized
up to FC1

Randomized
up to Conv3

Randomized
up to Conv2

Randomized
up to Conv1

Occlusion NS Original SARFA RISE LIME
Felzenszwalb

LIME
Quickshift

LIME SLIC

Figure 6: Example saliency maps for the parameter randomization sanity check. From top to bottom each row after the first is generated for
agents with cascadingly randomized layers starting with the output layer.

Metric Occlusion gray SARFA blur

Pac-Man:
Q-val rand 2.98±3.5 1.0±2.2
Adv rand 0.44±1.8 1.12±1.0
Q-val black 0.32±0.2 0.62±1.3
Adv black -0.13±0.3 0.23±0.4
Breakout:
Q-val rand -0.83±2.6 -0.8±3.4
Adv rand 0.4±5.3 -0.4±5.8
Q-val black 1.99±2.5 3.0±3.9
Adv black 0.11±0.5 0.21±0.7
Frostbite:
Q-val rand 3.54±2.3 1.13±1.2
Adv rand 0.66±1.1 0.73±1.2
Q-val black 0.5±0.5 0.58±0.3
Adv black 0.16±0.2 0.3±0.3
Space Invaders:
Q-val rand 0.07±0.7 -0.75±0.7
Adv rand 1.04±3.5 1.02±3.7
Q-val black 0.48±0.2 0.66±0.2
Adv black 0.12±0.3 0.44±0.4

Table 10: The mean and SD of the insertion metric curve for our
additional experiments with different perturbations for Occlusion
Sensitivity and SARFA. Q-val and Adv measure the change of the
normalized q-value and advantage respectively. Rand and black use
random and black perturbation respectively during the insertion met-
ric. The bold values beat the highest values for the respective metric
in our original experiment.

	1 Introduction
	2 Related Work
	3 Experiments
	4 Parameter Tuning
	5 Results
	6 Discussion
	7 Conclusion
	A Saliency Map Approaches
	B Tuning The Metrics
	B.1 Calibration for Similarity Metrics
	B.2 Normalizing The Insertion Metric Results

	C Parameter Tuning Details
	C.1 State selection
	C.2 Saliency map parameters.

	D Run-time Analysis
	E Additional Results

