
Refining
Ideal Behaviours

Bernhard Möller

Report Nr. 345 1995

Refining Ideal Behaviours1

Bernhard Möller

Institut für Mathematik, Universität Augsburg, D-86135 Augsburg, Germany,
e-mail: moeller@uni-augsburg.de

1 Introduction

1.1 Objectives

This paper provides some mathematical properties of behaviours of systems, where the individ-
ual elements of a behaviour are modeled by ideals of a suitable partial order. It is well-known
that the associated ideal completion [8] provides a simple way of constructing algebraic cpos.
An ideal can be viewed as a set of consistent finite or compact approximations of an object
which itself may even be infinite.

We introduce a special way of characterising behaviours through sets of relevant approximations.
This is a generalisation of the technique used in [12] for the case of streams. Given a set P ⊆ M
of a partial order (M,≤), we define

ideP
def
= {Q≤ : Q ⊆ P directed} ,

where Q≤
def
= {x ∈ M : ∃ y ∈ Q : x ≤ y} is the downward closure of Q. So ideP is the

set of all ideals “spanned” by directed subsets of P . The elements in P may be regarded as
finite “snapshots” of computations; the ideals in ideP are then the limits of such computations.
They form the behaviour finitely described by P . Of course, other notions of finitary description
would be possible, but we have found this one particularly useful.

Of particular interest are sets of infinite ideals (in a suitable sense of “infinite”), since they
model non-terminating systems. These are singled out by the operator inf . The combination
inf ideP therefore describes the infinite computations characterized by “snapshots” in P . It is
a generalization of the lim -operation

limW
def
= {x ∈ Aω : FP(x) ∩W infinite}

that is used in the theory of ω-languages (see e.g. [21, 25, 26]) and was introduced in [9]. Here,
FP(x) denotes the set of finite prefixes of x.

The context of this work is deductive program design, in which implementations are derived
from specifications by semantics-preserving deduction rules. Examples of this paradigm are
transformational program development (see e.g. [19, 4]) and the refinement calculus (see e.g.
[2, 14, 15]). There is a growing conviction that this paradigm is most efficient when based on
algebraic rather than purely logical frameworks. For sequential programs this is demonstrated in
[4]. In the parallel case, to some extent the work reported in [18, 6] can be viewed as falling into
the algebraic realm; purely algebraic approaches are presented in [11, 22]. All these are based
on the particular domain of streams. The present paper abstracts from that and contributes

1This research was partially sponsored by Esprit Working Group 8533 NADA — New Hardware Design
Methods

2

a number of distributivity and monotonicity laws for operators like ide and inf in general
domains; these laws are useful in correct refinement of specifications into implementations.

It should be noted, however, that the use of these operators has its place more at the level of
specifications; we are not defining semantics for an implementation language. For that reason
we can afford to work with operators that have a strongly angelic aspect and, to some extent,
abstract from the possibilities of deadlock or failure. We think that this is justified, because
from the user’s point of view a system “just should work”; it is the duty of the implementor to
avoid deadlocks and failures.

1.2 A Small Example

As an example of the use of these constructs, we give a specification of a bounded buffer module
in the particular domain A∞ = A∗ ∪ Aω of finite and infinite streams over a set A of atomic
actions. The finite approximations there are the finite words, so M = A∗, and the approximation
order ≤ is the prefix order. Then A∞ is the ideal completion of M . In this particular domain,
for a set P ⊆ M = A∗ of finite approximations, ideP is the set of finite and infinite streams
that satisfy P in a relevant subset of their finite prefixes.

The buffer module has one input and one output port. In describing such modules, we choose

the letters a for the action of inputting and b for outputting and set A
def
= {a, b}. Boundedness

of a module can be enforced by requiring the number of input actions to exceed the number of
output actions by at most some n ∈ IN which then is the capacity of the device. We denote by
sc the number of occurrences of c ∈ A in s ∈ A∗. Generalising the above informal description
slightly, we define, for n ∈ ZZ and a, b ∈ A, the set

Xab
n

def
= {s ∈ A∗ : sa ≤ sb + n}

of finite approximations. Then s ∈ Xab
n may be pronounced “a exceeds b by at most n in s”.

The specification is, however, very loose in that the balance between as and bs might be struck
only at the very end of a word. For instance, ak+nbk ∈ Xn

ab. So the restriction may be violated
in prefixes and only established in the end. For bounded devices, this is not possible. They need
a stronger specification. Therefore we define

Bab
n

def
= saf Xab

n

where s ∈ saf P means that P holds for all prefixes of s, too, i.e., enforces P as a safety
condition.

Now ideBab
n is the set of all finite and infinite streams that satisfy Xab

n in all prefixes. However,
we are interested in devices that work for an unbounded time. This is specified by taking as
overall behaviour of such a device the set

Babn
def
= inf ideBab

n ,

where inf selects from a set of streams the infinite ones.

A buffer is a device in which the number of outputs must not exceed the number of inputs.
Hence we define

BFab def
= Bba0 .

Note the reversal of the arguments in the superscript. The finitary property Bba
0 spells out to

sb ≤ sa, as required. This describes an unbounded buffer. A bounded buffer of capacity n then

3

is described by

BBabn
def
= BFab ∩ Babn .

This specifies the set of all infinite streams for which in all finite prefixes, the number of outputs
does not exceed the number of inputs and the number of inputs may exceed the number of
outputs by at most n.

The example will be resumed briefly at the end of the paper to show how a calculation of an
implementation from the specification using our laws proceeds.

1.3 Overview

Section 2 gives some order-theoretic definitions and properties. Then Section 3 lists some prop-
erties of directed sets. The central Section 4 then gives the relevant definitions for ideals and
proves the algebraic laws. It turns out that a special property we call max -determinedness is
an essential prerequisite for many of the laws. We give a brief characterization of domains that
fulfill it; a consequence of it is that the base set over which the ideals are formed consists of
compact elements only. This is, for instance, the case for the domain of finite and infinite words
or streams, and Section 5 discusses that particular domain further in the light of the general
results. Finally, in Section 6 the buffer example is resumed to sketch the actual use of the
refinement laws.

2 Order-Theoretic Preliminaries

In this section we repeat some basic notions from the theory of partial orders and state some
new algebraic properties. The proofs for this section are deferred to the Appendix.

For preordered set (M,≤) and N ⊆ M we define the proper and improper downward closure
by

N< def
= {y ∈M : ∃ x ∈ N : y < x}

N≤
def
= N ∪N<

where y < x ⇔ y ≤ x ∧ ¬ x ≤ y. If ≤ is even an order, then N≤ = {y ∈M : ∃ x ∈ N : y ≤ x}.
We list some useful properties of these operations:

Lemma 2.1 Consider N,P ⊆ M . Then

1. N ⊆ N≤ ∧ (N<)< ⊆ N<.

2. (N ∪ P)< = N< ∪ P< ∧ (N ∪ P)≤ = N≤ ∪ P≤ (distributivity).

3. N ⊆ P ⇒ N≤ ⊆ P≤ ∧ N< ⊆ P< (monotonicity).

4. (N≤)< = N< ∧ (N≤)≤ = N≤.

The set of maximal elements of N ⊆ M is defined by

maxN
def
= N\N< .

Again, we give some useful properties:

4

Lemma 2.2 Consider N,P ⊆ M . Then

1. maxN = N≤\N<.

2. maxN = maxN≤.

3. N ⊆ P ⇒ N ∩ maxP ⊆ maxN .

4. max (N ∪ P) = (maxN)\P< ∪ (maxP)\N<

5. maxN ∩ P< = ∅ ⇒ max (N ∪ P) = maxN ∪ (maxP)\N<.

6. N ∩ P< = ∅ ⇒ max (N ∪ P) = maxN ∪ (maxP)\N<.

We now extend the order ≤ to a relation on subsets of M by

N ≤ P
def⇔ N ⊆ P≤ .

This is the angelic half of the Egli-Milner preorder [20]. In particular, N≤ ≤ N . Some further
useful properties are

Lemma 2.3 Consider N,P ⊆ M . Then

1. N ≤ P ⇔ N ≤ P≤.

2. L ⊆ N ∧ N ≤ P ∧ P ⊆ Q ⇒ L ≤ Q.

3. N ≤ P ⇔ N≤ ⊆ P≤.

4. N ≤ P ⇒ N< ⊆ P<.

5. N ≤ P ⇒ (N ∪ P)≤ = P≤ ∧ (N ∪ P)< = P<.

6. N ≤ P ⇒ max (N ∪ P) = maxP .

7. N ≤ P ∧ P ≤ N ⇒ maxN = maxP .

8. N ≤ P ∧ maxP = ∅ ⇒ max (N ∪ P) = ∅.

Since ≤ generally is only a preorder between sets, we are interested in the induced equivalence
relation

N ∼ P
def⇔ N ≤ P ∧ P ≤ N .

For this we have

Lemma 2.4 Consider N,P ⊆ M . Then N ∼ P ⇔ N≤ = P≤.

Proof: Immediate from Lemma 2.3.3. ut

A subset N ⊆ M is a cone if it is downward closed, i.e., if N≤ ⊆ N . Hence on cones ≤ and
⊆ coincide; in particular, ≤ is a partial order on cones.

Since M is a cone and the intersection of cones is a cone again, the set of all cones forms a
complete lattice under inclusion. It is isomorphic to the angelic or Hoare power domain [23]
over (M,≤). However, we are not going to use that domain.

5

In the sequel we will define many functions on single points of M and lift them to subsets of
M by pointwise extension, i.e., by setting, for f : M → M and N ⊆ M ,

f(N)
def
= {f(x) : x ∈ N} .

These pointwise extended functions distribute through arbitrary unions and hence are mono-
tonic w.r.t. inclusion and strict w.r.t. ∅. We will also use this mechanism to lift these functions
a further level to sets of subsets of M .

3 Directed Sets

A subset N ⊆ M is directed if every finite subset of N has an upper bound in N . Equivalently,
N is directed if N 6= ∅ and any two elements in N have a common upper bound in N . For
P ⊆ M we denote by dirP the set of all directed subsets of P . Note that the operation dir is
monotonic w.r.t. inclusion.

We now study how directedness behaves under union and intersection.

Lemma 3.1 Consider N,P ⊆ M . Then

1. N ∪ P ∈ dirM ⇒ N ≤ P ∨ P ≤ N .

2. N ∪ P ∈ dirM ∧ N ≤ P ⇒ P ∈ dirM .

3. Q≤ ∈ dirM ⇒ Q ∈ dirM .

4. N ∪ P ∈ dirM ∧ P = P≤ ∧ N ∩ P = ∅ ⇒ P ≤ N ∧ N ∈ dirM .

5. N ∪ P ∈ dirM ⇒ N ∈ dirM ∨ P ∈ dirM .

6. N ≤ P ∧ P ∈ dirM ⇒ N ∪ P ∈ dirM .

7. dir (N ∪ P) = {K ∪ L : (K ∈ dirN ∧ L ⊆ P ∧ L ≤ K)} ∪
{K ∪ L : (L ∈ dirP ∧ K ⊆ N ∧ K ≤ L)} .

8. dir (N ∪ P) ⊇ dirN ∪ dirP .

9. dir (N ∩ P) = dirN ∩ dirP .

Proof: 1. For N = ∅ or P = ∅ the claim is trivial. So consider N,P 6= ∅ and suppose N 6≤ P .
Then there is x ∈ N with x 6≤ P . Assume now y ∈ P . By directedness of N ∪ P
there is a z ∈ N ∪ P with x, y ≤ z. Since x 6≤ P , it follows that z ∈ N\P ⊆ N .
Since y was arbitrary, we have shown P ≤ N .

2. Assume x, y ∈ P . By directedness of N ∪ P there is a z ∈ N ∪ P with x ≤ z and
y ≤ z. If z ∈ P , we are done. Otherwise, by N ≤ P there is a u ∈ P with z ≤ u
so that by transitivity also x ≤ u and y ≤ u.

3. is immediate from 2 by setting N = Q≤, P = Q and using Q≤ ≤ Q.

4. By ∅ = N ∩ P = N ∩ P≤ we know ¬ N ≤ P , so that we may infer from 1 that
P ≤ N . Now 2 shows the claim.

5. is immediate from 1 and 2.

6

6. Assume x, y ∈ N∪P . By N ≤ P and P ≤ P there are u, v ∈ P with x ≤ u∧ y ≤ v.
Since P is directed, there is z ∈ P with u ≤ z and v ≤ z. Hence also x ≤ z and
y ≤ z by transitivity.

7. We show (⊆); the reverse inclusion is immediate from 6.

Consider Q ∈ dir (N∪P). We have Q = K∪L where K
def
= Q∩N and L

def
= Q∩P .

By 1 we know K ≤ L ∨ L ≤ K. If K ≤ L then L ∈ dirP by 2. If L ≤ K then
K ∈ dirN by 2. This shows the claim.

8. is immediate both from the definition and monotonicity, but also follows by setting
L = ∅ in the first summand and K = ∅ in the second one in 7.

9. We only need to show (⊇), since the reverse inclusion follows from monotonicity
of dir . Assume D ∈ dirN ∩ dirP . Then D ⊆ N ∧ D ⊆ P and hence D ⊆ N∩P .
Since D is directed, also D ∈ dir (N ∩ P).

ut

4 Ideals and Behaviours

4.1 Ideals

An ideal of a partial order (M,≤) is a directed cone, i.e., a subset Q ∈ dirM with Q≤ ⊆ Q.
A principal ideal is an ideal of the form x≤ for some x ∈ M . By I(M) we denote the set of
all ideals of M .

To tie this in with domain-theoretic notions we recall the ideal completion (cf. e.g. [3, 8]).
Consider an arbitrary ordered set (M,≤). By tN we denote the set of least upper bounds of
a subset N ⊆ M in M ; in case tN is non-empty we identify it with its only element. Then
(M,≤) is called dir -complete iff for every set D ∈ dirM we have tD 6= ∅. An element x
of M is compact iff for every D ∈ dirM with x ≤ tD we have also x ≤ z for some z ∈ D.
Equivalently, x is compact iff for every I ∈ I(M) with x ≤ tI we have x ∈ I. (M,≤) is
algebraic iff every element of M is the supremum of a directed set of compact elements. A
non-compact element of M is then called a limit point or an infinite element. With these
notions one has (see e.g. [8])

Theorem 4.1 Let (M,≤) be an ordered set.

1. The set (I(M), ⊆) ordered by set inclusion is dir -complete and inductive, the compact
elements being the ideals x≤ for x ∈ M . The mapping ι : x 7→ x≤ is an embedding of M
into I(M). In particular,

x ≤ y ⇔ x≤ ⊆ y≤ .

2. For every monotonic mapping h : M → P into a dir -complete set (P,≤) there is a unique
continuous mapping h : I(M) → P extending h, i.e., with h(x≤) = h(x). h is given by
h(I) = t h(I) for I ∈ I(M); hence h(D≤) = t h(D) for D ∈ dirM .

The order (I(M), ⊆) is called the ideal completion of (M,≤).

7

4.2 Describing Ideals by Properties

We want to characterise ideals by certain sets of “relevant” approximations. Such a set, i.e., a
subset of our overall partially ordered set M , is called a property in this connection.

For property P ⊆ M we now define by

ideP
def
= {D≤ : D ∈ dirP}

the set of all ideals “spanned” by directed subsets of P . Note that ideM = I(M). For the case
of finite and infinite sequences over some alphabet a related notion occurs in [9]; the connection
will be made precise in Section 4.6. Note that ide is monotonic w.r.t. inclusion. A different
characterisation of ide is given by

Lemma 4.2 For I ∈ I(M) and Q ⊆ M the following statements are equivalent:

1. I ∈ ideQ.

2. I ⊆ (I ∩Q)≤.

3. I = (I ∩Q)≤.

Proof: The equivalence of 2 and 3 is obvious by monotonicity of ≤ and downward closedness
of I.
(1⇒ 2) Suppose I = D≤ for D ∈ dirQ.

I

= {[assumption]}
D≤

= {[since D ⊆ Q]}
(D ∩Q)≤

⊆ {[monotonicity]}
(D≤ ∩Q)≤

= {[assumption]}
(I ∩Q)≤ .

(3⇒ 1) Since I is directed, so is (I ∩Q)≤. By Lemma 3.1.3 also I ∩Q is directed and
the claim follows. ut

We say that an ideal I ∈ I(M) satisfies property P ⊆ M and write I |= P iff I ∈ ideP .

We have

Lemma 4.3 1. S |= Q ⇒ S |= Q≤. The reverse implication is not valid.

2. S |= Q ∧ S |= P ⇒ S |= Q≤ ∩ P≤.

Proof: 1. is immediate from Q ⊆ Q≤ and monotonicity of ide . For a counterexample to
the reverse implication see Example 5.3.

2. immediate from 1.

ut

8

4.3 Safety and Deadlock-Freedom

Two important correctness notions for parallel systems are safety and liveness [1, 10]. We want
to show how they can be expressed algebraically.

Informally, a property P is called a safety property iff the following two conditions hold:

1. Whenever P is satisfied by some object then it also holds for all finite approximations of
that object.

2. If P holds for all elements of a directed set of finite approximations then it also holds for
their supremum.

Since the supremum of (the images of) a directed set of finite approximations in the ideal
completion is that set, in our terminology P ⊆ M is a safety property iff P is a cone in M .
In this case

I |= P ⇔ I ⊆ P .

A property Q ⊆ I(M) is informally called a liveness property iff every finite approximation
can be extended to an infinite one in Q [1]. We are in this paper interested in a more liberal
form of liveness: we stay purely at the level of finite approximations and consider properties
Q ⊆ M such that every finite approximation in Q can be extended into an infinite object that
satisfies Q. We call such properties deadlock-free. This definition reflects an angelic view:
whenever there is a possibility to extend a finite behaviour, the overall behaviour will have the
opportunity to choose it. Let us now give an algebraic characterisation.

Lemma 4.4 Let Q ⊆ M be a property with Q 6= ∅. Then every principal ideal in ideQ is
contained in a non-compact ideal in ideQ iff maxQ = ∅.

Proof: (⇒) Assume x ∈ maxQ. By assumption there is some non-compact ideal I ∈ ideQ
with x≤ ⊆ I. Consider an arbitrary y ∈ I. By directedness of I there is z ∈ I with
x, y ≤ z. Since I ∈ ideQ there is u ∈ Q with z ≤ u. But maximality of x in Q implies
u = x. This shows I ≤ x and hence I = x≤, so that I is compact. Contradiction!

(⇐) Consider x ∈ Q and I def
= {I ∈ ideQ : x≤ ⊆ I}. Then I is non-empty. Moreover,

every chain C ⊆ I has an upper bound in I, viz.
⋃ C. By Zorn’s Lemma therefore I

contains a maximal element J . Suppose J is compact. Then J = y≤ for some y ∈M .
We show that y then is maximal in Q, a contradiction. Consider z ∈ Q with y ≤ z.
Then z≤ ∈ ideQ and J ⊆ z≤. By maximality of J we get J = z≤ and hence also
z = y. ut

Therefore we call Q deadlock-free iff Q 6= ∅ ∧ maxQ = ∅. This property will be the premise
for a number of the laws to come. An investigation of the general notion of liveness in order-
theoretic terms will be the subject of subsequent papers.

4.4 Continual Satisfaction

In connection with safety issues one is interested in the set of all objects that satisfy a property
also in all their finite approximations. Given a property P ⊆ M we define the property saf P
by

saf P
def
= {x ∈M : x≤ ⊆ P} .

9

Lemma 4.5 1. saf P ⊆ P .

2. saf P = P iff P is a safety property.

3. saf P is the greatest safety property contained in P .

4. saf is monotonic and strict w.r.t. ∅.

5. saf (P ∩ Q) = saf P ∩ saf Q.

Proof: 1. x ∈ saf P

⇔ {[definition]}
x≤ ⊆ P

⇒ {[x ∈ x≤]}
x ∈ P .

2. (⇒)

x ∈ P
⇔ {[assumption]}

x ∈ saf P

⇔ {[definition]}
x≤ ⊆ P .

(⇐)

x ∈ P
⇒ {[assumption]}

x≤ ⊆ P

⇔ {[definition]}
x ∈ saf P

so P ⊆ saf P ; the reverse inclusion was shown in 1.

3. It is obvious that saf P is a safety property. Let Q ⊆ P be a safety property and
x ∈ Q. By definition then x≤ ⊆ Q ⊆ P and hence x ∈ saf P .

4. is immediate from the definition.

5. x ∈ saf (P ∩Q)

⇔ {[definition]}
x≤ ⊆ P ∩Q

⇔ {[infimum property of intersection]}
x≤ ⊆ P ∧ x≤ ⊆ Q

⇔ {[definition]}
x ∈ saf P ∧ x ∈ saf Q .

ut

Note that saf does not distribute through union. We can now state two distributivity properties
for ide :

10

Lemma 4.6 Consider N,P ⊆ M . Then

1. ide (N ∪ P) = ideN ∪ ideP .

2. N = saf N ⇒ ide (N ∩ P) = ideN ∩ ideP .

Proof: 1. I ∈ ide (N ∪ P)

⇔ {[by Lemma 4.2]}
I = (S ∩ (N ∪ P))≤

⇔ {[distributivity of ∩ over ∪ and Lemma 2.1.2]}
I = (S ∩N)≤ ∪ (S ∩ P)≤

⇒ {[by directedness of I, Lemma 3.1.1 and Lemma 2.3.3]}
I = (S ∩N)≤ ∨ I = (S ∩ P)≤

⇔ {[by Lemma 4.2]}
I ∈ ideN ∨ I ∈ ideP .

The reverse inclusion follows by monotonicity of ide .
Another proof can be given using Lemma 3.1.7.

2. We only need to show (⊇), since the reverse inclusion follows from monotonicity
of ide .
Assume S ∈ ideN ∩ ideP , say S = D≤ = E≤ with D ∈ dirN ∧ E ∈ dirP .
By Lemma 2.4 then E ≤ D, and by Lemma 2.3.2 we get E ≤ N , since D ⊆ N .
Now N = N≤ shows E ⊆ N . Since E ⊆ P we get E ⊆ N ∩ P and, since E is
directed, even E ∈ dir (N ∩ P). This shows S = E≤ ∈ ide (N ∩ P).

ut

This also shows once again the monotonicity of ide . However, we have even

Corollary 4.7 N ⊆ P ⇔ ideN ⊆ ideP .

Proof: The inclusion from right to left is part of Theorem 4.1.1. ut

We can restate 1 and 2 in terms of the satisfaction relation:

I |= (N ∪ P) ⇔ I |= N ∨ I |= P ,
N = saf N ⇒ I |= (N ∩ P) ⇔ I |= N ∧ I |= P .

It should be noted, however, that ide only distributes through finite unions and hence is not
“continuous”. For an instance of this see Example 5.4.

4.5 Behaviours and Refinement

Our application of ideals will be the description of systems. To model non-determinacy, we
define a behaviour to be a set of ideals. As our refinement relation we choose inclusion, i.e.,
behaviour T refines behaviour S if T ⊆ S. For instance, given a property P ⊆ M , the set
ideP of ideals satisfying P , is a behaviour. To allow correct local refinements one therefore has
to ensure monotonicity of all operations w.r.t. inclusion.

11

For comparing behaviours, however, we also use a second relation which, contrary to the
“global” view of inclusion allows a “local” view of the ideals involved. We define, more generally,
for sets S, T ⊆ dirM ,

S ≤ T def⇔ S ⊆ T ≤

with
T < def

= {D ∈ dirM : ∃ E ∈ T : D < E} ,
T ≤ def

= T ∪ T < ,

D < E
def⇔ D ≤ E ∧ ¬ E ≤ D .

So ≤ is the extension of the preorder ≤ between directed sets to sets of directed sets in the
sense of Section 2. Recall that between cones and hence ideals ≤ coincides with ⊆ .

4.6 Maximal and Infinite Ideals

Frequently one is interested in processes that continue as long as possible. These are modeled
by ideals which are maximal w.r.t. ≤ or, equivalently, w.r.t. inclusion. We therefore give a
characterisation of maximal ideals. For a behaviour B we denote the subset of maximal ideals
by max ; this agrees with the definition in Section 2, and hence all our laws there apply.

Lemma 4.8 Suppose I ∈ I(M) and N ⊆ M . Then

1. x ∈ max I ⇔ I = x≤.

2. max I = ∅ ⇒ I infinite.

3. maxN = ∅ ∧ I ∈ max ideN ⇒ max I = ∅.

Proof: 1. (⇒) We only need to show I ⊆ x≤; the other inclusion follows from downward
closure of I. Suppose y ∈ I. By directedness of I there is z ∈ I with x ≤ z and
y ≤ z. Maximality of x implies z = x and hence y ≤ x.
(⇐)

max I

= {[by assumption]}
max x≤

= {[by Lemma 2.2.1]}
(x≤)≤\(x≤)<

= {[by Lemma 2.1.4]}
x≤\x<

= {[by Lemma 2.2.1]}
max x

= {[irreflexivity of <]}
{x} .

2. Every non-empty finite set has a maximal element.

12

3. Suppose max I 6= ∅, say x ∈ max I. By 1 then I = x≤ and by I ∈ ideN we
get x ∈ N . Since maxN = ∅, there is y ∈ N with x ≤ y and y 6= x. But then
y≤ ∈ ideN and hence, by Theorem 4.1.1, we have x≤ ⊆ y≤ ∧ x≤ 6= y≤. This is
a contradiction to I ∈ max ideN .

ut

Motivated by 2 we define, for a behaviour B, the set of its infinite ideals as

inf B def
= {I ∈ B : max I = ∅} .

For general domains, this is a bit of a misnomer, since there may well be infinite ideals with
maximal elements. However, we will single out a particular class of domains where this can-
not occur and work mostly with these, so that the terminology will be justified. Clearly, inf
distributes through arbitrary union and intersection:

inf (
⋃
i∈I
Bi) =

⋃
i∈I

inf Bi , (1)

inf (
⋂
i∈I
Bi) =

⋂
i∈I

inf Bi . (2)

Now Lemma 4.8.3 can be restated as

maxN = ∅ ⇒ max ideN ⊆ inf ideN .

The reverse inclusion is generally not valid. For a counterexample choose M = IN∪ {∞} with
the usual ordering and consider the ideal IN ∈ I(M). We have max IN = ∅, but IN 6∈ max I(M),
since IN ⊆ M ∈ I(M) and IN 6= M .

We call a partial order (M,≤) max -determined if

inf I(M) ⊆ max I(M) .

Now we clarify the relation between inf ide and max ide and investigate monotonicity and
distributivity of the max ide and max inf operation, which is important for refinement.

Lemma 4.9 Let (M,≤) be max -determined. Then, for N,P ⊆ M ,

1. inf ideN ⊆ ideN ∩ max I(M) ⊆ max ideN .

2. max ideN = inf ideN ∪ idemaxN .

3. maxN = ∅ ⇒ inf ideN = ideN ∩ max I(M) = max ideN .

4. inf ideN ∪ P = inf ideN ∪ inf ideP .
In particular, inf ide is monotonic w.r.t. inclusion.

5. N = saf N ⇒ inf ide (N ∩ P) = inf ideN ∩ inf ideP .

6. maxN = ∅ ∧ N ⊆ P ⇒ max ideN ⊆ max ideP .

7. maxN = maxP = ∅ ⇒ max ide (N ∪ P) = max ideN ∪ max ideP .

8. If N and P are cones with maxN = maxP = max (N ∩P) = ∅ then max ide (N ∩P) =
max ideN ∩ max ideP .

13

Proof: 1. I ∈ inf ideN

⇔ {[definition]}
I ∈ ideN ∧ max I = ∅

⇒ {[since (M,≤) is max -determined]}
I ∈ ideN ∧ I ∈ max I(M)

⇒ {[by Lemma 2.2.3, since ideN ⊆ I(M)]}
I ∈ max ideN .

2. (⊆) Suppose I ∈ max ideN . If max I = ∅, then I ∈ inf ideN by definition.
Otherwise max I is a singleton, say max I = {x}, and I = x≤. It follows that
x ∈ N . For y ∈ N with x ≤ y we have x≤ ⊆ y≤ ∈ ideN , so that x≤ = y≤

by maximality of I = x≤. Hence also x = y. This shows x ∈ maxN , so that
I = x≤ ∈ idemaxN .
(⊇) inf ideN ⊆ max ideN was shown in 1. Suppose now I ∈ idemaxN , say
I = x≤ with x ∈ maxN , and I ⊆ J ∈ ideN , say J = D≤ for D ∈ dirN . Consider
y ∈ J . By directedness of J there is a z ∈ J with x, y ≤ z. By J = D≤ there is
a u ∈ D with z ≤ u. Hence also x, y ≤ u. By D ⊆ N and x ∈ maxN we get
x = u. So y ≤ x and hence y ∈ x≤ = I. Altogether, J ⊆ I and hence J = I. So
I ∈ max ideN .

3. Assume maxN = ∅. Then Lemma 4.8.3 shows max ideN ⊆ inf ideN and the
equalities follow from 1.

4. immediate from Lemma 4.6.1 and equation (1).

5. immediate from Lemma 4.6.2 and equation (2).

6. max ideN

= {[by 3]}
ideN ∩ max I(M)

⊆ {[by assumption N ⊆ P and monotonicity of ide]}
ideP ∩ max I(M)

⊆ {[by 3]}
max ideP .

7. We aim at an application of Lemma 2.2.5. Suppose therefore that I ∈ max ideN ∩
(ideP)<. By 3 we have I ∈ max I(M). But by I ∈ (ideP)< there is J ∈ ideP with
I ⊂ J , a contradiction to maximality of I. Hence max ideN ∩ (ideP)< = ∅.
By symmetry, also max ideP ∩ (ideN)< = ∅. Now the claim is immediate from
Lemma 2.2.5.

8. (⊆) follows from 6.
(⊇) Assume I ∈ max ideN ∩ max ideP . Then by 3 we have I ∈ max I(M). Hence,
again by 3, we only need to show I ∈ ide (N ∩ P). Since N and P are cones we
get I ⊆ N and I ⊆ P and hence I ⊆ N ∩ P as well, showing the claim.

ut

The next lemma allows simplification of the defining property of a behaviour.

Lemma 4.10 Consider N,P ⊆ M . Then

max ide (N ∪ P) = max ideP ⇔ ideN ≤ ideP .

14

Proof: (⇐)

ideN ≤ ideP

⇒ {[by Lemma 2.3.6]}
max (ideN ∪ ideP) = max ideP

⇔ {[by Lemma 4.6.1]}
max ide (N ∪ P) = max ideP .

(⇒) If N = ∅, the claim holds trivially, since ide ∅ = ∅. Hence we now assume N 6= ∅.
We now need the so-called Maximal Principle (see e.g. [8]): Assume a partial order in
which every non-empty chain has an upper bound. Then every element has a maximal
element above it.
We apply this to the partial order (ideN, ⊆). It satisfies the assumption, since ideN
is closed under directed unions and hence, in particular, under unions of chains of
directed sets. Consider now I ∈ ideN ⊆ ide (N ∪ P). By the maximal principle there
is a J ∈ max ide (N ∪ P) = max ideP with I ≤ J . ut

Under additional assumptions we can simplify the property:

Lemma 4.11 Assume P ∈ dirM . Then

max ide (N ∪ P) = max ideP ⇔ N ≤ P .

Proof: To apply Lemma 4.10 we show that P ∈ dirM implies

ideN ≤ ideP ⇔ N ≤ P .

(⇒) Assume x ∈ N . Then {x}≤ ∈ ideN and so there is I ∈ ideP , say I = D≤ for
D ∈ dirP , with {x}≤ ≤ I. By Lemma 2.3.1-2 we get {x} ≤ P .
(⇐) For I ∈ ideN we have I ≤ P ∈ dirP and hence, by Lemma 2.3.1, also I ≤ P≤ ∈
ideP . ut

For a counterexample when P is not directed see Example 5.6 in connection with Corol-
lary 4.12.2 below.

Recalling the equivalence ∼ associated with the preorder ≤, we obtain from the previous two
lemmata

Corollary 4.12 Consider N,P ⊆ M . Then

1. ideN ∼ ideP ⇒ max ideN = max ideP .

2. If N,P ∈ dirM then
N ∼ P ⇒ max ideN = max ideP .

We conclude this section by an alternative characterization of the set inf ideP for property
P ⊆ M . First we define

limP
def
= {I ∈ I(M) : I ∩ P ∈ dirM ∧ max (I ∩ P) = ∅} .

This generalizes the corresponding definition for infinite words or streams in [21, 25, 26] (to
cite just a few), which is based on [9]. Other notations for limP found in the literature are P δ

or ~P . We can then show

15

Lemma 4.13 1. inf ideP ⊆ limP .

2. If (M,≤) is max -determined then the reverse inclusion holds as well.

Proof: We first note that

I ∈ inf ideP

⇔ {[definition]}
I ∈ ideP ∧ max I = ∅

⇔ {[by Lemma 4.2]}
I = (I ∩ P)≤ ∧ max I = ∅

⇔ {[equality]}
I = (I ∩ P)≤ ∧ max (I ∩ P)≤ = ∅

⇔ {[Lemma 2.2.2]}
I = (I ∩ P)≤ ∧ max (I ∩ P) = ∅ . (∗)

Now we prove our claims as follows:

1. (∗)
⇒ {[by Lemma 3.1.3]}

I ∩ P ∈ dirM ∧ max (I ∩ P) = ∅
⇔ {[definition]}

I ∈ limP .

2. Let (M,≤) be max -determined and assume I ∈ limP . By (∗) it remains to show
I = (I ∩ P)≤. First, by monotonicity of downward closure we have (I ∩ P)≤ ⊆
I≤ = I. Using Lemma 2.2.2 we obtain max (I ∩P)≤ = max (I ∩P) = ∅, so that
by max -determinedness (I ∩ P)≤ ∈ max I(M) and hence (I ∩ P)≤ = I.

ut

4.7 About max -Determinedness

It remains to investigate under which conditions a partial order is max -determined. To this end
we introduce some auxiliary notions. Let F : P(M) → P(M) be some function, such as dir
or ide . We say that N ⊆ M has F -maxima if every set in F (N) has a maximal element. In
addition to the functions mentioned we shall use

neN
def
= {C ⊆ N : C 6= ∅} ,

chaiN
def
= {C ⊆ N : C non-empty chain} .

Lemma 4.14 If N ⊆ M has chai -maxima, then it also has ne -maxima.

Proof: Assume ∅ 6= D ⊆ N and maxD = ∅. Construct a chain C ⊆ N as follows: Choose
x0 ∈ D arbitrarily. Assume now that xi has been found. Since xi 6∈ ∅ = maxD, there

is xi+1 ∈ D with xi < xi+1. Now for C
def
= {xi : i ∈ IN} we have maxC = ∅, a

contradiction. ut

Corollary 4.15 If N ⊆ M has chai -maxima, then it also has dir -maxima.

16

Proof: Every directed set is non-empty. ut

We say that (M,≤) separates ideals if for all I, J ∈ I(M) with I 6= J the intersection I ∩ J
has chai -maxima. The connection with max -determinedness is given by

Theorem 4.16 (M,≤) is max -determined iff (M,≤) separates ideals.

Proof: (⇒) Suppose I 6= J and C ∈ chai (I ∩ J), but maxC = ∅. Then C≤ is an ideal
with maxC≤ = ∅. By max -determinedness then C≤ ∈ max ideM . Since by downward
closedness of I and J we have C≤ ⊆ I and C≤ ⊆ J it follows that I = C≤ = J , a
contradiction.
(⇐) Assume max I = ∅ and I 6∈ max ideM . Then there is J 6= I with I ⊆ J . Since
(M,≤) separates ideals and by Corollary 4.15 then I = I ∩ J has dir -maxima. In
particular, max I 6= ∅, a contradiction. ut

This has the following surprising consequence:

Corollary 4.17 Let (M,≤) be max -determined. Then all elements of M are compact.

Proof: By the previous theorem, (M,≤) separates ideals.

We now first show tI ⊆ I for all I ∈ I(M). Assume y ∈ tI and set J
def
= {y}≤.

We have I ⊆ J . If I 6= J then I = I ∩ J has a maximal and hence, by directedness,
greatest element z. But then z = tI = y so that J = I, a contradiction.
Consider now x ∈M and I ∈ I(M) such that x ≤ tI ∈ I. By downward closedness of
I we get x ∈ I and x is compact. ut

The reverse implication is not valid as the following example shows: Consider

...
|

... |
| •5
|/|

4• |
| •3
|/|

2• |
| •1
|/

0•

in which all elements are compact. However, for I
def
= {0, 2, 4, . . .} we have max I = ∅ and

I ⊂ J
def
= {0, 1, 2, 3, 4, . . .}, i.e., I is not maximal. Concerning separation of ideals, I = I ∩ J

doesn’t have a maximal element.

It will be interesting to find further, more “manageable” characterisations of max -determined-
ness.

17

5 A Particular Case: Streams

We now specialise to a particular partial order. We shall represent streams using sets of finite
traces. These are finite words over an alphabet A of atomic actions; they are ordered by the
prefix relation.

5.1 Prefix Order and Streams

As usual, A∗ is the set of all finite words over alphabet A. By ε we denote the empty word over
A, whereas concatenation is denoted by •.
A word u is a prefix of a word v, written u v v, iff there is a word w such that u•w = v, or, in
other words, if v is an extension of u. It is well-known that this defines a partial order on words
which is even well-founded. Moreover, ε is the least element in this order. The corresponding
strict-order is denoted by < . A cone of (A∗, v) is then a prefix-closed language. Note that
every non-empty cone contains ε.

A few properties we shall use are the following (where x, y, u, v, w ∈ A∗ and U, V ⊆ A∗):

v v w ⇔ u • v v u • w , (3)

u v w ∧ v v w ⇒ u v v ∨ v v u , (4)

V 6= ∅ ⇒ (U • V)v = Uv ∪ U • V v . (5)

Poperty (4) is also called local linearity. Because of it, the following special property of
directedness over (A∗, v) is immediate:

Lemma 5.1 D ⊆ A∗ is directed w.r.t. v iff D is linearly ordered by v .

Thus, by prefix-closedness, an ideal is a set of words of increasing length “growing at the right
end”. This set may be finite or infinite. A simple example is, for a ∈ A, the infinite ideal

a∗ = {ε, a, a • a, a • a • a, a • a • a • a, . . .} .

For the special case of words under the prefix ordering, we therefore call the elements of I(A∗)
streams over A. The compact elements of I(A∗) correspond to the elements of A∗, whereas the
non-compact elements are precisely the (cardinally) infinite ideals. Hence, for countable A, the
set (I(A), ⊆) has a countable basis of compact elements and therefore is countably algebraic.

Let us give another characterization of infinite streams:

Lemma 5.2 A stream S is infinite iff maxS = ∅.

Proof: First, by linearity of the prefix order on a stream and by its well-foundedness, an
infinite stream cannot have a maximal element. By Lemma 4.8.2 we have also the
reverse implication. ut

5.2 Streams and Properties

The set of streams satisfying a property P ⊆ A∗ is

strP
def
= ideP .

18

Note that it would not be adequate to work with the set str (Pv), the so-called adherence of P
(see e.g. [17, 25]), instead of strP . The reason is that by prefix-closure infinite substreams may
“sneak” into a cone although it results from a language of mutually v -incomparable words
which represent systems with finite behaviour only.

Example 5.3 The language 0∗ • 1 represents a behaviour with arbitrarily long but finite se-
quences of 0s terminated by the “explicit endmarker” 1. However, its prefix closure (0∗ • 1)v

contains the infinite ideal 0∗ representing an infinite stream of 0s. ut

Using König’s Lemma one can even show that for finite A every infinite cone contains an
infinite stream. This is also the reason why the Hoare power domain is “too angelic”. The
general definition of ide omits these undesired streams.

Safety properties are in our special case simply prefix-closed subsets of A∗. To see an example
of a deadlock-free property, we first note that if U ∩ ε = ∅ then maxU∗ = ∅. Hence, for
A = {0, 1} the language (0∗ • 1)∗ is deadlock-free.

We want to show now that str (and hence ide) does not distribute through general union:

Example 5.4 Take U = 0∗. Then U =
⋃
i∈IN

0i. However, strU = {0∗} ∪ {(0i)v : i ∈ IN},

whereas
⋃
i∈IN

str 0i = {(0i)v : i ∈ IN}. ut

5.3 Maximal and Infinite Streams

As already mentioned, maximal ideals model processes that go on as long as possible. For
streams we have a more pleasant situation than for general ideals:

Lemma 5.5 (A∗, v) is max -determined.

Proof: Assume I ∈ ideA∗ ∧ max I = ∅ and consider J ∈ ideA∗ with I ⊆ J . By Lemma 2.4
and downward closure of I, J it suffices to show J ≤ I. Consider y ∈ J . Since max I = ∅
there is some x ∈ I ⊆ J with ||y|| ≤ ||x||, where ||u|| denotes the length of word u.
Moreover, by directedness of J , there is z ∈ J with x v z ∧ y v z. From linearity of
zv it therefore follows that x v y ∨ y v x. However, since ||y|| ≤ ||x||, we must have
y v x. ut

This allows us to use all laws from Section 4.6 for streams. At this point it is also convenient to
give the counterexample to Corollary 4.12.2 and hence also to Lemma 4.11 when non-directed
sets are involved:

Example 5.6 Set U
def
= 0∗ • 1 and V

def
= U ∪ 0∗ = Uv by (5). Then U ∼ V , but max strU 6=

max str V , since 0∗ ∈ (max str V)\(max strU). Note, however, that neither U nor V is directed.
ut

Now we turn to infinite streams. We note that by Lemma 5.2 we have

inf ideP = {I ∈ ideP : I infinite} .

To establish the relation with [25] we also show

Lemma 5.7 For P ⊆ A∗ we have

limP = {I ∈ I(A∗) : I ∩ P infinite} .

19

Proof: I ∈ limP

⇔ {[definition]}
I ∩ P ∈ dirM ∧ max (I ∩ P) = ∅

⇔ {[by I ∩ P ⊆ I and Lemma 5.1]}
I ∩ P 6= ∅ ∧ max (I ∩ P) = ∅ .

We show now that, for linearly ordered L ⊆ A∗,

L infinite ⇔ L 6= ∅ ∧ maxL = ∅ .

(⇒) L 6= ∅ is immediate. Suppose x ∈ maxL. By linearity then L ⊆ xv. But then
|L| ≤ ||x||+ 1, a contradiction.
(⇐) Every non-empty finite set has a maximal element. ut

5.4 Stream Concatenation

As a prerequisite for defining infinite repetition we need stream concatenation which, for streams
S, T is defined by

S ◦ T def
= S ∪ (maxS) • T .

Let us explain this definition. If S is finite then maxS is a singleton. This part of the overall
behaviour then is prefixed to all traces in T to represent the concatenated behaviour. If S is
infinite then maxS = ∅ and hence, by strictness of ◦, we get S ◦ T = S, as is intuitively
expected.

It is straightforward to show that S ◦ T is indeed a stream and that (I(A∗), ◦, ε) is a monoid.
Moreover one has

max (S ◦ T) = (maxS) • (maxT) . (6)

As a shorthand notation we shall also allow words as first argument of ◦. This is made precise
by setting

u ◦ T def
= uv ◦ T = uv ∪ u • T .

Again, ◦ is extended pointwise to behaviours and, in the case of the above shorthand, to
languages.

5.5 Infinite Repetition

We now give the usual greatest fixpoint definition of the set Uω of streams that result from
infinite repetition of words from a language U ⊆ A∗:

X ⊆ Uω def⇔ X = U ◦ X .

This is well-defined by monotonicity of ◦. Note that by this definition ∅ω = ∅. However, if ε ∈ U
then Uω = I(A∗). For that reason, Uω is usually considered only for ε 6∈ U .

It should be noted that for |U | ≥ 2 and U ∩ ε = ∅ there are nontrivial solutions of X = U ◦X
properly less than Uω. As an example consider the behaviour U∗ ◦

⋃
u∈U

uω of all eventually

periodic streams.

20

To tie this in with the str -operation, we quote [25], p. 433:

ε 6∈ U ⇒ limU∗ = Uω ∪ U∗ ◦ limU ,

or, using Lemma 4.13 and max -determinedness,

ε 6∈ U ⇒ inf strU∗ = Uω ∪ U∗ ◦ inf strU .

From this it is immediate that

ε 6∈ U ∧ X = U ◦ X ⇒ X ⊆ inf strU∗ . (7)

Moreover, by strictness of ◦ it follows that

ε 6∈ U ⇒ inf strU = ∅ ⇒ Uω = inf strU∗ . (8)

A sufficient condition to establish the premise is given by

Lemma 5.8 If U ⊆ A∗\ε satisfies the Fano condition, i.e., the words in U are mutually
incomparable w.r.t. v , then

Uω = inf strU∗ .

Proof: By the Fano condition, all directed subsets of U are singletons. Hence strU = {u≤ :
u ∈ U} consists of finite streams only. ut

Note that if ε ∈ U then U satisfies the Fano condition iff U = ε; for this case the above
equation doesn’t hold, since then inf strU∗ = ∅. It should also be mentioned that U satisfies
the Fano condition iff U = maxU . To see what happens if the Fano condition is not satisfied,
consider

Example 5.9 Let A = {a, b} and U
def
= {a•bn : n ∈ IN} ⊆ A∗. Then U ∈ dirU∗, since U ⊆ U∗

and U is directed. Hence Uv = ε ∪ U ∈ strU∗ and, since Uv is infinite, even Uv ∈ inf strU∗.
Now, Uv represents an a followed by infinitely many bs; but this behaviour clearly does not
arise from repeated concatenation of words in U . It is “sneaked in” by the fact that simply
considering directed subsets of U∗ throws away too much structural information. ut

To allow a characterization of Uω for languages that do not satisfy the Fano condition, one can
artificially enforce it by attaching a special endmarker to all words in U and remove it after
singling out the infinite streams. Let # 6∈ A be a new letter and consider streams over the
extended alphabet A∪#. Moreover, denote by A�u the word that results from u by removing
all occurrences of # and extend the operation A� pointwise to languages and behaviours. Some
useful properties are

A� (u • v) = (A� u) • (A� v) , (9)

A� (U ◦ T) = (A� U) ◦ (A� T) . (10)

Then we have

Lemma 5.10 For U ⊆ A∗\ε,

Uω = A� inf str (U •#)∗ .

21

The proof will be given below. The streams in str (U • #)∗ correspond to finite and infinite
sequences that result from concatenating arbitrary elements of U with the separator # in
between. The operation max then selects the prefix-maximal ones of these; if ε 6∈ U these
are precisely the infinite words resulting from repeatedly concatenating words from U . The
separators are used to record the “construction history” of the streams; they are finally thrown
away again by the filter A�. In this way subsets of U∗ which are directed “by accident” are
ignored. A similar mechanism for defining iteration is employed in [18] in the finite case and in
[5] in the infinite case. To prove Lemma 5.10 we need the auxiliary

Lemma 5.11 If # 6∈ A then

1. dir (U •# • V) = {u •# • E : u ∈ U ∧ E ∈ dir V }.

2. str (U •# • V) = (U •#) ◦ str V .

3. inf str (U •# • V) = (U •#) ◦ inf str V .

Proof: 1. (⊆) Assume D ∈ dir (U •# •V) and consider xi = ui •# • vi ∈ D with i ∈ {1, 2}
and ui ∈ U and vi ∈ V . By directedness of D we may w.l.o.g. assume x1 v x2,
say x1 • w = x2. So u1 •# • v1 • w = u2 •# • v2. Since # doesn’t occur in ui and
vi, it follows that u1 = u2 and v1 v v2, as required.
(⊇) is immediate from (3).

2. str (U •# • V)

= {[definition]}
{Dv : D ∈ dir (U •# • V)}

= {[by 1]}
{(u •# • E)v : u ∈ U ∧ E ∈ dir V }

= {[by equation (5) and non-emptiness of directed sets]}
{(u •#)v ∪ (u •#) • Ev : u ∈ U ∧ E ∈ dir V }

= {[definition of ◦]}
{(u •#) ◦ Ev : u ∈ U ∧ E ∈ dir V }

= {[pointwise extension]}
(U •#) ◦ str V .

3. S ∈ inf str (U •# • V)

⇔ {[definition]}
S ∈ str (U •# • V) ∧ maxS = ∅

⇔ {[by 2]}
S ∈ (U •#) ◦ str V ∧ maxS = ∅

⇔ {[pointwise extension]}
∃ u ∈ U : ∃ T ∈ str V : S = (u •#) ◦ T ∧ maxS = ∅

⇔ {[by equation (6)]}
∃ u ∈ U : ∃ T ∈ str V : S = (u •#) ◦ T ∧ u •# •maxT = ∅

⇔ {[totality of •]}
∃ u ∈ U : ∃ T ∈ str V : S = (u •#) ◦ T ∧ maxT = ∅

22

⇔ {[definition of inf]}
∃ u ∈ U : ∃ T ∈ inf str V : S = (u •#) ◦ T

⇔ {[pointwise extension]}
S ∈ (U •#) ◦ inf str V .

ut

Now we are ready to give the

Proof of Lemma 5.10:
We first show that B def

= A� inf str (U •#)∗ is a fixpoint:

B
= {[definition]}

A� inf str (U •#)∗

= {[recursion for ∗]}
A� inf str (ε ∪ U •# • (U •#)∗)

= {[by Lemma 4.10]}
A� inf str (U •# • (U •#)∗)

= {[by Lemma 5.11.3]}
A� (U •#) ◦ inf str (U •#)∗

= {[by (9) and (10)]}
((A� U) • (A� #)) ◦ (A� inf str (U •#)∗)

= {[definition of � and B]}
U ◦ B .

Hence B ⊆ Uω. For the reverse inclusion assume S ∈ Uω. We construct sequences
(ui)i∈IN and (Si)i∈IN with ui ∈ U and Si ∈ Uω as follows: By S ∈ Uω = U ◦Uω there are
u0 ∈ U and S0 ∈ Uω with S = u0 ◦ S0. Given Si ∈ Uω = U ◦ Uω, there are ui+1 ∈ U
and Si+1 ∈ Uω with Si = ui+1 ◦ Si+1.
Set now

vi
def
= •

j<i
uj , wi

def
= •

j<i
(uj •#) (i ∈ IN) ,

D
def
= {vi : i ∈ IN} , E

def
= {wi : i ∈ IN} .

Then by construction ∀ ∈ IN : S = vi ◦ Si so that D ⊆ S and hence D v S. Consider

s ∈ S and set n
def
= ||s||. By ε 6∈ U then ||vn|| ≥ ||s|| so that s ∈ S = vn ◦ Sn shows

s v vn ∈ D. Therefore S v D and hence by downward closure of S even S = Dv.
However, Dv = A � Ev and E ∈ dir (U • #)∗. By construction and ε 6∈ U we have
wi < wi+1 for all i ∈ IN, so that additionally maxEv = maxE = ∅. This means
Ev ∈ inf str (U •#)∗. Altogether, we have shown S ∈ B as required. ut

23

6 The Bounded Buffer Example Revisited

We consider again the buffer example in the introduction. We recall the family of properties

Xab
n

def
= {s ∈ A∗ : sa ≤ sb + n} ,

where n ∈ ZZ and A = {a, b}. From this predicative, implicit definition we want to calculate
a more explicit description corresponding to a generating grammar or accepting automaton.
This can be done by a simple unfold/fold transformation using induction on the words in A∗.
We obtain, for c ∈ A and U ⊆ A∗,

ε ∈ Xab
n ⇔ 0 ≤ n ,

c • U ⊆ Xab
n ⇔ U ⊆ Xab

n+δcb−δca ,

where δ is the Kronecker symbol. This corresponds to an infinite grammar with nonterminals
Xab
n or an infinite automaton with states Xab

n (n ∈ ZZ). Next we want a similar representation
for

Bab
n

def
= saf Xab

n .

This can be done quite systematically, cf. [13], yielding

ε ∈ Bab
n ⇔ 0 ≤ n ,

a • U ⊆ Bab
n ⇔ 0 ≤ n− 1 ∧ U ⊆ Bab

n−1 ,
b • U ⊆ Bab

n ⇔ 0 ≤ n ∧ U ⊆ Bab
n+1 .

In particular, Bab
n = ∅ for n < 0. Now we consider the bounded buffer behaviour. We calculate:

BBabn
= {[definition]}
BFab ∩ Babn

= {[definition]}
Bba0 ∩ Babn

= {[definition]}
inf strBba

0 ∩ inf strBab
n

= {[by Lemma 4.9.5, since by definition the B sets are safety properties]}
inf str (Bba

0 ∩ Bab
n) .

So the problem has been reduced to finding an explicit representation for Bba
0 ∩ Bab

n , which is
a simple product automaton construction. It is a special case of the automaton for

Gmn
def
= Bba

m ∩ Bab
n .

With a suitable definition of parallel composition one has the usual lemma that a buffer of
capacity n can be implemented by a parallel composition of n buffers of capacity 1 (see again
[13] for details). For the special case of n = 1 we have

BBab
1 = G01 ,

where
ε ∈ G01⇔TRUE ,

a • U ⊆ G01⇔U ⊆ G10 ,
b • U ⊆ G01⇔FALSE ,

ε ∈ G10⇔TRUE ,
a • U ⊆ G10⇔FALSE ,
b • U ⊆ G10⇔U ⊆ G01 .

24

This corresponds to a two-state accepting automaton for the bounded buffer property, which
is sufficient for purposes of implementation. However, the above can also be seen as a regular
grammar or system of equations for languages. If desired, we can calculate from it a regular
expression for BBab

1 = G01 using twice

(Arden’s Rule)
U ∩ ε = ∅, X = V ∪ U •X

X = U∗ • V .

This gives
BBab

1 = (a • b)∗ • (ε ∪ a) .

Using
(a • b)∗ • a ∼ (a • b)∗ ,

directedness of these two languages and Corollary 4.12.2, which applies, since BBab
1 is deadlock-

free and so inf strBBab
1 = max strBBab

1 by Lemma 4.9.3, we obtain

BBab1 = inf str (a • b)∗ .

Finally we use the fact that the language a•b as a singleton trivially satisfies the Fano condition,
so that Lemma 5.8 gives

BBab1 = (a • b)ω ,

as expected.

7 Conclusion

We have introduced some algebraic operators and laws that can be used in the specification and
derivation of systems. By abstracting from the domain of streams for which most of the notions
were coined originally, we have obtained a rich set of laws which hold for a wide variety of do-
mains. The order-theoretic approach lends itself well to an algebraictreatment. The point-free
formulation eases and compactifies specifications,proofs of the basic properties and the actual
derivations. Further research along these lines should search for similar algebraic characterisa-
tions of other important notions about systems and to explore their algebraic properties.

Concerning the underlying theory, our domain-thoretic notions should be tied in with the
topological view (see e.g. [21, 24]). Moreover, in the stream domain there obviously is a close
connection with temporal operators: strP is related to intermittent assertions [7], inf strP can
be read as 23P (always eventually P) and saf P as i P (P holds in all initial subintervals
[16]). These connections need to be made precise and carried over to arbitrary domains.

Acknowledgements

I gratefully acknowledge helpful remarks from J. Desharnais, W. Dosch, and M. Russling.

Appendix: Deferred Proofs

It turns out that all proofs for Section 2 can be given in a point-free, strongly algebraic proof
style.

25

Proof of Lemma 2.1

1. The first property is immediate from the definition, whereas the second follows
from the transitivity of <.

2. The first conjunct is a general property of inverse images of relations. The second
one follows easily from it.

3. is immediate from 2.

4. First,

(N≤)<

= {[definition of N≤]}
(N ∪N<)<

= {[by 2]}
N< ∪ (N<)<

= {[by 1]}
N< .

Second,

(N≤)≤

= {[definition of ≤]}
N≤ ∪ (N≤)<

= {[by previous property]}
N≤ ∪N<

= {[since N< ⊆ N≤ by definition]}
N≤ .

Proof of Lemma 2.2

1. N≤\N<

= {[definition]}
(N ∪N<)\N<

= {[distributivity]}
N\N< ∪N<\N<

= {[set theory]}
N\N<

= {[definition]}
maxN .

2. maxN≤

= {[definition]}
N≤\(N≤)<

= {[by Lemma 2.1.4]}
N≤\N<

26

= {[by 1]}
maxN .

3. N ∩ maxP

= {[definition]}
N ∩ (P\P<)

= {[set theory]}
(N ∩ P)\P<

= {[by assumption N ⊆ P]}
N\P<

⊆ {[monotonicity of < and antitonicity of \ in its right argument]}
N\N<

= {[definition]}
maxN

4. max (N ∪ P)

= {[definition]}
(N ∪ P)\(N ∪ P)<

= {[distributivity]}
(N ∪ P)\(N< ∪ P<)

= {[set theory]}
(N\N<\P<) ∪ (P\P<\N<)

= {[definition]}
(maxN)\P< ∪ (maxP)\N< .

5. immediate from 4.

6. immediate from 5 by maxN ⊆ N .

Proof of Lemma 2.3

1. is immediate from the definition and Lemma 2.1.4.

2. is immediate from monotonicity of ≤.

3. (⇐) is immediate from the definition and N ⊆ N≤. For (⇒) we reason

N ≤ P

⇔ {[definition]}
N ⊆ P≤

⇒ {[by Lemma 2.1.3]}
N≤ ⊆ (P≤)≤

⇔ {[Lemma 2.1.4]}
N≤ ⊆ P≤ .

4. N ≤ P

⇔ {[definition]}

27

N ⊆ P≤

⇒ {[monotonicity]}
N< ⊆ (P≤)<

⇔ {[by Lemma 2.1.4]}
N< ⊆ P< .

5. immediate from 3,4 and distributivity of ≤.

6. max (N ∪ P)

= {[by Lemma 2.2.1]}
(N ∪ P)≤\(N ∪ P)<

= {[by assumption N ≤ P and 5]}
P≤\P<

= {[definition]}
maxP .

7. immediate from 6.

8. immediate from 6.

References

[1] B. Alpern, F.B. Schneider: Defining liveness. Information Processing Letters 21, 181–185 (1985)

[2] R.-J.R. Back: A calculus of refinements for program derivations. Acta Informatica 25, 593–624
(1988)

[3] G. Birkhoff: Lattice theory, 3rd edition. American Mathematical Society Colloquium Publica-
tions, Vol. XXV. Providence, R.I.: AMS 1967

[4] R.S. Bird, O. de Moor: The algebra of programs. Prentice-Hall 1996 (to appear)

[5] M. Broy: Functional specification of time sensitive communicating systems. In: M. Broy (ed.):
Programming and mathematical method. NATO ASI Series, Series F: Computer and Systems
Sciences, Vol. 88. Berlin: Springer 1992, 325–367

[6] M. Broy, K. Stølen: Specification and refinement of finite dataflow networks — a relational
approach. In: H. Langmaack, W.-P. de Roever, J. Vytopil (eds.): Formal techniques in real-time
and fault-tolerant computing. Lecture Notes in Computer Science 863. Berlin: Springer 1994,
247–267

[7] R.M. Burstall: Program proving as hand simulation with a little induction. Proc. IFIP Congress
1974. Amsterdam: North-Holland1974, 308–312

[8] B.A. Davey, H.A. Priestley: Introduction to lattices and order. Cambridge: Cambridge University
Press 1990

[9] M. Davis: Infinitary games of perfect information. In: M. Dresher, L.S. Shapley, A.W. Tucker
(eds.): Advances in game theory. Princeton, N.J.: Princeton University Press 1964, 89–101

[10] F. Dederichs, R. Weber: Safety and liveness from a methodological point of view. Information
Processing Letters 36, 25–30 (1990)

28

[11] B. Von Karger, C.A.R. Hoare: Sequential calculus. Information Processing Letters 53, 123–130
(1995)

[12] B. Möller: Ideal streams. In: E.-R. Olderog (ed.): Programming concepts, methods and calculi.
IFIP Transactions A-56. Amsterdam: North-Holland 1994, 39–58

[13] B. Möller: Calculating a bounded queue (forthcoming)

[14] C.C. Morgan: Programming from Specifications. Prentice-Hall, 1990.

[15] J.M. Morris: A theoretical basis for stepwise refinement and the programming calculus. Science
of Computer Programming 9, 287–306 (1987)

[16] B. Moszkowski: Some very compositional temporal properties. In: E.-R. Olderog (ed.): Program-
ming concepts, methods and calculi. IFIP Transactions A-56. Amsterdam: North-Holland 1994,
307–326

[17] M. Nivat: Behaviors of processes and synchronized systems of processes. In: M. Broy, G. Schmidt
(eds.): Theoretical foundations of programming methodology. Dordrecht: Reidel 1982, 473–551

[18] E.-R. Olderog: Nets, terms and formulas. Cambridge: Cambridge University Press 1991

[19] H.A. Partsch: Specification and transformation of programs — A formal approach to software
development. Berlin: Springer 1990

[20] G.D. Plotkin: A powerdomain construction. SIAM J. Computing 5, 452-487 (1976)

[21] R. Redziejowski: Infinite-word languages and continuous mappings. Theoretical Computer Sci-
ence 43, 59–79 (1986)

[22] F.J. Rietman: A relational calculus for the design of distributed algorithms. Dissertation, Uni-
versity of Utrecht, 1995

[23] M.B. Smyth: Power domains. J. Computer Syst. Sciences 16, 23–36 (1978)

[24] M.B. Smyth: Topology. In: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (eds.): Handbook of
logic in computer science. Vol. 1, Background: Mathematical structures. Oxford: Clarendon Press
1992, 641–761

[25] L. Staiger: Research in the theory of ω-languages. J. Inf. Process. Cybern. EIK 23, 415–439
(1987)

[26] W. Thomas: Automata on infinite objects. In: J. van Leeuwen (ed.): Handbook of theoretical
computer science. Vol. B: Formal models and semantics. Amsterdam: Elsevier 1990, 133–191

29

