
An Algebra for

Feature-Oriented Software Development

Sven Apel1, Christian Lengauer1, Don Batory2,

Bernhard Möller3, and Christian Kästner4

1Department of Informatics and Mathematics, University of Passau
{apel,lengauer}@uni-passau.de

2Department of Computer Sciences, University of Texas at Austin
batory@cs.utexas.edu

3Institute of Computer Science, University of Augsburg
moeller@informatik.uni-augsburg.de

4School of Computer Science, University of Magdeburg
kaestner@iti.cs.uni-magdeburg.de

Technical Report, Number MIP-0706
Department of Informatics and Mathematics

University of Passau

An Algebra for

Feature-Oriented Software Development

Sven Apel1, Christian Lengauer1, Don Batory2,
Bernhard Möller3, and Christian Kästner4

1 Department of Informatics and Mathematics, University of Passau,
{apel,lengauer}@uni-passau.de

2 Department of Computer Sciences, University of Texas at Austin,
batory@cs.utexas.edu

3 Institute of Computer Science, University of Augsburg,
moeller@informatik.uni-augsburg.de

4 School of Computer Science, University of Magdeburg,
kaestner@iti.cs.uni-magdeburg.de

Abstract. Feature-Oriented Software Development (FOSD) provides a
multitude of formalisms, methods, languages, and tools for building vari-
able, customizable, and extensible software. Along di�erent lines of re-
search di�erent ideas of what a feature is have been developed. Although
the existing approaches have similar goals, their representations and for-
malizations have not been integrated so far into a common framework.
We present a feature algebra as a foundation of FOSD. The algebra cap-
tures the key ideas and provides a common ground for current and future
research in this �eld, in which also alternative options can be explored.

1 Introduction

Feature-Oriented Software Development (FOSD) is a paradigm that provides for-
malisms, methods, languages, and tools for building variable, customizable, and
extensible software. The main abstraction mechanism of FOSD is the feature. A
feature re�ects a stakeholder's requirement and is an increment in functional-
ity; features are used to distinguish between di�erent variants of a program or
software system [37].

Research along di�erent lines has been undertaken to realize the vision of
FOSD [37,57,12,22,51,7]. Several concepts, formalisms, languages, and tools have
been developed to support FOSD across the software life cycle. While there is the
common notion of a feature, the present approaches use di�erent representations
and notations.

A promising way to integrate the separate lines of research is to provide
an encompassing abstract framework that captures many of the common ideas
and hides (what we feel are) distracting di�erences. We propose a �rst step
toward such a framework for FOSD: a feature algebra. We introduce a uniform
representation of features, outline the properties of the algebra, and explain how
the algebra models the key concepts of FOSD. Not surprisingly, the notion of a
feature lies at the heart of the algebra.

2 What is a Feature?

Di�erent researchers have been proposing di�erent views of what a feature is or
should be. At the same time, previous work largely leaves the notion of a feature
unde�ned or de�ned informally. Nevertheless, it pervades the entire software life
cycle. Features are present in the analysis, design, implementation, con�guration,
and maintenance phases of FOSD.

Our formal work on features is guided by the following informal de�nition: a
feature is a structure that extends and modi�es the structure of a given program
in order to satisfy a stakeholder's requirement, to implement and encapsulate a
design decision, and to o�er a con�guration option. This de�nition provides a
ground that is common to most (if not all) work on FOSD.

A series of features is composed to form a �nal program, which is itself a
feature. This way, a feature can be either a complete program (which can be
executed) or a program increment (which demands further features to form a
complete program). Our main issues are the structure of and the construction
methods for composed features, starting from primitive given ones.

Mathematically, we describe feature composition by the operator •, which is
de�ned over the set of features F :5

• : F × F → F (1)

Typically, a program p (which is itself a feature) is composed of a series of simpler
features:

p = f1 • f2 • . . . • fn−1 • fn (2)

3 The Structure of Features

It has been observed that the implementation of a feature usually crosscuts sev-
eral structural elements of a program, e.g., the implementation is scattered across
multiple packages, classes, methods and other artifacts [12,51,63,45,46,7,5]. Fur-
thermore, the structural elements of a feature need not be exclusively source code
artifacts. A feature may have several representations, e.g., make�les, design doc-
uments, performance pro�les, documentation, or deployment descriptors [12].
While our work is not limited to code artifacts, for simplicity, we focus here on
the main structural abstractions of object orientation, which are visible in the
source code.

The source code for a feature consists of, possibly, several parts, each of which
can be modeled by one or multiple instances of what we call a feature structure
tree (FST). An FST organizes the structural elements of a feature hierarchically.
The `part-of' or `contains' relations of a feature's structural elements become
`child-of' relations of the nodes in the according FST. Figure 1 depicts a excerpt
of the implementation of a feature CalcBase and its representation in form of
an FST. One can think of an FST as an abstract syntax tree that contains

5 We write set names in capital letters and element names in lower case letters.

2

only the information that is necessary for the speci�cation of the structure of a
feature. So, for example, an FST does not contain information about the internal
structure of methods.

1 package calc;
2 class Calc {
3 int e0 = 0, e1 = 0, e2 = 0;
4 void enter(int v) {
5 e2 = e1; e1 = e0; e0 = v;
6 }
7 void clear () {
8 e0 = e1 = e2 = 0;
9 }

10 String top() {
11 return String.valueOf(e0);
12 }
13 }

Calc

calc

e1

e0top

clear

enter e2

method field

class

package

CalcBase

Fig. 1. Implementation and FST of the feature CalcBase.

An FST with an object-oriented structure contains nodes of di�erent types
that represent packages, (inner) classes, (inner) interfaces, �elds, and methods.
Type information is important during feature composition in order to prevent
the composition of incompatible nodes.

The FSTs we consider are unordered trees. That is, the children of a node
in an FST do not have a �xed order, much like in object-oriented languages like
Java. However, some feature languages may require a �xed order. In future work,
we shall discuss the implications of ordered FSTs.

The FST model re�ects that typically a feature implementation is scattered
across multiple elements of an object-oriented design. In the presence of mul-
tiple features their implementations may be tangled inside one element. That
is, feature (de)composition is orthogonal to object-oriented (de)composition. It
is the process of detaching and attaching elements of an object-oriented design
that belong to individual features.

4 Feature Composition

How does the abstract description of a feature composition f • g map to the
actual composition at the structural level? That is, how are FSTs composed in
order to obtain a new FST? Our answer is: by tree superimposition.

4.1 Tree Superimposition

Superimposing trees is not new. Several researchers noted its connection to dis-
tributed programming [20,17,38] (i.e., the extension of distributed program struc-
tures), object orientation [55,11,63,24] (i.e., the extension and composition of

3

object-oriented class hierarchies), and component-based systems [16] (i.e., the
adaptation of components).

The basic idea is that two trees are composed by composing their nodes,
starting from the root and proceeding recursively. Two nodes are composed to
form a new node (1) when their parents have been composed already (this is not
required for composing root nodes) and (2) when they have the same name6 and
type. If two nodes have been composed, their children are composed as well, if
possible. If not, they are added as separate child nodes to the composed parent
node. This recurses until all leaves have been reached.

Figure 2 illustrates the process of FST superimposition; Figure 3 depicts
the corresponding Java code. Our feature CalcBase is composed with a feature
Add. The result is a new feature, which we call AddCalc, that contains the
superimposition of the FSTs of CalcBase and Add. The nodes calc and Calc

are composed with their counterparts and their subtrees are composed in turn.

add

add

Calc

calc

Calc

calc

enter

clear top

e1

e2

Calc

calc

enter

clear

top e0 e0

e1

e2

Add CalcBase AddCalc

Fig. 2. An example of FST superimposition (Add • CalcBase = AddCalc).

4.2 Terminal and Nonterminal Nodes

An FST is made up of two di�erent kinds of nodes:
Nonterminal nodes are the inner nodes of an FST. The subtree rooted at

a nonterminal node re�ects the structure of some implementation artifact.
Thus, the artifact structure is transparent and subject to manipulation by
our algebraic operations.

Terminal nodes are the leaves of an FST. Conceptually, a terminal node may
also be the root of some structure, but this structure is opaque to us and
not subject to manipulation by our algebraic operations. It does not appear
in the FST.

Packages, classes, and interfaces are represented by nonterminals. The imple-
mentation artifacts they contain are represented by child nodes, e.g., a package
contains a class and a class contains an inner class and a method. Two compatible

6 Mapped to speci�c languages that implement features, a name could be a string, an
identi�er, a signature, etc.

4

1 package calc;
2 class Calc {
3 void add() { e0 = e1 + e0; e1 = e2; }
4 }

•
1 package calc;
2 class Calc {
3 int e0 = 0, e1 = 0, e2 = 0;
4 void enter(int val) { e2 = e1; e1 = e0; e0 = val; }
5 void clear () { e0 = e1 = e2 = 0; }
6 String top() { return String.valueOf(e0); }
7 }

=
1 package calc;
2 class Calc {
3 int e0 = 0, e1 = 0, e2 = 0;
4 void enter(int val) { e2 = e1; e1 = e0; e0 = val; }
5 void clear () { e0 = e1 = e2 = 0; }
6 String top() { return String.valueOf(e0); }
7 void add() { e0 = e1 + e0; e1 = e2; }
8 }

Fig. 3. Java code for the compostion Add • CalcBase = AddCalc.

nonterminals are composed by composing their child nodes, e.g., two packages
with equal names are merged into one package that contains the composition of
the child elements of the original packages.

Methods and �elds are represented by terminals, in which the recursion ter-
minates. Their inner structure is not considered in the algebra, e.g., the fact
that a method contains a sequence of statements or a �eld contains a value or
an expression. The composition of terminals requires a special treatment and
there is a choice of whether and how to compose them:
Option 1: Two terminal nodes with the same name and type cannot be com-

posed. If this occurs, it is considered an error.
Option 2: Two terminal nodes with the same name and type can be composed

in some circumstances; each type has to provide its own rule for composition
(see Sec. 4.3).

The �rst option ignores the common practice of overriding methods and �elds
in object-oriented programming. But this option has the strength that in some
circumstances7 the order of composing features is not relevant to the behavior
of the composed program [55], i.e., feature composition is commutative.

The second option incorporates the notion of �eld and method overriding. It
is in line with many approaches of feature composition [33,49,52,14,19]. However,
with this option, the composition order a�ects the resulting program behavior.

7 Unordered FSTs are a prerequisite for the commutativity of feature composition.

5

We choose the second option to bene�t from the advantages of overriding. Thus,
in our feature algebra, composition is not commutative.

4.3 Composition of Terminals

In order to compose terminals, each terminal type has to provide its own rule
for composition. Here are some examples:
� Two methods can be composed if it is speci�ed how the method bodies are
composed (e.g., by calling original, super, or inner from inside a method
body).

� Two �elds can be composed by replacing one with the value of the other or
by requiring that one has a value assigned (e.g., int i=0;) and the other
has not (e.g., int i;).

� Clauses attached to classes and methods (e.g., implements, extends, or
synchronized) can be composed in the obvious ways: the arguments of two
implements or extends clauses8 are concatenated; the composition of two
synchronized clauses results again in a synchronized clause.

4.4 Discussion

Superimposition of FSTs imposes several constraints on the programming lan-
guage in which the artifacts of a feature are expressed:
1. Every element of an artifact must provide a name that becomes the name

of the node in the FST.
2. An element must not contain two or more direct child elements with the

same name.
3. Elements that do not have a hierarchical structure (terminals) must provide

composition rules.
These constraints are usually satis�ed by object-oriented languages. But also
other representations of features align well with them [12,68,9]. Languages that
do not satisfy these constraints do not provide enough structural information
necessary for feature composition, i.e., they are not feature-ready.

5 Feature Algebra

Our feature algebra models features and their composition on top of FSTs. The
elements of an algebraic expression correspond to the elements of an FST. The
manipulation of an expression implies a manipulation of one or more FSTs, i.e.,
the changes are propagated to the associated feature implementations at the
code level.

Of course, it is reasonable not to propagate algebraic manipulations indi-
vidually but, instead, to perform a series of algebraic manipulations and then
propagate the result to the code level.

8 If a target language does no support multiple inheritance an extends clause either
replaces the other or their composition is not supported.

6

5.1 Introduction

For the purpose of expressing features and their composition, we use the notion of
an introduction. An introduction is a constituent of the implementation of a fea-
ture, e.g., a method, a �eld, a class, or even an entire package. When composing
two features, introductions are the elementary units of di�erence (a.k.a. incre-
ments) of one feature composed with another feature. Any path in an FST from
the root to a node corresponds to an introduction. Thus, a feature is represented
by the superimposition of all paths in its FST. We model the superimposition
of paths and trees via the operation of introduction sum. As we will see later on,
introduction sum is not the only operation used when composing features.

Introduction Sum

Introduction sum ⊕ is a binary operation de�ned over the set of introductions
I:

⊕ : I × I → I (3)

The result of an introduction sum is again an introduction. Thus, an FST can be
represented in two ways: (1) by the individual summands and (2) by a metavari-
able that represents the sum:

i0 ⊕ . . .⊕ in = i0⊕...⊕n (4)

During composition, for each metavariable i0⊕...⊕n, the individual summands
i0 ⊕ . . .⊕ in are preserved. That is, introduction sum retains information about
the summands.

For example, our feature Calc can be represented by one FST or multiple
superimposed FSTs (cf. Fig. 2). Thus, we can represent it via the metavariable
CalcBase or as a sum of multiple introductions; ignoring the package declara-
tions, we can write:

CalcBase = Calc⊕ enter ⊕ clear ⊕ top⊕ e0⊕ e1⊕ e2

In order to process algebraic expressions of features, we �atten the hier-
archical structure of FSTs. But, in order not to lose information about which
structural elements contain which other elements, we represent introductions in
a pre�x notation. Our example in pre�x notation is denoted as follows:

CalcBase = Calc

⊕ Calc.enter ⊕ Calc.clear ⊕ Calc.top

⊕ Calc.e0⊕ Calc.e1⊕ Calc.e2

Note that, for brevity, we leave implicit that class Calc belongs to package calc.
Each introduction encodes the entire path from the root of the FST to the

introduced node with a sequence of dot-separated identi�ers. This enables us
to maintain the structural information necessary to model hierarchical feature
composition.

7

Finally, two features f1 and f2 are composed by adding their introductions:

i0 ⊕ . . .⊕ in︸ ︷︷ ︸
f1

⊕ j0 ⊕ . . .⊕ jm︸ ︷︷ ︸
f2

(5)

During the manipulation of an algebraic expression it is always known from
which feature an introduction was introduced. We display the information to
which feature an introduction belongs via underbraces, however, we do this only
if necessary for understanding an example.

Semantics of Introduction

As explained before, introduction sum is a superimposition of FSTs. Now let
us examine the semantics of the composition of two nodes in more detail. We
distinguish two cases, which occur typically in FOSD [12,57,68,69,44,45,4]:

Subtree merging. Composing two nonterminal nodes with the same name and
type creates a new node with the same name and type. If a node does not have a
counterpart (a node with the same parent and the same name), it is just added to
the parent node, which has been composed already. The entire process proceeds
recursively from the root to all leaves (Fig. 2).

Wrapping. Composing two terminal nodes with the same name and type can
be viewed as installing a wrapper. One node envelops the other. Wrappers ab-
stract from di�erent type-speci�c composition rules (cf. Sec. 4.3). Figures 4
and 5 depict how, during the composition of the two features Count and Cal-
cBase, two Java methods are composed by one method (enter) wrapping the
other (enter_wrappee). The (non-standard Java) keyword original9 provides
a means to specify (without knowledge of their source code) how method bodies
are merged. The wrapping order is prescribed by the composition order. Apply-
ing two wrappers to one node in di�erent orders leads to a di�erent program
behavior.

enter entercount

wraps wrapper

calls / refers to
entercount

Calc

calc

Calc

calc

Calc

calc

Fig. 4. Installing wrapper around a node (FST representation).

9 In the composed variant original is replaced by a call to the wrapper.

8

1 class Calc {
2 int count = 0;
3 void enter(int val) { original(val); count ++; }
4 }

•
1 class Calc {
2 void enter(int val) { e2 = e1; e1 = e0; e0 = val; }
3 }

=
1 class Calc {
2 int count = 0;
3 void enter(int val) { enter_wrappee(val); count ++; }
4 void enter_wrappee(int val) { e2 = e1; e1 = e0; e0 = val; }
5 }

Fig. 5. Installing wrapper around a node (Java code).

Duplicates vs. wrappers. During composition the introductions with the same
name (path) and type are composed as described above. An important precon-
dition is that these introductions must stem from di�erent features, which is
typically the case, e.g.:

Calc.enter︸ ︷︷ ︸
Count

⊕Calc.enter︸ ︷︷ ︸
Calc

But, in the case that there are two introductions with the same name and type
which stem from the same feature (a.k.a. duplicates), the introduction added
subsequently is removed during compilation:

Calc.enter︸ ︷︷ ︸
Calc

⊕ . . .⊕ Calc.enter︸ ︷︷ ︸
Calc

= Calc.enter︸ ︷︷ ︸
Calc

The rationale of this is to avoid several problems that occur when composing
features multiple times and to avoid code duplication in the course of algebraic
optimization (cf. Sec. 5.2).

Algebraic Properties

Introduction sum ⊕ over the set of introductions I forms a non-commutative
idempotent monoid (I,⊕, ξ):10

Closure: Adding two introductions creates again an introduction because su-
perimposing two FSTs creates again an FST.

10 All standard de�nitions of algebraic structures and properties are based on Hebisch
and Weinert [31].

9

Associativity: (i⊕ j)⊕ k = i⊕ (j ⊕ k)
Introduction sum is associative because FST superimposition is associative.
This applies for terminal and nonterminal nodes.

Identity: ξ ⊕ i = i⊕ ξ = i
ξ is the empty introduction, i.e., an FST without nodes.

Non-commutativity: i⊕ j 6= j ⊕ i
Since we consider composition of terminal nodes with the same name and
type, FST superimposition and, consequently, introduction sum is not com-
mutative. We consider the right operand to be �rst, the left is added. If we
forbade composing terminal nodes (method and �eld overriding), we could
attain commutativity (cf. Sec. 4).

Idempotence: i⊕ j ⊕ i = j ⊕ i
Only the right-most occurrence of an introduction i is e�ective in a sum,
because it has been applied �rst. That is, duplicates of i have no e�ect, as
motivated in Section 5.1. We refer to this rule as distant idempotence. For
j = ξ direct idempotence (i⊕ i = i) follows.

5.2 Modi�cation

Beside superimposition also other composition techniques have been proposed
in the literature [65,66,50,48,40,70,1]. An approach frequently discussed has its
roots in metaprogramming and metaobject protocols [41]. The idea is that, when
expressing the change a feature causes to another feature, we specify the points at
which the two features are supposed to be composed. These ideas have been ex-
plored in depth in work on subject-oriented programming [30], multi-dimensional
separation of concerns [66], and aspect-oriented programming [40,48]. According
to this composition model, we de�ne declaratively where two features are com-
posed and how. The process of determining where two features are composed
is called quanti�cation [26] or code querying [29]. In the remainder, we distin-
guish between two approaches of composition: composition by superimposition
and composition by quanti�cation. Feature composition (•) incorporates both
(see Sec. 6).

In order to model composition by quanti�cation, we introduce the notion of
a modi�cation. A modi�cation consists of two parts:
1. A speci�cation of the nodes in the FST at which a feature a�ects another

feature during composition.
2. A speci�cation of how features are composed at these nodes.
In the context of our FST model, a modi�cation is a tree walk that determines
the nodes which are being modi�ed and that applies the necessary modi�cations
to these nodes (Fig. 6). The advantage of composition by quanti�cation is that
querying an FST can return more than one node at a time. This allows us to
modify a whole set of nodes without reiterating the modi�cation again and again.

Nevertheless, composition by superimposition and composition by quanti�ca-
tion are siblings. Quanti�cation enables us to express a feature more generically
than superimposition. But once it is known which points have to be extended,

10

applied tomodification applied tomodification

visit Calc

calc

enter

clear

top e0

e1

e2

Calc

calc

enter

clear

top e0

e1

e2

modify

quantification step modification step

Fig. 6. Modi�cations are FST walks.

they become equivalent. Figure 7 illustrates their duality. We observed this du-
ality before, but at the level of two concrete programming techniques [7,5]. Our
FST model and the algebra make it explicit at a more abstract level.11

applied tomodification

Calc

calc

enter top

Calc

calc

top e0

e1

e2

clear

enter

Calc

calc

top e0

e1

e2

clear

enter

modify

composition by quantification composition by superimposition

Fig. 7. The duality of composition by quanti�cation and composition by super-
imposition.

Semantics of Modi�cation

In order for a modi�cation to take e�ect, we must determine (1) where it a�ects
other features and (2) what changes are to be applied. Speci�cally, a modi�cation
m is made up of a query q that selects a subset of the paths of an introduction

11 Note that the duality does not imply that both approaches are equivalent in ev-
ery case. Which approach is superior depends on the composition model inside a
programming language or environment and on the implementation problem [7,4]. It
has been observed that there are indeed problems that demand either one or the
other [51,5].

11

sum and a de�nition of change c that makes the desired changes:

m = (q, c) (6)

Query. A query is represented by an FST in which the node names may con-
tain wildcards. For example, the query qcalc.Calc.∗ with the search expression
`calc.Calc.∗' applied to our example would return all introductions that are
members of the class Calc. Figure 8 depicts its FST representation.

query

calc

*

Calc
definition
of change

count

X
applies

to

Fig. 8. A query (left side) and a de�nition of change (right side) represented as
FSTs.

Formally, a query applied to an introduction returns either the introduction
again or the empty introduction:

q(i) =
{

i, when i is matched by q
ξ, when i is not matched by q

(7)

A query applied to an introduction sum queries each summand:

q(i1 ⊕ i2 ⊕ . . .⊕ in) = q(i1)⊕ q(i2)⊕ . . .⊕ q(in) (8)

De�nition of change. An introduction i selected by a query is modi�ed ac-
cording to the modi�cation's de�nition of change c, which is an introduction
that is added to i; the result is c ⊕ i. Thus, c represents an FST that contains
the changes. Much like a query, c contains some generic portion that is necessary
to apply the change to di�erent nodes in the FST. For example, `χ.count' adds
a �eld to an arbitrary node (see Fig. 8). We use χ (and also γ) as a metavariable
that is substituted with the node to be modi�ed.

Note that a modi�cation cannot delete nodes. That is, if we have a modi�ca-
tion that matches certain nodes in an FST, we cannot apply another modi�cation
(accidentally) so that the �rst modi�cation a�ects a smaller or zero number of
nodes:

∀q, i, c : q(i) = i =⇒ q(c⊕ i) = q(c)⊕ i (9)

A modi�cation can make the following changes to a target introduction:
Introduce a new child node (χ.n): The metavariable χ inside a de�nition

of change is replaced with the target introduction. For example, applying
(qcalc.∗, χ.count) to the introduction calc.Calc evaluates to calc.Calc.count⊕
calc.Calc.

12

Install a wrapper (ω(χ)): A wrapper ω(χ) inside a de�nition of change is re-
placed with a new introduction that equals the target introduction in name
and type. For example, applying (qcalc.Calc.∗, ω(χ)) that belongs to one fea-
ture to an introduction calc.Calc.enter that belongs to another feature eval-
uates to calc.Calc.enter ⊕ calc.Calc.enter.

The changes a feature can make via modi�cations are similar to the ones possible
via introduction sum, but expressed di�erently (cf. Fig. 7).

Modi�cation Application and Composition

For simplicity, we usually hide the steps of querying and applying the changes.
We introduce an operator for modi�cation application de�ned over the set of
modi�cations M and introductions I:

� : M × I → I (10)

A modi�cation applied to an introduction returns either the introduction again
or the introduction that has been changed:

m� i = (q, c)� i =
{

c⊕ i, q(i) = i ∧ i 6= ξ
i, q(i) = ξ

(11)

A consequence of this de�nition is that a modi�cation cannot extend the empty
introduction, i.e., the empty program. This is a notable di�erence between intro-
duction sum and modi�cation application. Using introduction sum we can extend
empty programs and using modi�cation application we cannot. While this fact
is just a result of our de�nition, it re�ects what contemporary languages that
support quanti�cation are doing (see Sec. 8).

A modi�cation is applied to a sum of introductions by applying it to each
introduction in turn and summing the results:

m� (i1 ⊕ i2 ⊕ . . .⊕ in) = (m� i1)⊕ (m� i2)⊕ . . .⊕ (m� in) (12)

Assuming that m = (q, c) a�ects all summands i1, . . . , in, we can write:

(q, c)� (i1 ⊕ i2 ⊕ . . .⊕ in) = (c⊕ i1)⊕ (c⊕ i2)⊕ . . .⊕ (c⊕ in) (13)

The successive application of changes of a modi�cation to an introduction
sum implies the left distributivity of � over ⊕.

Furthermore, the operator � is overloaded. With a pair of modi�cations as
argument, it is modi�cation composition, de�ned as follows:

� : M ×M → M (14)

The semantics of modi�cation composition is that the left operand is applied to
an introduction and then the right operand to the result:

(m1 �m2)� i = m1 � (m2 � i) (15)

13

Here, the left-most of the four occurrences of � is modi�cation composition, all
others are modi�cation application.

Using modi�cation composition, a series of modi�cations can be applied to
an introduction step by step:

(m1 �m2 � . . .�mn)� i = m1 � (m2 � (. . .� (mn � i) . . .)) (16)

Assuming that i is modi�ed by m1 = (q1, c1), . . . ,mn = (qn, cn), we can
write:

((q1, c1)� (q2, c2)� . . .� (qn, cn))� i = c1⊕ (c2⊕ (. . . (cn−1⊕ (cn⊕ i)) . . .)) (17)

Note that applying a modi�cation may add new introductions that can be
changed subsequently by other modi�cations. But, as prescribed by (9), it is not
possible to change an introduction sum such that some introductions are removed
and the modi�cations applied subsequently cannot a�ect them anymore. So, (17)
is correct since qi returns always the same result regardless of whether there have
been changes (ci+1 . . . cn) applied already.

Modi�cation Sum

Finally, we overload the operator ⊕ for adding modi�cations, which we call
modi�cation sum:

⊕ : M ×M → M (18)

The semantics of modi�cation sum is de�ned as the composition of queries of
two modi�cations and the composition of the changes they prescribe. Since both
queries and de�nitions of change are expressed with FSTs, they can be composed
via superimposition:

m1 ⊕m2 = (q1 ⊕ q2, c1 ⊕ c2) (19)

Applying a sum of two modi�cations to an introduction is de�ned as follows
(assuming q1(i) = i and q2(i) = i):

(q1 ⊕ q2, c1 ⊕ c2)� i = (c1 ⊕ c2)⊕ i (20)

Suppose a modi�cation sum m1 ⊕ m2, in which m1 adds a �eld count to
every class of package calc and m2 adds a method size to the class Calc in
calc:

m1 = (qcalc.∗, χ.count) and m2 = (qcalc.Calc, γ.size)

Note that the queries qcalc.∗ and qcalc.Calc may return overlapping subtrees
of an input FST. For example, applied to calc.Calc⊕ calc.GUI they return:

q1(calc.Calc⊕ calc.GUI) = calc.Calc⊕ calc.GUI

q2(calc.Calc⊕ calc.GUI) = calc.Calc

14

By annotating the selected introductions it is guaranteed that the changes of
m1 (χ.count) and m2 (γ.count) apply to the appropriate nodes, i.e., calc.Calc
is marked to be changed by m1 and m2 and calc.GUI is marked to be changed
by m1.

Modi�cation application distributes from the right over modi�cation sum:

(m1 ⊕m2 ⊕ . . .⊕mn)� i = (m1 � i)⊕ (m2 � i)⊕ . . .⊕ (mn � i) (21)

Assuming that i is modi�ed by m1 = (q1, c1), . . . ,mn = (qn, cn), we can write:

(q1 ⊕ q2 ⊕ . . .⊕ qn, c1 ⊕ c2 ⊕ . . .⊕ cn)� i = (c1 ⊕ c2 ⊕ . . .⊕ cn)⊕ i (22)

The distributivity law (21) induces the following equality:

(c1 ⊕ c2 ⊕ . . .⊕ cn)⊕ i = (c1 ⊕ i)⊕ (c2 ⊕ i)⊕ . . .⊕ (cn ⊕ i) (23)

This equality holds because modi�cations apply two kinds of changes that
respect the distributivity law (21):

Subtree merging. Adding two sets of child nodes by means of two distinct
modi�cations to an introduction equals adding the superimposed set of child
nodes to the introduction. Figure 9 shows two modi�cations, each of which in-
troduce new children, and their sum that introduces the superimposed set of
children.

z

m 1 m 2m 1 m 2

i i

introducesintroduces introduces

i
p p p

a a ab b b

y y z y

Fig. 9. Applying subtrees separately equals applying their superimposition.

Expressing this example in our algebra, we annotate the introductions in
order to keep track to which feature they belong:

((qp.b, χ.y)︸ ︷︷ ︸
f1

� (p.a⊕ p.b)︸ ︷︷ ︸
f3

)⊕ ((qp.b, γ.y ⊕ γ.z)︸ ︷︷ ︸
f2

� (p.a⊕ p.b)︸ ︷︷ ︸
f3

) =

(p.b.y︸︷︷︸
f1

⊕ p.a︸︷︷︸
f3

⊕ p.b︸︷︷︸
f3

)⊕ (p.b.y︸︷︷︸
f2

⊕ p.b.z︸︷︷︸
f2

⊕ p.a︸︷︷︸
f3

⊕ p.b︸︷︷︸
f3

)

15

The duplicates (equal introductions that stem from the same feature) are re-
moved (cf. Sec. 5.1) resulting in:

p.b.y︸︷︷︸
f1

⊕ p.b.y︸︷︷︸
f2

⊕ p.b.z︸︷︷︸
f2

⊕ p.a︸︷︷︸
f3

⊕ p.b︸︷︷︸
f3

Wrapping. Applying two wrappers to one introduction results in an enveloped
wrapper. Figure 10 shows two modi�cations that install three wrappers, and the
sum of the modi�cations that installs two wrappers and one enveloped wrapper.

enveloped

m 1

installs
wrapper

installs
wrapper

m 1 m 2

i i

m 2

installs
wrapper

wrapper

i
p

a b a b a b

p p

Fig. 10. Installing wrappers separately equals installing enveloped wrappers.

Assuming ω and υ are the wrappers to be installed, our example is expressed
algebraically as follows:

((qp.b, ω(χ))︸ ︷︷ ︸
f1

� (p.a⊕ p.b)︸ ︷︷ ︸
f3

)⊕ ((qp.∗, υ(γ))︸ ︷︷ ︸
f2

� (p.a⊕ p.b)︸ ︷︷ ︸
f3

) =

(p.b︸︷︷︸
f1

⊕ p.a︸︷︷︸
f3

⊕ p.b︸︷︷︸
f3

)⊕ (p.a︸︷︷︸
f2

⊕ p.b︸︷︷︸
f2

⊕ p.a︸︷︷︸
f3

⊕ p.b︸︷︷︸
f3

)

The duplicates (equal introductions that stem from the same feature) are re-
moved (cf. Sec. 5.1) resulting in:

p.b︸︷︷︸
f1

⊕ p.a︸︷︷︸
f2

⊕ p.b︸︷︷︸
f2

⊕ p.a︸︷︷︸
f3

⊕ p.b︸︷︷︸
f3

Modi�cation Sum vs. Modi�cation Application

The reader may have noted that modi�cation sum and modi�cation applica-
tion are quite similar. Applying the sum of two modi�cations to an introduction
results in the same program as applying the modi�cations consecutively. This
becomes apparent when comparing the result of modi�cation sum and modi�-
cation application, i.e., the right sides of the equations (23) and (17):

(c1 ⊕ i)⊕ (c2 ⊕ i)⊕ . . .⊕ (cn ⊕ i) = c1 ⊕ (c2 ⊕ (. . . (cn−1 ⊕ (cn ⊕ i)) . . .)) (24)

16

In Figure 11 we illustrate, using the FST model, how the two algebraic op-
erations lead to the same result. An FST is modi�ed by two modi�cations m
and n that add new children. With modi�cation sum the two modi�cations m
and n are applied separately to the introduction i and then the two modi�ed
introductions are added subsequently (left side). With modi�cation application,
we �rst apply the modi�cation n and then we apply to the resulting introduction
the modi�cation m (right side). Figure 12 illustrates how the FST example of
Figure 11 is translated to our algebra.

m ny zy n zy

y z y z

m in()
m n(i =)m n() i =

m i() n i()

same
program

i i i

different
operations

ma

pp

b a b

p

ba

p

ba

p

a b

Fig. 11. Modi�cation sum (left side) versus modi�cation composition (right
side).

Algebraic Properties

Modi�cation sum. Modi�cation sum ⊕ over the set of modi�cations M in-
duces a non-commutative idempotent monoid (M,⊕, ζ):
Closure: Adding two modi�cations creates again a modi�cation, as explained

previously.
Associativity: (m⊕ n)⊕ o = m⊕ (n⊕ o)

Modi�cation sum is associative because the superimposition of the changes
that modi�cations apply is associative.

Identity: ζ ⊕m = m⊕ ζ = m
ζ is the empty modi�cation whose query ξ (bold) returns always the empty
introduction ξ and whose de�nition of change is the empty introduction:
ζ = (ξ, ξ).

17

Modi�cation sum:

((qp.b ⊕ qp.b, χ.y ⊕ γ.y ⊕ γ.z)| {z }
f1•f2

� (p.a ⊕ p.b)| {z }
f3

)

= ((qp.b, χ.y)| {z }
f1

� (p.a ⊕ p.b)| {z }
f3

) ⊕ ((qp.b, γ.y ⊕ γ.z)| {z }
f2

� (p.a ⊕ p.b)| {z }
f3

)

= (p.b.y| {z }
f1

⊕ p.a|{z}
f3

⊕ p.b|{z}
f3

) ⊕ (p.b.y| {z }
f2

⊕ p.b.z|{z}
f2

⊕ p.a|{z}
f3

⊕ p.b|{z}
f3

)

= p.b.y| {z }
f1

⊕ p.b.y| {z }
f2

⊕ p.b.z|{z}
f2

⊕ p.a|{z}
f3

⊕ p.b|{z}
f3

Modi�cation composition:

((qp.b, χ.y)| {z }
f1

� (qp.b, γ.y ⊕ γ.z)| {z }
f2

)� (p.a ⊕ p.b)| {z }
f3

)

= (qp.b, χ.y)| {z }
f1

� ((qp.b, γ.y ⊕ γ.z)| {z }
f2

� (p.a ⊕ p.b)| {z }
f3

)

= (qp.b, χ.y)| {z }
f1

� (p.b.y| {z }
f2

⊕ p.b.z|{z}
f2

⊕ p.a|{z}
f3

⊕ p.b|{z}
f3

)

= p.b.y| {z }
f1

⊕ p.b.y| {z }
f2

⊕ p.b.z|{z}
f2

⊕ p.a|{z}
f3

⊕ p.b|{z}
f3

Fig. 12. Modi�cation sum versus modi�cation composition.

18

Non-commutativity: m⊕ n 6= n⊕m
Modi�cation sum is not commutative because installing wrappers and com-
posing subtrees is not commutative.

Idempotence: m⊕ n⊕m = n⊕m
As with introductions, only the right-most occurrence of a modi�cation m
is e�ective in a sum (distant idempotence). For n = ζ direct idempotence
(m⊕m = m) follows.

Modi�cation application. Modi�cation application � over the set of modi�-
cations M induces a non-commutative monoid (M,�, ζ):
Closure: Applying two modi�cations consecutively is similar to function com-

position.
Associativity: (m� n)� o = m� (n� o)

Modi�cation application is associative because applying modi�cations con-
secutively is associative.

Identity: ζ ⊕m = m⊕ ζ = m
ζ is the empty modi�cation whose query ξ returns always the empty in-
troduction ξ and whose de�nition of change is the empty introduction:
ζ = (ξ, ξ).

Non-commutativity: m� n 6= n�m
Modi�cation application is not commutative because installing wrappers and
composing subtrees is not commutative.

5.3 Introductions and Modi�cations in Concert

In order to describe feature composition, our algebra has to integrate both com-
position models: composition by superimposition and composition by quanti�ca-
tion. Consequently, we have to integrate and relate our three algebraic structures
(I,⊕, ξ), (M,⊕, ζ), and (M,�, ζ).

Binoid

The set of modi�cations together with the operations ⊕ and � form a non-
commutative binoid [36] (M,⊕,�, ζ) because (M,⊕, ζ) induces a non-commutative
idempotent monoid and (M,�, ζ) induces a non-commutative monoid (cf. Sec. 5.2).
A binoid is a weak form of a semiring, in which the neutral elements of both
monoids are equal. Furthermore, the neutral element ζ of modi�cation sum is
not a right or left annihilator for modi�cations, which is in contrast to full
semirings [42], i.e., m� ζ 6= ζ and ζ �m 6= ζ.

Semimodule

A notable property of the non-commutative idempotent monoid (I,⊕, ξ) is that
it is a semimodule over the binoid (M,⊕,�, ζ) since the following distributivity
laws hold [31], as we have explained:

∀m ∈ M : ∀i, j ∈ I : m� (i⊕ j) = (m� i)⊕ (m� j) (25)

19

∀m,n ∈ M : ∀i ∈ I : (m⊕ n)� i = (m� i)⊕ (n� i) (26)

∀m,n ∈ M : ∀i ∈ I : (m� n)� i = m� (n� i) (27)

A semimodule over a binoid is related to a vector space but weaker [31]. The
additive and multiplicative operations in vector spaces are commutative and
there are inverse elements with respect to addition and annihilation. Neverthe-
less, the fact that our feature algebra is a semimodule over a binoid guarantees
a pleasant and useful �exibility of feature composition, which is manifested in
the associativity and distributivity laws.

6 The Quark Model

So far we have introduced two sets (introductions and modi�cations) and two
operators (⊕ and �) for feature composition. Now we integrate them in a com-
pact and concise notation. We allow complex features that involve introductions
and local and global modi�cations. For this purpose, we introduce the quark
model.

Quark composition with local modi�cation application:

f1 • f2 • . . . • fn = 〈ζ, i1, m1〉 • 〈ζ, i2, m2〉 • . . . • 〈ζ, in, mn〉
= 〈ζ, i1 ⊕ (m1 � (i2 ⊕ (m2 � (. . . (in−1 ⊕ (mn−1 � in)))))),

m1 � m2 � . . . � mn〉 (28)

Quark composition with global modi�cation application:

f1 • f2 • . . . • fn = 〈g1, i1, ζ〉 • 〈g2, i2, ζ〉 • . . . • 〈gn, in, ζ〉
= 〈g1 � g2 � . . . � gn, (g1 � g2 � . . . � gn) � (i1 ⊕ i2 ⊕ in), ζ〉 (29)

Quark composition with both local and global modi�cation application:

f1 • f2 • . . . • fn = 〈g1, i1, m1〉 • 〈g2, i2, m2〉 • . . . • 〈gn, in, mn〉
= 〈g1 � . . . � gn, (g1 � . . . � gn) � (i1 ⊕ (m1 � (i2 ⊕ (m2 � (. . .

(in−1 ⊕ (mn−1 � in))))))), m1 � . . . � mn〉 (30)

Fig. 13. Composition of n quarks with local and global modi�cation application.

20

A quark represents a feature. It is a triple, which consists of a sum g of
modi�cations, a sum i of introductions, and a further sum m of modi�cations:

f = 〈g, i,m〉 (31)

i is the introduction sum of feature f representing an FST; m and g contain
the modi�cations that feature f makes. We can always bring quarks into the
following form:

f = 〈g1 ⊕ . . .⊕ gj , i1 ⊕ . . .⊕ ik,m1 ⊕ . . .⊕ml〉 (32)

We distinguish between two modi�cation sums because there are two options
of applying modi�cations when composing quarks:
Local modi�cation application: The modi�cations of m are applied locally:

f1 • f2 = 〈ζ, i1,m1〉 • 〈ζ, i2,m2〉 = 〈ζ, i1 ⊕ (m1 � i2),m1 �m2〉 (33)

Local modi�cations can a�ect only introductions of features that have al-
ready been composed. In our example, m1 a�ects only i2. For a composition
of n features f1 • f2 • . . . • fn, a modi�cation mi of feature fi can a�ect only
the introductions of a feature fj for all i < j. The modi�cations m1 and m2

are composed like functions.
Global modi�cation application: The modi�cations of g are applied glob-

ally:

f1 • f2 = 〈g1, i1, ζ〉 • 〈g2, i2, ζ〉 = 〈g1 � g2, (g1 � g2)� (i1 ⊕ i2), ζ〉 (34)

Global modi�cations can a�ect any introduction added in a series of features.
In our example, both, g1 and g2 may a�ect i1 and i2. For a composition of
n features f1 • f2 • . . . • fn, a modi�cation mi of feature fi can a�ect the
introductions of a feature fj for any pair (i, j). The modi�cations g1 and g2

are composed like functions.
The di�erence between local and global modi�cation application demands a
special treatment of quark composition. When composing a series of quarks, we
can apply the local modi�cations immediately. Equation (33) implies that the
local modi�cations a�ect only the features that have been composed already.

But equation (34) implies that we cannot apply the global modi�cation im-
mediately. We have to wait until all introductions and local modi�cations in a
series of quarks have been composed and then we can apply all global modi�-
cations subsequently. Figure 13 depicts quark composition based on local and
global modi�cation for the general case.

Both variants of feature composition have been discussed before in the con-
text of software product lines and aspect-oriented programming [45,47,8]. Since
there is no agreement on which variant is superior we include both in our quark
model.

21

7 Related Work

7.1 Authors' Previous Work

Batory et al. were among the �rst to note the potential of algebra for reasoning
about feature composition [12]. They model features as functions and feature
composition as function composition.

In follow-up work Lopez-Herrejon, Batory, and Lengauer re�ned the alge-
braic model by distinguishing between introductions and advice [46,47], which
correspond roughly to our introductions and modi�cations. However, there is
no semantic model that de�nes what introductions and advice precisely are. In
our feature algebra, we de�ne introductions in terms of FSTs and modi�cations
in terms of tree walks. This enables us to bridge the gap between algebra and
implementation.

In a di�erent line of research, Liu, Batory, and Lengauer developed an algebra
to describe feature interactions [44]. They use derivatives to represent feature
interactions. Derivatives are hidden features that must be added in the presence
of other features in order to guarantee a proper feature interaction. This notion
of a derivative is at a more abstract level, at which a program is modeled simply
by a sequence of features. We could also make derivatives explicit in our feature
algebra. This would not incur any further algebraic operators.

Apel and Liu proposed a simple algebraic model for understanding aspects
as functions [8]. They derived several properties of aspects regarding their inter-
changeability during aspect composition. The model does not provide a view of
the internal structure of aspects and its e�ects on composition.

Möller et al. developed an algebra to express software and hardware variabil-
ities in the form of features [32]. The algebra focuses on the analysis phase of
FOSD, in which sets of features de�ne program families and feature selections
de�ne programs. In their work a feature refers to a variation point. The structure
of features and their implementation is not considered. Our feature algebra is a
link between the analysis level and the implementation level.

7.2 Work of other Researchers

Object, component, and aspect calculi. There are some calculi that support
feature-like structures and composition by superimposition [33,25,21,28,27,53,34].
Deep is closest to our algebra. It is a formal object calculus that provides type-
safe support for features, composition by superimposition, and virtual classes.
Deep is tailored to Java-like languages and emphasizes the type system. Instead,
our feature algebra allows to reason about feature composition on a more ab-
stract level. We emphasize the structure of features and their static composition,
independently of a particular language or execution semantics.

The notion of a feature is close to that of a component. Bosch noted the pos-
sibility of superimposing the internal structures of components for adaptation
purposes [16]. However, many contemporary component calculi focus on con-
currency and process-theoretic issues as well as on connector and composition

22

languages [1,58,76,62,73]. We use superimposition and quanti�cation to control
composition. The selection of a set of features is equivalent to a speci�cation in
a composition language; modi�cations are equivalent to connectors. Our FST
model emphasizes the static structure of features, not considering process, con-
currency, and orchestration issues. The static view enables us to model not only
code artifacts, but any kind of artifact that provides a su�cient structure, like
make�les, grammar speci�cations, or documentation (see below).

In the �eld of aspect-oriented programming several approaches have been pro-
posed that model and formalize quanti�cation mechanisms [48,35,43,71,74,2,23].
However, their focus is on the control �ow, typing issues, and operational se-
mantics. Our feature algebra provides a static view of quanti�cation, which is
useful for feature composition that involves the introduction of new structures
via quanti�cation.

Languages and tools. Several languages support features and their compo-
sition by superimposition, e.g., Scala [54], Jiazzi [49], Classbox/J [14], Fea-
tureC++ [6], and Jak [12]. Our algebra formalizes features and feature com-
position on top of FSTs. It is a theoretical backbone that underlies and uni�es
all these languages and tools. It reveals the properties a language or tool must
have in order to be feature-ready.

Several aspect-oriented programming languages provide mechanisms to quan-
tify over the structure and the computation of a program, e.g., AspectJ [39],
AspectC++ [64], Eos [59]. Our algebra models quanti�cation as a tree walk and
reveals the duality between quanti�cation and superimposition. However, it does
not model quanti�cation over the program control �ow and the application of
behavioral changes.

Integrating superimposition and quanti�cation. Several researchers re-
alized the synergetic potential of superimposition and quanti�cation [66,51,7].
CaesarJ, Hyper/J, FeatureC++ are languages that provide full support for both
composition by superimposition and composition by quanti�cation. The feature
algebra allows us to study their relationship and their integration, independently
of a speci�c language.

Non-source code artifacts. As mentioned previously, features are imple-
mented not only by source code. Several tools support the feature composition of
non-source code artifacts [12,3,18,68]. Our algebra is general enough to describe
a feature containing these non-code artifacts since all their representations can
be mapped to the FST model.

8 Conclusions

We conclude with the main insights that the algebra has given us and with some
perspectives for future work.

23

8.1 Insights

Composition models. We have presented a model of FOSD in which a fea-
ture is represented as a tree structure (FST). Feature composition is expressed by
both tree superimposition and tree walks. This re�ects the current developments
in programming languages and composition models. For example, collaboration-
based design [61,72,63], higher-order hierarchies [24], subject-oriented program-
ming [30], and feature-oriented programming [57] favor superimposition as com-
position model;metaobject protocols [41], aspect-oriented programming [40,26,48],
and program transformation systems [13] are based on tree walks and compo-
sition by quanti�cation; some approaches integrate both [51,66,7]. Our algebra
describes precisely what the properties of the composition models are and how
they can be integrated. This is not obvious from previous work, which is based
on speci�c instantiations and implementations of the composition models.

Duality. The feature algebra makes the duality between composition by super-
imposition and composition by quanti�cation explicit. Previous work was not
able to condense this result convincingly [4]. Interestingly, we found in our al-
gebra a subtle di�erence between them, namely that modi�cations are not able
to extend the empty program. While this is foremost a result of our de�nition,
it re�ects the current situation in languages that support quanti�cation. For ex-
ample, AspectJ's advice mechanism cannot extend an empty program. Whether
this is a general property of quanti�cation or just coincidence remains to be
answered.

Quarks. On the basis of introductions and modi�cations we introduced the
quark model in order to express how algebraic expressions map to feature im-
plementations. It allows us to choose between local and global modi�cation ap-
plication. This variability is also motivated by the presence of di�erent lines
of research. Local modi�cation application follows the paradigm of incremental
software development [75,56,60,12]. Global modi�cation quanti�cation is moti-
vated by work on metaobject protocols and aspect-oriented programming. Again,
the feature algebra describes precisely the di�erences between both approaches
and, based on some restrictions we impose, it provides a way to integrate them.

Algebraic properties. Possibly, the most remarkable result is that our feature
algebra forms a semimodule over a binoid, which is a weaker form of a vector
space. The �exibility of this algebraic structure suggests that our decisions re-
garding the semantics of introductions and modi�cations and their operations are
indeed not arbitrary. With the presented con�guration of our algebra we achieve
a high �exibility in feature composition, which is manifested in the associativity
and distributivity laws.

Design decisions. Although our algebra is quite �exible, we also made several
restrictive decisions. For example, introduction sum is idempotent and modi�-
cations are allowed only to add children and install wrappers. An advantage of

24

our approach is that we can evaluate the e�ects of our and alternative decisions
directly by examining the properties of the resulting algebra. For example, if we
forbid composition of terminal nodes and presume sets of child nodes (instead of
ordered lists) we achieve the commutativity of feature composition. We decided
otherwise in order to increase the expressive power of introduction sum by in-
cluding overriding. Or, forbidding modi�cations to remove nodes from an FST
allows us to make some assumptions about the result of a composition, e.g., that
features do not delete nodes that other features depend on. Exploring further
the implications of our and alternative decisions in real software projects is a
promising avenue of further work.

8.2 Perspectives

Higher-order modi�cations. A notable result is the inclusion of modi�ca-
tion sum as an operation. While, formally and conceptually, modi�cation sum
is straightforward and integrating it in our feature algebra was easy, we are not
aware of a formalism or programming system that supports this operation ex-
plicitly. One reason for including modi�cation sum that we not discussed so far
is a possible generalization of our algebra.

A fundamental asymmetry in our algebra is the distinction between intro-
ductions and modi�cations. Since a modi�cation applies to an introduction sum
it is on a meta level. In the literature, the addition of further levels on top of
modi�cations has been proposed, e.g. [67,15,9]. In our algebra, this would require
the inclusion of modi�cations that modify other modi�cations, i.e., higher-order
modi�cations that modify modi�cations of a lower order.

This generalization works only with an operation like modi�cation sum.
Higher-order modi�cations quantify over sums of lower-order modi�cations, much
like modi�cations quantify over sums of introductions. Our introductions can be
viewed as 0-order modi�cations, modi�cations that apply to introductions are
1-order, modi�cations that apply to 1-order modi�cations are 2-order, and so on
ad in�nitum. We assume, in practice, orders higher than 2 or 3 will rarely be
needed.

The big picture. Finally, the big picture of our endeavor is as follows. The fea-
ture algebra serves as the formal foundation for the vision of automatic feature-
based program synthesis [10,22]. Treating programs as values of metaprograms
that manipulate them requires a formal theory that describes what is allowed and
what not. For example, a program transformation that simply deletes an input
program is certainly not useful in program synthesis. Metaprograms that apply
arbitrary changes are even dangerous since they can introduce subtle errors.

The algebra will be at the heart of a new direction of research on program syn-
thesis and generative programming, which is called architectural metaprogram-
ming [10]. It applies metaprogramming techniques at the level of the software
architecture. The algebra provides a formalism to express the necessary abstrac-
tion from the implementation level. In fact, the feature algebra is a means to
reason about and manipulate software architecture. Metaprograms operate on

25

feature algebra expressions to synthesize programs at the architectural level.
At every step, the algebra maintains the connection between the architectural
and the implementation level. It guarantees that the operations transform the
structures from one to another consistent state.

Acknowledgments

We thank Peter Höfner for insightful comments on earlier drafts of this paper.

References

1. F. Achermann and O. Nierstrasz. A Calculus for Reasoning About Software Com-
position. Theoretical Computer Science, 331(2�3):367�396, 2005.

2. J. Aldrich. Open Modules: Modular Reasoning about Advice. In Proc. of European
Conf. on Object-Oriented Programming, volume 3586 of LNCS, pages 144�168.
Springer, 2005.

3. V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena. Refactoring
Product Lines. In Proc. of Intl. Conf. on Generative Programming and Component
Engineering, pages 201�210. ACM Press, 2006.

4. S. Apel. The Role of Features and Aspects in Software Development. PhD thesis,
School of Computer Science, University of Magdeburg, 2007.

5. S. Apel and D. Batory. When to Use Features and Aspects? A Case Study. In Proc.
of Intl. Conf. on Generative Programming and Component Engineering, pages 59�
68. ACM Press, 2006.

6. S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the Symbiosis
of Feature-Oriented and Aspect-Oriented Programming. In Proc. of Intl. Conf.
on Generative Programming and Component Engineering, volume 3676 of LNCS,
pages 125�140. Springer, 2005.

7. S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects and Features
in Concert. In Proc. of Intl. Conf. on Software Engineering, pages 122�131. ACM
Press, 2006.

8. S. Apel and J. Liu. On the Notion of Functional Aspects in Aspect-Oriented
Refactoring. In Proc. of the ECOOP Workshop on Aspects, Dependencies, and
Interactions, pages 1�9. Computing Department, Lancaster University, 2006.

9. Sven Apel, Christian Kästner, Thomas Leich, and Gunter Saake. Aspect Re�ne-
ment - Unifying AOP and Stepwise Re�nement. Journal of Object Technology �
Special Issue: Proc. of Intl. TOOLS EUROPE'07 Conf. - Objects, Models, Com-
ponents, Patterns, 2007.

10. D. Batory. From Implementation to Theory in Program Synthesis, 2007. Keynote
at the Intl. Symposium on Principles of Programming Languages.

11. D. Batory and S. O'Malley. The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components. ACM Trans. on Software Engineering
and Methodology, 1(4):355�398, 1992.

12. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Re�nement.
IEEE Trans. on Software Engineering, 30(6):355�371, 2004.

13. I. D. Baxter. Design Maintenance Systems. Comm. of the ACM, 35(4):73�89, 1992.
14. A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Controlling the Scope of

Change in Java. In Proc. of Intl. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, pages 177�189. ACM Press, 2005.

26

15. E. Bodden, F. Forster, and F. Steimann. Avoiding In�nite Recursion with Strati�ed
Aspects. In Proc. of Intl. Net.ObjectDays Conf., pages 49�64. Gesellschaft für
Informatik, 2006.

16. J. Bosch. Super-Imposition: A Component Adaptation Technique. Information
and Software Technology, 41(5):257�273, 1999.

17. L. Bouge; and N. Francez. A Compositional Approach to Superimposition. In Proc.
of Intl. Symposium on Principles of Programming Languages, pages 240�249. ACM
Press, 1988.

18. M. Bravenboer and E. Visser. Concrete Syntax for Objects: Domain-Speci�c Lan-
guage Embedding and Assimilation Without Restrictions. In Proc. of Intl. Conf.
on Object-Oriented Programming, Systems, Languages, and Applications, pages
365�383. ACM Press, 2004.

19. R. Cardone and C. Lin. Comparing Frameworks and Layered Re�nement. In Proc.
of Intl. Conf. on Software Engineering, pages 285�294. IEEE Computer Society,
2001.

20. M. Chandy and J. Misra. An Example of Stepwise Re�nement of Distributed
Programs: Quiescence Detection. ACM Trans. on Programming Languages and
Systems, 8(3):326�343, 1986.

21. D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe: A Simple Virtual
Class Calculus. In Proc. of Intl. Conf. on Aspect-Oriented Software Development.
ACM Press, 2007.

22. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

23. D. S. Dantas and D. Walker. Harmless Advice. In Proc. of Intl. Symposium on
Principles of Programming Languages, pages 383�396. ACM Press, 2006.

24. E. Ernst. Higher-Order Hierarchies. In Proc. of European Conf. on Object-Oriented
Programming, volume 2743 of LNCS, pages 303�329. Springer, 2003.

25. E. Ernst, K. Ostermann, and W. R. Cook. A Virtual Class Calculus. In Proc. of
Intl. Symposium on Principles of Programming Languages, pages 270�282. ACM
Press, 2006.

26. R. E. Filman and D. P. Friedman. Aspect-Oriented Programming Is Quanti�ca-
tion and Obliviousness. In Aspect-Oriented Software Development, pages 21�35.
Addison-Wesley, 2005.

27. R.B. Findler and M. Flatt. Modular Object-Oriented Programming with Units
and Mixins. In Proc. of Intl. Conf. on Functional Programming, pages 94�104.
ACM Press, 1998.

28. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proc. of Intl.
Symposium on Principles of Programming Languages, pages 171�183. ACM Press,
1998.

29. E. Hajiyev, M. Verbaere, and O. de Moor. codeQuest: Scalable Source Code Queries
with Datalog. In Proc. of European Conf. on Object-Oriented Programming, volume
4067 of LNCS, pages 2�27. Springer, 2006.

30. W. Harrison and H. Ossher. Subject-Oriented Programming: A Critique of Pure
Objects. In Proc. of Intl. Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 411�428. ACM Press, 1993.

31. U. Hebisch and H. J. Weinert. Semirings. World Scienti�c, 1998.
32. P. Höfner, R. Khedri, and B. Möller. Feature Algebra. In Proc. of Intl. Symposium

on Formal Methods, volume 4085 of LNCS, pages 300�315. Springer, 2006.
33. D. Hutchins. Eliminating Distinctions of Class: Using Prototypes to Model Vir-

tual Classes. In Proc. of Intl. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, pages 1�19. ACM Press, 2006.

27

34. A. Igarashi, C. Saito, and M. Viroli. Lightweight Family Polymorphism. In Proc. of
Asian Symposium on Programming Languages and Systems, volume 3780 of LNCS,
pages 161�177. Springer, 2005.

35. R. Jagadeesan, A. Je�rey, and J. Riely. A Calculus of Untyped Aspect-Oriented
Programs. In Proc. of European Conf. on Object-Oriented Programming, volume
2743 of LNCS, pages 54�73. Springer, 2003.

36. W.B. Vasantha Kandasamy. Bialgebraic Structures and Smarandache Bialgebraic
Structures. American Research Press, 2003.

37. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, 1990.

38. S. Katz. A Superimposition Control Construct for Distributed Systems. ACM
Trans. on Programming Languages and Systems, 15(2):337�356, 1993.

39. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
Overview of AspectJ. In Proc. of European Conf. on Object-Oriented Programming,
volume 2072 of LNCS, pages 327�353. Springer, 2001.

40. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Proc. of European Conf. on
Object-Oriented Programming, volume 1241 of LNCS, pages 220�242. Springer,
1997.

41. G. Kiczales and J. Des Rivieres. The Art of the Metaobject Protocol. MIT Press,
1991.

42. W. Kuich and A. Salomaa. Semirings, Automata and Languages, volume 5 of
EATCS Monographs on Theoretical Computer Science. Springer, 1985.

43. J. Ligatti, D. Walker, and S. Zdancewic. A Type-Theoretic Interpretation of Point-
cuts and Advice. Science of Computer Programming, 63(3):240�266, 2006.

44. J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring of Legacy Ap-
plications. In Proc. of Intl. Conf. on Software Engineering, pages 112�121. ACM
Press, 2006.

45. R. Lopez-Herrejon. Understanding Feature Modularity. PhD thesis, Department
of Computer Sciences, The University of Texas at Austin, 2006.

46. R. Lopez-Herrejon, D. Batory, and W. R. Cook. Evaluating Support for Features
in Advanced Modularization Technologies. In Proc. of European Conf. on Object-
Oriented Programming, volume 3586 of LNCS, pages 169�194. Springer, 2005.

47. R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Approach to Aspect
Composition. In Proc. of Intl. Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 68�77. ACM Press, 2006.

48. H. Masuhara and G. Kiczales. Modeling Crosscutting in Aspect-Oriented Mecha-
nisms. In Proc. of European Conf. on Object-Oriented Programming, volume 2743
of LNCS, pages 2�28. Springer, 2003.

49. S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-Age Components for Old-
Fashioned Java. In Proc. of Intl. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, pages 211�222. ACM Press, 2001.

50. M. Mezini and K. Ostermann. Integrating Independent Components with On-
Demand Remodularization. In Proc. of Intl. Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 52�67. ACM Press, 2002.

51. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. In Proc. of Intl. Symposium on Foundations of Software
Engineering, pages 127�136. ACM Press, 2004.

28

52. N. Nystrom, S. Chong, and A. C. Myers. Scalable Extensibility via Nested In-
heritance. In Proc. of Intl. Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 99�115. ACM Press, 2004.

53. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A Nominal Theory of Objects
with Dependent Types. In Proc. of European Conf. on Object-Oriented Program-
ming, volume 2743 of LNCS. Springer, 2003.

54. M. Odersky and M. Zenger. Scalable Component Abstractions. In Proc. of Intl.
Conf. on Object-Oriented Programming, Systems, Languages, and Applications,
pages 41�57. ACM Press, 2005.

55. H. Ossher and W. Harrison. Combination of Inheritance Hierarchies. In Proc.
of Intl. Conf. on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 25�40. ACM Press, 1992.

56. D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Comm. of the ACM, 15(12):1053�1058, 1972.

57. C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proc.
of European Conf. on Object-Oriented Programming, volume 1241 of LNCS, pages
419�443. Springer, 1997.

58. R. Pucella. Towards a Formalization for COM Part I: The Primitive Calculus.
In Proc. of Intl. Conf. on Object-Oriented Programming, Systems, Languages, and
Applications, pages 331�342. ACM Press, 2002.

59. H. Rajan and K. J. Sullivan. Classpects: Unifying Aspect- and Object-Oriented
Language Design. In Proc. of Intl. Conf. on Software Engineering, pages 59�68.
ACM Press, 2005.

60. V. Rajlich. Changing the Paradigm of Software Engineering. Comm. of the ACM,
49(8):67�70, 2006.

61. T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E. Nord-
hagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. Stenslet. OORASS: Seamless
Support for the Creation and Maintenance of Object-Oriented Systems. Journal
of Object-Oriented Programming, 5(6):27�41, 1992.

62. J. C. Seco and L. Caires. A Basic Model of Typed Components. In Proc. of
European Conf. on Object-Oriented Programming, volume 1850 of LNCS, pages
108�128. Springer, 2000.

63. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Re�nements and Collaboration-Based Designs. ACM Trans. on
Software Engineering and Methodology, 11(2):215�255, 2002.

64. O. Spinczyk, D. Lohmann, and M. Urban. AspectC++: An AOP Extension for
C++. Software Developer's Journal, pages 68�74, 2005.

65. C. Szyperski, D. Gruntz, and S. Murer. Component Software. Beyond Object-
Oriented Programming. Addision-Wesley, 2002.

66. P. Tarr, H. Ossher, W. Harrison, and Jr. S. M. Sutton. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In Proc. of Intl. Conf. on Software
Engineering, pages 107�119. IEEE Computer Society, 1999.

67. S. Trujillo, M. Azanza, and O. Diaz. Generative Metaprogramming. In Proc. of
Intl. Conf. on Generative Programming and Component Engineering, 2007.

68. S. Trujillo, D. Batory, and O. Diaz. Feature Refactoring a Multi-Representation
Program into a Product Line. In Proc. of Intl. Conf. on Generative Programming
and Component Engineering, pages 191�200. ACM Press, 2006.

69. S. Trujillo, D. Batory, and O. Díaz. Feature Oriented Model Driven Development:
A Case Study for Portlets. In Proc. of Intl. Conf. on Software Engineering, pages
44�53. IEEE Computer Society, 2007.

29

70. E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Nørregaard Jørgensen.
Dynamic and Selective Combination of Extensions in Component-Based Appli-
cations. In Proc. of Intl. Conf. on Software Engineering, pages 233�242. IEEE
Computer Society, 2001.

71. D. Tucker and S. Krishnamurthi. Pointcuts and Advice in Higher-Order Languages.
In Proc. of Intl. Conf. on Aspect-Oriented Software Development, pages 158�167.
ACM Press, 2003.

72. M. VanHilst and D. Notkin. Using Role Components in Implement Collaboration-
based Designs. In Proc. of Intl. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, pages 359�369. ACM Press, 1996.

73. J.-Y. Vion-Dury, L. Bellissard, and V. Marangozov. A Component Calculus for
Modeling the Olan Con�guration Language. In Proc. of Intl. Conf. on Coordination
Languages and Models, volume 1282 of LNCS, pages 392�409. Springer, 1997.

74. D. Walker, S. Zdancewic, and J. Ligatti. A Theory of Aspects. SIGPLAN Notices,
38(9):127�139, 2003.

75. N. Wirth. Program Development by Stepwise Re�nement. Comm. of the ACM,
14(4):221�227, 1971.

76. M. Zenger. Type-Safe Prototype-Based Component Evolution. In Proc. of Euro-
pean Conf. on Object-Oriented Programming, volume 2374 of LNCS, pages 470�
497. Springer, 2002.

30

	An Algebra forFeature-Oriented Software Development
	Sven Apel, Christian Lengauer, Don Batory, Bernhard Möller, and Christian Kästner

