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Retail shelves are adjustable by varying the number of shelf boards as well as the height and depth of
each shelf board. Shelf planners adjust the boards accordingly at regular intervals when they create the
shelf plans and allocate products. Current shelf planning models assume given shelf configurations and
allocate only products. However, the dimensioning of a shelf segment and product allocation are inter-

Keywords: dependent. For instance, the height of one segment may be reduced if only small products are allocated
Inventory or products cannot be stacked. This paper proposes the first integrated approach for shelf segment di-
Retailing mensioning and product allocation. It jointly determines the number of facings for each product, the
Shelf space planning shelf quantity and the size and number of shelf segments. We also identify and consider several restric-
Planogram tions for the shelf structure (e.g., technical options), allocation rules (e.g., maximum inventory reach) and

Integer problem allocation- and shelf-layout-dependent demand. We formulate the decision problem at hand which is an

Integer Non-linear Program and apply a solution algorithm based on the application of bounds that are
obtained by transferring constraints to a preprocessing stage. Doing so, we can reformulate the problem
as Binary Integer Program, provide an exact approach and generate practical applicable and optimal so-
lutions in a time-efficient manner. We show that integrating shelf dimensioning into product allocation
results in up to 5% higher profits than benchmarks available in literature. By means of a case study we
show how planning can be improved, and that the retailer’s profit margin can be improved by up to 7%.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Retailers pay close attention to shelf space as it is one of their
most important and scarcest resources. In current retail practice,
however, shelf planning is often based on planner’s experience,
gut feeling and manual trial-and-error approaches with limited IT
support (Bianchi-Aguiar, Hiibner, Carravilla, & Oliveira, 2021; Kok,
Fisher, & Vaidyanathan, 2015). In this respect, retailing will benefit
from an approach that is data-driven and targets the optimization
of total profitability as well as allowing time-efficient planning pro-
cesses via appropriate tool support (Griswold, 2007; Mou, Robb, &
DeHoratius, 2018). Retailers must decide, for each product category,
how much shelf space they assign to each product within a given
total store space (Ghoniem, Flamand, & Haouari, 2016; Ostermeier,
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Diisterhoft, & Hiibner, 2020). The space assignment of individual
products implies different effects. If a product receives more space,
it is more likely that customers will decide to purchase this prod-
uct (Chandon, Hutchinson, Bradlow, & Young, 2009; Eisend, 2014).
Furthermore, more space results in higher shelf quantity and hence
potentially fewer replenishment actions are required. However, this
also implies that less shelf space is left for the remaining products
and as such, the product allocation problem is a mulitple Knapsack
problem.

When defining the space for each product, retailers need to si-
multaneously consider the options with shelf dimensioning. A shelf
rack consists of different shelf segments. A shelf segment is de-
fined by the height, depth and vertical level of the shelf board.
Fig. 1 illustrates a rack with four shelf segments, where each seg-
ment has a different depth and height of the shelf board, and is
located on different vertical levels. In practice, the lower segments
are usually deeper and higher than the upper segments for optical
reasons.

Shelf segment dimensioning is the decision on the height and
depth dimension, while the length (width) is given by the rack
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Fig. 1. Example shelf rack with shelf segments with different vertical levels, height
and depth.

width. Different shelf segment heights can be selected by a shelf
planner that impact the stacking opportunities, as illustrated in
Fig. 2. It shows how two products could be allocated to differently
sized segments. In option 1, items can only be positioned next to
each other due to the low height. Option 2 allows the stacking of
only one item that then requires less horizontal space. Option 3
shows the highest segment, where both items are stackable.

Also the height of a segment defines the possibility of allo-
cating an item to a shelf segment (e.g., tall items that do not fit
into small segments). Shelf segments with a larger height reduce
the total number of shelf levels possible on a shelf rack. Further-
more, the deeper a shelf segment, the more units of a product can
be stored. The different options for the number, height and depth
of shelf segments raise the question of how segment dimensions
should be defined, and how each shelf rack should look. Further-
more, it becomes clear that product allocation heavily depends on
the dimensions of the chosen shelf segment. These two aspects are
interdependent and hence planned jointly in retail practice.

However, the interrelationship of shelf dimensions and the cor-
responding options for product allocation has not yet been ad-
dressed in literature (see e.g., Bianchi-Aguiar et al. (2021)). We
present the first comprehensive model and solution approach for
product allocation and shelf segment dimensioning. This means
we determine the optimal shelf presentation of each product as
well as the related total shelf quantity depending on the height
and depth dimensions of the chosen shelf segment. Further, we
simultaneously determine the optimal number of shelf segments
and the corresponding dimensions for each shelf segment. By do-
ing so, we also include related demand effects that include space-
elasticity and vertical and horizontal positioning effects. This in-
creases the combinatorial complexity and requires an efficient and
effective solution approach for the NP-hard Knapsack problem.

The remainder of this paper is organized as follows. In
Section 2 we introduce the conceptual structure of the novel prob-
lem and review related literature. The mathematical model and so-
lution approach are presented in Sections 3 and 4. The numerical
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Fig. 3. Example: Empty shelf rack as a starting point for shelf segment dimension-
ing.

results shown in Section 5 prove the efficiency of our implementa-
tion. The approach is tested and solved with real data from coop-
eration with a large European retailer. Finally, Section 6 concludes
the paper and denotes further areas of future research.

2. Problem statement and related literature

This section defines the conceptual background of our planning
problem. It builds the foundation for scoping the planning prob-
lem, analyzing related literature, identifying the research gap and
defining the contribution of this paper. A detailed understanding of
the actual scope of the planning problem is required to model the
dependencies and restrictions.

2.1. Setting and related planning problems

To maximize the profit of a category, the shelf planner must de-
cide how to place a given set of products (i.e., the assortment of a
category) on a limited area of shelf space containing several shelf
segments of certain dimensions (Hiibner, 2017). This is done in
regular intervals and is therefore part of a tactical planning prob-
lem. It is usually updated after major assortment changes (e.g., af-
ter regular negotiations with suppliers) or when category sizes are
adjusted (e.g., when additional categories are added to the store)
(Hiibner & Kuhn, 2012). The two main decisions in this process are
the setup of shelf racks (i.e., shelf segment dimensioning) and the
product placement on this racks (i.e., product allocation).

Shelf segment dimensioning. The shelf segment dimensioning
considers the definition of the number, size and height of rectangle
areas given an overall space allowance. A shelf rack with given to-
tal width and total height (see Fig. 3) needs to be subdivided into
different shelf segments (i.e., rectangle areas) to enable the most
profitable allocation of products.

The segments are depicted by the physical depth and height as
well as the vertical level of shelf boards within the rack. The level
means the vertical position of the segment (e.g., on eye level at
1.50 meter), whereas the height represents the vertical size of the
segment where items can be placed (e.g., 30 centimeter). The ver-

Option 3

Fig. 2. Different heights of a shelf segment allow different options for product allocation.
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Fig. 4. Example: Different segment depths possible on a shelf rack, side-facing
view.

tical level of a shelf segment is bound to the shelf grid and the
available cavities for hangers (see Fig. 3). The shelf grid represents
the physical possibility of placing vertical hangers on a shelf rack,
e.g., every 5 centimeter. The segment width is determined by the
width of a rack. Based on this information, retail planners deter-
mine the dimensions of each shelf segment, which includes the
(1) vertical level, (2) height and (3) depth, as well as the (4) total
number of shelf segments.

To define the (1) vertical level and (2) height of a shelf segment,
further restrictions need to be considered. A shelf segment may
have a specific minimum height representing the distance between
two shelf boards. This usually depends on marketing and layout
guidelines. Additionally, a certain grabbing gap must be considered
such that customers can still remove products from this segment.
The maximum height of a segment is the upper limit for the ver-
tical distance between two segments. It depends on the product
category (e.g., large dog food bag vs. small candy) and the op-
tions for stacking items (e.g., canned food vs. bagged food), so as
to avoid shaky stacks. Furthermore, (3) the depth of each segment
needs to be set. Retailers use steps between different segments
as shown in Fig. 4 to make all products on a shelf better visible
to customers (see also Diisterhoft, Hiibner, & Schaal, 2020). In re-
tail practice usually up to three different depth sizes are applied.
The choice depends on optical reasons and inventory requirements.
Less deep segments allow lower inventory and thus affect avail-
ability and replenishment frequency. It is a common rule that each
upper segment needs to be equal or smaller than the next lower
segment, both in terms of depth and height. (4) The total number
of segments of each rack is derived by the selection of the height
and vertical levels of the segments.

Product allocation. The allocation of products to multi-
dimensional shelf segments represents a multi-dimensional knap-
sack problem as items of differing value (i.e., profit contribution)
need to be allocated to a limited space, and due to this limitation,
not all units may be allocated. As multiple segments are available
it represents additionally a multiple knapsack problem. In prac-
tice, this means defining for each product the quantity allocated to
each shelf segment and the corresponding shelf racks. The product
quantity is indicated by facings. A facing is the first visible unit of
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an item in the front row of a shelf. In this sense, retailers define
the number of units per product in the front row of a shelf that are
visible to the customer (Corstjens & Doyle, 1981; Hansen & Heins-
broek, 1979). Items can be placed next to each other (horizon-
tal facings) and some items may be stacked (vertical facings) (see
Fig. 5). The stacking options depend on the height of the segment,
the item height and stackability of the item (Zelst, van Donselaar,
van Woensel, Broekmeulen, & Fransoo, 2009). The total number of
facings is the number of vertical facings times the number of hor-
izontal facings. Behind each facing, items can be lined up one be-
hind the other depending on the segment and item depth. Stacking
and lining up items allow the maximum possible vertical and hor-
izontal space to be fully utilized.

Retailers apply minimum and maximum requirements for in-
ventory and facings. Minimum inventory limits can ensure a certain
service level (e.g, by using safety stocks) or comply with optical
guidelines for shelf layout even if a product is very slow moving
and would only require little shelf space (see e.g., Baldauf, Eng-
Larsson, & Isaksson (2019)). Upper limits on the other hand are
necessary to limit the maximum inventory reach, especially for per-
ishables. Similarly, a minimum number of facings can be applied to
ensure a certain shelf representation (e.g., for newly listed products
with low current demand) or to fulfill supplier targets (e.g., con-
tractual agreements for shelf shares; see e.g., Martinez-de Albeniz
& Roels (2011)). A maximum number of facings sets an upper bound
to limit the shelf share for certain products. Finally, some items are
restricted to certain shelf segments. For example, heavy and bulky
items are placed at the lower levels and small, light items are on
the upper levels.

Summary. Retail planners face three decisions that need to be
determined simultaneously. On the shelf segment dimensioning
side they need to decide on (1) the height and (2) depth of each
segment. (1) also determines the vertical level of each shelf seg-
ment and ultimately the total number of shelf segments, whereas
(1) and (2) together determine the total available shelf space. On
the product allocation side, they (3) need to assign products to
shelf segments and the respective number of facings and units be-
hind one facing, which also implies the total shelf inventory for
this product as items are stacked and strung according to the di-
mensions of the chosen shelf segment. The described decisions are
interrelated and need to be considered simultaneously. By way of
example, product allocation depends on the number and dimen-
sions of available shelf segments on the one hand, and the dimen-
sions of the shelf segments depend on the specific attributes of
allocated items (e.g., item sizes, number of horizontal and vertical
facings) on the other hand.

2.2. Impact of simultaneous consideration

The simultaneous decision of these related planning problems
also affects further parameters in the stores. More precisely, both
the demand for products and the replenishment costs are affected
by the given decisions. We detail the corresponding effects in the
following and discuss their relevance for the presented setting.

Impact of shelf segment dimensioning and product allocation on
demand. Shelving decisions and product allocations affect customer
demand. As only 30% of all purchasing decisions are fixed before
entering the store (GFK, 2009), the possibility of influencing cus-
tomers in their choices is significant through instore manipulations
(Chandon et al., 2009). The potential demand sources are: (1) De-
mand dependent on product allocation of an item, (2) demand de-
pendent on product allocation across items, (3) demand dependent
on chosen rack and segment, and (4) demand dependent on position
within a segment. We further refer to the reviews and consumer
studies of Dréze, Hoch, and Purk (1994), Chandon et al. (2009),
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Fig. 5. Options and related outcome of product allocation.

Eisend (2014) and Bianchi-Aguiar, Silva, Guimaraes, Carravilla, and
Oliveira (2017) that summarize related demand effects from an
empirical point of view.

(1) Item demand depends on the visible quantity on the shelf
(Hansen & Heinsbroek, 1979). The higher the visibility of an item,
the higher its demand. The visibility of an item increases with the
number of facings assigned to that item. Empirical studies exam-
ine these so-called “space-elasticity effects” (see e.g., Cox (1964),
Frank and Massy (1970), Curhan (1972), Anderson (1979) Hansen
and Heinsbroek (1979), Dréze et al. (1994), Desment and Renaudin
(1998)). Chandon et al. (2009) show that number of facings is the
most important instore factor affecting customer demand. Using
a meta-analysis across empirical studies, Eisend (2014) quantified
the average space-elasticity factor as 17%, which implies a demand
increase of 17% each time the number of facings is doubled.

(2) Product allocation may also impact the demand across
items. First of all, cross-space elasticity describes the impact on the
demand of items when the space assigned to one item is changed
(Corstjens & Doyle, 1981; Desment & Renaudin, 1998; Dréze et al.,
1994). However, Schaal and Hiibner (2018) show that the impact of
this demand source on product allocations and retail profit is very
limited. This also holds true if elasticities are significantly higher
than the existing empirical values. Secondly, substitution effects
describe the demand transfer from non-available to available items.
A differentiation needs to be made between permanently non-
available items that are out-of-assortment, and temporarily non-
available items that are out-of-stock (see e.g., Fitzsimons (2000),
Campo, Gijsbrechts, and Nisol (2000), van Woensel, van Donselaar,
Broekmeulen, and Fransoo (2007), Xin, Messinger, and Li (2009)).
Decisions in shelf planning are usually based on a given assort-
ment, so that out-of-assortment substitution is not within the
scope (Irion, Lu, Al-Khayyal, & Tsao, 2012; Kok & Fisher, 2007). Fur-
thermore, retailers try to avoid out-of-stock situations by imme-
diately refilling empty shelves with inventory from the backroom
and applying safety stocks and minimum representation quantities
(Urban, 1998).

(3) Shelf-segment-dependent demand. With the approach of
considering different segments for product allocation, it is under-
standable that different segments may have different influences
on the demand of a product. First, the segments are located on
different vertical levels within the shelf. Following Dréze et al.
(1994) and Underhill (1999), this means that some segments lie
within a specific zone running approximately from eye- to knee-
level, where products are more likely to be seen by customers than
outside this zone. Chandon et al. (2009) points out that a top-level
shelf is superior to a bottom-level shelf in terms of both attention
and sales. Additionally, segments can be differentiated in horizon-
tal order across racks. This touches on the question of whether a
specific area of the total shelf, e.g.,, the horizontal center or the
beginning of an aisle, is more attractive regarding sales (see e.g.,
Ghoniem et al. (2016)).
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(4) Item positioning within a segment determines how products
are arranged next to each other, how far a product is positioned
from the edge of a segment (i.e., the horizontal location), and the
way product facings are arranged, e.g., in rectangular shapes or as
a family grouping. However, generally these effects are attributed a
lower to negligible demand impact (see e.g., Chandon et al. (2009),
Geismar, Dawande, Murthi, and Sriskandarajah (2015)). Neverthe-
less, shelf layout may be subject to some layout restrictions that
may require keeping certain products together (e.g., brand group-
ing), but without changing demand (Bianchi-Aguiar et al., 2017;
Bianchi-Aguiar et al., 2016; Pieters, Wedel, & Batra, 2010).

In summary, shelf dimensioning and product allocation impact
customer demand in various ways. With respect to the described
demand effects, only (1) the product-allocation-dependent and (3)
the segment-dependent demand impacts are attributed with a ma-
jor effect on customer behavior. For effects across products (2) we
can state that: cross-space allocation has a neglectable impact due
to the low magnitude; cross-product demand is relevant for assort-
ment decisions, but this is out of scope for our planning problem;
out-of-stock situations result from poor planning or missing safety
stocks and are prevented using minimum representation quanti-
ties and safety stocks plus backroom inventory. Finally, there is so
far no empirical evidence that positioning items differently within
a segment has an impact on demand (4). Consequently, product-
and segment-dependent demand effects are assumed to be deci-
sion relevant for our problem specification and are therefore con-
sidered in our modelling approach.

Impact of shelf segment dimensioning and product allocation on
costs. To fulfill customer demand, retailers employ safety stocks (as
part of the minimum inventory) and two types of replenishment
procedures (Hiibner, Kuhn, & Sternbeck, 2013; Hiibner & Schaal,
2017a; Kotzab & Teller, 2005; Reiner, Teller, & Kotzab, 2013). First,
there is a regular, scheduled replenishment procedure of an en-
tire category. This depends on delivery patterns, which define spe-
cific days for store deliveries from the warehouse for each store
and each product group (Holzapfel, Hiibner, Kuhn, & Sternbeck,
2016; Taube & Minner, 2018). These delivery patterns mainly de-
pend on given network structures and product groups (e.g., fresh
products are delivered more often than dry foods). Hiibner and
Schaal (2017a) identify that these replenishment costs per cate-
gory are related to the delivery frequency and not to shelf plan-
ning. Hence, in our context they can be assumed as not deci-
sion relevant. Second, if demand (defined by position of the seg-
ment and number of facings) is higher than shelf inventory (de-
fined by the size of the segment and the number of facings), ad-
ditional and ad hoc replenishment from the backroom is required.
This second type is a product-specific procedure (Kotzab & Teller,
2005; Kuhn & Sternbeck, 2013). There are quantity-dependent
costs for additional shelf-refilling activities that are required be-
tween the regular, scheduled refill processes related to the delivery
patterns.
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The analysis above on related decisions, demand and cost im-
plications build the foundation for the literature review in the fol-
lowing subsection.

2.3. Related literature

Within this section, we will analyze literature from three differ-
ent streams for product allocation. There is no dedicated literature
for shelf segment dimensioning, as a dimensioning model on its
own without product allocation is not reasonable.

Literature related to product allocation. Several models have al-
ready been developed to support retailers in the product alloca-
tion to shelves. Early approaches addressing this reach back to the
1960s (e.g., Cox (1964)), followed by the development of non-linear
decision models (e.g., Hansen and Heinsbroek (1979), Corstjens and
Doyle (1981) or Zufryden (1986)) considering space-elastic demand
and other demand and cost effects. Based on the conclusive con-
cept of space-elastic demand functions, further developments ex-
tended these approaches. Approaches that are more recent include
a wide selection of different parameters (e.g., cross-space elasticity,
stochastic demand, replenishment costs) or integrate related de-
cisions (e.g., replenishment frequency, assortment decisions). For
example, Borin, Farris, and Freeland (1994) integrate an assort-
ment decision and generate a cost function for stock-outs. Urban
(1998) presents a demand function incorporating assortment deci-
sions as well as backroom space for additional storage. Hiibner and
Schaal (2017b) integrate assortment planning and model stochas-
tic demand. The approach of Irion et al. (2012) further details the
demand function with cross-space elasticities. A new aspect was
demonstrated by Hiibner and Schaal (2017a) where replenishment
costs for direct replenishment and from the backroom are speci-
fied. However, these state-of-the-art approaches in shelf-space lit-
erature still lack possibilities for integrating shelf segments and
varying height levels. None of these models takes into account dif-
ferent height levels of segments as they can be found in practice.
Total shelf space is described by a one-dimensional value and not
differentiated by segments. Usually shelf space is represented by a
single value for the width of a whole category (e.g., 10 meter in a
single line). Consequently, solutions generated with these models
can hardly be applied to a real shelf, as usually only the number
of facings is considered and solutions must be split up among dif-
ferent shelf segments.

Literature related to product allocation with multiple segments.
Some more sophisticated approaches already consider the fact that
a shelf consists of different segments. Yang (2001) present a simple
model that considers several vertical levels but on the other hand
lacks important components such as a space-elastic demand func-
tion or cost function. A later approach of Hwang, Choi, and Lee
(2005) provides a demand function that also incorporates in ad-
dition to several shelf segments, neighborhood relations of items.
Hansen, Raut, and Swami (2010) create a model that integrates de-
tailed location effects within their profit function. Further, Zhao,
Zhou, and Wahab (2016) incorporate effects of spatial relationships
between different items in addition to a space-elastic demand
function. A stochastic demand function combined with location-
dependent demand effects can be found in Hiibner and Schaal
(2017c). However, none of these papers factor in varying segment
sizes and vertical levels. All these papers assume equally sized and
identical segments across all vertical levels. For all of them, the
shelf and segment sizes are given input parameters and not part
of the decision problem.

Literature related to product allocation with multiple and differ-
ently sized segments. The following two papers are more related
to our problem as they assume differently sized segments. Bai,
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Van Woensel, Kendall, and K. Burke (2013) provide a model where
several shelf segments are available that can each be defined with
an individual height. Yet, the different heights are not part of the
decision problem but used as input parameter in their model. Fur-
ther, they integrate in addition to a space-elastic demand function,
location effects of different segments. Depending on the height of
a shelf segment, they precalculate the number of items that can
be stacked one above the other and then decide about the num-
ber of horizontal facings. On the other hand they neglect the fact
that shelf segments can also have different depths and that this af-
fects the resulting inventory for each item. Further, they only pro-
vide solutions for small data sets of up to 29 items generated with
a multi-neighborhood heuristic. Diisterhoft et al. (2020) provide
the first model to address the problem with multiple shelf racks
and multiple-sized shelf segments. The authors present a model
that, alongside the space-elastic demand and location effects, con-
siders shelf segments with different dimensions regarding height,
width and depth. However, in contrast to our work the authors
assume the shelf dimensions as input parameters and shelf seg-
ment dimensioning is therefore not part of the optimization prob-
lem. This also means that the number of shelf segments is fixed
in advanced. We integrate these decisions in our model and de-
cide simultaneously on the product allocation and shelf segment
dimensioning. The integration of shelf segment dimensioning sig-
nificantly increases the model complexity of a product allocation
model as each shelf segment setting offers different allocation pos-
sibilities. Diisterhoft et al. (2020) could be described as a static
model (i.e., given dimensions), while we address a dynamic prob-
lem setting (i.e., varying dimensions). Enhancing product allocation
with shelf segment dimensioning impacts the decision model and
its variables, constraints and overall complexity to solve. This re-
quires a tailored solution approach that is able to handle the new
dimension of complexity. We discuss the given model complexity
in more detail in Section 3.

2.4. Research gap

Retail practice shows that the dimensioning of shelf segments
constitutes an important planning problem as shelf planners
would struggle to find feasible allocation solutions when using
current models from literature, and need to resort to trial-
and-error approaches with limited optimization support for the
dimensioning problem (Bianchi-Aguiar et al., 2017; Hiibner &
Kuhn, 2012). Further, our literature review shows that the integra-
tion of shelf dimensioning into product allocation problems has
not yet been addressed in related literature. The review shows
that common models reduce the product allocation problem to
a one-dimensional problem with a single segment. Some papers
are extended to multiple segments, but again assume only given
shelf dimensions, reduce the three-dimensional problem to a two-
dimensional problem by assuming some shelf parameters, do not
explicitly model all relevant decision variables or are not capable
of dealing with practically relevant problem sizes (see Table 1).
Even though Bai et al. (2013) and Diisterhoft et al. (2020) extend
the product allocation literature by modeling the shelf space with
multi-dimensional segments, they do neither include a decision on
number of shelf segments, nor the vertical level of segments and
also not the height and depth of segments. These are given param-
eters in these models. It therefore becomes obvious that no avail-
able approach in literature yet covers the interdependent decision
problem of shelf segment dimensioning and product allocation.

We further refer the reader to the publications of Hiibner and
Kuhn (2012), Kok et al. (2015) and Bianchi-Aguiar et al. (2021) for
a more detailed review.
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Table 1
Overview of product allocation literature related to shelf segment dimensions.
Demand effects Item/shelf Shelf Shelf Number of  Vertical Height/Depth
Literature Space  Horizontal  Vertical  dimensions  racks segments  segments seg. level  of segments
Hansen and Heinsbroek (1979) v 1D single single - - -
Corstjens and Doyle (1981) v 1D single single - - -
Zufryden (1986) v 1D single single - - -
Borin et al. (1994) v 1D single single - - -
Urban (1998) v 1D single single - - -
Irion et al. (2012) v 1D single single - - -
Hiibner and Schaal (2017a) v 1D single single - - -
Yang (2001) v 1D single multiple given given identical®
Hwang et al. (2005) v v 1D single multiple given given identical®
Hansen et al. (2010) v v v 1D single multiple given given identical®
Hiibner and Schaal (2017c) v v 1D single multiple given given identical®
Bai et al. (2013) v v v 2D single multiple given given given
Diisterhoft et al. (2020) v v v 3D multiple  multiple given given given
This paper v v v 3D multiple  multiple decision decision decision
- means not applicable/not considered in model.
2 Identical dimensions across all segments; segments given.
Table 2
Notation of the general model for product allocation and shelf segment dimensioning.
Indices
I Set of items i within the category, with i e |
J Set of shelf segments j, with jeJ
R Set of shelf racks r available, with r € R
Product-related parameters
o; Basic demand of item i
Bi(vi) Horizontal (vertical) space elasticity of item i
m; Margin of one unit of item i
v; Costs of replenishing one unit of item i from backroom
w;, h;, d; Width, height, depth of item i
Qax(Qmin) Maximum (minimum) shelf inventory of item i
RSS; Minimum representation inventory and safety stock at the shelf of item i
Shelf-related parameters
S Attractiveness factor of rack r
€ Attractiveness factor of shelf segment level for the given level [
b Minimum grabbing gap, i.e., height between items of segment level | and next segment level [ + 1
Zijr Inventory per facing of item i at shelf segment j at rack r
Wi, hjr, dje, Iy Width, height, depth and level of shelf segment j on shelf rack r
Wy, hy Width and height of shelf rack r

Decision variables

xf'}.r Number of horizontal facings of item i at shelf segment j at rack r; integer variable
x;’).r Number of vertical facings of item i at shelf segment j at rack r; integer variable
Yir 1 if on rack r segment j is active, else 0; binary variable

Aucxiliary variables

b

Backroom inventory (i.e., additional refill quantity) of item i; integer variable

q;

q; Available shelf inventory of item i; integer variable

q Total shelf inventory of item i; integer variable

Xijr Total number of facings of item i at shelf segment j at rack r; integer variable

3. Model development

This section introduces the formal description of the Product
Allocation Model with integrated Shelf Segment Dimensioning
(PAMISD) and discusses the complexity of this NP-hard Knapsack
and non-linear optimization problem. The complete, non-linear
mathematical model can be found in Appendix.

Notation. Table 2 summarizes the notation, including parame-
ters and decision variables for the general production allocation
and shelf segment-dimensioning model.

Decision variables and constraints. With the objective of maxi-
mizing total profit, retailers must assign a given set of items i,i e |
to a total shelf space, where only the number of shelf racks r,r ¢ R
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and the height h, and width W, of each rack are known. In order
to find optimal shelf dimensions, retailers must consider different
types of shelf segment j, j € J. Each segment is characterized by its
dimensions, i.e, its depth dj,, height hj. and level I; on a given
rack r,r € R. The actual segment dimensions depend on the choice
or rather combination of segments on the corresponding rack and
are not determined in advance. Consequently, the model optimizes
two types of decision variables. First, the binary variable y;, defines
if a shelf segment j, j € J] with specified shelf segment dimensions
djr, hj and l; at rack r,r e R is chosen or not. The segment di-
mensions of the corresponding shelves have to adhere to the fol-
lowing relationships, with j; and j, as two consecutive segments

from bottom to top: (1) dj,, > dj,r and (2) hj,; > hj,,, which means
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the next higher segment j, is equal or less deep and high; (3)
lj,r = lj,;r + hj,r, which means the level of the upper segment j;
is the sum of the level and height of the lower segment j; on the
considered rack r, 1 € R. (4) The width w;, of a segment j at rack r
is determined by the width of rack wr (i.e., wj, = Wr).

Second, the integer variable x;; defines the total number of fac-
ings of each item i,i e[ at shelf segment j, j ] and rack r,r e R.
The total number of facings x;; is computed by the number of hor-
izontal facings x?jr times the number of vertical facings x}’jr at shelf
segment j of rack r. Each item i can only be assigned to one seg-
ment j: If x;;; > 1, then xy, =0 Viel, jke]:k#jreR. As the
assortment is given, each item needs to be allocated and cannot
have zero facings: 3. > rcgXijr = 1,Viel. A shelf segment j at
rack r is selected if at least one item i is allocated. This is expressed
by setting the binary variable y;. =1 if x;;; > 1, and 0 otherwise.
The available width (w;;) and height (h;.) of a segment j on rack
r cannot be exceeded. In the width dimension it therefore needs
to be ensured that ZieIW,-‘x?jr <wj,VjejreR, with w; as the
item width. In the height dimension, it needs to be ensured that
h; -x}’jr+b§ hj for all i,iel, j, je] and r,r € R. This means that
at most so many vertical facings x}/jr of an item with item height

h; can be assigned that fit into the segment height and respect an
additional grabbing gap b. The total height h, of each rack r is lim-
ited by Yo hjr-yjr < e VreR.

Two associated auxiliary variables are applied to define the to-
tal available shelf inventory g; and the additional refill quantity
from the backroom qf’. Both quantities are available to fully sat-
isfy total demand A;, with A; < ¢; +qf. The total shelf inventory
is computed by G = > il 2orer 8ijr - Xijr- The stock per facing gj; of
an item i at segment j and rack r is a parameter as retailers usu-
ally use the total segment depth and fill up accordingly. Hence, the
parameter g;; depends on the item depth d; and on the shelf seg-
ment depth dj at rack r, ie., g, = Ldjr/aij,‘v’i el,je]reR. The
available shelf inventory ¢ is the total shelf inventory g; minus
the representation minimum and safety stock RSS;. The parame-
ter RSS; is exogenously defined, for example by taking into account
lead-time for warehouse replenishment, demand volatility or min-
imum representation quantities. The safety stock RSS; is part of
the shelf stock. This allows modeling of the remaining demand as
deterministically known. Furthermore, out-of-stock situations can-
not arise as if total demand A; exceeds available shelf inventory
q;, items are directly replenished from sufficiently available back-
room inventory. This is expressed in the second auxiliary variable,
the refill quantity from the backroom qf’. The quantity for this ad-
ditional replenishment is calculated by q? =max[[A; —¢]; 0]. Fi-
nally, retailers impose restrictions on the shelf inventory. Minimum
and maximum shelf inventory levels are defined by Q{”m <q <
Q"™ Vi e I. The minimum shelf quantity Ql.m"” factors in the min-
imum inventory reach and minimum representation quantity and
Q"™ the maximum inventory reach accordingly (e.g., for perish-
able products). These quantities also factor in minimum and max-
imum number of facings.

Objective function. The retailer pursues the objective of max-
imizing the total profit P through selecting the optimal num-
ber of facings x;;; and shelf segments y; across all items,
shelf segments and racks, represented by the respective vec-

tors X and _}7, with X = {X]H, X112, ---» X211, X212, - - - » X“lUHRI} and )7 =
{}/11yJ/12»~~~,J’21,J’22,~--yJ/m|R\}-
max P(X,y) :Zpi(xijrvyjr) (1)

iel
To obtain the item’s profit p;, the cost of replenishment CR;j; is
deducted from the item’s gross margin m;.

Pi(Xijr. Yjr) = mi - Ai(Xijr. ¥ir) — CRijr Xijr, Yjr) (2)
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The gross margin of an item is calculated as the product of
its total demand A; and its unit margin m;. The item unit mar-
gin m; corresponds to sales price minus purchase cost and further
costs per unit (e.g., listing costs, quantity-independent replenish-
ment costs). The total demand A;(x;j, y;-) of an item i is a com-
posite function of the basic demand ¢;, allocation- and segment-
dependent demand. The basic demand «; represents the retailer’s
forecast for an item that is independent of the facing, segment and
rack position (cf. Bianchi-Aguiar et al., 2021; Hansen & Heinsbroek,
1979; Hiibner & Kuhn, 2012). The forecast may be based on histor-
ical sales (i.e., average demand across multiple periods), but may
also incorporate further marketing effects. The higher the visibil-
ity of an item, the higher its demand (Chandon et al., 2009; Cox,
1964; Curhan, 1972; Eisend, 2014). The visibility increases with
the number of horizontal and vertical facings (xf’jr, x}’jr) and also
depends on the item size. In accordance with prior research (cf.
e.g., Hansen & Heinsbroek, 1979; Irion et al., 2012), the facing-
dependent demand rate is a polynomial function of the number
of horizontal facings x?jr, visible frontal item width (w;) and the
horizontal space-elasticity B; (with 0 < 8; < 1) as well as number
of vertical facings x}’jr, visible frontal item height (h;), and verti-
cal space-elasticity y; (with 0 < y; <1). The factor §; represents
the attractiveness of rack r and ¢; the attractiveness of shelf seg-
ment j. As such, the model incorporates space-elastic demand as
well as vertical and horizontal attractiveness of shelf segments.
Eq. (3) summarizes the demand calculation applied.

Mi(iro Vi) = @iy > (Wi X )P S (k)

je] reR je] reR
ZZSrf]wyjr Viel (3)
jeJ reR

Costs of replenishment CR;;, presented in Eq. (4) occur when-
ever the available shelf quantity g; of an item i is not sufficient to
cover the demand A; of an item i within the time horizon consid-
ered and thus additional replenishment with quantity from back-
room qf’ has to be performed at quantity-dependent refill costs v;.

CRijr (Xijr Yjr) = Vi - @° (Xijr ¥jr) Viel jelreR (4)

Model complexity. The model presented constitutes a combina-
torial optimization problem and belongs to the class of Knapsack
problems. Knapsack problems are known to be NP-hard (see, e.g.,
Kellerer, Pferschy, & Pisinger, 2004), which underlines the given
complexity. In our application, the model complexity is driven by
two factors. First, as in classical allocation problems, we consider
a large number of different product allocation combinations for a
given shelf space. Eq. (5) indicates the possible combinations (Y)
of placing K items (K = |I|) into a knapsack (= shelf) of the size S.

S-1

K—1 (>)

Y(N,S):( )~K~(K1)

Second, we additionally deal with the combination of available
shelf space S and the number and size of corresponding shelf seg-
ments. For each shelf rack, a different choice of shelf segments (i.e.,
number and size of segments) is possible, each resulting in a dif-
ferent setting and space availability. Assuming, that each shelf seg-
ment only shows discrete, predefined depth and height options, let
h be the number of different shelf heights and d the number of
different shelf depths. We can then determine the possible combi-
nations of shelf segments Z for one shelf rack, as shown in Eq. (6).

2= W Y d

jel i€l

(6)
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Table 3
Three-step solution approach of the PAMiSD.

European Journal of Operational Research 292 (2021) 155-171

Stages Approach Implementation
(1) Preprocessing Determination of problem parameters to exclude non-feasible values for each decision variable Java
(2) Precalculation to overcome Transfer non-linear parts of the model into parameters that are fed into a BIP. Precalculate these Java
non-linear model parameters for all possible combinations within the individual bounds obtained from Stage 1 for

each decision variable
(3) Solving BIP Input model parameters obtained from Stage 2 and solve BIP to obtain an optimal solution CPLEX

The resulting large number of combinations for different shelf
segments can be shown by looking at a simple example. Con-
sider two shelf racks with up to 5 segments per rack (|J| = 5), and
each shelf segment has h = 6 different heights and d = 3 different
depths options. For two shelf racks this results in 19,386 different
combinations of shelf layouts with regard to available space, num-
ber and size of segments. Altogether, the allocation combinations
arising from Eq. (5) have to be considered for all Z segment/space
combinations and for each single shelf rack. The complexity there-
fore increases significantly as the number of items, shelf space
and available segment types increases. Furthermore, some parts
of the objective function and constraints are non-linear, e.g., the
demand model. Consequently, an efficient solution approach is re-
quired to solve the NP-hard and combinatorial complex multiple-
choice knapsack problem that is based on a non-linear objective
function.

4. Solution approach

In this section, we detail the solution approach proposed to
solve PAMiSD to optimality. As stated above, PAMiSD constitutes
a non-linear model. Our approach therefore consists of three dif-
ferent stages to address the non-linearity efficiently: (1) prepro-
cessing, (2) precalculation, and (3) the solution of a Binary Integer
Problem (BIP). The BIP is a reformulation of the PAMiSD to obtain a
model that is solveable by a commercial solver. The different stages
are summarized in Table 3.

The first stage is necessary to reduce the solution space and
combinatorial options by determining model parameters needed as
input for the BIP (e.g., limiting possible number of facings per item
and segment heights). It is based on the idea of decreasing the so-
lution space by transferring constraints of the Integer Non-linear
Program (INLP) formulation of the PAMISD into a preprocessing
step. Doing so we reduce the possible values for the decision vari-
ables as we exclude non-feasible settings, but keep all feasible val-
ues for the decisions variables. The second stage helps to overcome
the non-linearity induced by the non-linear demand function. This
is done by precalculating demand, margin and replenishment val-
ues for the given set of integer facings obtained in Stage 1. Finally,
the BIP reformulation of PAMIiSD is solved in the third stage, lever-
aging the input parameters determined in Stage 1 & 2. Due to the
presteps, the PAMiSD can be solved optimally as a BIP using CPLEX.
As the calculated bounds on the decision variables reflect actual
constraints of the PAMiSD and its INLP formulation, the solution
obtained is a global optimum of PAMiSD. Table 4 summarizes the
additional notation used.

Stage 1: preprocessing. In this section we exploit problem
specifics (see Section 2.1) to reduce the combinatorial complexity
and exclude non-feasible solutions upfront. In detail, we reduce the
solution space by considering constraints to obtain tighter bounds
for each decision variable. First, we define feasible heights of the
segments. Second, we use the feasible heights to set limits for the
stacking (i.e., the number of vertical facings) and stringing together
of items. The parameters obtained are combined with minimum
and maximum inventory reach to calculate feasible ranges for the
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total number of facings. Ultimately, ranges for the number and di-
mensions of levels for shelf segments are determined using con-
straints provided by retail practice (e.g., higher segments are less
deep).

Each shelf segment is defined by its vertical level, height and
depth. To specify the dimensions of a shelf segment we use I,] € L,
for the level, h, h € H for the height and d, d € D for the depth. First
we define the set of possible segment heights A. We define A dur-
ing the preprocessing across all racks and not specifically by rack,
as this set refers to the possible vertical distance between two seg-
ments in general, and is thus equal for all racks. We leverage the
fact that retailers define minimum and maximum heights of seg-
ments for optical reasons. The parameters H™" and HM repre-
sent these distances between two levels. Furthermore, heights are
bounded to the cavities of a shelf rack, i.e., options where the bot-
tom level of a segment can be hung. These cavities are represented
by the vertical points VP of the shelf rack. The set for all potential
heights H can therefore be reduced to H, which only comprises
hmax — | (Hmax _ gminy yp| 11 elements. For example, if we have a
minimum segment height H™" = 20 centimeter and a maximum
segment height H™® = 50 centimeter, the segment height is ad-
justable within 30 centimeter. Knowing that a segment height can
only be placed every 5 centimeter due to the cavities of the shelf
rack, i.e., VP =5 centimeter, we only need to consider h™* = 30
centimeter/5 centimeter + 1 =7 possible settings of a segment
height. That also means that the height for each potential segment
is defined by H™" + (h-VP),Vh € H.

After reducing the set to H, we can efficiently calculate the po-
tential values for the vertical number of facings k;, for each item
i. The number of vertical facings is precalculated in our approach
as retailers usually fill up segments to the maximum. However,
some items are not stackable at all or only stackable to a cer-
tain limit. This is represented by the upper stacking limit k*®*.
Fig. 6 represents the pseudo code to calculate how many units
can be stacked for each possible segment height h by respecting
the minimum segment height H™" grabbing distances b, vertical
points VP, the item height h; and the maximum stacking quantity
kimex,

Secondly, we define the set of potential segment depth D. Sim-
ilarly as for the segment height, we leverage minimum and maxi-
mum depths of segments. The parameters D™" and D™® represent
these distances. The segment depth can only be varied in given
steps DP (like the vertical points VP for the height) and has a min-
imum and maximum depth D™" and D™, Thus, the set for po-
tential depths D can be reduced to the set D with only d™® =
| (Dmax — pminy/;pp| 4 1 different depths. The reduced set enables
us to efficiently compute for each item i the number of units g4
that can be lined up one behind the other on a certain shelf depth
d. Fig. 7 represents the pseudo code to calculate how many units
gia can be stacked behind each other for each possible segment
depth d by respecting minimum segment depth D™ depth points
DP and the item depths d;.

The parameters obtained enable us to determine an upper
bound on the number of facings f*™ for each item i. We use g
and k;, as well as the maximum shelf inventory Q" to calculate
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Table 4
Additional notation.

Further indices

D Set of shelf depths d, with d e D

H Set of shelf heights, with h e H

L Set of shelf levels, with [ e L

N Set of number of facings, with ne N

Further parameters

femax Maximum number of units of item i that can be stacked

DLy (DL7™) A certain shelf depth must not be chosen above (below) this level

DP Distance between two steps in the depth dimension of a segment

Dmax (pmin'y Maximum (minimum) depth of a segment

Hmax (Hmin) Maximum (minimum) distance between two segment levels

VP Distance between two vertical points on which the bottom level of a segment can be hanged (i.e., interval between two adjacent potential
shelf levels)

Variables

Xinrthd 1 if item i has n facings on rack r at level | with height h and depth d, else 0

Yiihd 1 if segment with level I, height of h and depth d at rack r is active, else 0

Further values calculated

Minrihd Total demand of item i with n facings at rack r, level [, height h and depth d

Zid Number of units behind one another for a certain segment depth d

Kin Number of stacked units of item i for shelf height h (i.e., vertical number of facings)

CRinriha Costs of replenishment from backroom of item i with n facings at rack r with level I, height h and depth d
Minsihg Total margin of item i with n facings at rack r, level [, height h and depth d

European Journal of Operational Research 292 (2021) 155-171

Input: Set of items I, set of possible segment heights [

for all items ¢ € 1 .
for all possible segment heights h € H

Kin = min[kpe; [(H™" — b+ (h -V P)) /T ]

end for
end for
return k;, Vie I, he H

Fig. 6. Pseudo code for preprocessing of the stacking parameter kj,.

Input: Set of items I, set of possible segment depths D

for all items i € 1
for all possible segment depths d € D
gia = [(D™" + (d- DP))/d;]
end for
end for
return g;q Vi € I, d € D

Fig. 7. Pseudo code for preprocessing of parameter g;; for stacking items behind each other.

the possible number of facings f;;q for each item i at rack r for a
given segment height h and depth d. Fig. 8 summarizes the associ-
ated computations.

First of all, if a combination leads to a shelf quantity of zero
units (g;; = 0 or k;, = 0), e.g., when it is not possible to allocate at
least one unit to a segment due to a certain segment height, this
combination is ignored within the process. We also check whether
the resulting shelf quantity of one horizontal facing (computed by
kiy - 8iq) already exceeds Q™. If so, one horizontal facing of this
item on the shelf segment considered is only allowed at most as
items cannot have zero facings (i.e., cannot be removed from the
assortment). Otherwise, for each item i it is checked how many
facings can be placed at most on a segment with height h and
depth d of rack r, so that the possible number of facings fi;4
does not exceed QM. The possible number of facings is deter-
mined by fipg = [Q™/(kin - 8ig)]- In a subsequent step, the fea-
sibility of the values found for f;,, is checked. This means that
whenever the number of facings fj4 is too high to allocate it to
any segment of rack r due to the given segment and rack widths,
the corresponding number of facings f;,4 is reduced accordingly
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to fing = [Wr/W;]. This allows non-feasible solutions to be ex-
cluded from the precalculation. The maximum value of all f;4
for item i across all possible heights and depths is saved in f"*
as a global maximum for this item i. Moreover, for later iterations
the maximum number of facings across all items is determined by
M = max[ f, fOF, fRL L ﬁﬂa"], The set of possible facings is

accordingly defined by N = {1, ..., n™m},
Finally, also for later iterations, we limit the set of possible lev-
els. Using the maximum height across all racks mraxhr and the

minimum height of a segment H™" the maximum number of lev-
els on a rack I™® can be defined by ™% = |_m;3x hy/H™n | Conse-

quently, the set of possible shelf levels for a shelf rack is given by
[ and contains 1™ different levels. For each possible level I, 1 e L,
it is further necessary to determine a specific depth d from the
set of available depths D. As the shelf depth decreases for higher
levels and vice versa, some depth levels are no longer possible
if a shelf segment has a certain level. DL;””" represents the fact
that a certain shelf depth d cannot be chosen below the level
I, or DLT® above the level I. The connection between the set D
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Input: Set of items I, set of racks R, set of possible heights ﬁ, set of possible depths D

for all items i € T
for all racks r € R
for all possible heights h € H
for all possible depth d € D
if (Kin - gia > 0)
if (Q"" < kin - gia
fina =1

if (firna > f"%)

fmaz —
i

end if
end if
else

)

1

fina = [Q7* [ (Kin - gia) |

if (firha > f°7)
f = firha
end if
end if else
end for
end for
end for
end for

return fi,q and f"* Vie I, r€ R, h e ]:I, deD

Fig. 8. Pseudo code for preprocessing the maximal possible number of facings f"**.

and the parameters DLdmi” and DLT* is considered within the de-
cision for the shelf segment dimensions in y,,4. An exemplary
set of possible shelf depths D = {50, 40, 30} with d € D on a shelf
rack where at most 7 levels | can be determined [ = {1, ..., 7} is
tied to lower and upper limits for each depth of Dijm'” ={1,1,3}
and DL = {2, 4, 7}. In this case the corresponding boundaries are
DL’{”" =1 and DLT" = 2 for the first shelf depth of 50 centimeter,
indicating that the 50 centimeter-deep shelf segment is available
from level 1 to at most level 2. Consequently the decision variable
Yrin1 must be 0 for all levels [ € {DL}™ +1,...,7}. Equally this ap-
plies to the shelf depth of 40 centimeter, which is also available
from level 1, but can be chosen up to level 4. For the shelf depth
of 30 centimeter, the lower limit is DLg“” = 3, indicating that this
segment type is invalid for any shelf level below level 3 but is eli-
gible up to level 7 defined by DLY* =7.

Stage 2: precalculation. Based on the preprocessing and limiting
the sets for A, L, D and N and the values obtained for fM%, g
and k;,, we start the precalculation of the non-linear parts of the
model. We calculate values for the total item demand A;uq (cf.
Eq. (7)), the resulting total item margin M, pq (cf. Eq. (8)) and the
costs of replenishment CR;,pq (cf. Eq. (9)) of each item i,i € I, pos-
sible facings n,n e N, at rack r, r € R, possible level I, 1 e L, possible
height h, h € A and possible depth d, d € D as shown in the pseudo
code of Fig. 9. The demand A;,,4 of an item in Eq. (7) is defined as
in Eq. (3) by its basic demand «;, the number of horizontal facings
n, the number of vertical facings k;, together with the horizontal
and vertical space elasticities §; and y; as well as the attractivity
factors for the rack §, and for the segment level €.

Xinrthg = @ - (Wi - )P (hy k)% - 8y - € (7)

The margin of an item is shown in Eq. (8) as the unit margin
m; of an item multiplied by the resulting demand A;, 4 of the
allocated product.

(8)

Replenishment costs CR;;,qpg Presented in Eq. (9) occur (as sim-
ilarly defined in Eq. (4) whenever the available shelf quantity g; of
an item is not sufficient to cover the demand &;,;yp4, and thus addi-
tional replenishments at a quantity of qf’ have to be made at costs

v;. This is computed by q? = max| [insing — Gippypq 15 01, Whereas the

Minring = M; - Minring
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available shelf inventory ¢, is computed by Giypg =mn- ki -
8ia — RSS;. The profit p;, g per item is the delta between M, pg

and CRipipg-

CRinpiha = V; - q?nrlhd (9)

Stage 3: application of BIP. The model can now be formulated as
BIP as the non-linear terms have been precalulated and flow, as pa-
rameters, into the objective function and constraints. The BIP can
be solved using the CPLEX-Solver. We use two sets of binary deci-
sion variables, one for shelf dimensioning and the other for prod-
uct allocation:

 Shelf segment dimension: The binary variable y,;,4 indicates
whether the segment level | with a height h and a depth d is
activated on rack r.

 Product allocation: The binary variable x;,;,4 indicates whether
item i is allocated with n facings on rack r and segment level
I, where units can be stacked and placed one behind the other
according to the height h and depth d.

The objective function (10) maximizes the total profit P of all items
of the considered category.

Max!P=3"%"%">"> """ Dinrtna - Xinrina (10)
iel pnefN reR [ef heA deD

subject to

szinrlhd—M~yrmdSOVrGR,lGi,hEH,dEﬁ (11)

iel nefN

ZZZZZXiﬂth:] Viel (12)

nelN T€R [l heA deD

Zzyrlhdfl VreR,lei (13)

heH deD

ZZZ(Hmi"+h~VP).yr,hd=ﬁr+ereR (14)

lel heH deD

ZZZZH-W,‘-X,’thdSVT/rVrGR,IEi (15)

iel nefN heA deb
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Input: Sets I, N, R, L, H and D
for all items i € T
for all possible facings n € N
if (VI, < fimaz)
for all racks r € R
if (n-h; <h,)
for all possible levels I € L

for all possible heights h € H

for all possible depths d € D

if (n < fina)

Ainrthd = QG *

(w;

) (e k) -6

Minrind = Mi = Ninrihd

— b
CR’[n'rlhrl = Ui~ qi)nrlhd
Pinrthd = Minrind — C Rinrind

end if
end for
end for
end for
end if
end for
end if
end for
end for

return pi,pa Vi €I, n € N,reR lel, heH, deD

Fig. 9. Pseudo code for precalculation of non-linear model parts to obtain item profit pjying-
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heH

We use Restriction (11) to ensure that if an item i is assigned to
a shelf segment with n facings, the corresponding segment at rack
r is active with the required dimensions [, h and d. This is formu-
lated using the “BigM” method, where M represents a sufficiently
large number (e.g., M > |N| - |I|). Restriction (12) ensures that each
item i is exactly assigned once on a segment of a certain rack. As-
signing the same item to multiple segments is not permitted, but
ultimately each item has to be assigned. Further, if a segment level
I on rack r is activated, its dimensions (height and depth) are de-
fined distinctly (Restriction (13)). Restriction (14) ensures that none
of the segment levels activated on a shelf rack exceeds the total
height of the rack, h,. The minimum grabbing distance b is added
here to the top level. Restriction (15) ensures that the facings of
all items allocated to a certain segment do not exceed the width

of the segment, or the equally sized rack width w;. Further, Re-
strictions (16) and Restriction (17) ensure that the available shelf
inventory g; determined, lies within the upper and lower bounds
for shelf inventory, Q,.m"“ and Q™. Within Restriction (16) it is en-
sured that at least one facing of an item is always allowed even if
the shelf inventory of one facing would already exceed the max-
imum inventory. Restriction (18) ensures that the height between
the segments is constant or decreasing from the bottom to the top
of a rack. The same logic is applied in Restriction (19) regarding
the depths of the segments. Restrictions (20) and (21) ensure that
the chosen segment depth of each level is in line with the lower
and upper limits for each depth DLZ"“ and DL,

5. Numerical results

This section provides numerical tests with simulated data as
well as a case study with a major German retailer in order to ana-
lyze the general applicability to realistic problem sizes, its compu-
tational performance and to develop managerial insights. We use
the IBM ILOG CPLEX Optimization Studio 12.6.2.0 on a Windows
8 64 Bit machine with 16 gigabyte RAM and an Intel(R) Core(TM)
i5-6440HQ CPU with 2.60 gigahertz. The runtimes indicated in our
tests refer to the total time for preprocessing, precalculation and
solution of the BIP with CPLEX. Table 5 provides an overview of
the numerical experiments.

In the first set of tests we use simulated data to analyze the
performance of our approach. We leverage our data generation
process based on insights from literature, retail practice and (if ap-
plicable) actual values received from our partner company. More
precisely, we obtain replenishment costs v; = 0.22, while mini-

Table 5
Overview of numerical experiments.
Section  Experiments and purpose Analyzed parameter(s)/ scenario Data set # instances
5.1 Runtime analysis and efficiency Number of items and shelf racks, profit margins {Simulated data, informed 520
by case study
5.2 Integrating shelf dimensioning and product allocation =~ Optimization with/without shelf dimensioning 100
53 Impact of shelf dimensioning and related demand Shelf dimension parameters, attractiveness factors 120
5.4 Case study Real-world data 10
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Table 6
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Impact of preprocessing on runtime for different problem sizes, averages of 20 instances per

problem size.

Avg. runtime [sec.] [I=20 |I|]=30 |I]=50 |I|=100 |I| =200
- 3-Stage Approach 1.2 2.0 3.7 7.6 16.1
- Direct PAMIiSD (w/o Stage 1) 8.9 20.1 60.8 > 3600 > 3600

mum and maximum inventory reach was limited to 3 and 30
time periods and a minimum representation quantity of 2 fac-
ings. The latter are applied to set Qi"”'” and Q™. Further, we
use additional model parameters that are informed by our in-
sights from work with the retailer: w; € [9,30], h; € [10,40], d; €
[5,40],m; €[0.1,3.0] and «; € [0.2, 13]. Space-elasticity parameters
Bi and y; are set at 0.17 in line with the findings of a meta-analysis
by Eisend (2014) on various related empirical studies. Finally,
shelf-related global parameters are set as follows: w, =200,b =
15, HMn — 40, HM — 70, VP = 5. The rack attractiveness factor &,
was set up to 1.05 and the segment factor €; up to 1.10. The depths
for segments at levels 1-3 were set at 57 centimeter, and 47 cen-
timeter for all levels starting from level 2. These values are based
on direct information from retail practice. If different values were
used in the numerical studies, these are specified in the following.

5.1. Efficiency of the solution approach

Run time tests in comparison to benchmark approach. The first
analysis assesses the efficiency of our approach. We compare the
runtimes of our three-step approach to a direct solution of PAMiSD
(denoted as direct PAMiSD), i.e., without the preprocessing (Stage
1). Stage 2 is always necessary as otherwise the model remains
non-linear. The benchmark (direct PAMiSD) does not leverage on
the preprocessing of parameter settings (i.e., predetermined num-
ber of facings per item, segment heights, depths, and levels) to re-
duce the solution space by excluding non-feasible values for the
decision variables. Instead it incorporates the related constraints
(see Section 3) with global limits using the original sets of po-
tential heights H, depths D and levels L of shelf segments. These
global limits are valid across all items (and not item individual),
and constitute a reasonable choice for a feasible number of fac-
ings |N|. More precisely, the ranges are determined by dividing
the widest segment by the smallest item, which then provides
the physically highest number of horizontal facings possible. The
ranges obtained are then used as input to Stage 2 and the precal-
culation of demands, margins and replenishment costs. In this way
we can elaborate on the value of Stage 1 as both approaches pro-
vide optimal solutions. Please note that the comparison is based
on the same setting, but with and without the preprocessing.

Table 6 shows that our three-stage approach can handle all
problem sizes of practical relevance efficiently. With an increasing
problem size |I| the suggested solution approach with preprocess-
ing shows significantly lower computation times. For the largest
instances (|I| = 200), the average runtime with our approach is
only 16 seconds, while the benchmark requires more than one
hour on average to solve the corresponding problem.

Impact of available items and shelf racks. The runtime mainly de-
pends on two data parameters: the number of available items |[I|
and the number of shelf racks |R|. Hence we consider the rela-
tionship of I and R and its impact on runtime by subdividing the
entire shelf width into multiple equally dimensioned racks. This
allows the use of the same item set and the comparison of total
profitability. Taking into account realistic shelf sizes, we do not al-
low shelf racks of w; < 60 centimeter. The results are summarized
in Table 7.
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The results show that our approach is able to solve large data
sets with up to 200 items within a reasonable time, especially
when considering that a tactical planning problem is addressed.
Naturally, the average runtime rises as I increases. Further, it is evi-
dent that for a given number of items |I|, a higher number of racks
|R| increases runtime. In particular, considering |R| = 6, a run time
of 1 hour is exceeded for 15% of test instances with |I| > 100. How-
ever, in these cases the corresponding MIP GAPs after one hour are
very small, ranging between 0.53 and 0.71% for |I| = 100 and be-
tween 0.54 and 1.09% for |I| = 200. Our three-step approach is able
to reach an optimal solution for these instances in less than three
hours. Further, the number of racks |R| in this analysis can be con-
sidered as “break points” of the total shelf space. It divides the to-
tal shelf space, e.g., due to constructional reasons or when space
is split into different aisles. However, retailer will always tend to
reduce these break points to obtain a clean and steady optic of the
resulting shelves. Furthermore, a higher number of |R| racks does
not have a positive effect on the objective value. Compared to the
solution found with |R| =1, the objective values remain more or
less steady within a range of +0.5%, whereas the runtime increases
significantly.

5.2. Tests for integrating segment dimensioning into product
allocation planning

The core contribution of this paper is the integration of shelf
dimensioning into product allocation. In this subsection we ac-
cordingly emphasize the additional value of the integration and
enhancement. Please note that this paper this is the first approach
for the integrated problem. There are consequently no benchmark
instances with respect to dimensioning of segments as other
approaches use the segment dimensions as an input factor. To
investigate the impact of integration, we compare PAMiSD with
the model of Diisterhoft et al. (2020), which is the most related
product allocation model with respect to shelf size considerations
(see Section 2.3). This model does not optimize for shelf segment
dimensions, but is based on given sizes of multi-dimensional
shelf segments. As the choice of different shelf segments sizes is
arbitrary when the corresponding dimensions are fixed and not
part of the optimization, we consider multiple, identical shelf
segments for the model of Diisterhoft et al. (2020). This approach
is therefore in line with most product allocation models presented
(e.g., Hansen et al. (2010) or Hwang et al. (2005)). Furthermore,
we apply the identical demand model for the benchmark ap-
proach. Four equal shelf segments are considered for the model
of Diisterhoft et al. (2020), each with a height of 50 centimeter.
Further, all segments are of the same depth (57 centimeter), such
that the number of items that can be placed one behind another
is also fixed in advance.

Table 8 summarizes the results with varying problem sizes.
Even though the results of the benchmark of Diisterhoft et al.
(2020) also provide optimal allocations for the given setting, we
show that integrating shelf segment dimensioning further im-
proves the objective value by an average of about 3.3% across all
test instances. The profit increases at least by 1.15% and up to
5.67%. Usually, the more items need to be allocated, the higher the
profit potential. We apply in the following sections sensitivity anal-
ysis to investigate the value of integration.



A. Hiibner, T. Diisterhoft and M. Ostermeier

Table 7
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Impact of number of items I and number of racks R on runtime [in seconds] and objective value [in euros], average of 20
instances per problem size.

1] Rl =1 R| =2 IRl =4 IR =6
20 Shelf rack width w; 1 - 160 centimeter 2 - 80 centimeter - -
Avg. objective value  227.32 223.18
Avg. runtime 1.20 2.35
30 Shelf rack width w, 1 - 240 centimeter 2 - 120 centimeter 4 . 60 centimeter -
Avg. objective value  342.68 340.10 337.15
Avg. runtime 1.99 3.93 437
50 Shelf rack width w;, 1 - 400 centimeter 2 . 200 centimeter 4 .- 100 centimeter 6 - 67 centimeter
Avg. objective value 599.57 604.50 601.12 597.98
Avg. runtime 3.67 9.94 15.32 15.33
100 Shelf rack width w;, 1 - 800 centimeter 2 - 400 centimeter 4 - 200 centimeter 6 - 133 centimeter
Avg. objective value  1195.74 1195.06 1197.02 1195.82
Avg. runtime 7.59 17.55 97.46 820.39
200 Shelf rack width w, 11,600 centimeter 2 - 800 centimeter 4 - 400 centimeter 6 - 267 centimeter
Avg. objective value  2427.83 2427.24 2425.57 2424.84
Avg. runtime 16.09 34.56 180.83 898.12
Table 8

Impact of integrating shelf segment dimensioning (PAMiSD vs. Diisterhoft et al. (2020)), 20 instances per problem

size.

Profit delta of PAMISD vs. Diisterhoft et al. (2020) for data sets with differing numbers of items

=20 Ain% |I|=30 Ain% |[|[=50 Ain% |[[[=100 Ain% |I[]=200 Ain%
Avg. +2.89 Avg. +3.12  Avg. +297 Avg. + 449  Avg. +3.17
Min. +1.15 Min. + 1.48  Min. + 1.67 Min. + 349 Min. + 2.54
Max. + 4.70 Max. + 5.31 Max. + 441 Max. + 5.67 Max. + 4.17
Table 9
Impact of shelf dimensions.

Parameter Reduction Base value Extension

Rack width (Ww;)

Avg. objective value in % 99.9
Min. deviation from base value in % 0.00
Max. deviation from base value in % -1.98

350 centimeter

400 centimeter 450 centimeter

Shelf depths (d € D)

Avg. objective value in % 99.6
Min. deviation from base value in % -0.33
Max. deviation from base value in % -2.62

57 centimeter

Min. segment height (H™")!

Avg. objective value in % 100.9
Min. deviation from base value in % +0.04
Max. deviation from base value in %  +2.17

20 centimeter

100.0 101.4

- 0.00

- +3.01

47, 57 centimeter 47, 57, 67 centimeter
100.0 101.1

- 0.00

- +2.20

40 centimeter 50 centimeter
100.0 98.6

- -0.81

- -1.85

T Max. segment height (H™*): 70 centimeter.

5.3. Impact of shelf dimensions and shelf-related demand

In this section, we examine the impact of different parameters
on the overall problem. This comprises the impact of available
shelf dimensions (i.e., rack width, minimum segment height,
shelf depth) and shelf attractiveness factors (§; and ¢;). We chose
these parameters as the shelf dimensions directly impact the
overall model complexity (i.e., degree of freedom set within our
precalculations) and the optimization potential for shelf space
planning. Additionally, the study of attractiveness factors for rack-
and segment dependent demand highlight the importance of their
incorporation within shelf space planning. We use 20 instances
per parameter with |I| =50 and |R| = 1. We focus in our analysis
mainly on the impact on total profit, as the average run time of
all test instances is below 6 seconds.

Impact of shelf dimensions. Table 9 summarizes the results for
the analysis of available shelf dimensions. A reduction in total
shelf space (i.e., reducing w;) leads to a minor decrease of pos-
sible profits. On the other hand, if more shelf space is available,

more products can be placed on the shelf (i.e., number of fac-
ings increases), which naturally leads to an increase in profits. Fur-
ther, the rack width impacts needed computational times as less
space makes the selections of products harder, while more space
simplifies the space allocation as the competition for shelf space
between products is mitigated. Increasing the number of avail-
able depths |D| and lower minimum segment heights H™" leads
to increasing profits. Once there are more shelf depth options or
segment heights, the solution generated with a higher degree of
freedom is at least as good as the solution with a lower degree
of freedom. Provided that all other parameters remain untouched,
it holds true that Pp_y < Pp—2 < Pp=3 and respectively for small
minimum segment heights. Knowing this, it is advisable for retail-
ers to include different shelf depths and lower segment heights not
only for optical reasons but also in the course of profit maximiza-
tion.

Impact of rack- and segment-dependent demand. Another test is
applied to investigate the impact of different rack- and segment-
dependent demand factors. We consider the two spatial attrac-
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Table 10
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Average changes in solution structure with segment and rack dependent demand effects.

Demand effects or = off, €, = off

ér = on, €, = off

ér = off, €, = on 8- = on, € = on

Different facings 8.8% [-3;1] 9.8% [-2;2] 11.0% [-3;3]
Different rack 75.4% 78.6% 78.8%
Different segment 59.6% 67.6% 65.8%
Impact on obj. value' -2.2% —0.9% -0.8% 0.0%

1 Ex-post evaluation of solution obtained with §, or/and ¢; in comparison to solution with §, =on and

€ =on.

tivity parameters §; and €; within the demand function. In to-
tal, we compare four solutions. In the first set both effects are
switched off. Afterwards we activate each attractivity factor while
the other one remains unattended, and finally both effects are ac-
tivated together. We compare the structure of the average solu-
tions (i.e., number of facings, assignment to rack and segment)
of each setting to the case where shelf-segment-dependent de-
mand effects are not considered at all. For this analysis we use
the data sets containing |I| =50 items and |R| =4 shelf racks.
For the vertical level of the segment we assume a linear in-
crease from the bottom to the top of 10% apportioned to the lev-
els in between, with ¢; = {1.000, 1.020, 1.040, 1.060, 1.080, 1.100}.
The rack attractiveness factor follows the same intention, with a
higher demand for items on the first rack of 5%, so that 4, =
{1.050, 1.033, 1.017, 1.000}.

Table 10 summarizes the impact of varying rack- and segment-
dependent demand effects. Modeling the effects has a notable im-
pact on objective values. The profit decreases by up to 2.2% if de-
mand effects are not included in the model, but exist in reality.
Given the small magnitude of 10% and 5% of these effects, this
is already significant. With respect to facing changes, the effect is
moderate. When only §, is modeled, we see that the number of
facings displayed to customers is changed in 8.8% of cases on aver-
age compared to the base case assuming no rack- and segment-
dependent demand effects. Further, the number of facings was
changed by —3 and +1 unit at most. The results are similar when
instead only ¢, is considered. The average number of items with
facings changed increases to 9.8% with ranges of +2. When both
effects are used within the model the number of changed items is
again increases by up to 11.0%, while changes appeared +3 units.
The effect of rack and segment changes due to this effect is sig-
nificant. The assignment of items to specific shelf racks changes
between 75.4% and 78.8% when spatial demand effects are consid-
ered. There is a high percentage of items with changed rack as-
signment even where the rack-specific demand factor &, is not as-
sumed. This can be explained by the varying attractiveness of shelf
segments and the related switching of items from an unattractive
segment of one rack to a more attractive segment on another rack.
The number of items with a changed vertical level is 59.6% on av-
erage when only rack-dependent demand is considered, and 67.6%
for segment-dependent demand. In the combined case 65.8% of
items are assigned to another segment on average.

5.4. Case study: practical application of PAMiSD

This section presents a case study that is subject to a close co-
operation with one of Europe’s biggest grocery companies, which
provided data and insights from their daily operations. In line with
this, we use real data from the tea and tinned food category across
five stores located in Eastern Europe. We had access to relevant
shelf data (e.g., rack and segment sizes, minimum distances) and
item data (e.g., margins, sizes, minimum inventory, replenishment
costs). The item-specific parameters are subject to a non-disclosure
agreement. We calculated the base demand «; for each item with
actual sales and number of facings. Demand factors are applied
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as in the tests above. The tinned food category consists of |I| =
113 different products. The retailer set H™" = 40 centimeter and
H™® — 70 centimeter. Within tea we consider |I| = 197 items and
H™in — 30 centimeter and H™* = 70 centimeter. The retailer allows
a segment depth of 47 centimeter, 57 centimeter and 67 centime-
ter for both categories. In the stores, each category has an available
shelf width of eight running meters, which comprises 6 racks with
wr = 133 centimeter each. Every shelf rack is hr = 220 centimeter
high and the grabbing gap b = 15 centimeter and VP = 5 centime-
ter are set in accordance with the actual shelf. While the given
shelf space for each store and category was equal, the actual sales
differed significantly across the stores.

Benckmarks. We use the status quo to benchmark it with
PAMISD. The status quo stems from the current planograms that
are created with the latest version of a state-of-the-art commercial
software for shelf planning. This means that we compare PAMiSD
with a solution that is already promised to be a practicable and
optimized solution by the retailer’s software. Profit of the status
quo contains the margin m; multiplied by the sales minus the re-
plenishment costs that are derived ex-post from the ratio of de-
mand to shelf inventory. In order to further verify the use of in-
tegrated shelf space dimensioning, we also compare PAMiSD with
the model of Diisterhoft et al. (2020) that operates with fixed shelf
dimensions. For both categories, we tested several segment sizes
for the application of Diisterhoft et al. (2020) and chose the setting
with the highest profit to have a solid benchmark. For tinned food,
the height of each shelf level was fixed at 55 centimeter and the
depth at 57 centimeter, resulting in four equally sized segments
for each rack. For the tea category, five equally sized segments per
rack with a height of 44 centimeter and a depth of 57 centimeter
build the benchmark.

Comparison of status quo to PAMiSD. Table 11 shows that PAMiSD
increases the retailer’s profit significantly by 5.03 and 5.74% on av-
erage. This is impressive as the status quo is based on the best pos-
sible planning result of the planner using the solution of the ap-
plied commercial software. In detail, the profit increase calculated
with PAMiSD for tinned food is between 3.34 and 7.12%, whereas
for tea the profit increases lie between 5.07 and 6.29%. The broader
range in the tinned food category is explained by the sales poten-
tial and different status quo in the stores.

Comparison of status quo to Diisterhdft et al. (2020). No feasi-
ble solution could be determined with this approach for tinned
food in two stores due to insufficient shelf space. In all other cases
we see a moderate profit increase. Yet in each case the model of
Diisterhoft et al. (2020) is outperformed by PAMiSD. Once more
we can prove that the integrated approach results in significantly
higher profits than the current approaches that tackle only the
product allocation problem.

Improvement of planning processes and shelf layout. Fig. 10 shows
as an example for Store 2 the shelf layout of the status quo in
the tea segment, whereas Fig. 11 illustrates the new segments. In
this case the number of levels required for proper product alloca-
tion remains at five, but the distances between the vertical levels
are optimized with PAMiSD. Further, in the current shelf layout we
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Table 11
Profit increase and runtime for case studies compared to status quo.
Store 1 Store 2 Store 3 Store 4  Store 5  Average

Tinned food
Profit A Diisterhoft et al. (2020), in % -* +0.96 +2.05 -2 +3.56 +2.19
Profit A PAMISD, in % +4.71 +3.34 +4.70 +5.29 +7.12 +5.03
Runtime PAMIiSD [seconds] 37 16 18 24 38 26
Tea
Profit A Diisterhoft et al. (2020), in % +1.51 +2.27 +2.25 +0.98 +1.72 +1.75
Profit A PAMISD, in % +6.29 +6.06 +5.92 +5.36 +5.07 +5.74
Runtime PAMiSD [seconds] 82 56 69 99 90 79

2 No feasible solution with Diisterhoft et al. (2020) possible.
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Fig. 10. Manually created shelf segments for the current product allocation with
commercial software.
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Fig. 11. Optimized shelf segments generated using PAMiSD.
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find an interruption which gives the whole shelf an unsteady ap-
pearance. In contrast, PAMiSD provides an equal shelf layout for
the whole category. Furthermore, despite the retailer using profes-
sional software for the current planning, the shelf dimensions are
not defined by this commercial tool. This means that shelf plan-
ners have to plan the shelf layout manually and test several possi-
ble settings until they accomplish a satisfying solution.

5.5. Summary and managerial insights

In conclusion, the suggested approach is an improvement in
several ways. First of all, shelf planners do not need to create the
shelf dimensions manually and thus do not need several man-
ual iterations to evaluate a plan in a try-and-error approach that
is expected to be suboptimal. PAMiSD is fast to generate optimal
solutions for practical purposes. Secondly, equal-looking shelves
tend to generate higher profits. We show that a different segment
height across racks tends to have a negative effect on the profit.

The profit decreases when the total shelf of a category is split
up into several racks (see Table 7). This is explained by the re-
sulting very small racks and thus limited space for allocating fac-
ings of one product next to each other. Designing the entire shelf
width as one rack for one category gives the resulting shelves a
consistent shelf layout. As splitting up the entire shelf into mul-
tiple racks does not improve profit, it is sufficient to design and
model only one shelf rack for the planning that depicts the total
available shelf width. This strategy leads to two benefits: (i) re-
tailers reach a steady and equal look over the different racks of a
certain category and (ii) the performance is superior with respect
to profitability and computation time. Furthermore, it is expected
that equal-looking shelves make orientation much easier and pos-
itively impact customer satisfaction and sales. Thirdly, the profit
magnitude is related to the total shelf space, number of segment
depths that can be selected, and the magnitude of demand effects.
A higher flexibility in choosing segment depths leads to increas-
ing profits (see Table 9). Incorporating vertical and horizontal de-
mand effects on the segments in essential. We show that a small
magnitude of 5-10% of these effects already causes an increase in
profit by more than 2%. It affects the number of facings and the as-
signment of items to different levels. Finally and most importantly,
the new shelf segment dimensions in combination with product
allocation increase the total profit of a category significantly (see
Table 8). The integration leads to an increase of around 3.3% on
average, with a minimum of 1.2% and a maximum of 5.7%. As mar-
gins in retail are often only 2-3%, integrating the product alloca-
tion and shelf dimensioning can become a significant contribution
to the retailers profitability. With our case study, we could show
that PAMISD increases the retailer’s profit significantly by more
than 5% on average. This is impressive, as the status quo is based
on the best possible planning result of the planner using the so-
lution of the applied commercial software. As such, our result can
also be used to evaluate current retail practice.

6. Conclusion

In this work, we presented a shelf space optimization approach
that is extended with shelf segment dimensioning. As such, it en-
ables more realistic planning for retailers and constitutes an ap-
propriate decision support tool for practitioners. In our approach,
we consider both the product allocation to shelves and the actual
shelf layout by defining the number and dimensions of shelf seg-
ments. These two decisions are highly interrelated as given shelf
dimensions serve as bounds for the product allocation, while the
products considered limit decisions on shelf dimensions due to
the given product characteristics. Determining the optimal num-
ber of shelf segments and defining individual segment dimen-
sions was previously subject to the manual adjustments of a plan-
ner without any decision support. Also the literature falls short
in this aspect as the segment dimensions are a parameter that
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is at least partially predetermined (see e.g., Bai et al. (2013) or
Diisterhoft et al. (2020)). By integrating the segment decision
into the shelf space optimization process, we provide practical
and applicable results for retailers. The practicability of our ap-
proach is further ensured by considering actual customer behav-
ior (i.e., rack-, segment- and facing-dependent demand function)
and retail profitability (i.e., margins and impact on replenishment
costs).

We obtain optimal solutions by applying a three-step process.
In the first two steps, we set tighter bounds and eliminate non-
linear parts of the model. This makes it possible to solve a BIP ex-
actly and fast. The relevance and contribution of our model and
solution approach is shown in numerical studies. Firstly, we show
the time-efficiency of the solution approach for practical relevant
problem sizes. We also provide a sensitivity analysis to identify
important factors for the computation time. Secondly, we high-
light the impact of integrating shelf dimensioning into the solu-
tion approach. In contrast to a shelf space optimization approach
that does not consider segment dimensions, improvements of up
to 5% can be achieved. Finally, we demonstrate the practical use of
our approach in a case study with a major European retailer. Here
we show that our approach is able to improve a given planning
situation and corresponding profits by 3-7% across different stores
and categories.

Future areas of research. Integrating shelf dimensioning into
product allocation closes an important gap in literature and prac-
tice. However, there are still numerous possibilities for future re-
search to improve shelf space planning. To begin with, retailers
may imply certain aesthetic rules for the rack layout as part of the
store layout and aisle network plan. For instance, it may only be
possible to have standard heights and depths of segments within
one category. Such a policy can be incorporated in our model by
applying just one large shelf where each rack has the identical
dimensions. However, it is not yet researched if standardized or
varying racks have an additional demand impact. It would be in-
teresting to test this within an empirically study and to incorpo-
rate the demand effects with a scenario analysis in our model. In
our approach we already consider demand fluctuations by defin-
ing safety stocks for each product. However we do not explicitly
cover stochastic demand. Besides stochastic demand, seasonal de-
mand and demand effects caused by promotions or item pricing
are a valuable path for further research in this area (see Flamand,
Ghoniem, & Maddah, 2016). Another possible extension of our
model approach is the consideration of detailed merchandising and
item sequencing decisions. This means that a defined order for
neighboring products has to be respected for the product alloca-
tion (Bianchi-Aguiar et al., 2017). In this context other possible ex-
tensions are the integration of assortment decision, and related
effects for out-of-assortment or out-of-stock situations (see e.g.,
Honhon, Gaur, & Seshadri, 2010; Hiibner & Schaal, 2017b; Kok &
Fisher, 2007). An essential connecting factor between related plan-
ning steps would be the integration of inventory management and
store delivery decisions (Holzapfel et al., 2016; Taube & Minner,
2018). Within our approach, we already consider upper and lower
bounds for the shelf quantity of each item, which could then be
reconciled and optimized in accordance with up-streamed logis-
tics processes. A different aspect for future research is the available
shelf space. In our approach the total shelf space of a category,
more precisely the number of empty shelf racks, is an input pa-
rameter. But within a retail store the share of shelf space for each
category is also a flexible factor within certain limits. An integrated
approach that solves the product allocation problem for a category
together with the question of how much shelf space should be as-
signed to this category at all could therefore further improve de-
cision support models for retailers. A further extension might deal
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with optimizing shelf space across different stores and integrating
local demand (see e.g., Corsten, Hopf, Kasper, & Thielen, 2018).
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Appendix. Mathematical formulation of PAMiSD

This section provides the complete mathematical formulation of
PAMISD in addition to our formal problem description in Section 3.
Using the notation introduced in Section 3, the PAMiSD can be
formulated as Integer Non-Linear Program (INLP). It constitutes a
non-linear model due to the given demand function and non-linear
constraints.

max P(R.y) = > m;- Ai(Xijr. ¥jr) — CRijr (Xijr. Yjr) (A1)
iel
Subject to
Xijp =X X Viel jelreR (A2)
Xijr- QY X)) =0Viel je]reR (A.3)
ke] ceR
k£ j
ZZXU, >1Viel (A4)
jeJ reR
Y Xijp—M-y;<0Vje]reR (A5)
iel
> WX, <wji VjelreR (A.6)
iel
hi- X, +b<hyViel jejreR (A7)
Zhj,.yjrgflr VreR (A8)
Jjel
Mi<q+qlViel (A9)
G=)) gijr-xjViel (A10)
je] reR
¢ =7 —RSS; Viel (A11)
@ = max[[A; — ¢i1;0] Viel (A12)
QMn < gt < Q"™ Viel (A13)
XX XireNViel jelreR (A14)
Vir€{0,1} Vje]reR (A15)
@.¢.qeN, Viel (A16)

The total number of facings x;;- is defined by the number of
horizontal (x,f'jr) and vertical (x}’jr) facings, which is ensured by Con-
straint (A.2). Constraint (A.3) ensures that each item i can only
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be assigned to one segment j and one rack r. Further, each item
needs to be allocated and cannot have zero facings (Constraint
(A.4)). Constraint (A.5) activates a shelf segment j at rack r if at
least one item i is assigned to it. Constraint (A.6) ensures that the
width dimension of a shelf cannot be exceeded. Similarly, Con-
straint (A.7) ensures the adherence to height dimensions. The total
height h; of each rack r limits the individual heights of the cor-
responding shelf segments (Constraint (A.8)). Constraint (A.9) en-
sures that total available shelf inventory g; and the additional refill

quantity from the backroom qf’ are sufficient to fulfill total demand
A;. The total shelf inventory is defined by Eq. (A.10), and the avail-
able shelf inventory ¢; is given by Eq. (A.11). The quantity for ad-
ditional replenishment is defined by Constraint (A.12). Constraint
(A.13) ensures that the given minimum and maximum shelf inven-
tory levels are respected. Finally, Constraints (A.14)-(A.16) define
the variable domains.
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