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a b s t r a c t 

Retail shelves are adjustable by varying the number of shelf boards as well as the height and depth of 

each shelf board. Shelf planners adjust the boards accordingly at regular intervals when they create the 

shelf plans and allocate products. Current shelf planning models assume given shelf configurations and 

allocate only products. However, the dimensioning of a shelf segment and product allocation are inter- 

dependent. For instance, the height of one segment may be reduced if only small products are allocated 

or products cannot be stacked. This paper proposes the first integrated approach for shelf segment di- 

mensioning and product allocation. It jointly determines the number of facings for each product, the 

shelf quantity and the size and number of shelf segments. We also identify and consider several restric- 

tions for the shelf structure (e.g., technical options), allocation rules (e.g., maximum inventory reach) and 

allocation- and shelf-layout-dependent demand. We formulate the decision problem at hand which is an 

Integer Non-linear Program and apply a solution algorithm based on the application of bounds that are 

obtained by transferring constraints to a preprocessing stage. Doing so, we can reformulate the problem 

as Binary Integer Program, provide an exact approach and generate practical applicable and optimal so- 

lutions in a time-efficient manner. We show that integrating shelf dimensioning into product allocation 

results in up to 5% higher profits than benchmarks available in literature. By means of a case study we 

show how planning can be improved, and that the retailer’s profit margin can be improved by up to 7%. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Retailers pay close attention to shelf space as it is one of their 

ost important and scarcest resources. In current retail practice, 

owever, shelf planning is often based on planner’s experience, 

ut feeling and manual trial-and-error approaches with limited IT 

upport ( Bianchi-Aguiar, Hübner, Carravilla, & Oliveira, 2021; Kök, 

isher, & Vaidyanathan, 2015 ). In this respect, retailing will benefit 

rom an approach that is data-driven and targets the optimization 

f total profitability as well as allowing time-efficient planning pro- 

esses via appropriate tool support ( Griswold, 2007; Mou, Robb, & 

eHoratius, 2018 ). Retailers must decide, for each product category, 

ow much shelf space they assign to each product within a given 

otal store space ( Ghoniem, Flamand, & Haouari, 2016; Ostermeier, 
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üsterhöft, & Hübner, 2020 ). The space assignment of individual 

roducts implies different effects. If a product receives more space, 

t is more likely that customers will decide to purchase this prod- 

ct ( Chandon, Hutchinson, Bradlow, & Young, 2009; Eisend, 2014 ). 

urthermore, more space results in higher shelf quantity and hence 

otentially fewer replenishment actions are required. However, this 

lso implies that less shelf space is left for the remaining products 

nd as such, the product allocation problem is a mulitple Knapsack 

roblem. 

When defining the space for each product, retailers need to si- 

ultaneously consider the options with shelf dimensioning. A shelf 

ack consists of different shelf segments. A shelf segment is de- 

ned by the height, depth and vertical level of the shelf board. 

ig. 1 illustrates a rack with four shelf segments, where each seg- 

ent has a different depth and height of the shelf board, and is 

ocated on different vertical levels. In practice, the lower segments 

re usually deeper and higher than the upper segments for optical 

easons. 

Shelf segment dimensioning is the decision on the height and 

epth dimension, while the length (width) is given by the rack 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Example shelf rack with shelf segments with different vertical levels, height 

and depth. 
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Fig. 3. Example: Empty shelf rack as a starting point for shelf segment dimension- 

ing. 
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s

idth. Different shelf segment heights can be selected by a shelf 

lanner that impact the stacking opportunities, as illustrated in 

ig. 2 . It shows how two products could be allocated to differently 

ized segments. In option 1, items can only be positioned next to 

ach other due to the low height. Option 2 allows the stacking of 

nly one item that then requires less horizontal space. Option 3 

hows the highest segment, where both items are stackable. 

Also the height of a segment defines the possibility of allo- 

ating an item to a shelf segment (e.g., tall items that do not fit 

nto small segments). Shelf segments with a larger height reduce 

he total number of shelf levels possible on a shelf rack. Further- 

ore, the deeper a shelf segment, the more units of a product can 

e stored. The different options for the number, height and depth 

f shelf segments raise the question of how segment dimensions 

hould be defined, and how each shelf rack should look. Further- 

ore, it becomes clear that product allocation heavily depends on 

he dimensions of the chosen shelf segment. These two aspects are 

nterdependent and hence planned jointly in retail practice. 

However, the interrelationship of shelf dimensions and the cor- 

esponding options for product allocation has not yet been ad- 

ressed in literature (see e.g., Bianchi-Aguiar et al. (2021) ). We 

resent the first comprehensive model and solution approach for 

roduct allocation and shelf segment dimensioning. This means 

e determine the optimal shelf presentation of each product as 

ell as the related total shelf quantity depending on the height 

nd depth dimensions of the chosen shelf segment. Further, we 

imultaneously determine the optimal number of shelf segments 

nd the corresponding dimensions for each shelf segment. By do- 

ng so, we also include related demand effects that include space- 

lasticity and vertical and horizontal positioning effects. This in- 

reases the combinatorial complexity and requires an efficient and 

ffective solution approach for the NP-hard Knapsack problem. 

The remainder of this paper is organized as follows. In 

ection 2 we introduce the conceptual structure of the novel prob- 

em and review related literature. The mathematical model and so- 

ution approach are presented in Sections 3 and 4 . The numerical 
Fig. 2. Different heights of a shelf segment allow

156 
esults shown in Section 5 prove the efficiency of our implementa- 

ion. The approach is tested and solved with real data from coop- 

ration with a large European retailer. Finally, Section 6 concludes 

he paper and denotes further areas of future research. 

. Problem statement and related literature 

This section defines the conceptual background of our planning 

roblem. It builds the foundation for scoping the planning prob- 

em, analyzing related literature, identifying the research gap and 

efining the contribution of this paper. A detailed understanding of 

he actual scope of the planning problem is required to model the 

ependencies and restrictions. 

.1. Setting and related planning problems 

To maximize the profit of a category, the shelf planner must de- 

ide how to place a given set of products (i.e., the assortment of a 

ategory) on a limited area of shelf space containing several shelf 

egments of certain dimensions ( Hübner, 2017 ). This is done in 

egular intervals and is therefore part of a tactical planning prob- 

em. It is usually updated after major assortment changes (e.g., af- 

er regular negotiations with suppliers) or when category sizes are 

djusted (e.g., when additional categories are added to the store) 

 Hübner & Kuhn, 2012 ). The two main decisions in this process are

he setup of shelf racks (i.e., shelf segment dimensioning ) and the 

roduct placement on this racks (i.e., product allocation ). 

Shelf segment dimensioning. The shelf segment dimensioning 

onsiders the definition of the number, size and height of rectangle 

reas given an overall space allowance. A shelf rack with given to- 

al width and total height (see Fig. 3 ) needs to be subdivided into

ifferent shelf segments (i.e., rectangle areas) to enable the most 

rofitable allocation of products. 

The segments are depicted by the physical depth and height as 

ell as the vertical level of shelf boards within the rack. The level 

eans the vertical position of the segment (e.g., on eye level at 

.50 meter), whereas the height represents the vertical size of the 

egment where items can be placed (e.g., 30 centimeter). The ver- 
 different options for product allocation. 
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Fig. 4. Example: Different segment depths possible on a shelf rack, side-facing 

view. 
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ical level of a shelf segment is bound to the shelf grid and the 

vailable cavities for hangers (see Fig. 3 ). The shelf grid represents 

he physical possibility of placing vertical hangers on a shelf rack, 

.g., every 5 centimeter. The segment width is determined by the 

idth of a rack. Based on this information, retail planners deter- 

ine the dimensions of each shelf segment, which includes the 

1) vertical level , (2) height and (3) depth , as well as the (4) total

umber of shelf segments . 

To define the (1) vertical level and (2) height of a shelf segment, 

urther restrictions need to be considered. A shelf segment may 

ave a specific minimum height representing the distance between 

wo shelf boards. This usually depends on marketing and layout 

uidelines. Additionally, a certain grabbing gap must be considered 

uch that customers can still remove products from this segment. 

he maximum height of a segment is the upper limit for the ver- 

ical distance between two segments. It depends on the product 

ategory (e.g., large dog food bag vs. small candy) and the op- 

ions for stacking items (e.g., canned food vs. bagged food), so as 

o avoid shaky stacks. Furthermore, (3) the depth of each segment 

eeds to be set. Retailers use steps between different segments 

s shown in Fig. 4 to make all products on a shelf better visible

o customers (see also Düsterhöft, Hübner, & Schaal, 2020 ). In re- 

ail practice usually up to three different depth sizes are applied. 

he choice depends on optical reasons and inventory requirements. 

ess deep segments allow lower inventory and thus affect avail- 

bility and replenishment frequency. It is a common rule that each 

pper segment needs to be equal or smaller than the next lower 

egment, both in terms of depth and height. (4) The total number 

f segments of each rack is derived by the selection of the height 

nd vertical levels of the segments. 

Product allocation. The allocation of products to multi- 

imensional shelf segments represents a multi-dimensional knap- 

ack problem as items of differing value (i.e., profit contribution) 

eed to be allocated to a limited space, and due to this limitation, 

ot all units may be allocated. As multiple segments are available 

t represents additionally a multiple knapsack problem. In prac- 

ice, this means defining for each product the quantity allocated to 

ach shelf segment and the corresponding shelf racks. The product 

uantity is indicated by facings. A facing is the first visible unit of 
157 
n item in the front row of a shelf. In this sense, retailers define 

he number of units per product in the front row of a shelf that are

isible to the customer ( Corstjens & Doyle, 1981; Hansen & Heins- 

roek, 1979 ). Items can be placed next to each other (horizon- 

al facings) and some items may be stacked (vertical facings) (see 

ig. 5 ). The stacking options depend on the height of the segment, 

he item height and stackability of the item ( Zelst, van Donselaar, 

an Woensel, Broekmeulen, & Fransoo, 2009 ). The total number of 

acings is the number of vertical facings times the number of hor- 

zontal facings. Behind each facing, items can be lined up one be- 

ind the other depending on the segment and item depth. Stacking 

nd lining up items allow the maximum possible vertical and hor- 

zontal space to be fully utilized. 

Retailers apply minimum and maximum requirements for in- 

entory and facings. Minimum inventory limits can ensure a certain 

ervice level (e.g, by using safety stocks) or comply with optical 

uidelines for shelf layout even if a product is very slow moving 

nd would only require little shelf space (see e.g., Baldauf, Eng- 

arsson, & Isaksson (2019) ). Upper limits on the other hand are 

ecessary to limit the maximum inventory reach, especially for per- 

shables. Similarly, a minimum number of facings can be applied to 

nsure a certain shelf representation (e.g., for newly listed products 

ith low current demand) or to fulfill supplier targets (e.g., con- 

ractual agreements for shelf shares; see e.g., Martinez-de Albeniz 

 Roels (2011) ). A maximum number of facings sets an upper bound 

o limit the shelf share for certain products. Finally, some items are 

estricted to certain shelf segments. For example, heavy and bulky 

tems are placed at the lower levels and small, light items are on 

he upper levels. 

Summary. Retail planners face three decisions that need to be 

etermined simultaneously. On the shelf segment dimensioning 

ide they need to decide on (1) the height and (2) depth of each 

egment. (1) also determines the vertical level of each shelf seg- 

ent and ultimately the total number of shelf segments, whereas 

1) and (2) together determine the total available shelf space. On 

he product allocation side, they (3) need to assign products to 

helf segments and the respective number of facings and units be- 

ind one facing, which also implies the total shelf inventory for 

his product as items are stacked and strung according to the di- 

ensions of the chosen shelf segment. The described decisions are 

nterrelated and need to be considered simultaneously. By way of 

xample, product allocation depends on the number and dimen- 

ions of available shelf segments on the one hand, and the dimen- 

ions of the shelf segments depend on the specific attributes of 

llocated items (e.g., item sizes, number of horizontal and vertical 

acings) on the other hand. 

.2. Impact of simultaneous consideration 

The simultaneous decision of these related planning problems 

lso affects further parameters in the stores. More precisely, both 

he demand for products and the replenishment costs are affected 

y the given decisions. We detail the corresponding effects in the 

ollowing and discuss their relevance for the presented setting. 

Impact of shelf segment dimensioning and product allocation on 

emand. Shelving decisions and product allocations affect customer 

emand. As only 30% of all purchasing decisions are fixed before 

ntering the store ( GFK, 2009 ), the possibility of influencing cus- 

omers in their choices is significant through instore manipulations 

 Chandon et al., 2009 ). The potential demand sources are: (1) De- 

and dependent on product allocation of an item , (2) demand de- 

endent on product allocation across items , (3) demand dependent 

n chosen rack and segment , and (4) demand dependent on position 

ithin a segment . We further refer to the reviews and consumer 

tudies of Dréze, Hoch, and Purk (1994) , Chandon et al. (2009) , 
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Fig. 5. Options and related outcome of product allocation. 
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isend (2014) and Bianchi-Aguiar, Silva, Guimaraes, Carravilla, and 

liveira (2017) that summarize related demand effects from an 

mpirical point of view. 

(1) Item demand depends on the visible quantity on the shelf 

 Hansen & Heinsbroek, 1979 ). The higher the visibility of an item, 

he higher its demand. The visibility of an item increases with the 

umber of facings assigned to that item. Empirical studies exam- 

ne these so-called “space-elasticity effects” (see e.g., Cox (1964) , 

rank and Massy (1970) , Curhan (1972) , Anderson (1979) Hansen 

nd Heinsbroek (1979) , Dréze et al. (1994) , Desment and Renaudin 

1998) ). Chandon et al. (2009) show that number of facings is the 

ost important instore factor affecting customer demand. Using 

 meta-analysis across empirical studies, Eisend (2014) quantified 

he average space-elasticity factor as 17%, which implies a demand 

ncrease of 17% each time the number of facings is doubled. 

(2) Product allocation may also impact the demand across 

tems. First of all, cross-space elasticity describes the impact on the 

emand of items when the space assigned to one item is changed 

 Corstjens & Doyle, 1981; Desment & Renaudin, 1998; Dréze et al., 

994 ). However, Schaal and Hübner (2018) show that the impact of 

his demand source on product allocations and retail profit is very 

imited. This also holds true if elasticities are significantly higher 

han the existing empirical values. Secondly, substitution effects 

escribe the demand transfer from non-available to available items. 

 differentiation needs to be made between permanently non- 

vailable items that are out-of-assortment, and temporarily non- 

vailable items that are out-of-stock (see e.g., Fitzsimons (20 0 0) , 

ampo, Gijsbrechts, and Nisol (20 0 0) , van Woensel, van Donselaar, 

roekmeulen, and Fransoo (2007) , Xin, Messinger, and Li (2009) ). 

ecisions in shelf planning are usually based on a given assort- 

ent, so that out-of-assortment substitution is not within the 

cope ( Irion, Lu, Al-Khayyal, & Tsao, 2012; Kök & Fisher, 2007 ). Fur-

hermore, retailers try to avoid out-of-stock situations by imme- 

iately refilling empty shelves with inventory from the backroom 

nd applying safety stocks and minimum representation quantities 

 Urban, 1998 ). 

(3) Shelf-segment-dependent demand. With the approach of 

onsidering different segments for product allocation, it is under- 

tandable that different segments may have different influences 

n the demand of a product. First, the segments are located on 

ifferent vertical levels within the shelf. Following Dréze et al. 

1994) and Underhill (1999) , this means that some segments lie 

ithin a specific zone running approximately from eye- to knee- 

evel, where products are more likely to be seen by customers than 

utside this zone. Chandon et al. (2009) points out that a top-level 

helf is superior to a bottom-level shelf in terms of both attention 

nd sales. Additionally, segments can be differentiated in horizon- 

al order across racks. This touches on the question of whether a 

pecific area of the total shelf, e.g., the horizontal center or the 

eginning of an aisle, is more attractive regarding sales (see e.g., 

honiem et al. (2016) ). 

p

158 
(4) Item positioning within a segment determines how products 

re arranged next to each other, how far a product is positioned 

rom the edge of a segment (i.e., the horizontal location), and the 

ay product facings are arranged, e.g., in rectangular shapes or as 

 family grouping. However, generally these effects are attributed a 

ower to negligible demand impact (see e.g., Chandon et al. (2009) , 

eismar, Dawande, Murthi, and Sriskandarajah (2015) ). Neverthe- 

ess, shelf layout may be subject to some layout restrictions that 

ay require keeping certain products together (e.g., brand group- 

ng), but without changing demand ( Bianchi-Aguiar et al., 2017; 

ianchi-Aguiar et al., 2016; Pieters, Wedel, & Batra, 2010 ). 

In summary, shelf dimensioning and product allocation impact 

ustomer demand in various ways. With respect to the described 

emand effects, only (1) the product-allocation-dependent and (3) 

he segment-dependent demand impacts are attributed with a ma- 

or effect on customer behavior. For effects across products (2) we 

an state that: cross-space allocation has a neglectable impact due 

o the low magnitude; cross-product demand is relevant for assort- 

ent decisions, but this is out of scope for our planning problem; 

ut-of-stock situations result from poor planning or missing safety 

tocks and are prevented using minimum representation quanti- 

ies and safety stocks plus backroom inventory. Finally, there is so 

ar no empirical evidence that positioning items differently within 

 segment has an impact on demand (4). Consequently, product- 

nd segment-dependent demand effects are assumed to be deci- 

ion relevant for our problem specification and are therefore con- 

idered in our modelling approach. 

Impact of shelf segment dimensioning and product allocation on 

osts. To fulfill customer demand, retailers employ safety stocks (as 

art of the minimum inventory) and two types of replenishment 

rocedures ( Hübner, Kuhn, & Sternbeck, 2013; Hübner & Schaal, 

017a; Kotzab & Teller, 2005; Reiner, Teller, & Kotzab, 2013 ). First, 

here is a regular, scheduled replenishment procedure of an en- 

ire category. This depends on delivery patterns, which define spe- 

ific days for store deliveries from the warehouse for each store 

nd each product group ( Holzapfel, Hübner, Kuhn, & Sternbeck, 

016; Taube & Minner, 2018 ). These delivery patterns mainly de- 

end on given network structures and product groups (e.g., fresh 

roducts are delivered more often than dry foods). Hübner and 

chaal (2017a) identify that these replenishment costs per cate- 

ory are related to the delivery frequency and not to shelf plan- 

ing. Hence, in our context they can be assumed as not deci- 

ion relevant. Second, if demand (defined by position of the seg- 

ent and number of facings) is higher than shelf inventory (de- 

ned by the size of the segment and the number of facings), ad- 

itional and ad hoc replenishment from the backroom is required. 

his second type is a product-specific procedure ( Kotzab & Teller, 

005; Kuhn & Sternbeck, 2013 ). There are quantity-dependent 

osts for additional shelf-refilling activities that are required be- 

ween the regular, scheduled refill processes related to the delivery 

atterns. 
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The analysis above on related decisions, demand and cost im- 

lications build the foundation for the literature review in the fol- 

owing subsection. 

.3. Related literature 

Within this section, we will analyze literature from three differ- 

nt streams for product allocation. There is no dedicated literature 

or shelf segment dimensioning, as a dimensioning model on its 

wn without product allocation is not reasonable. 

Literature related to product allocation. Several models have al- 

eady been developed to support retailers in the product alloca- 

ion to shelves. Early approaches addressing this reach back to the 

960s (e.g., Cox (1964) ), followed by the development of non-linear 

ecision models (e.g., Hansen and Heinsbroek (1979) , Corstjens and 

oyle (1981) or Zufryden (1986) ) considering space-elastic demand 

nd other demand and cost effects. Based on the conclusive con- 

ept of space-elastic demand functions, further developments ex- 

ended these approaches. Approaches that are more recent include 

 wide selection of different parameters (e.g., cross-space elasticity, 

tochastic demand, replenishment costs) or integrate related de- 

isions (e.g., replenishment frequency, assortment decisions). For 

xample, Borin, Farris, and Freeland (1994) integrate an assort- 

ent decision and generate a cost function for stock-outs. Urban 

1998) presents a demand function incorporating assortment deci- 

ions as well as backroom space for additional storage. Hübner and 

chaal (2017b) integrate assortment planning and model stochas- 

ic demand. The approach of Irion et al. (2012) further details the 

emand function with cross-space elasticities. A new aspect was 

emonstrated by Hübner and Schaal (2017a) where replenishment 

osts for direct replenishment and from the backroom are speci- 

ed. However, these state-of-the-art approaches in shelf-space lit- 

rature still lack possibilities for integrating shelf segments and 

arying height levels. None of these models takes into account dif- 

erent height levels of segments as they can be found in practice. 

otal shelf space is described by a one-dimensional value and not 

ifferentiated by segments. Usually shelf space is represented by a 

ingle value for the width of a whole category (e.g., 10 meter in a 

ingle line). Consequently, solutions generated with these models 

an hardly be applied to a real shelf, as usually only the number 

f facings is considered and solutions must be split up among dif- 

erent shelf segments. 

Literature related to product allocation with multiple segments. 

ome more sophisticated approaches already consider the fact that 

 shelf consists of different segments. Yang (2001) present a simple 

odel that considers several vertical levels but on the other hand 

acks important components such as a space-elastic demand func- 

ion or cost function. A later approach of Hwang, Choi, and Lee 

2005) provides a demand function that also incorporates in ad- 

ition to several shelf segments, neighborhood relations of items. 

ansen, Raut, and Swami (2010) create a model that integrates de- 

ailed location effects within their profit function. Further, Zhao, 

hou, and Wahab (2016) incorporate effects of spatial relationships 

etween different items in addition to a space-elastic demand 

unction. A stochastic demand function combined with location- 

ependent demand effects can be found in Hübner and Schaal 

2017c) . However, none of these papers factor in varying segment 

izes and vertical levels. All these papers assume equally sized and 

dentical segments across all vertical levels. For all of them, the 

helf and segment sizes are given input parameters and not part 

f the decision problem. 

Literature related to product allocation with multiple and differ- 

ntly sized segments. The following two papers are more related 

o our problem as they assume differently sized segments. Bai, 
159 
an Woensel, Kendall, and K. Burke (2013) provide a model where 

everal shelf segments are available that can each be defined with 

n individual height. Yet, the different heights are not part of the 

ecision problem but used as input parameter in their model. Fur- 

her, they integrate in addition to a space-elastic demand function, 

ocation effects of different segments. Depending on the height of 

 shelf segment, they precalculate the number of items that can 

e stacked one above the other and then decide about the num- 

er of horizontal facings. On the other hand they neglect the fact 

hat shelf segments can also have different depths and that this af- 

ects the resulting inventory for each item. Further, they only pro- 

ide solutions for small data sets of up to 29 items generated with 

 multi-neighborhood heuristic. Düsterhöft et al. (2020) provide 

he first model to address the problem with multiple shelf racks 

nd multiple-sized shelf segments. The authors present a model 

hat, alongside the space-elastic demand and location effects, con- 

iders shelf segments with different dimensions regarding height, 

idth and depth. However, in contrast to our work the authors 

ssume the shelf dimensions as input parameters and shelf seg- 

ent dimensioning is therefore not part of the optimization prob- 

em. This also means that the number of shelf segments is fixed 

n advanced. We integrate these decisions in our model and de- 

ide simultaneously on the product allocation and shelf segment 

imensioning. The integration of shelf segment dimensioning sig- 

ificantly increases the model complexity of a product allocation 

odel as each shelf segment setting offers different allocation pos- 

ibilities. Düsterhöft et al. (2020) could be described as a static 

odel (i.e., given dimensions), while we address a dynamic prob- 

em setting (i.e., varying dimensions). Enhancing product allocation 

ith shelf segment dimensioning impacts the decision model and 

ts variables, constraints and overall complexity to solve. This re- 

uires a tailored solution approach that is able to handle the new 

imension of complexity. We discuss the given model complexity 

n more detail in Section 3 . 

.4. Research gap 

Retail practice shows that the dimensioning of shelf segments 

onstitutes an important planning problem as shelf planners 

ould struggle to find feasible allocation solutions when using 

urrent models from literature, and need to resort to trial- 

nd-error approaches with limited optimization support for the 

imensioning problem ( Bianchi-Aguiar et al., 2017; Hübner & 

uhn, 2012 ). Further, our literature review shows that the integra- 

ion of shelf dimensioning into product allocation problems has 

ot yet been addressed in related literature. The review shows 

hat common models reduce the product allocation problem to 

 one-dimensional problem with a single segment. Some papers 

re extended to multiple segments, but again assume only given 

helf dimensions, reduce the three-dimensional problem to a two- 

imensional problem by assuming some shelf parameters, do not 

xplicitly model all relevant decision variables or are not capable 

f dealing with practically relevant problem sizes (see Table 1 ). 

ven though Bai et al. (2013) and Düsterhöft et al. (2020) extend 

he product allocation literature by modeling the shelf space with 

ulti-dimensional segments, they do neither include a decision on 

umber of shelf segments, nor the vertical level of segments and 

lso not the height and depth of segments. These are given param- 

ters in these models. It therefore becomes obvious that no avail- 

ble approach in literature yet covers the interdependent decision 

roblem of shelf segment dimensioning and product allocation. 

We further refer the reader to the publications of Hübner and 

uhn (2012) , Kök et al. (2015) and Bianchi-Aguiar et al. (2021) for 

 more detailed review. 
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Table 1 

Overview of product allocation literature related to shelf segment dimensions. 

Demand effects Item/shelf Shelf Shelf Number of Vertical Height/Depth 

Literature Space Horizontal Vertical dimensions racks segments segments seg. level of segments 

Hansen and Heinsbroek (1979) � 1D single single – – –

Corstjens and Doyle (1981) � 1D single single – – –

Zufryden (1986) � 1D single single – – –

Borin et al. (1994) � 1D single single – – –

Urban (1998) � 1D single single – – –

Irion et al. (2012) � 1D single single – – –

Hübner and Schaal (2017a) � 1D single single – – –

Yang (2001) � 1D single multiple given given identical a 

Hwang et al. (2005) � � 1D single multiple given given identical a 

Hansen et al. (2010) � � � 1D single multiple given given identical a 

Hübner and Schaal (2017c) � � 1D single multiple given given identical a 

Bai et al. (2013) � � � 2D single multiple given given given 

Düsterhöft et al. (2020) � � � 3D multiple multiple given given given 

This paper � � � 3D multiple multiple decision decision decision 

– means not applicable/not considered in model. 
a Identical dimensions across all segments; segments given. 

Table 2 

Notation of the general model for product allocation and shelf segment dimensioning. 

Indices 

I Set of items i within the category, with i ∈ I
J Set of shelf segments j, with j ∈ J
R Set of shelf racks r available, with r ∈ R 
Product-related parameters 

αi Basic demand of item i 

βi (γi ) Horizontal (vertical) space elasticity of item i 

m i Margin of one unit of item i 

v i Costs of replenishing one unit of item i from backroom 

w i , h i , d i Width, height, depth of item i 

Q max 
i 

(Q min 
i 

) Maximum (minimum) shelf inventory of item i 

RSS i Minimum representation inventory and safety stock at the shelf of item i 

Shelf-related parameters 

δr Attractiveness factor of rack r

ε j Attractiveness factor of shelf segment level for the given level l jr 
b Minimum grabbing gap, i.e., height between items of segment level l and next segment level l + 1 

g i jr Inventory per facing of item i at shelf segment j at rack r

w jr , h jr , d jr , l jr Width, height, depth and level of shelf segment j on shelf rack r

˜ w r , ̃ h r Width and height of shelf rack r

Decision variables 

x h 
i jr 

Number of horizontal facings of item i at shelf segment j at rack r; integer variable 

x v 
i jr 

Number of vertical facings of item i at shelf segment j at rack r; integer variable 

y jr 1 if on rack r segment j is active, else 0; binary variable 

Auxiliary variables 

q b 
i 

Backroom inventory (i.e., additional refill quantity) of item i ; integer variable 

q s 
i 

Available shelf inventory of item i ; integer variable 

q 
s 
i Total shelf inventory of item i ; integer variable 

x i jr Total number of facings of item i at shelf segment j at rack r; integer variable 

3
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. Model development 

This section introduces the formal description of the P roduct 

 llocation M odel with i ntegrated S helf Segment D imensioning 

PAMiSD) and discusses the complexity of this NP-hard Knapsack 

nd non-linear optimization problem. The complete, non-linear 

athematical model can be found in Appendix . 

Notation. Table 2 summarizes the notation, including parame- 

ers and decision variables for the general production allocation 

nd shelf segment-dimensioning model. 

Decision variables and constraints. With the objective of maxi- 

izing total profit, retailers must assign a given set of items i, i ∈ I

o a total shelf space, where only the number of shelf racks r, r ∈ R
160 
nd the height ˜ h r and width ˜ w r of each rack are known. In order 

o find optimal shelf dimensions, retailers must consider different 

ypes of shelf segment j, j ∈ J. Each segment is characterized by its 

imensions, i.e., its depth d jr , height h jr and level l jr on a given

ack r, r ∈ R . The actual segment dimensions depend on the choice 

r rather combination of segments on the corresponding rack and 

re not determined in advance. Consequently, the model optimizes 

wo types of decision variables. First, the binary variable y jr defines 

f a shelf segment j, j ∈ J with specified shelf segment dimensions 

 jr , h jr and l jr at rack r, r ∈ R is chosen or not. The segment di-

ensions of the corresponding shelves have to adhere to the fol- 

owing relationships, with j 1 and j 2 as two consecutive segments 

rom bottom to top: (1) d j 1 r ≥ d j 2 r and (2) h j 1 r ≥ h j 2 r , which means
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he next higher segment j 2 is equal or less deep and high; (3) 

 j 2 r 
= l j 1 r + h j 1 r , which means the level of the upper segment j 2 

s the sum of the level and height of the lower segment j 1 on the

onsidered rack r, r ∈ R . (4) The width w jr of a segment j at rack r

s determined by the width of rack ˜ w r (i.e., w jr = ˜ w r ). 

Second, the integer variable x i jr defines the total number of fac- 

ngs of each item i, i ∈ I at shelf segment j, j ∈ J and rack r, r ∈ R .

he total number of facings x i jr is computed by the number of hor- 

zontal facings x h 
i jr 

times the number of vertical facings x v 
i jr 

at shelf 

egment j of rack r. Each item i can only be assigned to one seg- 

ent j: If x i jr ≥ 1 , then x ikr = 0 ∀ i ∈ I, j, k ∈ J : k � = j, r ∈ R . As the

ssortment is given, each item needs to be allocated and cannot 

ave zero facings: 
∑ 

j∈ J 
∑ 

r∈ R x i jr ≥ 1 , ∀ i ∈ I. A shelf segment j at 

ack r is selected if at least one item i is allocated. This is expressed

y setting the binary variable y jr = 1 if x i jr ≥ 1 , and 0 otherwise.

he available width ( w jr ) and height ( h jr ) of a segment j on rack

cannot be exceeded. In the width dimension it therefore needs 

o be ensured that 
∑ 

i ∈ I w i · x h 
i jr 

≤ w jr , ∀ j ∈ J, r ∈ R, with w i as the

tem width. In the height dimension, it needs to be ensured that 

 i · x v 
i jr 

+ b ≤ h jr for all i, i ∈ I, j, j ∈ J and r, r ∈ R . This means that

t most so many vertical facings x v 
i jr 

of an item with item height 

 i can be assigned that fit into the segment height and respect an 

dditional grabbing gap b. The total height ˜ h r of each rack r is lim- 

ted by 
∑ 

j∈ J h jr · y jr ≤ ˜ h r , ∀ r ∈ R . 

Two associated auxiliary variables are applied to define the to- 

al available shelf inventory q s 
i 

and the additional refill quantity 

rom the backroom q b 
i 
. Both quantities are available to fully sat- 

sfy total demand λi , with λi ≤ q s 
i 
+ q b 

i 
. The total shelf inventory 

s computed by q s i = 

∑ 

j∈ J 
∑ 

r∈ R g i jr · x i jr . The stock per facing g i jr of 

n item i at segment j and rack r is a parameter as retailers usu- 

lly use the total segment depth and fill up accordingly. Hence, the 

arameter g i jr depends on the item depth d i and on the shelf seg- 

ent depth d jr at rack r, i.e., g i jr = � d jr / d i 	 , ∀ i ∈ I, j ∈ J, r ∈ R . The

vailable shelf inventory q s 
i 

is the total shelf inventory q s i minus 

he representation minimum and safety stock RSS i . The parame- 

er RSS i is exogenously defined, for example by taking into account 

ead-time for warehouse replenishment, demand volatility or min- 

mum representation quantities. The safety stock RSS i is part of 

he shelf stock. This allows modeling of the remaining demand as 

eterministically known. Furthermore, out-of-stock situations can- 

ot arise as if total demand λi exceeds available shelf inventory 

 

s 
i 
, items are directly replenished from sufficiently available back- 

oom inventory. This is expressed in the second auxiliary variable, 

he refill quantity from the backroom q b 
i 
. The quantity for this ad- 

itional replenishment is calculated by q b 
i 

= max [ 
 λi − q s 
i 
�; 0] . Fi- 

ally, retailers impose restrictions on the shelf inventory. Minimum 

nd maximum shelf inventory levels are defined by Q 

min 
i 

≤ q s 
i 
≤

 

max 
i 

, ∀ i ∈ I. The minimum shelf quantity Q 

min 
i 

factors in the min-

mum inventory reach and minimum representation quantity and 

 

max 
i 

the maximum inventory reach accordingly (e.g., for perish- 

ble products). These quantities also factor in minimum and max- 

mum number of facings. 

Objective function. The retailer pursues the objective of max- 

mizing the total profit P through selecting the optimal num- 

er of facings x i jr and shelf segments y jr across all items, 

helf segments and racks, represented by the respective vec- 

ors x̄ and ȳ , with x̄ = { x 111 , x 112 , . . . , x 211 , x 212 , . . . , x | I|| J|| R | } and ȳ =
 y 11 , y 12 , . . . , y 21 , y 22 , . . . , y | J|| R | } . 

ax P ( ̄x , ȳ ) = 

∑ 

i ∈ I 
p i (x i jr , y jr ) (1) 

To obtain the item’s profit p i , the cost of replenishment CR i jr is 

educted from the item’s gross margin m i . 

p i (x i jr , y jr ) = m i · λi (x i jr , y jr ) − CR i jr (x i jr , y jr ) (2)
161 
The gross margin of an item is calculated as the product of 

ts total demand λi and its unit margin m i . The item unit mar- 

in m i corresponds to sales price minus purchase cost and further 

osts per unit (e.g., listing costs, quantity-independent replenish- 

ent costs). The total demand λi (x i jr , y jr ) of an item i is a com-

osite function of the basic demand αi , allocation- and segment- 

ependent demand. The basic demand αi represents the retailer’s 

orecast for an item that is independent of the facing, segment and 

ack position (cf. Bianchi-Aguiar et al., 2021; Hansen & Heinsbroek, 

979; Hübner & Kuhn, 2012 ). The forecast may be based on histor- 

cal sales (i.e., average demand across multiple periods), but may 

lso incorporate further marketing effects. The higher the visibil- 

ty of an item, the higher its demand ( Chandon et al., 2009; Cox, 

964; Curhan, 1972; Eisend, 2014 ). The visibility increases with 

he number of horizontal and vertical facings ( x h 
i jr 

, x v 
i jr 

) and also

epends on the item size. In accordance with prior research (cf. 

.g., Hansen & Heinsbroek, 1979; Irion et al., 2012 ), the facing- 

ependent demand rate is a polynomial function of the number 

f horizontal facings x h 
i jr 

, visible frontal item width ( w i ) and the 

orizontal space-elasticity βi (with 0 ≤ βi ≤ 1 ) as well as number 

f vertical facings x v 
i jr 

, visible frontal item height ( h i ), and verti- 

al space-elasticity γi (with 0 ≤ γi ≤ 1 ). The factor δr represents 

he attractiveness of rack r and ε j the attractiveness of shelf seg- 

ent j. As such, the model incorporates space-elastic demand as 

ell as vertical and horizontal attractiveness of shelf segments. 

q. (3) summarizes the demand calculation applied. 

i (x i jr , y jr ) = αi ·
∑ 

j∈ J 

∑ 

r∈ R 
( w i · x h i jr ) 

βi ·
∑ 

j∈ J 

∑ 

r∈ R 
( h i · x v i jr ) 

γi ·
∑ 

j∈ J 

∑ 

r∈ R 
δr · ε j · y jr ∀ i ∈ I (3) 

Costs of replenishment CR i jr presented in Eq. (4) occur when- 

ver the available shelf quantity q s 
i 

of an item i is not sufficient to 

over the demand λi of an item i within the time horizon consid- 

red and thus additional replenishment with quantity from back- 

oom q b 
i 

has to be performed at quantity-dependent refill costs v i . 

R i jr (x i jr , y jr ) = v i · q b i (x i jr , y jr ) ∀ i ∈ I, j ∈ J, r ∈ R (4)

Model complexity. The model presented constitutes a combina- 

orial optimization problem and belongs to the class of Knapsack 

roblems. Knapsack problems are known to be NP-hard (see, e.g., 

ellerer, Pferschy, & Pisinger, 2004 ), which underlines the given 

omplexity. In our application, the model complexity is driven by 

wo factors. First, as in classical allocation problems, we consider 

 large number of different product allocation combinations for a 

iven shelf space. Eq. (5) indicates the possible combinations ( Y ) 

f placing K items ( K = | I| ) into a knapsack ( = shelf) of the size S.

 (N, S) = 

(
S − 1 

K − 1 

)
· K · (K − 1) (5) 

Second, we additionally deal with the combination of available 

helf space S and the number and size of corresponding shelf seg- 

ents. For each shelf rack, a different choice of shelf segments (i.e., 

umber and size of segments) is possible, each resulting in a dif- 

erent setting and space availability. Assuming, that each shelf seg- 

ent only shows discrete, predefined depth and height options, let 

 be the number of different shelf heights and d the number of 

ifferent shelf depths. We can then determine the possible combi- 

ations of shelf segments Z for one shelf rack, as shown in Eq. (6) .

 = 

∑ 

j∈ J 
h 

j ·
∑ 

j∈ J 
d 

j 
(6) 
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Table 3 

Three-step solution approach of the PAMiSD . 

Stages Approach Implementation 

(1) Preprocessing Determination of problem parameters to exclude non-feasible values for each decision variable Java 

(2) Precalculation to overcome 

non-linear model 

Transfer non-linear parts of the model into parameters that are fed into a BIP. Precalculate these 

parameters for all possible combinations within the individual bounds obtained from Stage 1 for 

each decision variable 

Java 

(3) Solving BIP Input model parameters obtained from Stage 2 and solve BIP to obtain an optimal solution CPLEX 

s
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The resulting large number of combinations for different shelf 

egments can be shown by looking at a simple example. Con- 

ider two shelf racks with up to 5 segments per rack ( | J| = 5 ), and

ach shelf segment has h = 6 different heights and d = 3 different 

epths options. For two shelf racks this results in 19,386 different 

ombinations of shelf layouts with regard to available space, num- 

er and size of segments. Altogether, the allocation combinations 

rising from Eq. (5) have to be considered for all Z segment/space 

ombinations and for each single shelf rack. The complexity there- 

ore increases significantly as the number of items, shelf space 

nd available segment types increases. Furthermore, some parts 

f the objective function and constraints are non-linear, e.g., the 

emand model. Consequently, an efficient solution approach is re- 

uired to solve the NP-hard and combinatorial complex multiple- 

hoice knapsack problem that is based on a non-linear objective 

unction. 

. Solution approach 

In this section, we detail the solution approach proposed to 

olve PAMiSD to optimality. As stated above, PAMiSD constitutes 

 non-linear model. Our approach therefore consists of three dif- 

erent stages to address the non-linearity efficiently: (1) prepro- 

essing, (2) precalculation, and (3) the solution of a Binary Integer 

roblem (BIP). The BIP is a reformulation of the PAMiSD to obtain a 

odel that is solveable by a commercial solver. The different stages 

re summarized in Table 3 . 

The first stage is necessary to reduce the solution space and 

ombinatorial options by determining model parameters needed as 

nput for the BIP (e.g., limiting possible number of facings per item 

nd segment heights). It is based on the idea of decreasing the so- 

ution space by transferring constraints of the Integer Non-linear 

rogram (INLP) formulation of the PAMiSD into a preprocessing 

tep. Doing so we reduce the possible values for the decision vari- 

bles as we exclude non-feasible settings, but keep all feasible val- 

es for the decisions variables. The second stage helps to overcome 

he non-linearity induced by the non-linear demand function. This 

s done by precalculating demand, margin and replenishment val- 

es for the given set of integer facings obtained in Stage 1. Finally, 

he BIP reformulation of PAMiSD is solved in the third stage , lever- 

ging the input parameters determined in Stage 1 & 2. Due to the 

resteps, the PAMiSD can be solved optimally as a BIP using CPLEX. 

s the calculated bounds on the decision variables reflect actual 

onstraints of the PAMiSD and its INLP formulation, the solution 

btained is a global optimum of PAMiSD. Table 4 summarizes the 

dditional notation used. 

Stage 1: preprocessing. In this section we exploit problem 

pecifics (see Section 2.1 ) to reduce the combinatorial complexity 

nd exclude non-feasible solutions upfront. In detail, we reduce the 

olution space by considering constraints to obtain tighter bounds 

or each decision variable. First, we define feasible heights of the 

egments. Second, we use the feasible heights to set limits for the 

tacking (i.e., the number of vertical facings) and stringing together 

f items. The parameters obtained are combined with minimum 

nd maximum inventory reach to calculate feasible ranges for the 
162 
otal number of facings. Ultimately, ranges for the number and di- 

ensions of levels for shelf segments are determined using con- 

traints provided by retail practice (e.g., higher segments are less 

eep). 

Each shelf segment is defined by its vertical level, height and 

epth. To specify the dimensions of a shelf segment we use l, l ∈ L,

or the level, h, h ∈ H for the height and d, d ∈ D for the depth. First

e define the set of possible segment heights ˆ H . We define ˆ H dur- 

ng the preprocessing across all racks and not specifically by rack, 

s this set refers to the possible vertical distance between two seg- 

ents in general, and is thus equal for all racks. We leverage the 

act that retailers define minimum and maximum heights of seg- 

ents for optical reasons. The parameters H 

min and H 

max repre- 

ent these distances between two levels. Furthermore, heights are 

ounded to the cavities of a shelf rack, i.e., options where the bot- 

om level of a segment can be hung. These cavities are represented 

y the vertical points V P of the shelf rack. The set for all potential

eights H can therefore be reduced to ˆ H , which only comprises 

 

max = � (H 

max − H 

min ) /V P 	 +1 elements. For example, if we have a

inimum segment height H 

min = 20 centimeter and a maximum 

egment height H 

max = 50 centimeter, the segment height is ad- 

ustable within 30 centimeter. Knowing that a segment height can 

nly be placed every 5 centimeter due to the cavities of the shelf 

ack, i.e., V P = 5 centimeter, we only need to consider h max = 30

entimeter / 5 centimeter + 1 = 7 possible settings of a segment 

eight. That also means that the height for each potential segment 

s defined by H 

min + (h · V P ) , ∀ h ∈ H. 

After reducing the set to ˆ H , we can efficiently calculate the po- 

ential values for the vertical number of facings k ih for each item 

 . The number of vertical facings is precalculated in our approach 

s retailers usually fill up segments to the maximum. However, 

ome items are not stackable at all or only stackable to a cer- 

ain limit. This is represented by the upper stacking limit k max 
i 

. 

ig. 6 represents the pseudo code to calculate how many units 

an be stacked for each possible segment height h by respecting 

he minimum segment height H 

min , grabbing distances b, vertical 

oints V P, the item height h i and the maximum stacking quantity 

 

max 
i 

. 

Secondly, we define the set of potential segment depth 

ˆ D . Sim- 

larly as for the segment height, we leverage minimum and maxi- 

um depths of segments. The parameters D 

min and D 

max represent 

hese distances. The segment depth can only be varied in given 

teps DP (like the vertical points V P for the height) and has a min-

mum and maximum depth D 

min and D 

max . Thus, the set for po- 

ential depths D can be reduced to the set ˆ D with only d max = 

 (D 

max − D 

min ) /DP 	 + 1 different depths. The reduced set enables

s to efficiently compute for each item i the number of units g id 
hat can be lined up one behind the other on a certain shelf depth 

. Fig. 7 represents the pseudo code to calculate how many units 

 id can be stacked behind each other for each possible segment 

epth d by respecting minimum segment depth D 

min , depth points 

P and the item depths d i . 

The parameters obtained enable us to determine an upper 

ound on the number of facings f max 
i 

for each item i . We use g id 
nd k ih as well as the maximum shelf inventory Q 

max to calculate 

i 
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Table 4 

Additional notation. 

Further indices 

D Set of shelf depths d, with d ∈ D 
H Set of shelf heights, with h ∈ H
L Set of shelf levels, with l ∈ L 
N Set of number of facings, with n ∈ N
Further parameters 

k max 
i 

Maximum number of units of item i that can be stacked 

DL max 
d 

(DL min 
d 

) A certain shelf depth must not be chosen above (below) this level 

DP Distance between two steps in the depth dimension of a segment 

D max (D min ) Maximum (minimum) depth of a segment 

H max (H min ) Maximum (minimum) distance between two segment levels 

V P Distance between two vertical points on which the bottom level of a segment can be hanged (i.e., interval between two adjacent potential 

shelf levels) 

Variables 

x inrlhd 1 if item i has n facings on rack r at level l with height h and depth d, else 0 

y rlhd 1 if segment with level l, height of h and depth d at rack r is active, else 0 

Further values calculated 

λinrlhd Total demand of item i with n facings at rack r, level l, height h and depth d

g id Number of units behind one another for a certain segment depth d

k ih Number of stacked units of item i for shelf height h (i.e., vertical number of facings) 

CR inrlhd Costs of replenishment from backroom of item i with n facings at rack r with level l, height h and depth d

M inrlhd Total margin of item i with n facings at rack r, level l, height h and depth d

Fig. 6. Pseudo code for preprocessing of the stacking parameter k ih . 

Fig. 7. Pseudo code for preprocessing of parameter g id for stacking items behind each other. 
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he possible number of facings f irhd for each item i at rack r for a

iven segment height h and depth d. Fig. 8 summarizes the associ- 

ted computations. 

First of all, if a combination leads to a shelf quantity of zero 

nits ( g id = 0 or k ih = 0 ), e.g., when it is not possible to allocate at

east one unit to a segment due to a certain segment height, this 

ombination is ignored within the process. We also check whether 

he resulting shelf quantity of one horizontal facing (computed by 

 ih · g id ) already exceeds Q 

max 
i 

. If so, one horizontal facing of this

tem on the shelf segment considered is only allowed at most as 

tems cannot have zero facings (i.e., cannot be removed from the 

ssortment). Otherwise, for each item i it is checked how many 

acings can be placed at most on a segment with height h and 

epth d of rack r, so that the possible number of facings f irhd 

oes not exceed Q 

max 
i 

. The possible number of facings is deter- 

ined by f irhd = � Q 

max 
i 

/ (k ih · g id ) 	 . In a subsequent step, the fea-

ibility of the values found for f irhd is checked. This means that 

henever the number of facings f irhd is too high to allocate it to 

ny segment of rack r due to the given segment and rack widths, 

he corresponding number of facings f irhd is reduced accordingly 
163 
o f irhd = � ̃  w r / w i 	 . This allows non-feasible solutions to be ex- 

luded from the precalculation. The maximum value of all f irhd 

or item i across all possible heights and depths is saved in f max 
i 

s a global maximum for this item i . Moreover, for later iterations 

he maximum number of facings across all items is determined by 

 

max = max [ f max 
1 

, f max 
2 

, f max 
3 

, . . . , f max | I| ] . The set of possible facings is

ccordingly defined by ˆ N = { 1 , . . . , n max } . 
Finally, also for later iterations, we limit the set of possible lev- 

ls. Using the maximum height across all racks max 
r 

h r and the 

inimum height of a segment H 

min , the maximum number of lev- 

ls on a rack l max can be defined by l max = � max 
r 

˜ h r /H 

min 	 . Conse-

uently, the set of possible shelf levels for a shelf rack is given by 
ˆ 
 and contains l max different levels. For each possible level l, l ∈ 

ˆ L , 

t is further necessary to determine a specific depth d from the 

et of available depths ˆ D . As the shelf depth decreases for higher 

evels and vice versa, some depth levels are no longer possible 

f a shelf segment has a certain level. DL min 
d 

represents the fact 

hat a certain shelf depth d cannot be chosen below the level 

, or DL max above the level l. The connection between the set ˆ D 
d 
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Fig. 8. Pseudo code for preprocessing the maximal possible number of facings f max 
i 
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∑
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∑
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nd the parameters DL min 
d 

and DL max 
d 

is considered within the de- 

ision for the shelf segment dimensions in y rlhd . An exemplary 

et of possible shelf depths ˆ D = { 50 , 40 , 30 } with d ∈ 

ˆ D on a shelf

ack where at most 7 levels l can be determined 

ˆ L = { 1 , . . . , 7 } is

ied to lower and upper limits for each depth of DL min 
d 

= { 1 , 1 , 3 }
nd DL max 

d 
= { 2 , 4 , 7 } . In this case the corresponding boundaries are

L min 
1 

= 1 and DL max 
1 

= 2 for the first shelf depth of 50 centimeter,

ndicating that the 50 centimeter-deep shelf segment is available 

rom level 1 to at most level 2. Consequently the decision variable 

 rlh 1 must be 0 for all levels l ∈ { DL max 
d 

+ 1 , . . . , 7 } . Equally this ap-

lies to the shelf depth of 40 centimeter, which is also available 

rom level 1, but can be chosen up to level 4. For the shelf depth

f 30 centimeter, the lower limit is DL min 
3 

= 3 , indicating that this

egment type is invalid for any shelf level below level 3 but is eli-

ible up to level 7 defined by DL max 
3 

= 7 . 

Stage 2: precalculation. Based on the preprocessing and limiting 

he sets for ˆ H , ˆ L , ˆ D and 

ˆ N and the values obtained for f max 
i 

, g id 
nd k ih , we start the precalculation of the non-linear parts of the 

odel. We calculate values for the total item demand λinrlhd (cf. 

q. (7) ), the resulting total item margin M inrlhd (cf. Eq. (8) ) and the

osts of replenishment CR inrlhd (cf. Eq. (9) ) of each item i, i ∈ I, pos-

ible facings n, n ∈ 

ˆ N , at rack r, r ∈ R, possible level l, l ∈ 

ˆ L , possible

eight h, h ∈ 

ˆ H and possible depth d, d ∈ 

ˆ D as shown in the pseudo

ode of Fig. 9 . The demand λinrlhd of an item in Eq. (7) is defined as

n Eq. (3) by its basic demand αi , the number of horizontal facings 

, the number of vertical facings k ih together with the horizontal 

nd vertical space elasticities βi and γi as well as the attractivity 

actors for the rack δr and for the segment level εl . 

inrlhd = αi · ( w i · n ) βi · ( h i · k ih ) 
γi · δr · εl (7) 

The margin of an item is shown in Eq. (8) as the unit margin

 i of an item multiplied by the resulting demand λinrlhd of the 

llocated product. 

 inrlhd = m i · λinrlhd (8) 

Replenishment costs CR inrlhd presented in Eq. (9) occur (as sim- 

larly defined in Eq. (4) whenever the available shelf quantity q s 
i 

of 

n item is not sufficient to cover the demand δinrlhd , and thus addi- 

ional replenishments at a quantity of q b 
i 

have to be made at costs 

 i . This is computed by q b 
i 

= max [ 
 δinrlhd − q s 
inrlhd 

�; 0] , whereas the
164 
vailable shelf inventory q s 
inrlhd 

is computed by q s inrlhd = n · k ih ·
 id − RSS i . The profit p inrlhd per item is the delta between M inrlhd 

nd CR inrlhd . 

R inrlhd = v i · q b inrlhd (9) 

Stage 3: application of BIP. The model can now be formulated as 

IP as the non-linear terms have been precalulated and flow, as pa- 

ameters, into the objective function and constraints. The BIP can 

e solved using the CPLEX-Solver. We use two sets of binary deci- 

ion variables, one for shelf dimensioning and the other for prod- 

ct allocation: 

• Shelf segment dimension: The binary variable y rlhd indicates 

whether the segment level l with a height h and a depth d is 

activated on rack r. 
• Product allocation: The binary variable x inrlhd indicates whether 

item i is allocated with n facings on rack r and segment level 

l, where units can be stacked and placed one behind the other 

according to the height h and depth d. 

he objective function (10) maximizes the total profit P of all items 

f the considered category. 

ax ! P = 

∑ 

i ∈ I 

∑ 

n ∈ ̂ N 

∑ 

r∈ R 

∑ 

l∈ ̂ L 

∑ 

h ∈ ̂ H 

∑ 

d∈ ̂ D 

p inrlhd · x inrlhd (10) 

ubject to 
 

i ∈ I 

∑ 

n ∈ ̂ N 

x inrlhd − M · y rlhd ≤ 0 ∀ r ∈ R, l ∈ 

ˆ L , h ∈ 

ˆ H , d ∈ 

ˆ D (11)

 

 ∈ ̂ N 

∑ 

r∈ R 

∑ 

l∈ ̂ L 

∑ 

h ∈ ̂ H 

∑ 

d∈ ̂ D 

x inrlhd = 1 ∀ i ∈ I (12) 

 

 ∈ ̂ H 

∑ 

d∈ ̂ D 

y rlhd ≤ 1 ∀ r ∈ R, l ∈ 

ˆ L (13) 

 

l∈ ̂ L 

∑ 

h ∈ ̂ H 

∑ 

d∈ ̂ D 

(H 

min + h · V P ) · y rlhd = 

˜ h r + b ∀ r ∈ R (14)

 

i ∈ I 

∑ 

n ∈ ̂ N 

∑ 

h ∈ ̂ H 

∑ 

d∈ ̂ D 

n · w i · x inrlhd ≤ ˜ w r ∀ r ∈ R, l ∈ 

ˆ L (15) 
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Fig. 9. Pseudo code for precalculation of non-linear model parts to obtain item profit p inrlhd . 

n

∑
n

∑
d

 

∑
d

 

∑
h

 ∑
h

 

 

a

r

l

l  

i

s

u

l

fi

o

h

h

a

o

s

i

f

s

t

i

t

o

t

t

a

5

w

l

t

t

8

i

t

s

t

p

p

p

p

∑ 

 ∈ ̂ N \{ 1 } 

∑ 

r∈ R 

∑ 

l∈ ̂ L 

∑ 

h ∈ ̂ H 

∑ 

d∈ ̂ D 

n · k ih · g id · x inrlhd ≤ Q 

max 
i ∀ i ∈ I (16) 

 

 ∈ ̂ N 

∑ 

r∈ R 

∑ 

l∈ ̂ L 

∑ 

h ∈ ̂ H 

∑ 

d∈ ̂ D 

n · k ih · g id · x inrlhd ≥ Q 

min 
i ∀ i ∈ I (17) 

 

∈ ̂ D 

h · y rohd ≤
∑ 

d∈ ̂ D 

h · y rlhd ∀ r ∈ R, l, o ∈ 

ˆ L : o > l, h ∈ 

ˆ H (18)

 

∈ ̂ D 

d · y rohd ≤
∑ 

d∈ ̂ D 

d · y rlhd ∀ r ∈ R, l, o ∈ 

ˆ L : o > l, h ∈ 

ˆ H ; (19)

 

 ∈ H 
y rlhd = 0 ∀ r ∈ R, d ∈ 

ˆ D , l ∈ { 1 , . . . , DL min 
d − 1 } (20)

 

 ∈ H 
y rlhd = 0 ∀ r ∈ R, d ∈ 

ˆ D , l ∈ { DL max 
d + 1 , . . . , L } (21)

We use Restriction (11) to ensure that if an item i is assigned to

 shelf segment with n facings, the corresponding segment at rack 

is active with the required dimensions l, h and d. This is formu- 

ated using the “BigM” method, where M represents a sufficiently 

arge number (e.g., M ≥ | N| · | I| ). Restriction (12) ensures that each

tem i is exactly assigned once on a segment of a certain rack. As- 

igning the same item to multiple segments is not permitted, but 

ltimately each item has to be assigned. Further, if a segment level 

on rack r is activated, its dimensions (height and depth) are de- 

ned distinctly (Restriction (13) ). Restriction (14) ensures that none 

f the segment levels activated on a shelf rack exceeds the total 

eight of the rack, ˜ h r . The minimum grabbing distance b is added 

ere to the top level. Restriction (15) ensures that the facings of 

ll items allocated to a certain segment do not exceed the width 
Table 5 

Overview of numerical experiments. 

Section Experiments and purpose Analyzed paramet

5.1 Runtime analysis and efficiency Number of items

5.2 Integrating shelf dimensioning and product allocation Optimization wit

5.3 Impact of shelf dimensioning and related demand Shelf dimension 

5.4 Case study 

165 
f the segment, or the equally sized rack width ˜ w r . Further, Re- 

trictions (16) and Restriction (17) ensure that the available shelf 

nventory q s 
i 

determined, lies within the upper and lower bounds 

or shelf inventory, Q 

min 
i 

and Q 

max 
i 

. Within Restriction (16) it is en- 

ured that at least one facing of an item is always allowed even if 

he shelf inventory of one facing would already exceed the max- 

mum inventory. Restriction (18) ensures that the height between 

he segments is constant or decreasing from the bottom to the top 

f a rack. The same logic is applied in Restriction (19) regarding 

he depths of the segments. Restrictions (20) and (21) ensure that 

he chosen segment depth of each level is in line with the lower 

nd upper limits for each depth DL min 
d 

and DL max 
d 

. 

. Numerical results 

This section provides numerical tests with simulated data as 

ell as a case study with a major German retailer in order to ana- 

yze the general applicability to realistic problem sizes, its compu- 

ational performance and to develop managerial insights. We use 

he IBM ILOG CPLEX Optimization Studio 12.6.2.0 on a Windows 

 64 Bit machine with 16 gigabyte RAM and an Intel(R) Core(TM) 

5-6440HQ CPU with 2.60 gigahertz. The runtimes indicated in our 

ests refer to the total time for preprocessing, precalculation and 

olution of the BIP with CPLEX. Table 5 provides an overview of 

he numerical experiments. 

In the first set of tests we use simulated data to analyze the 

erformance of our approach. We leverage our data generation 

rocess based on insights from literature, retail practice and (if ap- 

licable) actual values received from our partner company. More 

recisely, we obtain replenishment costs v = 0 . 22 , while mini- 
i 

er(s)/ scenario Data set # instances 

 and shelf racks, profit margins {Simulated data, informed 

by case study 

520 

h/without shelf dimensioning 100 

parameters, attractiveness factors 120 

Real-world data 10 
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Table 6 

Impact of preprocessing on runtime for different problem sizes, averages of 20 instances per 

problem size. 

Avg. runtime [sec.] | I| = 20 | I| = 30 | I| = 50 | I| = 100 | I| = 200 

– 3-Stage Approach 1.2 2.0 3.7 7.6 16.1 

– Direct PAMiSD (w/o Stage 1) 8.9 20.1 60.8 > 3600 > 3600 
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um and maximum inventory reach was limited to 3 and 30 

ime periods and a minimum representation quantity of 2 fac- 

ngs. The latter are applied to set Q 

min 
i 

and Q 

max 
i 

. Further, we 

se additional model parameters that are informed by our in- 

ights from work with the retailer: w i ∈ [9 , 30] , h i ∈ [10 , 40] , d i ∈
5 , 40] , m i ∈ [0 . 1 , 3 . 0] and αi ∈ [0 . 2 , 13] . Space-elasticity parameters

i and γi are set at 0.17 in line with the findings of a meta-analysis 

y Eisend (2014) on various related empirical studies. Finally, 

helf-related global parameters are set as follows: w r = 200 , b = 

5 , H 

min = 40 , H 

max = 70 , V P = 5 . The rack attractiveness factor δr 

as set up to 1.05 and the segment factor εl up to 1.10. The depths

or segments at levels 1–3 were set at 57 centimeter, and 47 cen- 

imeter for all levels starting from level 2. These values are based 

n direct information from retail practice. If different values were 

sed in the numerical studies, these are specified in the following. 

.1. Efficiency of the solution approach 

Run time tests in comparison to benchmark approach. The first 

nalysis assesses the efficiency of our approach. We compare the 

untimes of our three-step approach to a direct solution of PAMiSD 

denoted as direct PAMiSD ), i.e., without the preprocessing (Stage 

). Stage 2 is always necessary as otherwise the model remains 

on-linear. The benchmark (direct PAMiSD) does not leverage on 

he preprocessing of parameter settings (i.e., predetermined num- 

er of facings per item, segment heights, depths, and levels) to re- 

uce the solution space by excluding non-feasible values for the 

ecision variables. Instead it incorporates the related constraints 

see Section 3 ) with global limits using the original sets of po- 

ential heights H, depths D and levels L of shelf segments. These 

lobal limits are valid across all items (and not item individual), 

nd constitute a reasonable choice for a feasible number of fac- 

ngs | N| . More precisely, the ranges are determined by dividing 

he widest segment by the smallest item, which then provides 

he physically highest number of horizontal facings possible. The 

anges obtained are then used as input to Stage 2 and the precal- 

ulation of demands, margins and replenishment costs. In this way 

e can elaborate on the value of Stage 1 as both approaches pro- 

ide optimal solutions. Please note that the comparison is based 

n the same setting, but with and without the preprocessing. 

Table 6 shows that our three-stage approach can handle all 

roblem sizes of practical relevance efficiently. With an increasing 

roblem size | I| the suggested solution approach with preprocess- 

ng shows significantly lower computation times. For the largest 

nstances ( | I| = 200 ), the average runtime with our approach is 

nly 16 seconds, while the benchmark requires more than one 

our on average to solve the corresponding problem. 

Impact of available items and shelf racks. The runtime mainly de- 

ends on two data parameters: the number of available items | I| 
nd the number of shelf racks | R | . Hence we consider the rela-

ionship of I and R and its impact on runtime by subdividing the 

ntire shelf width into multiple equally dimensioned racks. This 

llows the use of the same item set and the comparison of total 

rofitability. Taking into account realistic shelf sizes, we do not al- 

ow shelf racks of ˜ w r ≤ 60 centimeter. The results are summarized 

n Table 7 . 
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The results show that our approach is able to solve large data 

ets with up to 200 items within a reasonable time, especially 

hen considering that a tactical planning problem is addressed. 

aturally, the average runtime rises as I increases. Further, it is evi- 

ent that for a given number of items | I| , a higher number of racks

 R | increases runtime. In particular, considering | R | = 6 , a run time

f 1 hour is exceeded for 15% of test instances with | I| ≥ 100 . How-

ver, in these cases the corresponding MIP GAPs after one hour are 

ery small, ranging between 0.53 and 0.71% for | I| = 100 and be- 

ween 0.54 and 1.09% for | I| = 200 . Our three-step approach is able

o reach an optimal solution for these instances in less than three 

ours. Further, the number of racks | R | in this analysis can be con-

idered as “break points” of the total shelf space. It divides the to- 

al shelf space, e.g., due to constructional reasons or when space 

s split into different aisles. However, retailer will always tend to 

educe these break points to obtain a clean and steady optic of the 

esulting shelves. Furthermore, a higher number of | R | racks does 

ot have a positive effect on the objective value. Compared to the 

olution found with | R | = 1 , the objective values remain more or

ess steady within a range of ±0.5%, whereas the runtime increases 

ignificantly. 

.2. Tests for integrating segment dimensioning into product 

llocation planning 

The core contribution of this paper is the integration of shelf 

imensioning into product allocation. In this subsection we ac- 

ordingly emphasize the additional value of the integration and 

nhancement. Please note that this paper this is the first approach 

or the integrated problem. There are consequently no benchmark 

nstances with respect to dimensioning of segments as other 

pproaches use the segment dimensions as an input factor. To 

nvestigate the impact of integration, we compare PAMiSD with 

he model of Düsterhöft et al. (2020) , which is the most related 

roduct allocation model with respect to shelf size considerations 

see Section 2.3 ). This model does not optimize for shelf segment 

imensions, but is based on given sizes of multi-dimensional 

helf segments. As the choice of different shelf segments sizes is 

rbitrary when the corresponding dimensions are fixed and not 

art of the optimization, we consider multiple, identical shelf 

egments for the model of Düsterhöft et al. (2020) . This approach 

s therefore in line with most product allocation models presented 

e.g., Hansen et al. (2010) or Hwang et al. (2005) ). Furthermore, 

e apply the identical demand model for the benchmark ap- 

roach. Four equal shelf segments are considered for the model 

f Düsterhöft et al. (2020) , each with a height of 50 centimeter. 

urther, all segments are of the same depth (57 centimeter), such 

hat the number of items that can be placed one behind another 

s also fixed in advance. 

Table 8 summarizes the results with varying problem sizes. 

ven though the results of the benchmark of Düsterhöft et al. 

2020) also provide optimal allocations for the given setting, we 

how that integrating shelf segment dimensioning further im- 

roves the objective value by an average of about 3.3% across all 

est instances. The profit increases at least by 1.15% and up to 

.67%. Usually, the more items need to be allocated, the higher the 

rofit potential. We apply in the following sections sensitivity anal- 

sis to investigate the value of integration. 
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Table 7 

Impact of number of items I and number of racks R on runtime [in seconds] and objective value [in euros], average of 20 

instances per problem size. 

| I| | R | = 1 | R | = 2 | R | = 4 | R | = 6 

20 Shelf rack width w r 1 · 160 centimeter 2 · 80 centimeter – –

Avg. objective value 227.32 223.18 

Avg. runtime 1.20 2.35 

30 Shelf rack width w r 1 · 240 centimeter 2 · 120 centimeter 4 · 60 centimeter –

Avg. objective value 342.68 340.10 337.15 

Avg. runtime 1.99 3.93 4.37 

50 Shelf rack width w r 1 · 400 centimeter 2 · 200 centimeter 4 · 100 centimeter 6 · 67 centimeter 

Avg. objective value 599.57 604.50 601.12 597.98 

Avg. runtime 3.67 9.94 15.32 15.33 

100 Shelf rack width w r 1 · 800 centimeter 2 · 400 centimeter 4 · 200 centimeter 6 · 133 centimeter 

Avg. objective value 1195.74 1195.06 1197.02 1195.82 

Avg. runtime 7.59 17.55 97.46 820.39 

200 Shelf rack width w r 1 · 1,600 centimeter 2 · 800 centimeter 4 · 400 centimeter 6 · 267 centimeter 

Avg. objective value 2427.83 2427.24 2425.57 2424.84 

Avg. runtime 16.09 34.56 180.83 898.12 

Table 8 

Impact of integrating shelf segment dimensioning (PAMiSD vs. Düsterhöft et al. (2020) ), 20 instances per problem 

size. 

Profit delta of PAMiSD vs. Düsterhöft et al. (2020) for data sets with differing numbers of items 

| I| = 20 � in % | I| = 30 � in % | I| = 50 � in % | I| = 100 � in % | I| = 200 � in % 

Avg. + 2.89 Avg. + 3.12 Avg. + 2.97 Avg. + 4.49 Avg. + 3.17 

Min. + 1.15 Min. + 1.48 Min. + 1.67 Min. + 3.49 Min. + 2.54 

Max. + 4.70 Max. + 5.31 Max. + 4.41 Max. + 5.67 Max. + 4.17 

Table 9 

Impact of shelf dimensions. 

Parameter Reduction Base value Extension 

Rack width ( ̃  w r ) 350 centimeter 400 centimeter 450 centimeter 

Avg. objective value in % 99.9 100.0 101.4 

Min. deviation from base value in % 0.00 – 0.00 

Max. deviation from base value in % −1.98 – + 3.01 

Shelf depths ( d ∈ D ) 57 centimeter 47, 57 centimeter 47, 57, 67 centimeter 

Avg. objective value in % 99.6 100.0 101.1 

Min. deviation from base value in % −0.33 – 0.00 

Max. deviation from base value in % −2.62 – + 2.20 

Min. segment height ( H min ) 1 20 centimeter 40 centimeter 50 centimeter 

Avg. objective value in % 100.9 100.0 98.6 

Min. deviation from base value in % + 0.04 – −0.81 

Max. deviation from base value in % + 2.17 – −1.85 

1 Max. segment height ( H max ): 70 centimeter. 

5

o

s

s

t

o

p

p

a

i

p  

m

a

t

s

s

m

i

t

s

s

b

a

t

s

f

o

i

m

e

o

t

a

d

.3. Impact of shelf dimensions and shelf-related demand 

In this section, we examine the impact of different parameters 

n the overall problem. This comprises the impact of available 

helf dimensions (i.e., rack width, minimum segment height, 

helf depth) and shelf attractiveness factors ( δr and εl ). We chose 

hese parameters as the shelf dimensions directly impact the 

verall model complexity (i.e., degree of freedom set within our 

recalculations) and the optimization potential for shelf space 

lanning. Additionally, the study of attractiveness factors for rack- 

nd segment dependent demand highlight the importance of their 

ncorporation within shelf space planning. We use 20 instances 

er parameter with | I| = 50 and | R | = 1 . We focus in our analysis

ainly on the impact on total profit, as the average run time of 

ll test instances is below 6 seconds. 

Impact of shelf dimensions. Table 9 summarizes the results for 

he analysis of available shelf dimensions. A reduction in total 

helf space (i.e., reducing ˜ w r ) leads to a minor decrease of pos- 

ible profits. On the other hand, if more shelf space is available, 
167 
ore products can be placed on the shelf (i.e., number of fac- 

ngs increases), which naturally leads to an increase in profits. Fur- 

her, the rack width impacts needed computational times as less 

pace makes the selections of products harder, while more space 

implifies the space allocation as the competition for shelf space 

etween products is mitigated. Increasing the number of avail- 

ble depths | D | and lower minimum segment heights H 

min leads 

o increasing profits. Once there are more shelf depth options or 

egment heights, the solution generated with a higher degree of 

reedom is at least as good as the solution with a lower degree 

f freedom. Provided that all other parameters remain untouched, 

t holds true that P | D | =1 ≤ P | D | =2 ≤ P | D | =3 and respectively for small 

inimum segment heights. Knowing this, it is advisable for retail- 

rs to include different shelf depths and lower segment heights not 

nly for optical reasons but also in the course of profit maximiza- 

ion. 

Impact of rack- and segment-dependent demand. Another test is 

pplied to investigate the impact of different rack- and segment- 

ependent demand factors. We consider the two spatial attrac- 
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Table 10 

Average changes in solution structure with segment and rack dependent demand effects. 

Demand effects δr = off, εl = off δr = on, εl = off δr = off, εl = on δr = on, εl = on 

Different facings 8.8% [ −3;1] 9.8% [ −2;2] 11.0% [ −3;3] 

Different rack 75.4% 78.6% 78.8% 

Different segment 59.6% 67.6% 65.8% 

Impact on obj. value 1 −2.2% −0.9% −0.8% 0.0% 

1 Ex-post evaluation of solution obtained with δr or/and εl in comparison to solution with δr = on and 

εl = on. 
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ivity parameters δr and εl within the demand function. In to- 

al, we compare four solutions. In the first set both effects are 

witched off. Afterwards we activate each attractivity factor while 

he other one remains unattended, and finally both effects are ac- 

ivated together. We compare the structure of the average solu- 

ions (i.e., number of facings, assignment to rack and segment) 

f each setting to the case where shelf-segment-dependent de- 

and effects are not considered at all. For this analysis we use 

he data sets containing | I| = 50 items and | R | = 4 shelf racks.

or the vertical level of the segment we assume a linear in- 

rease from the bottom to the top of 10% apportioned to the lev- 

ls in between, with εl = { 1 . 0 0 0 , 1 . 020 , 1 . 040 , 1 . 060 , 1 . 080 , 1 . 100 } .
he rack attractiveness factor follows the same intention, with a 

igher demand for items on the first rack of 5%, so that δr = 

 1 . 050 , 1 . 033 , 1 . 017 , 1 . 0 0 0 } . 
Table 10 summarizes the impact of varying rack- and segment- 

ependent demand effects. Modeling the effects has a notable im- 

act on objective values. The profit decreases by up to 2.2% if de- 

and effects are not included in the model, but exist in reality. 

iven the small magnitude of 10% and 5% of these effects, this 

s already significant. With respect to facing changes, the effect is 

oderate. When only δr is modeled, we see that the number of 

acings displayed to customers is changed in 8.8% of cases on aver- 

ge compared to the base case assuming no rack- and segment- 

ependent demand effects. Further, the number of facings was 

hanged by −3 and +1 unit at most. The results are similar when 

nstead only εl is considered. The average number of items with 

acings changed increases to 9.8% with ranges of ±2. When both 

ffects are used within the model the number of changed items is 

gain increases by up to 11.0%, while changes appeared ±3 units. 

he effect of rack and segment changes due to this effect is sig- 

ificant. The assignment of items to specific shelf racks changes 

etween 75.4% and 78.8% when spatial demand effects are consid- 

red. There is a high percentage of items with changed rack as- 

ignment even where the rack-specific demand factor δr is not as- 

umed. This can be explained by the varying attractiveness of shelf 

egments and the related switching of items from an unattractive 

egment of one rack to a more attractive segment on another rack. 

he number of items with a changed vertical level is 59.6% on av- 

rage when only rack-dependent demand is considered, and 67.6% 

or segment-dependent demand. In the combined case 65.8% of 

tems are assigned to another segment on average. 

.4. Case study: practical application of PAMiSD 

This section presents a case study that is subject to a close co- 

peration with one of Europe’s biggest grocery companies, which 

rovided data and insights from their daily operations. In line with 

his, we use real data from the tea and tinned food category across 

ve stores located in Eastern Europe. We had access to relevant 

helf data (e.g., rack and segment sizes, minimum distances) and 

tem data (e.g., margins, sizes, minimum inventory, replenishment 

osts). The item-specific parameters are subject to a non-disclosure 

greement. We calculated the base demand αi for each item with 

ctual sales and number of facings. Demand factors are applied 
168 
s in the tests above. The tinned food category consists of | I| = 

13 different products. The retailer set H 

min = 40 centimeter and 

 

max = 70 centimeter. Within tea we consider | I| = 197 items and 

 

min = 30 centimeter and H 

max = 70 centimeter. The retailer allows 

 segment depth of 47 centimeter, 57 centimeter and 67 centime- 

er for both categories. In the stores, each category has an available 

helf width of eight running meters, which comprises 6 racks with 

 r = 133 centimeter each. Every shelf rack is h r = 220 centimeter 

igh and the grabbing gap b = 15 centimeter and V P = 5 centime-

er are set in accordance with the actual shelf. While the given 

helf space for each store and category was equal, the actual sales 

iffered significantly across the stores. 

Benckmarks. We use the status quo to benchmark it with 

AMiSD. The status quo stems from the current planograms that 

re created with the latest version of a state-of-the-art commercial 

oftware for shelf planning. This means that we compare PAMiSD 

ith a solution that is already promised to be a practicable and 

ptimized solution by the retailer’s software. Profit of the status 

uo contains the margin m i multiplied by the sales minus the re- 

lenishment costs that are derived ex-post from the ratio of de- 

and to shelf inventory. In order to further verify the use of in- 

egrated shelf space dimensioning, we also compare PAMiSD with 

he model of Düsterhöft et al. (2020) that operates with fixed shelf 

imensions. For both categories, we tested several segment sizes 

or the application of Düsterhöft et al. (2020) and chose the setting 

ith the highest profit to have a solid benchmark. For tinned food, 

he height of each shelf level was fixed at 55 centimeter and the 

epth at 57 centimeter, resulting in four equally sized segments 

or each rack. For the tea category, five equally sized segments per 

ack with a height of 44 centimeter and a depth of 57 centimeter 

uild the benchmark. 

Comparison of status quo to PAMiSD. Table 11 shows that PAMiSD 

ncreases the retailer’s profit significantly by 5.03 and 5.74% on av- 

rage. This is impressive as the status quo is based on the best pos- 

ible planning result of the planner using the solution of the ap- 

lied commercial software. In detail, the profit increase calculated 

ith PAMiSD for tinned food is between 3.34 and 7.12%, whereas 

or tea the profit increases lie between 5.07 and 6.29%. The broader 

ange in the tinned food category is explained by the sales poten- 

ial and different status quo in the stores. 

Comparison of status quo to Düsterhöft et al. (2020) . No feasi- 

le solution could be determined with this approach for tinned 

ood in two stores due to insufficient shelf space. In all other cases 

e see a moderate profit increase. Yet in each case the model of 

üsterhöft et al. (2020) is outperformed by PAMiSD. Once more 

e can prove that the integrated approach results in significantly 

igher profits than the current approaches that tackle only the 

roduct allocation problem. 

Improvement of planning processes and shelf layout. Fig. 10 shows 

s an example for Store 2 the shelf layout of the status quo in 

he tea segment, whereas Fig. 11 illustrates the new segments. In 

his case the number of levels required for proper product alloca- 

ion remains at five, but the distances between the vertical levels 

re optimized with PAMiSD. Further, in the current shelf layout we 
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Table 11 

Profit increase and runtime for case studies compared to status quo. 

Store 1 Store 2 Store 3 Store 4 Store 5 Average 

Tinned food 

Profit � Düsterhöft et al. (2020) , in % –a + 0.96 + 2.05 –a + 3.56 + 2.19 

Profit � PAMiSD, in % + 4.71 + 3.34 + 4.70 + 5.29 + 7.12 + 5.03 

Runtime PAMiSD [seconds] 37 16 18 24 38 26 

Tea 

Profit � Düsterhöft et al. (2020) , in % + 1.51 + 2.27 + 2.25 + 0.98 + 1.72 + 1.75 

Profit � PAMiSD, in % + 6.29 + 6.06 + 5.92 + 5.36 + 5.07 + 5.74 

Runtime PAMiSD [seconds] 82 56 69 99 90 79 

a No feasible solution with Düsterhöft et al. (2020) possible. 

Fig. 10. Manually created shelf segments for the current product allocation with 

commercial software. 

Fig. 11. Optimized shelf segments generated using PAMiSD. 
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nd an interruption which gives the whole shelf an unsteady ap- 

earance. In contrast, PAMiSD provides an equal shelf layout for 

he whole category. Furthermore, despite the retailer using profes- 

ional software for the current planning, the shelf dimensions are 

ot defined by this commercial tool. This means that shelf plan- 

ers have to plan the shelf layout manually and test several possi- 

le settings until they accomplish a satisfying solution. 

.5. Summary and managerial insights 

In conclusion, the suggested approach is an improvement in 

everal ways. First of all, shelf planners do not need to create the 

helf dimensions manually and thus do not need several man- 

al iterations to evaluate a plan in a try-and-error approach that 

s expected to be suboptimal. PAMiSD is fast to generate optimal 

olutions for practical purposes. Secondly, equal-looking shelves 

end to generate higher profits. We show that a different segment 

eight across racks tends to have a negative effect on the profit. 
169 
he profit decreases when the total shelf of a category is split 

p into several racks (see Table 7 ). This is explained by the re- 

ulting very small racks and thus limited space for allocating fac- 

ngs of one product next to each other. Designing the entire shelf 

idth as one rack for one category gives the resulting shelves a 

onsistent shelf layout. As splitting up the entire shelf into mul- 

iple racks does not improve profit, it is sufficient to design and 

odel only one shelf rack for the planning that depicts the total 

vailable shelf width. This strategy leads to two benefits: (i) re- 

ailers reach a steady and equal look over the different racks of a 

ertain category and (ii) the performance is superior with respect 

o profitability and computation time. Furthermore, it is expected 

hat equal-looking shelves make orientation much easier and pos- 

tively impact customer satisfaction and sales. Thirdly, the profit 

agnitude is related to the total shelf space, number of segment 

epths that can be selected, and the magnitude of demand effects. 

 higher flexibility in choosing segment depths leads to increas- 

ng profits (see Table 9 ). Incorporating vertical and horizontal de- 

and effects on the segments in essential. We show that a small 

agnitude of 5–10% of these effects already causes an increase in 

rofit by more than 2%. It affects the number of facings and the as- 

ignment of items to different levels. Finally and most importantly, 

he new shelf segment dimensions in combination with product 

llocation increase the total profit of a category significantly (see 

able 8 ). The integration leads to an increase of around 3.3% on 

verage, with a minimum of 1.2% and a maximum of 5.7%. As mar- 

ins in retail are often only 2–3%, integrating the product alloca- 

ion and shelf dimensioning can become a significant contribution 

o the retailers profitability. With our case study, we could show 

hat PAMiSD increases the retailer’s profit significantly by more 

han 5% on average. This is impressive, as the status quo is based 

n the best possible planning result of the planner using the so- 

ution of the applied commercial software. As such, our result can 

lso be used to evaluate current retail practice. 

. Conclusion 

In this work, we presented a shelf space optimization approach 

hat is extended with shelf segment dimensioning. As such, it en- 

bles more realistic planning for retailers and constitutes an ap- 

ropriate decision support tool for practitioners. In our approach, 

e consider both the product allocation to shelves and the actual 

helf layout by defining the number and dimensions of shelf seg- 

ents. These two decisions are highly interrelated as given shelf 

imensions serve as bounds for the product allocation, while the 

roducts considered limit decisions on shelf dimensions due to 

he given product characteristics. Determining the optimal num- 

er of shelf segments and defining individual segment dimen- 

ions was previously subject to the manual adjustments of a plan- 

er without any decision support. Also the literature falls short 

n this aspect as the segment dimensions are a parameter that 
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s at least partially predetermined (see e.g., Bai et al. (2013) or 

üsterhöft et al. (2020) ). By integrating the segment decision 

nto the shelf space optimization process, we provide practical 

nd applicable results for retailers. The practicability of our ap- 

roach is further ensured by considering actual customer behav- 

or (i.e., rack-, segment- and facing-dependent demand function) 

nd retail profitability (i.e., margins and impact on replenishment 

osts). 

We obtain optimal solutions by applying a three-step process. 

n the first two steps, we set tighter bounds and eliminate non- 

inear parts of the model. This makes it possible to solve a BIP ex- 

ctly and fast. The relevance and contribution of our model and 

olution approach is shown in numerical studies. Firstly, we show 

he time-efficiency of the solution approach for practical relevant 

roblem sizes. We also provide a sensitivity analysis to identify 

mportant factors for the computation time. Secondly, we high- 

ight the impact of integrating shelf dimensioning into the solu- 

ion approach. In contrast to a shelf space optimization approach 

hat does not consider segment dimensions, improvements of up 

o 5% can be achieved. Finally, we demonstrate the practical use of 

ur approach in a case study with a major European retailer. Here 

e show that our approach is able to improve a given planning 

ituation and corresponding profits by 3–7% across different stores 

nd categories. 

Future areas of research. Integrating shelf dimensioning into 

roduct allocation closes an important gap in literature and prac- 

ice. However, there are still numerous possibilities for future re- 

earch to improve shelf space planning. To begin with, retailers 

ay imply certain aesthetic rules for the rack layout as part of the 

tore layout and aisle network plan. For instance, it may only be 

ossible to have standard heights and depths of segments within 

ne category. Such a policy can be incorporated in our model by 

pplying just one large shelf where each rack has the identical 

imensions. However, it is not yet researched if standardized or 

arying racks have an additional demand impact. It would be in- 

eresting to test this within an empirically study and to incorpo- 

ate the demand effects with a scenario analysis in our model. In 

ur approach we already consider demand fluctuations by defin- 

ng safety stocks for each product. However we do not explicitly 

over stochastic demand. Besides stochastic demand, seasonal de- 

and and demand effects caused by promotions or item pricing 

re a valuable path for further research in this area (see Flamand, 

honiem, & Maddah, 2016 ). Another possible extension of our 

odel approach is the consideration of detailed merchandising and 

tem sequencing decisions. This means that a defined order for 

eighboring products has to be respected for the product alloca- 

ion ( Bianchi-Aguiar et al., 2017 ). In this context other possible ex- 

ensions are the integration of assortment decision, and related 

ffects for out-of-assortment or out-of-stock situations (see e.g., 

onhon, Gaur, & Seshadri, 2010; Hübner & Schaal, 2017b; Kök & 

isher, 2007 ). An essential connecting factor between related plan- 

ing steps would be the integration of inventory management and 

tore delivery decisions ( Holzapfel et al., 2016; Taube & Minner, 

018 ). Within our approach, we already consider upper and lower 

ounds for the shelf quantity of each item, which could then be 

econciled and optimized in accordance with up-streamed logis- 

ics processes. A different aspect for future research is the available 

helf space. In our approach the total shelf space of a category, 

ore precisely the number of empty shelf racks, is an input pa- 

ameter. But within a retail store the share of shelf space for each 

ategory is also a flexible factor within certain limits. An integrated 

pproach that solves the product allocation problem for a category 

ogether with the question of how much shelf space should be as- 

igned to this category at all could therefore further improve de- 

ision support models for retailers. A further extension might deal 

s

170 
ith optimizing shelf space across different stores and integrating 

ocal demand (see e.g., Corsten, Hopf, Kasper, & Thielen, 2018 ). 
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ppendix. Mathematical formulation of PAMiSD 

This section provides the complete mathematical formulation of 

AMiSD in addition to our formal problem description in Section 3 . 

sing the notation introduced in Section 3 , the PAMiSD can be 

ormulated as Integer Non-Linear Program (INLP). It constitutes a 

on-linear model due to the given demand function and non-linear 

onstraints. 

ax P ( ̄x , ȳ ) = 

∑ 

i ∈ I 
m i · λi (x i jr , y jr ) − CR i jr (x i jr , y jr ) (A.1)

Subject to 

 i jr = x h i jr · x v i jr ∀ i ∈ I, j ∈ J, r ∈ R (A.2)

 i jr · ( 
∑ 

k ∈ J 
k � = j 

∑ 

c∈ R 
x ikc ) = 0 ∀ i ∈ I, j ∈ J, r ∈ R (A.3)

 

j∈ J 

∑ 

r∈ R 
x i jr ≥ 1 ∀ i ∈ I (A.4) 

 

i ∈ I 
x i jr − M · y jr ≤ 0 ∀ j ∈ J, r ∈ R (A.5) 

 

i ∈ I 
w i · x h i jr ≤ w jr ∀ j ∈ J, r ∈ R (A.6) 

 i · x v i jr + b ≤ h jr ∀ i ∈ I, j ∈ J, r ∈ R (A.7)

 

j∈ J 
h jr · y jr ≤ ˜ h r ∀ r ∈ R (A.8) 

i ≤ q s i + q b i ∀ i ∈ I (A.9) 

 

s 
i = 

∑ 

j∈ J 

∑ 

r∈ R 
g i jr · x i jr ∀ i ∈ I (A.10) 

 

s 
i = q 

s 
i − RSS i ∀ i ∈ I (A.11) 

 

b 
i = max [ 
 λi − q s i �; 0] ∀ i ∈ I (A.12) 

 

min 
i ≤ q s i ≤ Q 

max 
i ∀ i ∈ I (A.13) 

 

h 
i jr , x 

v 
i jr , x i jr ∈ N ∀ i ∈ I, j ∈ J, r ∈ R (A.14)

 jr ∈ { 0 , 1 } ∀ j ∈ J, r ∈ R (A.15)

 

b 
i , q 

s 
i , q 

s 
i ∈ N , ∀ i ∈ I (A.16) 

The total number of facings x i jr is defined by the number of 

orizontal ( x h 
i jr 

) and vertical ( x v 
i jr 

) facings, which is ensured by Con-

traint (A.2) . Constraint (A.3) ensures that each item i can only 
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e assigned to one segment j and one rack r. Further, each item 

eeds to be allocated and cannot have zero facings (Constraint 

A .4) ). Constraint (A .5) activates a shelf segment j at rack r if at

east one item i is assigned to it. Constraint (A.6) ensures that the 

idth dimension of a shelf cannot be exceeded. Similarly, Con- 

traint (A.7) ensures the adherence to height dimensions. The total 

eight ˜ h r of each rack r limits the individual heights of the cor- 

esponding shelf segments (Constraint (A.8) ). Constraint (A.9) en- 

ures that total available shelf inventory q s 
i 

and the additional refill 

uantity from the backroom q b 
i 

are sufficient to fulfill total demand 

i . The total shelf inventory is defined by Eq. (A.10) , and the avail-

ble shelf inventory q s 
i 

is given by Eq. (A.11) . The quantity for ad- 

itional replenishment is defined by Constraint (A.12) . Constraint 

A.13) ensures that the given minimum and maximum shelf inven- 

ory levels are respected. Finally, Constraints (A .14) –(A .16) define 

he variable domains. 
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