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Abstract: The coronavirus disease 2019 (COVID-19) pandemic has led to capacity prob-
lems in many hospitals around the world. During the peak of new infections in Germany
in April 2020 and October to December 2020, most hospitals had to cancel elective proce-
dures for patients because of capacity shortages. We present a scalable forecasting frame-
work with a Monte Carlo simulation to forecast the short-term bed occupancy of patients
with confirmed and suspected COVID-19 in intensive care units and regular wards. We ap-
ply the simulation to different granularity and geographical levels. Our forecasts were a
central part of the official weekly reports of the Bavarian State Ministry of Health and Care,
which were sent to key decision makers in the individual ambulance districts from May
2020 to March 2021. Our evaluation shows that the forecasting framework delivers accu-
rate forecasts despite data availability and quality issues.

                             

                                                                                                  

Introduction
The initial local outbreak of the coronavirus disease
2019 (COVID-19) developed into a pandemic with
more than 150 million cases and more than 3.1 million
deaths worldwide as of April 30, 2021. In light of the
COVID-19 outbreak, one challenge for hospitals and
disaster control has been to estimate the short-term
occupancy of their wards and intensive care units
(ICUs) to adjust bed and personnel capacity, as well
as their hospital admission policies, accordingly.
These forecasts need to be performed on different hi-
erarchical levels—starting from individual hospitals
up to a supraregional level—to serve a multitude of
different key decision makers. An overestimation of
required COVID-19 bed resources because of inaccu-
rate forecasts should be avoided to minimize the neg-
ative impact from, for example, canceled treatments of
elective patients. An underestimation may result in
bed shortages, potentially leading to severe conse-
quences for untreated patients.

This paper presents a scalable forecasting frame-
work to predict the short-term bed occupancy of pa-
tients with confirmed and suspected COVID-19 in
ICUs and wards (i.e., four output measurements in to-
tal). The framework addresses different stakeholders
that contribute, collect, analyze, and/or receive data.

At the heart of this framework, we use a simulation
model to incorporate the stochastic nature of the un-
derlying problem. The forecasting framework can be
easily adapted to different use cases, whether there is
a need to forecast the bed occupancy within one spe-
cific hospital on a LOCAL level or in a more aggre-
gated form on a REGION or STATE level. For more
than nine months, we provided forecasts to the Bavar-
ian State Ministry of Health and Care, which is
responsible for the second-largest federal state in Ger-
many, with more than 13 million inhabitants. On a
STATE and LOCAL granularity level, we achieved a
coverage rate of more than 95% with our forecasts.
The coverage rate is defined and further described in
the section Performance Evaluation of the Forecasting
Framework.

Disease spread and pandemic development have
been studied extensively over the last decades (Wal-
ters et al. 2018). For instance, Aleman et al. (2011)
present a susceptible-infected-removed model (SIR)
combined with an agent-based simulation model to
analyze disease spread. During the COVID-19 pan-
demic, different approaches were used to help soci-
ety by providing tools or forecasts. Meares and
Jones (2020) use a basic queuing model to calculate
the required ICU capacity nationwide in Australia.

1

                                
                         

                                                                                    

              

mailto:jakob.heins@uni-a.de
https://orcid.org/0000-0002-9696-4845
mailto:jan.schoenfelder@uni-a.de
https://orcid.org/0000-0002-8793-955X
mailto:steffen.heider@uni-a.de
https://orcid.org/0000-0001-5564-0628
mailto:axel.heller@uk-augsburg.de
https://orcid.org/0000-0001-6144-3874
mailto:jens.brunner@uni-a.de
https://orcid.org/0000-0002-2700-4795
https://orcid.org/0000-0002-9696-4845
https://orcid.org/0000-0002-8793-955X
https://orcid.org/0000-0001-5564-0628
https://orcid.org/0000-0001-6144-3874
https://orcid.org/0000-0002-2700-4795


Khailaie et al. (2021) use infection-epidemic models
to predict the reproduction number of COVID-
19–infected persons. Shoukat et al. (2020) develop
an agent-based model with different self-isolation
strategies by simulating different COVID-19 out-
breaks in Canada. Rather than modeling the future
development of the pandemic, our focus lies in de-
veloping a short-term forecast of the associated bed
occupancy levels.

Short-term forecasts of patient flows and bed occu-
pancy in healthcare have been an ongoing topic in the
literature, and various methodologies have been used.
Harrison et al. (2005), for example, present a simula-
tion model that is capable of identifying regular bed
occupancy fluctuations and substantive deviations
from the ordinary patient flow. Akcali et al. (2006) use
a network flow approach to improve capacity plan-
ning of hospital beds. Ting et al. (2017) use multiple
models, such as seasonal regression and Markov
chains, to forecast daily patient discharges and assess
their capability to predict which beds may be avail-
able for admissions on the following day. Likewise,
Abraham et al. (2009) compare the performance of
moving average, single exponential smoothing, and
autoregressive integrated moving average models
that are used to forecast emergency inpatient arriv-
als. They stress that none of the models is useful for
forecast horizons of longer than one week. Our
work combines regression analysis, used to prepro-
cess our input data, with a simulation approach to
generate bed occupancy forecasts for a suitably
short forecast horizon.

Forecasting short-term bed occupancy or related re-
source utilization for COVID-19 patients has received
limited attention thus far. Stang et al. (2020) use a de-
terministic forecasting model that calculates the re-
quired ICU capacity throughout Germany for different
scenarios. Römmele et al. (2020) use a stochastic ap-
proach and present a Monte Carlo simulation ap-
proach to forecasting the short-term bed occupancy of
COVID-19 patients for a university hospital. Our fore-
casting model is an extension of their model. Epstein
and Dexter (2020) present an approach that forecasts
the required capacity of ventilators for a specific hospi-
tal for up to one week. Because the COVID-19 pan-
demic is still ongoing, some research work has not
been peer reviewed but, available mostly as preprints,
is worth mentioning. Bekker et al. (2021) present a
model that combines linear programming and queu-
ing theory to predict the admissions and occupancy of
COVID-19 patients in the Netherlands for an individ-
ual hospital. Zhang et al. (2020) present an interactive
online tool to forecast the number of ICU and acute
care beds and other required resources such as neces-
sary ventilators based on deterministic input parame-
ters. The tool was developed in the early stages of the

pandemic and uses deterministic mean input parame-
ters to predict the following few days. Klüsener et al.
(2020) provide an age-structured simulation model us-
ing a susceptible-exposed-infectious-recovered model
to forecast demand for intensive care. Similar to our
approach, they apply their model on different granu-
larity levels. However, their forecasts are limited to the
bed occupancy of ICU patients. Moreover, they use
publicly available data provided by the German Inter-
disciplinary Association for Intensive Care and Emer-
gency Medicine (DIVI), whereas we use additional
data on ward patients and suspected COVID-19 cases.

The previously mentioned papers either forecast
ICU capacity or other required resources for a single
hospital or provide forecasts on an aggregated na-
tional level, thus lacking information for individual
regions and hospitals. Furthermore, most of the litera-
ture thus far has ignored information on the statistical
distributions of input parameters but rather uses de-
terministic assumptions. The main focus in the litera-
ture has been on ICU patients, whereas we provide
forecasts for ICU and regular wards, both for patients
with suspected and for patients with confirmed
COVID-19. Last, although methodologically relying
on established concepts, we fill a gap in the literature
by providing researchers with insights from the suc-
cessful implementation of a forecasting tool that ad-
dresses the needs of multiple stakeholders, ranging
from individual hospitals to the entire state of
Bavaria.

In the next section, we present the problem descrip-
tion. The section Stakeholder Analysis describes the
different stakeholders and the development of the
forecasting framework for automated data collecting,
transformation, simulation, and reporting. The section
Analysis, Forecasting, and Reporting Module high-
lights the required input parameters as well as the
analysis, forecasting, and reporting modules (AFRMs)
in more detail. The Implementation of the Forecasting
Framework section shows the application to the dif-
ferent granularity levels. The section Performance
Evaluation of the Forecasting Framework presents the
results of our forecasting framework in close collabo-
ration with the Bavarian State Ministry of Health and
Care. Finally, we provide a conclusion and discuss the
limitations of our study in the last section.

Problem Statement
The problem we consider is forecasting the bed occu-
pancy for patients with COVID-19 in the ICU and
ward. For the ICUs and wards, we differentiate be-
tween confirmed and suspected COVID-19 cases.
Whereas the former undoubtedly require isolation
during their stay, the latter need isolation as long as
they cannot be ruled out to be COVID-19 positive.
Neglecting these cases in bed occupancy forecasts
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distorts the required bed capacity, as the suspected
cases put an additional burden on the (local) health-
care system.

We consider three different spatial granularities
with their specific particularities. As shown in Figure 1,
the granularity level consists of the already mentioned
three layers: STATE, REGION, and LOCAL. First, we
consider a single forecast for the entire Free State of
Bavaria (STATE). On that level, the forecasting frame-
work is used as a guideline for strategic political
decision making for multiple regions. This includes im-
posing, lifting, or maintaining lockdown measures and
establishing or adjusting visitation guidelines. The con-
tinuous updates of the Bavarian Infection Protection
Act, which focuses on refining conditions when lock-
down measures take effect, resemble the importance of
our project. Specifically, the focus of moving from pure
incidence numbers to hospital capacity performance
measures has been well supported by our research.
Second, we provide forecasts for each of the 26 ambu-
lance districts (REGION) in the Free State of Bavaria.
On a REGION level, the forecasting framework sup-
ports resource management to allocate resources such
as specialized nurses, physicians, or medical devices
between hospitals. Moreover, patient transfer and ad-
mission policies can be adjusted in response to the oc-
cupancy forecasts. For example, smaller hospitals
would dedicate wards to COVID-19 treatments only in
times when the specialized COVID-19 wards in larger
hospitals were forecasted to be (close to) fully occu-
pied. Neidel et al. (2021) present a coordination effort

performed during the second COVID-19 wave in No-
vember 2020. The hospitals’ capacities can be pooled
on an ambulance district level because these hospitals
closely collaborate on patient transportation, medical
personnel, and COVID-19–related medical devices
such as ventilators. Therefore, in our forecasts for each
of the two categories REGION and STATE, we pool
the resources (e.g., ICU beds) dedicated to treating
COVID-19 patients into a single artificial hospital.
Third, we focus on a single hospital, the University
Hospital Augsburg, which provided us with detailed
patient data, on the local granularity level (LOCAL).
For instance, we incorporate precise information about
the distribution of patients over the different hospitals
within the catchment area to model the arrival rates of
patients with COVID-19. Our forecasts support the
pandemic coordinator of the hospital in the decisions
related to reserving capacity for COVID-19 patients
while trying to maintain the elective surgery program
as much as possible. During the first wave, for exam-
ple, all elective surgeries were canceled (unless medi-
cally indispensable) until forecasts showed sufficient
available bed capacity to slowly phase in elective
surgeries.

In Figure 1, we present a map of the Free State of Ba-
varia. The state consists of seven governmental districts.
Each governmental district contains three to four ambu-
lance districts. Each ambulance district comprises two to
six counties. In total, there are 26 ambulance districts
and 96 counties. The governmental district of Swabia,
for example, contains three ambulance districts (Allgäu,

Figure 1. Map of the Free State of Bavaria Presenting the STATE, REGION, and LOCAL Levels
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Augsburg, and Donau-Iller) and 14 counties. The ambu-
lance district Augsburg (REGION) in the northern area
of the governmental district of Swabia encompasses
the five counties: Aichach-Friedberg, Urban Augsburg,
Augsburg Regional, Dillingen, and Donau-Ries. The
University Hospital Augsburg is located in the county
of Urban Augsburg.

Our framework is capable of producing accurate
forecasts on each of the different granularity levels.
Each projection has a forecasting horizon of one
week. The goal of the forecasts is not to predict the
pandemic evolution but rather to forecast the ex-
pected bed occupancy associated with different po-
tential developments of the pandemic. Therefore, we
use three scenarios to model a constant (MED), a de-
creasing (LOW), and an increasing (HIGH) evolu-
tion of the number of confirmed and suspected
COVID-19 cases. Zhao et al. (2021) use a similar ap-
proach in their approach to forecasting COVID-19
infections. Each of the forecasts is made for ICU and
ward patients separately. In total, we have 12 fore-
casts for each STATE and LOCAL granularity level
and each of the 26 ambulance districts on the RE-
GION level, resulting in a total of 336 forecasts. The
forecasts were generated twice a week, on Mondays
and Thursdays, to ensure a constant and reliable up-
date of the pandemic situation.

We use a Monte Carlo simulation at the center of
our forecasting tool. This allows us to incorporate
the stochastic nature of a multitude of input

parameters (e.g., length of stay (LOS), infection
rate, and hospitalization rate) and to generate dis-
tributions for each of the output measurements
(e.g., ICU bed occupancy for confirmed COVID-19
cases).

Our input data come frommultiple sources. For exam-
ple, we collect the number of confirmed COVID-19 cases
from governmental agencies (e.g., the Bavarian State
Ministry of Health and Care; Bayerisches Landesamt für
Gesundheit und Lebensmittelsicherheit 2020). Hospital-
specific data are provided by IVENA eHealth: a registry
in which all hospitals in Bavaria report their daily bed
occupancy (IVENA eHealth 2020). Furthermore, we use
the information on the stochastic distribution of the
length of stay and the infection and hospitalization rates,
as well as the approximated number of patient admis-
sions from the occupancy records.

Stakeholder Analysis
Our forecasting framework involves different stake-
holders: healthcare providers, governmental agencies, and
scientists, as depicted in Figure 2. The dashed lines
represent the shortened process between an individ-
ual hospital and the scientists, circumventing the need
for a centralized data warehouse.

Healthcare providers predominantly represent the
hospitals. They collect detailed patient data and supply
the information to governmental agencies. In return,
the healthcare providers receive the bed occupancy

Figure 2. (Color online) Forecasting Framework Structure of the COVID-19 Decision Support Tool Representing the Three
Different Stakeholders: Healthcare Providers, Government, and Scientists
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forecasts from the governmental agencies to assist
them in their short-term capacity-related decision
making.

Governmental agencies operate as a transmitter be-
tween healthcare providers and scientists, setting up
the database structure required to enable the sharing
of sensitive data between practitioners and scientists.
The forecasts provide a scientific foundation for the
policies enacted by the government. These policies
range from recommendations on how to proceed with
regular operations for hospitals to setting different
minimum targets of reserved COVID-19 beds or de-
fining restrictions for the society trying to lower the
number of newly infected cases.

The third party, the scientists, has access to the cen-
tralized data warehouse to automatically collect neces-
sary information as input parameters. After analyzing
the validity of the data, simulation forecasting models
can be executed and followed by a reporting module
to present the used input and obtained output data.

Analysis, Forecasting, and
Reporting Module
We present our AFRM that we developed to forecast
the short-term bed occupancy of patients with sus-
pected and confirmed COVID-19 in the ICUs and
wards for all mentioned granularity levels in this sec-
tion. The simplified process flow of the AFRM can be
seen in Figure 3, and the complete process flow is
shown in Figure A.1.

We use robotic process automation (RPA) to auto-
mate the process of collecting the data and download-
ing it from the centralized data warehouse. The simula-
tion process is implemented in Vose ModelRisk (Vose
and Koupeev 2020). The data transformation and the
reporting are coded in Visual Basic for Applications
(VBA). Although there exist more powerful program-
ming languages, acceptance and integration in running

operations are key factors when implementing scientific
research in corporate or civil service environments. The
use of VBA for successful project implementation is
prominent in different operational areas (Onggo et al.
2010, Heider et al. 2018, Schoenfelder and Pfefferlen
2018, Bailey andWaddell 2020, Haket et al. 2020).

Data Input and Analysis Module
Multiple input parameters must be gathered, ana-
lyzed, and (partially) processed before running the
simulation. As previously mentioned, some of the pa-
rameters are readily available from the governmental
centralized database, whereas others are not collected
and need to be derived from the existing data. The
available input parameters and the respective share-
holders responsible for their collection are listed in
Table 1, whereas the parameters that must be derived
from existing data to run the simulation are listed in
Table 2.

The number of newly infected persons is necessary
for the simulation to derive the number of daily admis-
sions (which are not publicly shared by the hospitals).
Whereas the reported infection numbers are accurate
during the weekdays, the accuracy on weekends suffers
from issues such as reduced testing and reporting by
the involved stakeholders. Because this causes the vari-
ability in the number of newly infected persons to artifi-
cially increase, we use a polynomial regression model to

Figure 3. (Color online) Simplified Process Flow of the AFRM

Table 1. List of Collected Input Parameters

Input parameter Source

Daily historical bed occupancy
of COVID-19 patients

Healthcare provider

LOS of patients with confirmed
and suspected COVID-19 in
the ICU and ward

Healthcare provider

Daily number of newly infected
persons

Government
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smoothen the number of newly infected persons. Poly-
nomial regression is a popular method that has been ex-
tensively studied and applied in the literature (Fan and
Gijbels 2018). The polynomial degree was chosen be-
tween three and five, as displayed in Figure 4. As the
polynomial degree determines the curvature of the re-
gression, we decided on the value that would best
reflect the trend over the most recent days by visual in-
spection. We then tested for a range between 30 and 50
regressed days to find the best ordinary least squares re-
sults. For further details on the polynomial regression,
please see the Appendix.

Furthermore, we calculate the effective reproduc-
tion number (Rt) on day t, also used by the Robert
Koch Institute (RKI), based on the polynomial regres-
sion of the number of newly infected persons. The

RKI is a governmental scientific institution in Ger-
many that focuses on safeguarding public health in
Germany (Robert Koch Institute 2021). An der Heiden
and Hamouda (2020) describe the concept of Rt in
more detail. Our calculation of Rt is based on the last
eight days of the newly infected cases. It shows the
relative change between newly infected persons
within the last four days compared with the newly in-
fected persons four days in advance.

Our simulation model requires the percentage of
newly infected persons that need to be hospitalized,
which is the number of daily admissions divided by
the number of newly infected persons, each summed
over a time horizon specified by the scientist to strike
a balance between responsiveness and stability. As
the number of daily admissions is not available, we

Table 2. List of Calculated Input Parameters

Input parameter Data derived from

Polynomial regression of the number of newly infected persons Daily historical number of infected persons
Reproduction number Rt Polynomial regression of the number of newly infected persons
Assumed daily admissions Daily bed occupancy and mean of LOS
Percentage of hospitalized persons Assumed daily admissions and number of newly infected persons

Figure 4. (Color online) Excerpt of the SimulationManagement Dashboard in the Data Analysis Module
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approximate it by dividing the daily bed occupancy
by the mean LOS.

Our tool provides an overview of all data on an inter-
nal simulation management dashboard (see Figure 4),
in which a small excerpt is shown for three ambulance
districts. In the top row is the daily historical bed occu-
pancy of confirmed and suspected COVID-19 ward
patients. In the second row, a comparison of the histor-
ical and the polynomial-regressed cumulated number
of newly infected persons is presented. Finally, the
calculated Rt values based on the reported and the
polynomial-regressed number of newly infected per-
sons are compared. Below the diagrams, the scientist
can edit the regression parameters to fit the polyno-
mial regression to the data. Especially in ambulance
districts with low number of infection cases (e.g.,
Donau-Iller at the bottom right in Figure 4), the artifi-
cial variability of the Rt values introduced by the
reporting and data collection process is significant.
Furthermore, the dashboard enables the scientist to
detect heavy outliers in the raw data from faulty data
entries by the data-reporting stakeholders.

Forecasting Module
Our forecasting module comprises an overview of
the collected and calculated input data and the sim-
ulation logic. Figure 5 presents an excerpt of the
forecasting module. The Monte Carlo simulation is
executed 5,000 times for each scenario, geographical
and granularity level, and bed type (ward and ICU).
Triangular distributions are assumed for each sto-
chastic input parameter for the following reasons:
(a) they are easy to understand by the involved
stakeholders with various knowledge backgrounds;
(b) they allow the modeler to control for the shape
of the distribution function (unlike, e.g., an expo-
nential distribution); (c) triangular distributions are

regularly used when little or no reliable information
is available, which was the case for data related to
patients with COVID-19 at the beginning of the pan-
demic; and (d) we had fairly good estimates of the
required LOS parameters (minimum, mode, maxi-
mum) after conducting a survey among 23 Bavarian
hospitals at the beginning of our collaboration with
the Bavarian State Ministry of Health and Care.

The output of a single simulation run includes the
forecast number of beds occupied by confirmed pa-
tients and the number of beds occupied by the sum of
confirmed and suspected cases. A detailed mathemati-
cal and graphical description of our simulation logic
is provided in the Appendix. After 5,000 runs, we ob-
tain confidence intervals for our outputs for each day
in the forecasting horizon.

Reporting Module
In the reporting module of the AFRM process, we dis-
play the historical bed occupancy shared by the
healthcare providers and information on the stochas-
tic future bed occupancy levels. Specifically, we report
the mean values, the quantiles, and the confidence in-
tervals of the forecast bed occupancy levels. With the
help of VBA macros, the output data are automati-
cally consolidated, and diagram-based reports in the
form of PowerPoint slides are generated. Further-
more, key performance indicators (KPIs), such as the
seven-day incidences per 100,000 inhabitants and the
ICU and ward utilization with COVID-19 patients, are
reported in a table format. These KPIs can be adapted
depending on the relevance for the different stake-
holders. The reports, separated for each granularity
level, are sent to the governmental agencies and the
healthcare providers to serve as decision support.
The assumptions and input parameters of the differ-
ent distribution functions are also delivered with

Figure 5. (Color online) Excerpt of the ForecastingModule
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each forecasting report. This proved particularly
fruitful during the early stages of the project, as
physicians could give feedback on the validity of
our assumptions.

Implementation of the Forecasting
Framework in Practices
The development of the simulation model started in
March 2020. From March 2020 to April 2020, our focus
lay on forecasts for the COVID-19–related bed occu-
pancy of ICU and ward patients at a maximum-care
hospital. Hereby, the simulation model is used on a
LOCAL level. During that time, the forecasting frame-
work structure as shown in Figure 2 was developed.
Because of the achieved forecast accuracy and pro-
vided utility in decision support, the ambulance dis-
trict of Swabia quickly asked for an adapted version
of the forecasting framework to be used on a REGION
level. During that time, governmental agencies al-
ready helped us to collect the necessary hospital data
to perform these forecasts. Soon after, in May 2020,
the Bavarian State Ministry of Health and Care re-
quested a rollout to forecast all of the 26 ambulance
districts in the Free State of Bavaria. Furthermore, a
forecast with an aggregated bed occupancy for the
whole Free State of Bavaria was requested. These 26
ambulance districts consist of more than 180 hospitals
that treat COVID-19 patients in their ICUs and wards
and more than 70 hospitals in wards exclusively. The
number of inhabitants of these areas is in total more
than 13 million, which is about 15% of the population
of Germany.

Initially, the processing time to create the forecasts and
reports of all the different ambulance districts amounted
to approximately six hours. After implementing the

VBA macros and the RPA, human interaction was re-
duced to a minimum and only necessary to refine the
input parameters via the simulation management
dashboard. The documents sent to the Bavarian State
Ministry of Health and Care consisted of more than
180 pages. They included diagrams that presented the
historical and forecasted bed occupancy of the different
patient types. Moreover, the historical and assumed fu-
ture reproduction numbers for each granularity and
geographical level were reported. Additionally, more
than 80 tables showing parameters such as the ratio of
beds specifically occupied by COVID-19 patients were
added to the reports. A page of an example report is
shown in Figure 6.

Performance Evaluation of the
Forecasting Framework
In this performance evaluation section, we retrospec-
tively assess the accuracy of our forecasts from May
2020 until January 2021. Over this period, more than
75 reports and more than 25,000 forecasts were gener-
ated and sent to the Bavarian State Ministry of Health
and Care, which distributed the forecasts to the rele-
vant stakeholders. The forecast accuracy was continu-
ously evaluated to determine potential shortcomings
in our approach and to adapt input parameters as
new information on the pandemic became available.

Our three main evaluation measures include the
coverage rate—a success being defined as the actual
number of occupied beds of the forecast day being
within the 5% quantile of Scenario LOW and the 95%
quantile of Scenario HIGH. In the following, this inter-
val is called the prediction interval. Similar evaluation
approaches have been used in various research areas
such as medicine (IntHout et al. 2016), tourism (Kim

Figure 6. (Color online) Example Forecasting Report for the ICUDelivered to the Free State of Bavaria on a STATE Level in
November 2020

                                                                    
8                                                                        



et al. 2011, Li et al. 2019), and revenue management
(Fiori and Foroni 2020). The second evaluation is
based on the mean values of the bed occupancy fore-
cast for a specific future day of each delivered forecast
compared with the observed bed occupancy. The
third evaluation compares our method with a last ob-
servation carried forward (LOCF) approach.

Results Forecasting Level: STATE
On the STATE level, the average coverage rate (the
observed bed occupancy of the patients with con-
firmed COVID-19 being inside the prediction interval)
is at 95.2% for the ICUs and 96.3% for the wards. On
3.0% (1.8%) of the days within the project duration,
the observed values were below (above) the predic-
tion interval for the ICUs. For the wards, the observa-
tions were below (above) the prediction interval on
3.0% (0.7%) of all days. The coverage rate being inside
the prediction interval for the patients with confirmed

and suspected COVID-19 combined is at 98.4% for the
ICUs and 100% for the wards.

The results for the bed occupancy of COVID-19 pa-
tients over the complete forecasting horizon from
May 2020 until January 2021 are visually presented in
Figure 7 for the ICUs and in Figure 8 for the wards.
The government reported our forecasts on Mondays
and Thursdays. In this analysis, the forecasted bed
occupancy on Mondays through Wednesdays stems
from the forecasts delivered on Mondays, whereas
the values on forecasting days in the second half of
the week—Thursday until Sunday—derive from the
forecasts delivered on Thursdays. The further bed oc-
cupancy values are forecast into the future, the more
the distance between the confidence intervals of the
LOW and HIGH scenarios grows. This explains the
zigzag shape of our prediction intervals in Figures 7
and 8. The shape in the confidence intervals over the
following days proved to be a piece of key informa-
tion for the stakeholders. Therefore, the impact of the

Figure 7. Prediction Interval and Actual BedOccupancy for the ICU of All Forecast Days fromMay 2020 Until January 2021 for
the Forecast of the Free State of Bavaria

Figure 8. Presentation of the Prediction Interval and the Actual Bed Occupancy for theWards of All Forecast Days fromMay
2020 Until January 2021 for the Forecast of the Free State of Bavaria

                                                                    
                                                                       9



uncertainty regarding the pandemic development—
which, of course, increases for each additional day
the bed occupancy is forecast into the future—was
important information in our reports. The second
wave started around week 43 in Germany, at which
point the prediction intervals started to widen be-
cause of the increased stochasticity in the pandemic
development.

In Figure 9, the mean values of the forecast ICU bed
occupancy on the fourth day after executing each fore-
cast over the whole forecasting horizon from May
2020 until January 2021 are presented. As shown in
Figure 9, the mean of the bed occupancy forecast of
Scenario HIGH, which is projecting an increasing
number of newly infected individuals, is closest to the
real bed occupancy at the beginning of the second
COVID-19 wave during the calendar weeks 44–48.
During that time, the infection numbers, as well as the
number of hospitalized persons, increased. Because of
low and nonstationary numbers of newly infected

persons in July and August 2020 (weeks 30–35), we
saw inaccuracies in the calculation of the Rt values.
This prompted us to make changes in the data analy-
sis module that led to the implementation of the simu-
lation management dashboard, as shown in Figure 4.
After the implementation of the management board,
the forecasting accuracy improved considerably. The
accuracy remained satisfactory until and throughout
the second wave of the pandemic.

Another method to assess the forecast accuracy of our
model is to compare the mean absolute deviation (MAD)
of our forecasts with those resulting from a simple LOCF
method. We provide the MADs of both approaches for
ICU andward patients in Figures 10 and 11, respectively.
In both figures, we show the MAD resulting from
both approaches separately for each number of days
forecast into the future—for the sake of comparabil-
ity, we assume that each reported forecast had a
forecast horizon of seven days (although the forecast
reports were actually updated every Monday and

Figure 9. Comparison of the Coverage Rate for the ICU for the Fourth Forecast Day fromMay 2020 Until January 2021 for the
Forecast of the Free State of Bavaria

Figure 10. Comparison of the LOCF and Our Forecast for the ICU for Every Forecast Day and the Daily Forecasts of the Free
State of Bavaria
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Thursday). Naturally, the further we forecast into
the future, the higher the MAD becomes. On aver-
age, our forecasts outperform the LOCF approach by
30%–40%.

Results Forecasting Level: REGION
The results of the coverage rate, being inside the pre-
diction interval on the REGION level, are shown in
Table 3. For every 26 ambulance districts, the coverage
rate is split up for each reported forecasting month
from May 2020 until January 2021 and each hospitali-
zation type (ICU and ward). In Table 3, the ambulance
districts are sorted by their population in decreasing
order. As an example, the largest ambulance district
Munich has an overall coverage rate of 91% and 93%
for ICU and ward patients, respectively, throughout
the nine months. It is worth mentioning that the re-
sults were noticeably poor in June 2020.

Because of the low observed numbers of newly in-
fected and hospitalized persons, the confidence intervals
were relatively small—in smaller ambulance districts,
sometimes even less than one bed wide. Therefore, we
updated the forecasting module to allow for a minimum
interval size dependent on the size of the ambulance dis-
trict. Without this buffer, even the smallest differences in
the bed occupancy from one day to another would re-
sult in observed values outside the prediction interval.
This change affected the smallest ambulance districts
but had no impact on larger ambulance districts or the
STATE level.

Results Forecasting Level: LOCAL
During the second pandemic wave in Germany, start-
ing in November 2020, the forecasting framework was
used to forecast the bed occupancy of the different
types of patients with COVID-19 for one specific
maximum-care hospital in the Free State of Bavaria.
On a LOCAL level, the application of the framework

is slightly adapted. Besides the historical bed occu-
pancy, the admission and discharge days of each
COVID-19 patient are known. Therefore, no need for
calculation of further input parameters is necessary to
run the model. Whereas on the STATE and REGION
level, 100% of the number of newly infected persons
within a given county were assumed to be potentially
hospitalized within the same county, the catchment
area (spanning multiple counties) of a single hospital
is taken into account. Using the same KPI measure as
in the STATE and REGION forecasts, the coverage
rate inside the prediction interval over the forecasting
horizon was 97.8% (ICU) and 98.9% (ward).

Discussion and Outlook
In this paper, a forecasting framework for providing
short-term future bed occupancy for different geo-
graphical and granularity levels as decision support
during the COVID-19 pandemic is presented. The
number of beds occupied by patients with confirmed
and suspected COVID-19 in the ICU and wards is
forecasted. The presented work can be used on a
STATE level using aggregated data to forecast the bed
occupancy of a complete state. The aggregated data
can also be used on a smaller REGION level, in which
the bed occupancy of one ambulance district with
multiple hospitals is forecasted. On a LOCAL level,
the framework supports an individual hospital with
short-term forecasts of bed occupancy. The implemen-
tation of the framework is demonstrated on multiple
granularity and geographical levels in the Free State
of Bavaria—the second-largest federal state in Ger-
many, with more than 13 million inhabitants. These
forecasts were sent to the Bavarian State Ministry of
Health and Care and to the 26 ambulance districts
twice a week to provide them with decision support.
The forecasting model has been constantly adapted
and developed. As shown in the evaluation of the

Figure 11. Comparison of the LOCF and Our Forecast for theWard for Every Forecast Day and the Daily Forecasts of the Free
State of Bavaria
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Fü

rs
te
nf
el
db

ru
ck

46
%
/5

4%
40

%
/6

7%
90

%
/8

7%
81

%
/7

1%
10

0%
/8

3%
97

%
/6

8%
80

%
/7

7%
84

%
/7

7%
90

%
/1

00
%

79
%
/7

6%
R
eg

en
sb
ur
g

89
%
/7

1%
77

%
/7

0%
84

%
/9

4%
77

%
/7

7%
10

0%
/9

3%
87

%
/8

7%
80

%
/9

7%
97

%
/1

00
%

10
0%

/9
7%

88
%
/8

7%
T
ra
un

st
ei
n

86
%
/7

9%
30

%
/3

3%
90

%
/9

4%
10

0%
/9

7%
10

0%
/8

7%
74

%
/7

7%
63

%
/8

0%
97

%
/1

00
%

97
%
/1

00
%

82
%
/8

3%
W

ür
zb

ur
g

75
%
/6

4%
40

%
/5

3%
87

%
/9

4%
10

0%
/1

00
%

10
0%

/1
00

%
10

0%
/5

8%
50

%
/8

0%
97

%
/9

4%
94

%
/9

7%
82

%
/8

2%
In
go

ls
ta
dt

46
%
/7

5%
20

%
/5

0%
74

%
/5

2%
10

0%
/9

4%
10

0%
/1

00
%

94
%
/7

4%
83

%
/8

7%
87

%
/1

00
%

84
%
/1

00
%

76
%
/8

1%
A
llg

äu
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forecasts over the nine-month forecasting period, cov-
erage rates of more than 95% were achieved for the
Free State of Bavaria and a single maximum-care hos-
pital. The governmental agencies used our forecasts
as decision support to set up different minimum tar-
gets for reserved COVID-19 beds and to impose and/
or lift restrictions for the public to manage the infec-
tion numbers on a STATE level. Every ambulance dis-
trict in the Free State of Bavaria received the weekly
forecasts on a REGION level to determine the neces-
sity of resource pooling when capacity shortages were
likely. On a LOCAL level, reliable information regard-
ing the bed occupancy of COVID-19–related ICU and
ward cases within the next days facilitates the hospital
planning and scheduling.

One of the key drivers for the success of the project
was the effective generation of stakeholder buy-in.
Without proper stakeholder buy-in, it is generally not
possible to create sustainable value from a project
such as ours (Scheinker and Brandeau 2020). We cer-
tainly benefitted from the existence of previous collab-
orations between the different stakeholders in our
project. This allowed us to use established channels of
communication and receive prompt and detailed in-
formation from the healthcare providers to increase
the quality of our forecasts. In turn, we analyzed the
usefulness of the shared input parameters and pro-
vided feedback on the value of collecting and sharing
additional pandemic-related parameters, which might
not have been considered by the healthcare providers
in the first run. The data collection process turned out
to be one of the most challenging aspects of this pro-
ject. Especially at the beginning of the pandemic, hos-
pitals and governmental decision makers did not
immediately realize the need to collect or provide de-
tailed patient-related data. Whereas on a LOCAL
level, there exists sufficient access to most of the
patient-related data, that was not the case for the RE-
GION or STATE level. In our project, we missed de-
tailed regional LOS data as well as the number of
daily admissions and discharges. Age-related data
have not been made available to this day. As various
research studies show, there are differences in the
case fatality rate for different age groups (Kang and
Jung 2020). The data provided by the Bavarian gov-
ernment were nevertheless sufficient to perform rel-
atively adequate forecasts, but regional and national
governments should seek to establish databases
containing (anonymous) patient-related data, ad-
missions and discharges, and bed and personnel ca-
pacity. Moreover, these databases should best be
connected to the hospital patient management soft-
ware systems to operate automatically and be kept
up-to-date in real time, as we experienced data qual-
ity issues and delays in updates resulting from man-
ual data entry.

The swift setup of the framework and the immedi-
ately achieved high forecasting accuracy levels helped
the Bavarian government to prepare for upcoming
pandemic waves starting in the second half of 2020.
As a result, the Free State of Bavaria was the first state
to share statewide forecasts with its healthcare pro-
viders by many months.

As a next step, it is already planned to use the fore-
casting framework in other federal states in Germany
and other individual hospitals. Moreover, collabora-
tions with researchers from other institutions have
been ongoing to refine the forecasting methodol-
ogy. Finally, these tools should be used after the
COVID-19 pandemic for non–pandemic-related bed
occupancy forecasts to offer decision support to the
stakeholders.
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Appendix. Mathematical Formulation
In this section, the mathematical formulation used by the
AFRM is explained in more detail. A process flow of how
input parameters are transferred into the simulation
model is shown in Figure A.1.

A.1. Mathematical Notation in the Data Input and
Data Analysis Module
When receiving multiple cumulated infection numbers for
τ days, the basic polynomial structure with dimension τ is
shown in Equation (A.1). Hereby, n is the degree of the
polynomial for the vector of an independent variable xτ de-
fined as a continuous natural number within a time series,
c represents the set of coefficients for each polynomial de-
gree, and ε represents an unobserved random error value.

yτ � c0 + c1xt + c2x2t + : : : + cnxnt + ετ (A.1)

Equation (A.2) presents the polynomial equation ex-
pressed in matrix form.

y1
y2
⋮
yτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1 x1
1 x2

x21 ⋯ xn1
x22 ⋯ xn2

⋮ ⋮
1 xτ

⋮ ⋱ ⋮
x2τ ⋯ xnτ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c0
c1
⋮
cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

ε1
ε2
⋮
ετ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.2)

The calculation of the reproduction number Rti value is
based on An der Heiden and Hamouda (2020) and shown
in Equation (A.3). Based on the early experience of the
pandemic, the RKI uses a doubling time with a mean of
four days. Therefore, the R value is the quotient of the
sum of newly infected persons of the latest four days and
the sum of newly infected persons of the previous four
days (An der Heiden and Hamouda 2020).
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The value ητi represents the number of newly infected
persons for each geographical level i ∈ I, where I is a set of
all geographical levels, and on a specific day τ ∈ T, where T
is a set of historic days. Furthermore, t �max{T}.

Rti �
∑τ�t−0

τ�t−3ητi∑τ�t−4
τ�t−7ητi

∀i ∈ I (A.3)

Regarding the new calculation of the R̃ti values based on
the polynomial regression of the infection numbers, Equa-
tion (A.3) changes to the form in Equation (A.4) with the
condition of Equation (A.5). The dependent variable yτi
represents the regressed cumulated number of infected
persons after τ days, for geographical level i, and the up-
dated parameter η̃τi represents the regressed number of
newly infected persons on a specific day τ, for geographi-
cal level i.

R̃ti �
∑τ�t−0

τ�t−3η̃τi∑τ�t−4
τ�t−7η̃τi

∀ i ∈ I (A.4)

η̃τi � yτi − y(τ−1)i τ ∈ T\{0}, i ∈ I (A.5)

To receive a historical ratio of hospitalized persons out of
the number of newly infected persons, we compare the
daily admissions and the number of newly infected per-
sons. Because the healthcare providers only offer bed
occupancy, the assumed daily admissions have to be deter-
mined. This parameter λτsi, in which τ represents a specific
day and s ∈ S represents a patient type—whereas S is a set
of the patient types ICU or ward, confirmed or suspected
case, and i a specific geographical level—is shown in Equa-
tion (A.6). It is calculated using the daily presented bed oc-
cupancy ζτsi for each day τ, for each patient type s, and for
each geographical level i divided by the mean of a sample
size of the LOS ωs for each patient type s.

λτsi � ζτsi
ωs

∀τ ∈ T, s ∈ S, i ∈ I (A.6)

The formulation in Equation (A.7) provides the ratio of
persons that have to be hospitalized ρsi for each patient
type s, in each geographical level i, comparing the number
of newly infected persons with the number of assumed
daily admissions within a time horizon of d days, and t
represents the latest historical day.

ρsi �
∑t

τ�t−dλτsi∑t
τ�t−dητi

∀s ∈ S, i ∈ I (A.7)

A.2. Mathematical Notation in the Forecasting
Module
In the considered time horizon within the forecasting

module, η̃τi is calculated differently depending on the
time slot. If τ ≤ t, the values that were already calculated
within the first module and presented in Equation (A.5)
are passed to the forecasting module. Otherwise, the num-
bers of newly infected persons are calculated as shown in
Equation (A.8). The calculated R̃ti value provides the fac-
tor of newly infected persons within the assumed dou-
bling time of four days (An der Heiden and Hamouda
2020).
The nth root of R̃ti, where n represents the doubling

time, is multiplied with the latest number of newly in-
fected persons to reach the number of newly infected
persons in the next four days. This is common when
dealing with quarterly interest rates, for example. This
leads to an approximation of the correct R̃ti value after
eight days.

η̃(t+j)i � η̃(t+j−1)i · R̃
1
4
ti ∀1 ≤ j ≤ 7, i ∈ I (A.8)

Figure A.1. Process Flow of the AFRM
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In the forecasting module, the daily number of admitted
patients λ̃τi can be calculated using Equation (A.9) with
τ ∈ T̃ and T ⊂ T̃ including historic and forecast days.

λ̃τsi � η̃τi · ρsi ∀τ ∈ T̃, s ∈ S, i ∈ I (A.9)

Furthermore, the number of discharged patients on day
δτsi for each day τ, each patient type s, and each geo-
graphical level i can be calculated as shown in Equation
(A.10), adding a certain LOS ωs to the day τ of the num-
ber of admitted patients on a day τ, for each patient type
s and for each geographical level i.

δ(τ+ωs)si � λ̃τsi ∀τ ∈ T̃, s ∈ S, i ∈ I (A.10)

The calculated daily bed occupancy ζ̃τsi is presented in
Equation (A.11).

ζ̃τsi � ζ̃(τ−1)si + λ̃τsi − δτsi ∀τ ∈ T̃, s ∈ S, i ∈ I (A.11)

On the first forecasting day τ � (t+ 1), the predicted bed oc-
cupancy is calculated slightly differently. Hereby, the latest
historical bed occupancy ζtsi is considered rather than the
calculated bed occupancy of the previous day ζ̃(τ−1)si. More
specifically, the calculation is shown in Equation (A.12).

ζ̃τsi � ζtsi + λ̃τsi − δτsi, ∀s ∈ S, i ∈ I (A.12)
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