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ABSTRACT

The development of deep learning models for speech emotion
recognition has become a popular area of research. Adversarially
generated data can cause false predictions, and in an endeavor to en-
sure model robustness, defense methods against such attacks should
be addressed. With this in mind, in this study, we aim to train deep
models to defending against non-targeted white-box adversarial at-
tacks. Adversarial data is first generated from the real data using the
fast gradient sign method. Then in the research field of speech emo-
tion recognition, adversarial-based training is employed as a method
for protecting against adversarial attack. We then train deep con-
volutional models with both real and adversarial data, and compare
the performances of two adversarial training procedures – namely,
vanilla adversarial training, and similarity-based adversarial training.
In our experiments, through the use of adversarial data augmentation,
both of the considered adversarial training procedures can improve
the performance when validated on the real data. Additionally, the
similarity-based adversarial training learns a more robust model when
working with adversarial data. Finally, the considered VGG-16 model
performs the best across all models, for both real and generated data.

Index Terms— Speech Emotion Recognition, Adversarial At-
tacks, Adversarial Training, Convolutional Neural Network

1. INTRODUCTION

Emotion recognition has become a popular research topic in recent
years, particularly as improving interaction between human and ma-
chine is an essential part of Artificial Intelligence (AI) research. As
a result, systems with integrated speech-based emotion recognition
have found many real-life applications, including in Human-robot-
interaction (HRI) [1], educational settings [2], and as a diagnosis tool
for conditions such as depression [3]. Computational approaches for
emotion recognition can be achieved more robustly through multi-
modal approaches [4, 5]; however, speech alone has shown to be a
valuable modality for such a task, due to the array of information
transmitted via the speech signal [6].

More recently, deep learning-based methods have been success-
ful for speech-based emotion recognition [7]. However, improving
the robustness of deep learning models for real-life implementation
is now an important factor in AI research [8]. One aspect of concern
for robust development of real-world models is, they are vulnerable
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to external attacks [8], particularly adversarial attacks [9]. A very
minimal, and well designed perturbation of the input – in some cases
only a single pixel in an image [10] – can make a deep model fail
to predict a class correctly. This is of particular concern to fields
wanting to integrate AI for use with sensitive data sources, such as
the governmental, finance, or health domains [11], and tampering
with speech emotion data sources could lead to destructive and mis-
interpreted interactions [12]. For instance, an adversarial example
attacking an emotion recognition for mental disease diagnosis, could
lead to an inaccurate diagnosis or treatment plan.

With this in mind, training a robust model to defend against
attacks is necessary. Adversarial-based training for defense (i. e.,
adversarial training) is one of the state-of-the-art methods to pro-
tect against attacks, and is achieved by training a model both on
the original input data and adversarially generated (i. e., fake) data.
Adversarial training has shown promise for improving model robust-
ness for a range of applications [13, 14], and in this study, we are
exploring this method for speech-based emotion recognition focusing
specifically on adversarial attacks [9].

There are two main contributions in this paper. First, we make use
of adversarial training, not only improving the performance by aug-
menting the training data, but also defending against the adversarial
attacks as it helps the trained model to converge on the adversarially
generated data [15]. Further, based on the similarity of high-level
features extracted from the original input and fake data, we propose a
similarity-based adversarial training approach to improve the robust-
ness to adversarial attacks.

2. RELATED WORK

In the past decade, deep learning topologies have been successfully
applied to speech-based emotion recognition tasks [6]. Networks such
as Recurrent Neural Networks (RNNs) are able to learn the temporal-
based features from emotional speech [16, 17], whilst Convolutional
Neural Networks (CNNs) have shown great success for the prediction
of emotional classes based on spectrogram image inputs [7, 18]. As
well as this, enhancement methods using deep residual networks
have also been implemented, as a means of training more robust
speech-based emotion recognition models [19].

In regards to the development of more robust deep models, when
applied as an input for a deep learning model, adversarially generated
data can be a challenge, forcing the model to produce classification
errors [9]. Targeted and non-targeted adversarial data were proposed
to confuse deep learning models. An approach for generating an
adversarial audio example with a targeted label was proposed for
speech-to-text systems in [20]. Non-targeted adversarial data are
misclassified by a deep learning model without a targeted label [21].
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Fig. 1. The framework of our proposed adversarial training approach
on emotional speech samples.

During the generating procedure, the adversarial attacks can be clas-
sified into white-box and black-box attacks [22]. White-box attacks
are obtained when the adversary knows the whole parameters of the
deep model; black-box attacks are generated when the adversarial
knows only the output of the deep model. In this study, we focus on
non-targeted white-box attacks to fail the deep model.

Recently, and with prominence, adversarial attacks have been
applied in the computer vision community. For example, adversar-
ial data was generated to fake deep image classification and cap-
tioning models [9, 14]. As well as this, CNN models for semantic
segmentation and object detection have been shown to be suscepti-
ble to attacks by adversarial data [13]. However, to the best of the
authors’ knowledge, there are no research studies focusing on defend-
ing against adversarial attacks in the field of speech-based emotion
recognition. An end-to-end scheme was proposed to generate fake
emotional speech data in [12], and the validity of using generative
networks for emotional speech data augmentation was presented in
[23]. However, the corresponding approaches to defend against such
adversarially generated attacks was not investigated further by these
authors. Hence in this work, we not only propose an adversarial-
based data augmentation method, but for the first time, also present
two adversarial training approaches for defending speech emotion
recognition models against adversarial-based attacks.

3. METHODOLOGY

In this section, we outline both our attack and defense strategies for
deep speech emotion recognition models, as shown in Fig. 1. We
first introduce our attack method for generating the adversarial (i. e.,
fake) data, which is used also for data augmentation. This is followed
by a description of the adversarial-based training approaches which
will be applied to defend against the adversarial attacks. Finally, the
employed structures of the deep models will be introduced.

3.1. Adversarial-based Augmentation and Attacks

An adversarial attack is known in the literature as a method to fool
a neural network into misclassifying an instance, typically through
adding perturbations (i. e., additional noise) to the data [9]. In our
case, let us define the input data as x, the targets as y, and the learnt
parameters of a deep model (e. g., a Covolutional Neural Network
(CNN)) asw. We first simplify the deep model into a linear function:
y = wx, and add a slight perturbation to the input data x, defining
the new input data as x′ = x+ θ. Then, the function y = wx can
be updated towx′ = wx+wθ. With the model going deeper (i. e.,
additional layers), the model could produce a wrong predictionwx′

fromwx, although θ is very small. Similarly, non-linear deep models
will also be affected by the perturbations. Hence, the generated data
x′ (i. e., adversarial data) can attempt to fool the deep model through
adding adversarial noise to the original real data x, as shown in Fig. 1.

Real log-Mel spectrogram                                Angry: .866 probability

Adversarial noise                                                              ϵ=0.04, η=0.1 

Adversarial log-Mel spectrogram              Happiness: .958 probability 

+

Fig. 2. An adversarial log-Mel spectrogram image generated from
the log-Mel spectrogram of the speech sample NP m 27 ang07b.wav
from the DEMoS Database, which will be described in Section 4.1.

To generate the adversarial data, we employ the Fast Gradient
Sign Method (FGSM) [9], which computes the gradient as the adver-
sarial noise. The loss value during the training procedure is defined
by L(w, x, y), and the gradient∇xL(w,x, y) can be obtained using
back propagation. The adversarial data can be computed by

x′ = x+ ε ∗ sign(∇xL(w,x, y)), (1)
x′ = clip(x′,x− η,x+ η), (2)

where ε is a constant perturbation factor, and η is a constant parameter
to clip x′ into an interval [x − η,x + η]. The generated fake data
can help for data augmentation while training the models, and attack
a pre-trained model during the validation. As shown in Fig. 2, a deep
model can produce the real log-Mel spectrogram image a correct
prediction, which is angry with a probability of .866. However, it
predicts happiness with a probability of .958 after adding a slight
adversarial noise to the original image in our example.

3.2. Adversarial-based Training for Defense

To defend against the adversarial attacks, we implement two adver-
sarial training architectures – vanilla, and our novel similarity-based
adversarial training contribution. Adversarial training aims to train
on both real and fake data. Training using the fake data allows for
more robust classification results, as fundamentally the training set
is larger (a necessity for deep networks) and in turn the augmented
data regularises the parameters against more fine-grained differences,
allowing for a more robust class prediction.

3.2.1. Vanilla Adversarial Training

Different from the loss function while only training on the real data,
the loss function of our vanilla adversarial training considers the loss
values of both real and fake data. The loss function is defined by

L̂(w,x, y) = α ∗ L(w,x, y) + (1− α) ∗ L(w,x′, y), (3)

where α is a constant parameter to adapt the weights of the loss
values on the real and fake data. Hence, this vanilla adversarial
training procedure is mainly achieved by minimising the two loss
functions L(w,x, y) and L(w,x′, y).
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3.2.2. Similarity-based Adversarial Training

As the adversarial data is generated by adding noise to each real input
data, a real instance and its corresponding adversarial data can be
viewed as a pair, labeled with the same emotion. Therefore, we can
assume that, the feature vectors from the final fully connected layer
should be close in each of these pairs. With this in mind, we define
the following similarity-based adversarial training procedure,

L̂(w,x, y) = β ∗ L(w,x, y) + γ ∗ L(w,x′, y)

+ (1− β − γ) ∗ ‖v − v′‖n,
(4)

where β and γ are constant parameters, and v and v′ are the feature
vectors in the final fully connected layer from the real and adversarial
data respectively. Here, L2 Loss (n = 2) is applied to measure the
distance between two feature vectors.

3.3. Deep Convolutional Neural Networks

As we found the use of log-Mel spectrogram images extracted from
audio waves to be successful in our previous work [24], we make use
of log-Mel spectrogram images as input of the deep models in this
study. Herein, three CNN architectures are employed due to CNN
models’ strong capability to extract high-level features from log-Mel
spectrogram images [24]. The implemented CNN models contain a
conventional CNN model with four convolutional layers (named as
CNN-4), a ResNet model, and a VGG model.

The CNN-4 model contains, four convolutional layers
[64, 128, 256, 512], a global max pooling layer, a fully connected
layer, and a softmax layer for the final classification. The four con-
volutional layers have a kernel with a size of (5, 5), and each convo-
lutional layer is followed by a local max pooling layer with a kernel
size of (2, 2). The global max pooling has shown better performance
than flattening in our previous study [24], as it can extract smaller
feature vectors from feature maps for classification.

Besides the CNN-4 model, another two state-of-the-art CNN
models, ResNet and VGG, are employed for a comparison.
ResNet [25] contains the Inception architecture which requires rel-
atively low computational cost. ResNet has shown promise in the
tasks of image processing [25]. ResNet has a series of structures
with different numbers of layers. One of them, ResNet-50 [26], is
utilised, since our work is focusing on adversarial attacks and train-
ing. Moreover, VGG has shown good performance on processing
spectrogram images for audio classification tasks due to its deep ar-
chitecture [27, 28]. Hence, we also train a VGG-16 model for this
speech-based emotion recognition task.

4. EXPERIMENTAL RESULTS

4.1. Database

For this study, we utilise the Database of Elicited Mood in Speech
(DEMoS) [29], which is an Italian emotional speech corpus. DEMoS
was collected from 68 speakers (23 females, 45 males) with 9 365
emotional and 332 neutral speech samples in total. The neutral speech
samples are not considered in our study, as neutral is a minority class.
The 9 365 speech samples are annotated with seven classes of emotion
shown in Table 1, of which all are used in our experiments. The emo-
tions of DEMoS were induced by an arousal-valence progression [29].
To avoid speaker dependency during training, partitioning of the data
(train, development, and test) was made speaker-independently with
consideration to gender and emotional class balancing. The data
distribution in the three partitions is described in Table 1.

Table 1. Speaker independent partitions, Train, (Dev)elopment, Test
created from DEMoS, including the distribution of the 7-classes as
well as gender, (F)emale and (M)ale.

# Train Dev. Test
∑

Gender (F:M)
Speakers 24 22 22 68 23: 45
Anger 492 472 513 1477 516: 961
Disgust 525 556 597 1678 596:1082
Fear 380 383 393 1156 415: 741
Guilt 351 366 412 1129 400: 729
Happiness 447 434 514 1395 524: 871
Sadness 493 486 551 1530 532: 998
Surprise 336 327 337 1000 349: 651∑

3024 3024 3317 9365 3332:6033

4.2. Experimental Setup

For parameter optimisation during our experiments, we train the
CNN models on the training set, and test them on the development
set; the CNN models for validation of the test set are trained from
the combined training and development set. First, the speech files are
resampled from 44.1 kHz to 16 kHz, as the data of 16 kHz can lead to
faster progressing, and the data with these two sampling rates have
similar results in our early experiments. Then, we extract log-Mel
spectrogram images with a window size of 512 units, an overlap with
a length of 256 units, and 64 mel bins. To unify the time length of
log-Mel spectrogram images, we broadcast the spectrogram images
which have shorter time lengths than the longest one, leading to a
set of log-Mel spectrogram images with a size of (373, 64). Further,
the log-Mel spectrogram images are fed as the input of CNN models.
During the training procedure, the ‘Adam’ optimiser is utilised with a
learning rate of .001. After every 100 training iterations, the learning
rate is reduced to 90 % percent of its value at the current iteration step,
aiming to improve the stabilisation of the training models. Finally,
the training procedure is stopped at the 10 000-th iteration.

For the adversarial training, the adversarial data is fed into the
training model from the 1 000-th training iteration, and set the hy-
perparameter as α = 0.5 for the vanilla adversarial training. For the
similarity-based adversarial training, the hyperparameters are set as
β = γ = 0.4. Due to class imbalance, all of the CNN models in our
study are evaluated by Unweighted Average Recall (UAR).

4.3. Results and Discussion

To first verify the validity of our proposed adversarial attacks, we
train the CNN models on the real training data (i. e., baseline (named
as single training)), and then test these models on the adversarial
development/test data, as shown in Fig. 3. The performances when
= 0.00 are the results when testing on the real development/test

data. We can see that, all of the six models perform well on the real
data at around the UAR of 0.8, while the UAR values are decreasing
when the value of ε increases. This shows that the adversarial data
can be applied to attack the CNN models successfully.

Moreover, the results of the proposed vanilla and similarity-based
adversarial training are shown in Table 2. As for the real data, the
performance are mostly improved because of data augmentation using
the adversarial data. When inferring on the fake data (i. e., adversarial
attacks), both of the two proposed training approaches perform well
on the adversarial data using the three CNN architectures, although
their performance is slightly worse than the performances on the
real data. While ε is increasing, the performances are becoming
worse on the adversarial data. It might imply that a bigger value of
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Table 2. Performance comparison of the three CNN topologies, showing results for the training strategies of single, (van)illa (adv)ersarial,
and (sim)ilarity-based adversarial training. The CNN models are validated on both (dev)elopment and test set of the real data and fake (i. e.,
adveresarial) data in DEMoS Corpus.

CNN-4 ResNet-50 VGG-16
UAR Real Fake Real Fake Real Fake

NN Dev. Test Dev. Test Dev. Test Dev. Test Dev. Test Dev. Test

Single Training .00 .826 .836 – – .719 .813 – – .798 .836 – –

Van. Adv. Training .02 .825 .856 .744 .800 .699 .817 .620 .774 .850 .847 .794 .806
Van. Adv. Training .04 .817 .871 .657 .749 .813 .850 .685 .755 .849 .855 .743 .783
Van. Adv. Training .06 .854 .869 .576 .671 .774 .839 .595 .672 .871 .878 .741 .770
Van. Adv. Training .08 .853 .858 .520 .540 .813 .855 .607 .710 .875 .867 .709 .756
Van. Adv. Training .10 .866 .880 .457 .570 .823 .845 .602 .678 .842 .870 .638 .716

Sim. Adv. Training .02 .844 .797 .827 .784 .743 .798 .732 .771 .847 .823 .839 .821
Sim. Adv. Training .04 .822 .825 .772 .769 .708 .798 .652 .759 .814 .842 .806 .820
Sim. Adv. Training .06 .775 .824 .675 .731 .723 .788 .630 .728 .786 .839 .753 .815
Sim. Adv. Training .08 .739 .806 .610 .674 .631 .803 .450 .714 .792 .653 .730 .550
Sim. Adv. Training .10 .727 .752 .526 .585 .407 .734 .316 .498 .804 .833 .716 .769

0.00 0.02 0.04 0.06 0.08 0.10
ε

0.0

0.2
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0.8

1.0
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CNN-4 dev.
CNN-4 test
ResNet-50 dev.
ResNet-50 test
VGG-16 dev.
VGG-16 test

Fig. 3. The performance of the CNN models obtained by single
training, while validated on the adversarial (dev)elopment and test
data utilising the DEMoS dataset. The adversarial development/test
data is equal to the real data while ε = 0.00.

Table 3. Performance comparison between our proposed approach
and other data augmentation methods using DEMoS, reporting UAR.

UAR Dev. Test

WaveNet (two classes) [23] .857 .741
Raw audio augmentation by random noise .795 .833
Spectrogram augmentation by random noise .808 .833
Our proposed approach .875 .867

can affect the data distribution. Furthermore, when comparing the
two adversarial training approaches, the vanilla adversarial training
performs better on the real data than the similarity-based one in most
cases; the similarity-based adversarial training can defend against
attacks more effectively than the other. The similarity-based loss can
reduce the difference between the features of real and adversarial
data, but it affects the feature vectors extracted from the real data.

Among the three CNN models, VGG-16 performs best, whilst
ResNet-50 has the worst performance on both real and adversarial
data. This might be caused by the architecture of ResNet, containing
more convolutional layers in the Inception architecture than the other
two CNN models. The performance of CNN models are highly related

to the number of layers [30]. Too many convolutional layers might
slow down the convergence. While comparing CNN-4 and VGG-16,
VGG-16 is more stable and more robust. We think this is because
more convolutional layers can extract higher-level features. Further,
the difference between real and adversarial data is becoming larger
when the model is going deeper, although they are similar as input.
Therefore, more convolutional layers can increase such a difference,
and help the model learn to reduce the difference. Finally, our best
result on the real data (development: .875, test: .867) achieves a
significant improvement, compared to that obtained by single training
(development: .826, test: .836) (in a one-tailed z-test, p < .001).

Further, we compare our results with the state-of-the-art methods
for data augmentation in Table 3. WaveNet can achieve a good per-
formance, however this was applied only for two classes (happiness,
and sadness) in [23]. Through additional experiments, we see that
our training result also performs significantly better than data (raw
audio and log-Mel spectrogram image) augmentation methods using
random noise (in a one-tailed z-test, p < .001).

5. CONCLUSIONS AND FUTURE WORK

For this study, we proposed a system for training a deep speech
emotion recognition Convolutional Neural Network (CNN) model
to be robust against adversarial attacks. We applied the vanilla and
similarity-based adversarial-based training for defense (i. e., adversar-
ial training), to three deep CNN models, namely CNN-4, ResNet-50,
and VGG-16. From these experiments, we found that the model
by adversarial training worked better on real data than that by sin-
gle training due to adversarial-based augmentation. Further, the
similarity-based adversarial training produced an improved perfor-
mance on fake data than the vanilla adversarial training approach.

In future efforts, we will investigate generating black-box fake
data (rather than the white-box approach implemented here) for at-
tacking deep learning models. A black-box approach is applied while
the attacked model parameters are unknown, and is inherently closer
to a real world situation. Moreover, transferring the fake data across
deep models will help to validate model robustness. Additionally, to
improve the performance when using the adversarially generated fake
data, we look to train a detector for recognising this.
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