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Abstract—The detection of intimacy plays a crucial role in
the improvement of intimate relationship, which contributes to
promote the family and social harmony. Previous studies have
shown that different degrees of intimacy have significant differ-
ences in brain imaging. Recently, work has emerged to recognise
intimacy automatically by using machine learning techniques.
Moreover, considering the temporal dynamic characteristics of
intimacy relationship on neural mechanism, how to model spatio-
temporal dynamics for intimacy prediction effectively is still a
challenge. In this paper, we propose a novel method to explore
deep spatial-temporal representations for intimacy prediction by
an Attention-enhanced Cascade Convolutional Recurrent Neural
Network (ACCRNN). Given the advantages of time-frequency
resolution in complex neuronal activities analysis, this paper
utilizes functional near-infrared spectroscopy (fNIRS) to analyse
and infer intimate relationship. We collected fNIRS-based dataset
for the analysis of intimate relationship. Forty-two-channel fNIRS
signals are recorded from the 44 subjects’ prefrontal cortex when
they watched a total of 18 photos of lovers, friends and strangers
for 30 seconds per photo. The experimental results show that our
proposed method outperforms the others in terms of accuracy
with the precision of 96.5%. To the best of our knowledge, this
is the first time that such a hybrid deep architecture has been
employed for fNIRS-based intimacy prediction.

I. INTRODUCTION

The concept of intimacy has long permeated theories of
social life [1] particularly in the study of close relationships
like friendships, and love relationship [2]. Intimacy generally
refers to the feeling of being in a close personal associ-
ation and belonging together. It emphasizes the degree of
interdependence between the two sides [3], which can be
the romantic relationship of lovers, the marriage relationship
between husband and wife, or the intimate friendship. Whether
it is to build a happy family or a happy organization, the
intimate relationship is important. Many studies show that in-
timate relationships can effectively alleviate people’s negative
emotions. For example, holding hands with a lover will reduce
self-anxiety.

Previous work mainly used questionnaires to analyse in-
timate relationships in interpersonal communication, which
leads to a strong subjectivity in the analysis of intimate
relationships. Additionally, in the field of neuroscience, many
studies show that different degrees of intimate relationships
are associated with the activation of specific brain regions [3],
[4], [5], [6]. When subjects viewed pictures of their lovers
vs. friends, the activation of dopamine-rich brain regions and
the midbrain marginal dopamine circuit was significantly en-
hanced. Therefore, can we automatically detect the categories
of intimacy by analysing the activity of certain brain regions?

Recently, multiple modalities, such as electroencephalogra-
phy (EEG), functional magnetic resonance imaging (fMRI)
and fNIRS are applied in various brain-computer interface
(BCI) analysis tasks, including lie detection [7], intention
recognition [8], or emotion recognition [9], [10]. However, the
utilization of fMRI has some limitations because of its bulky
size, and high cost of its scanners, which leads to it being suit-
able for the most resting-state tasks. EEG [11] and fNIRS are
both flexible, scalp located procedures that can be employed
for monitoring multiple populations in ecological conditions.
The EEG experimental preparation process is complicated,
and the collected signals are more objective and sensitive[12].
It is often utilized for the diagnosis and measurement of
brain diseases such as epilepsy and sleep. In addition, it is
greatly disturbed by external physiological signals and device
electrodes. Recently, fNIRS [13], [14] has been recognized as
a promising noninvasive optical imaging technique for moni-
toring the hemodynamic response of the brain using neurovas-
cular coupling. Neurovascular coupling in the cerebral cortex
captures the increases in oxygenated hemoglobin (HbO) and
reductions in deoxygenated hemoglobin (HbR) that occur dur-
ing brain activity. The functional near-infrared spectroscopy
has been performed well in the field of laboratory advanced
cognitive neuroscience research [15], brain-computer interface
research [16] and other cognitive activities [17]. Due to the
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advantages of low cost, good portability, non-invasiveness and
no excessive sensitivity to the test action during the exper-
iment, fNIRS-based analysis is gaining widespread attention
from researchers.

To date, however, work on exploiting a predictive model
for intimacy detection has been very limited [18]. Li et
al. [18] use hand-crafted features based on a General Linear
Model (GLM) and Complex Brain Network Analysis (CBNA)
methods to build a predictive model for intimacy. In the field
of BCI, most of the existing studies [14], [15] have relied on
extracting the statistical features from the time-domain signal.
However, reaching the highest classification accuracy depends
on multiple factors, such as selecting the best set of combined
features [16], [17] and the size of the time window [19].
And hand-crafted features always require domain knowledge
for the specific task, and designing the proper features for
a new task may be more time consuming than designing the
model itself. To overcome the limitations of these conventional
methods, an appropriate technique for feature extraction needs
to be determined. The previous studies have demonstrated
that convolutional neural networks (CNNs) can successfully
achieve high classification accuracy in many applications,
including image recognition [20], speech detection [21], and
multiple time-series processing [22]. Considering CNNs’ a-
bility to extract important spatial features from a signal, it
may be suitable for fNIRS-based intimate relationship as well.
Meanwhile, as a popular RNN architecture specialized in
sequence learning, LSTM-RNN has built-in memory gates to
retain long-term information, which has the ability of learning
the temporal features from sequences.

Based on the above considerations, we propose a novel
framework to use an attention-enhanced cascade convolutional
recurrent neural network (ACCRNN) in intimacy detection by
capturing spatial-temporal feature representation. A cascade
convolutional recurrent neural network is utilized to automat-
ically learn the high-level spatial-temporal representation in
terms of intimacy. And an attention model is used to capture
the key information in a sequence. Fig. I shows the proposed
framework for intimacy prediction using fNIRS signals.

The main contributions of this paper are as follows: a) A
fNIRS-based database is collected to analyze human’s com-
plex brain response pattern corresponding to intimacy. Forty-
two-channel fNIRS signals are recorded from 44 subjects
when they watch the pictures from their lover, friend and
strangers; b) a fNIRS-based cascade deep learning architecture
is utilized to detect three different intimacy classes, including
lover, friend and stranger. Compared with hand-craft features,
the proposed method can automatically extract spatial and
temporal features from fNIRS signals by a cascade convo-
lutional recurrent neural network, which is capable of learn-
ing feature representations and modeling the spatial-temporal
dependencies between their activation; c) we also investigate
the usage of attention-based architectures to improve fNIRS-
based intimacy prediction. The attention mechanism allows the
network to focus on the salient parts of a sequence.

The reminder of this paper is organized as follows: Sec-

tion II reviews some related work in the field of intimacy
prediction. Section III presents the details of the proposed
framework. Section IV shows the performance of our proposed
method on an existing high quality laboratory dataset and
our proposed method is also compared with other existing
methods. Section V summarizes this paper and outlines the
future work.

II. RELATED WORK

Brain-computer interface (BCI) is a highly active research
field, with many novel approaches being proposed and inves-
tigated over the past decade. As the clue to explore brain
activity, several modalities have been used for brain signal
acquisition, which include EEG, MEG, fMRI and fNIRS.
Among them, fNIRS is relatively new, which uses near-
infrared-range light (usually of 650-1000 nm wave length) to
measure the concentration changes of oxygenated hemoglobin
(HbO) and deoxygenated hemoglobin (HbR) [23]. Its main
advantages are relatively low cost, portability, safety, low noise
(compared to fMRI), and easiness to use [24].

Recently, brain mechanism for intimate relationship be-
tween humans and their interaction has attracted extensive
attention from researchers. Eisenberger et al [25] explored the
brain mechanism of social pain caused by rejection. The result-
s from fMRI found that the subjects had a significant activation
of the anterior cingulate and the right ventral prefrontal lobe
when they were rejected compared to the acceptance. By using
fNIRS, Reindl et al. [26] found that brain-to-brain synchrony
may represent an underlying neural mechanism of the intimate
connection between parent and child, which is linked to the
child’s development of adaptive emotion regulation. Thus,
exploring and modeling users’ brain nerve activity patterns
and accurately predicting their intimate relationship status is
the key to improve intimate relationships.

With the increase of available data and computational
power, deep learning methods have been successfully applied
in various BCI tasks to learn robust feature representation-
s, such as intention recognition [8], mental workload [27],
emotion recognition [10], motor imagery [24], or neuro-
rehabilitation [24]. Zhang et al [8] introduce both cascade
and parallel convolutional recurrent neural network models
for precisely identifying human intended movements and
instructions by effectively learning the compositional spatio-
temporal representations of raw EEG streams. Chiarelli et
al. [28] design a hybrid EEG-fNIRS brain-computer interface
for motor imagery classification by using DNN. While there
is a range of work in the literature focusing on analysis and
prediction of intimate relationship, very little research has
been undertaken to explore complex spatial-temporal feature
representation.

III. METHODOLOGY

A. Problem Definition

Given a period T representing a trial during which a subject
watches a photo from a certain intimate relationship, we aim to
recognize the intimacy by analyzing the fNIRS signals. There
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Fig. 1. The framework of the attention-enhanced cascade convolutional recurrent neural network based on fNIRS signals for intimacy prediction. (a) collects
intimacy-induced fNIRS signals; (b) removes fNIRS signal noise; (c) captures high-level spatial representation by a CNN model; (d) captures high-level temporal
representation by the LSTM model; (e) finds the salient parts of a sequence for intimacy by an attention mechanism; (f) learns the final representation for
intimate relationship category; (g) predicts the final intimate relationship category by a softmax classifier; (h) outputs predicted results.

are n fNIRS sensor nodes, each of which has a k-time-point
reading during T , constructing a two-dimensional (2D) tensor
XT = [r1, ..., rn] ∈ ℜn×k as raw fNIRS features of the trial
T . Each fNIRS node reading is a one-dimensional (1D) tensor
ri = [si1, ..., s

i
k] ∈ ℜk, where sit is the sensor measurement of

the ith fNIRS sensor at the time point t. Our goal is to predict
the intimacy performed during one trial T by analyzing the
fNIRS recording XT .

B. Spatial-temporal Feature Representation

To capture a better spatial-temporal representation, we de-
sign a cascade convolutional recurrent neural network (CCRN-
N) framework by combining CNN and LSTM. The input to
the model is the preprocessed multi-channel fNIRS signals.
We extract the spatial features of preprocessed fNIRS signals,
and then feed the sequence of the extracted spatial features
into the LSTM to extract temporal features. The CNN applied
to each fNIRS signals is only responsible for spatial feature
extraction, while the following LSTM network explores the
relationships among multiple time steps.

The CNN has shown that it is highly capable of automat-
ically learning appropriate features from the input data by
optimizing the weight parameters of each filter, using forward
and backward propagation to minimize classification errors.
In convolutional layers, a convolutional filter whose width is
equal to the dimension of the input and kernel size (height)
of h is convolved with the input data, where the output of the
ith filter is

oi = w⃗ · x⃗[i : i+ h− 1], (1)

where w⃗ is the weight matrix, ⃗x[i : j] is the submatrix of input
from row i to j, and oi is the result value.

For learning a temporal representation, an LSTM unit can
determine whether to retain existing memory or to overwrite
it with new information. Thus, an LSTM-RNN has the ability

to model long-range dynamic dependencies so the problem
of vanishing or exploding gradients can be avoided during
training [29]. According to the input of the previous unit, the
input gate determines which information in the unit needs to be
updated at time t. The forget gate calculates the importance of
the information, discarding the useless information. The output
unit controls and affects the final output state at time t.

c̃jt = tanh (Ucxt +Wcht−1 + bc)
j (2)

cjt = f j
t c

j
t−1 + ijt c̃

j
t . (3)

In formula 2, c̃jt represents ct−1 new memory gate unit, b is
the memory content of the previous unit, and the new memory
content is calculated by using the forget gate unit and the input
gate unit, and cjt represents the memory content after the forget
unit and the input unit are updated using the time t. cjt can be
calculated by formula 3.

In formula 4 and 5, ojt represents hj
t is the final LSTM

output unit activated at time t.

ojt = σ(Uoxt +Woht−1 + bo)
j (4)

hj
t = ojt tanh(c

j
t ). (5)

C. Attention model

Attention-based models have been successfully used in
plenty of sequence-to-sequence learning tasks, such as speech
recognition [30], part-of-speech tagging [31] and machine
translation [32]. In fact, the attention mechanism is to select
relevant encoded hidden vectors via attention weights (an
informative sequence of weights) during the decoding phase.
The architecture affords the possibility to construct an end-
to-end system. In this paper, an attention mechanism aims to
find the key part whose are more informative than others for
intimacy prediction.
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We calculate the attention weights αi for each vector xi in
a sequence of inputs x, as follows:

αi =
exp(f(xi))∑
j exp(f(xj))

, (6)

where f(x) is the scoring function. Here, we use a linear
function f(x) = WTX . W in the linear function is a trainable
parameter. The output of the attention layer is the weighted
sum of the input sequence, which is denoted by attention ex:

attention ex =
∑
i

αixi . (7)

D. Intimacy classification

Vector attention ex represents a learned feature vector of
an fNIRS sequence, which includes more discriminative and
robust intimacy representation. And, it can be classified by:

p = softmax(Wattention exv + bc). (8)

Our model is trained by minimizing the cross-entropy between
the predicted label and the real label.

E. Attention-enhanced cascade convolutional recurrent neural
network (ACCRNN) for fNIRS-based Intimacy Detection

The motivation of the proposed model is illustrated by
three requirements of fNIRS-based intimacy prediction: a)
Inspired by their performance in visual and speech recognition
tasks, CNNs have been incorporated to extract features from
raw signals. And CNNs are exceptionally good at capturing
high-level representations in a spatial domain. b) The data of
each sequence contains specific part of the complete intimate-
induced brain activity. Thus, temporal information can be
detected from the fNIRS signal. The final prediction result
of intimate relationship is decided by sufficiently considering
these contextual relationships. c) In addition to learning useful
spatio-temporal features, it is also important to select the
salient sections of an input signal to improve fNIRS-based
intimacy prediction performance further. The use of attention
mechanisms in RNN and CNN-based models has frequently
been demonstrated as a useful tool to encourage a model to
more heavily weight specific regions of an input sequence.
While LSTMs are capable of modeling temporal dependencies
in sequences, it is difficult for them to learn long temporal
dependencies in long sequences. With the help of the attention
mechanism [4], the LSTM-RNN can tackle this problem.

As shown in Fig. I, in our proposed model, we first extract
the spatial features from preprocessed fNIRS signals, and then
feed the sequence of the extracted spatial features into the
LSTM-RNN to extract temporal features. An attention layer
is designed for extracting the salient parts of a sequence. One
fully connected layer receives the output of the attention layer,
and feeds the softmax layer for final intimacy prediction.

IV. EXPERIMENTS AND ANALYSIS

A. Data acquisition

1) Participants: In order to effectively analyse and infer
to intimacy, forty-four healthy subjects were recruited for the
experiment, 25 males and 19 females with an average age
of 22.12 ± 2.51 years old and 20.4 ± 2.11 years old. All of
the subjects are right-handed, with normal vision or corrected
vision, no history of mental illness, and no major conflict with
lovers during the week before the visit. Before the experiment,
the principle of the instrument was introduced to ensure that
it was harmless to the human body and does not involve
any ethical issues. The participants were asked to sign the
experimental informed consent form.

2) Stimuli: Previous works on intimacy, especially pas-
sionate relationships [33], [34], [35], usually obtain brain
imaging in intimate relationships by allowing subject to re-
call the events from intimate relationship while watching
lovers’ photos. Inspired by these research efforts, we adopt
the photos from the subject’s lover, friends, and strangers to
induce his/her brain imaging in different relationships. Each
participant was asked to provide 20 photos (10 for lovers
and 10 for friends). Thirty volunteers (15 male, 15 female,
unrelated to the experiment) provided 60 photos (2 per person)
as the induction of stranger photos. During the experiment,
each subject views the photos from his/her lover, friends and
strangers by random selection.

3) Instrumentation: In this paper, a near-infrared spec-
troscopy brain imager (LABNISR, Shimadzu Corporation, Ky-
oto, Japan) is used to record subject’s fNIRS signals from 42
channels when he/she watch intimacy photos. The instrument
monitors the cerebral cortex during the experiment by three
kinds of semiconductor lasers with wavelengths of 780±5nm,
805 ± 5nm, and 830 ± 5nm, and converts it into cortical
hemoglobin concentration changes using the modified Beer-
Lambert law. The sampling rate of the instrument used in the
experiment is 11 Hz.

4) Experimental protocol: To study the intimacy elicited by
the selected photos, we have designed an experiment of about
17 min length for each subject, which has been implemented
using the EPrime 2.0 (Psychology Software Tools, Pittsburgh,
PA). During the experiment, the subject is comfortably in-
stalled on a chair in front of a 21” computer screen, which is
used for the presentation of the stimuli and which is placed at
about 1m distance from the subject. The experiment starts with
some general information on the experimental protocol and
instructions for the subject to relax and to stay still as much
as possible during the experiment. The experiment for each
subject starts with a black screen shown for 120 s. A subject
watching a group of photos including his/her lover, friend
and stranger is denoted as a block. Each block is composed
of 3 phases: watching friend’s photo phase, watching lover’s
photo phase and watching stranger’s photo phase. For each
phase, there are three tasks for the subject as follow: a)
gazing cross: a white fixation cross then appears for 300 ms in
order to alert the subject to the beginning of the next photo;
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Loop 6 Blocks for each subject

 30s Stranger pic 30s Lover pic30s Friend pic

20s Math task  20s Math task40s Math task

300ms gazing cursor 300ms gazing cursor 300ms gazing cursor

One block to acquire subject's fNIRS signal

Time

Fig. 2. Experimental paradigm for inducing a subject’s fNIRS response with different intimate relationships

b) watching photo: the screen presents randomly a selected
photo from his/her friend, lover, or stranger to the subject
for 30 s, and the subject is asked to recall the happy events
they experienced together for the corresponding people; c)
math task: a random number (such as 842) is presented in
the gap between pictures, with the subject being asked to
cycle minus 7 until the number disappears. The purpose of
this step is to allow the subject adequate time to, cognitively,
eliminate the emotional stimulation after viewing the different
pictures, and restore their neurophysiological baseline. The
time length of the random number display is set to: 20 s
after the picture of the friend and stranger, and 40 s after the
picture of the lover. The purpose of different settings for the
time of displayed random number is that a high-level arousal
stimuli (e.g. lover’s photo) requires more time to eliminate the
emotional fluctuations and return to normal neurophysiological
levels [34]. The experiment for each subject is composed of 6
blocks. An overview of the experimental paradigm associated
with the database is shown in Fig. 2.

5) Preprocessing and Dataset Creation: For collected
fNIRS data, the processing is implemented to reduce noise
from a subject’s head movements and instrument interference.
In this experiment, a band-pass filter is used for preprocessing
with a frequency range from 0.01 to 0.2 Hz. The processing
result of the first subject viewing a lover’s picture using the
band-pass filter is given in Fig. 3; the blue line represents
the original data, and the red line represents the data after
bandpass filtering. It can be seen hat after band-pass filtering,
the signal is smoother, and that the high-frequency noise is
reduced.

Time stamps are recorded at the start of each experiment for
both the stimuli and the fNIRS signals. The category to which
the picture belongs to is used as label for induced intimacy.
The subject’s induced intimacy annotations are synchronized
and paired with their respective fNIRS signals. For each
subject, we obtain 18 segments of fNIRS signals induced by
intimate relationship pictures (the window size is 30 seconds
for each photo). Considering that deep learning methods

Fig. 3. Oxy hemoglobin concentration before and after using the bandpass
filter when the first subject is viewing the lover’s photo

require a large amount of training data to build a robust model,
we obey the sample partitioning method in Zhang et al [36]
to increase the number of samples. Smaller sliding windows
(time=1, 2, 5 and 10 s) without overlap are set to crop samples.
The final number of samples for each intimacy class with
different time window lengths are given in Table I.

TABLE I
INSTANCE DISTRIBUTION OVER THREE INTIMACY CLASSES-FRIEND,
LOVER AND STRANGER WITH DIFFERENT TIME WINDOW LENGTHS

Time window length #F #L #S Total
1 second 7,920 7,920 7,920 23,760
2 seconds 3,960 3,960 3,960 11,880
5 seconds 1,584 1,584 1,584 4,752

10 seconds 792 792 792 2,376
30 seconds 264 264 264 792

B. Network structure of our proposed method

The network structure and hyper-parameters of our proposed
method in this paper are shown in Fig 4, which includes two
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CNN layers, one LSTM layer, one attention layer, a fully
connected layer and a softmax layer for intimacy detection.
In the proposed model, the batch size and epoch are set to
32 and 200 respectively. For the two convolutional layers, the
kernel size are 3*3 and the number of 32 and 16 respectively.
The max-pooling layers are alternated between the CNN layer,
which can increase the robustness of the features and reduce
the dimensionality of the fNIRS signals vector. The size of the
max pooling layer is 2*1 in order to preserve the information
from each channel. After extracting spatial domain features by
CNN layers, an LSTM layer is used to capture the temporal
feature, and the number is set to 128. In order to prevent over-
fitting during training, a regularization term is applied and the
dropout parameter is set to 0.2. The attention model is utilized
to selectively learn these inputs by preserving the intermediate
output of the input sequence by the LSTM encoder, and then
training a model to selectively learn the inputs and correlate the
output sequences with the model output. All learned features
are fed into fully connected layer, then a softmax layer to
achieve the output of intimacy prediction.

Fig. 4. The network structure and hyper-parameters of our proposed method

In order to evaluate the intimacy detection, the cross-
entropy loss function is set, which determines the degree
of correspondence between the target output vector and the
predicted output vector. In this paper, ReLU is employed
as activation function. It can effectively avoid a vanishing
gradient and in practice converges to the optimum point
much faster. Consequently, it improves the training process of
deep neural network architectures on large scale and complex
data sets. In addition, the hyper-parameters for training all
the proposed structures, including learning rate, number of
epochs, and batch size, were chosen for each individual subject
using Grid search. Adam is applied as a gradient descent
optimization algorithm, whose parameters β1, β2, and ε are
set to 0.8, 0.9, and 10−4, respectively.

C. Experimental setting
In order to evaluate the performance, 10-fold cross val-

idation is used to estimate the classification performance

of the predictive model. In this paper, we compare the
performance of the proposed method with the state-of-art
approaches for intimacy prediction, including support vector
machines (SVM), linear discriminant analysis (LDA), random
forest (RF), CNN-based, LSTM-based and cascade convo-
lutional recurrent neural network (CCRNN) methods. For
shallow machine learning algorithms (e.g. SVM, LDA, RF),
168 intimacy-related features are extracted from preprocessed
fNIRS signals, including mean, variance, kurtosis, skewness
(4 features×42 channels). Since high-dimensional features
usually suffer from performance degradation in classifiers,
principle component analysis (PCA) is utilized to decrease
the dimensions of features. Grid search is used to determine
the number of principle components and the model parameters,
which yields better performance. For deep learning algorithms,
all neural networks are implemented with the Tensorflow
library. For each method, we manually tune its parameters
to achieve optimal performance.

D. Experimental results

Table II shows that the performance results from SVM,
RF, LDA, CNN-based, and LSTM-based methods with dif-
ferent instance lengths. Among shallow learning methods, RF
achieves the best performance with the recognition precision
of 34.4% when the instance length is 30 seconds. The SVM
method achieves 69.2% and 60.5% recognition rate when the
sample length is 1 second and 2 seconds respectively, which is
the best performing classifier in the shallow learning method.
For the CNN classifier, the 3-layer CNN achieves the best
results with the sample length of 5 seconds and 10 seconds,
respectively, and the recognition accuracies are 65.2% and
54.6%. We also see that the 2-layer CNN obtains the the
recognition accuracy of 86.3% and 83.0% with the instance
length of 1 second and 2 seconds, which is significantly
higher than other CNN methods. For LSTM-based methods,
a 1-layer LSTM is superior to 2-layer LSTM in recognition
performance, especially with the instance length of 1 second.
Due to the combination of the advantages of CNN and LSTM,
CCRNN is superior to these two individual classifiers, when
the instance length is 1 second. In general, deep learning
methods are significantly better than shallow methods. With
the increase of instances, the recognition performance based on
deep learning methods generally shows an upward trend. Since
our proposed method is a hybrid architecture based on CNN
and LSTM, the number of CNN and LSTM layers is critical
to the performance of the proposed method. Considering the
promising performance of a 2-layer CNN and the 1-layer
LSTM in a large number of instances, we choose a 2-layer
CNN and the 1-layer LSTM to build our model. Note that
our proposed method achieves the best performance with the
accuracy of 97.4% and 94.8% with the instance length of 1
second and 2 seconds, respectively.

Fig. 5 depicts the experimental accuracy and loss curves
during the testing for 200 epochs under different methods. As
the number of epochs increases, the recognition performance
of all methods except LSTM increases rapidly and tends to
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TABLE II
PERFORMANCE ON DIFFERENT METHODS FOR FNIRS-BASED INTIMACY PREDICTION WITH DIFFERENT INSTANCE LENGTH

Classifer
Instance Length

1 second 2 second 5 second 10 second 30 second
ACC(%) Loss ACC(%) Loss ACC(%) Loss ACC(%) Loss ACC(%) Loss

SVM 69.2 - 60.5 - 45.7 - 34.6 - 33.7 -
RF 41.5 - 40.8 - 38.6 - 37.1 - 34.4 -
LDA 37.8 - 37.1 - 35.0 - 34.3 - 33.6 -

1-layer CNN 73.7 0.656 53.8 0.974 38.0 1.135 35.6 1.572 33.1 1.971
2-layer CNN 86.3 0.401 83.0 0.496 54.2 1.837 40.1 2.854 30.7 3.248
3-layer CNN 67.4 0.821 60.9 0.866 65.2 0.845 54.6 2.312 31.8 7.572

1-layer LSTM 86.9 0.572 32.9 4.958 34.9 6.251 35.7 2.875 27.8 1.101
2-layer LSTM 50.1 0.877 33.8 9.465 34.7 7.263 32.4 3.821 28.4 0.991

CCRNN 95.7 0.178 80.1 0.539 47.1 1.013 38.6 4.567 32.9 2.802

Ours 97.4 0.130 94.8 0.247 38.6 3.903 36.2 1.126 27.9 1.167

(a) Accuracy curves (b) Loss curves

Fig. 5. Accuracy and loss curves during the testing for 200 epochs under different methods

be stable. Relatively, the value of the loss rapidly decrease
and then stabilizes. As can be seen from the figure, the
recognition accuracy of our proposed ACCRNN approach
is higher than other methods. For the LSTM model, when
the number of epochs exceeds 25, its trend of recognition
performance exhibits irregularity.

E. Discussions

From an overall experimental view point, the presented
results demonstrate that our proposed model achieves the best
performance for accuracy. However, we also notice that when
the instance length is set to 5 to 30 seconds, the recognition
performance seems to be not satisfactory. The main reason
is that the deep learning method needs to be fed by a large
amount of training data to obtain a robust predictive model.
Not only for the method we proposed, but for all deep
learning methods, we can clearly see that there is a trend
of recognition performance increasing with the number of
sample, specially, when the sample length is 1 second and
2 seconds, compared with the other lengths of instances, the
performance has a huge improvement. In addition, due to the
limitations of hand-crafted features on spatial and temporal
representation, shallow learning methods, such as SVM, RF,
LDA that rely on feature engineering are difficult to achieve

satisfactory prediction results. Compared with the shallow
learning method, deep learning methods have significantly
improved overall recognition accuracy. The results from CNN-
and LSTM-based methods imply that it is crucial to use either
spatial or temporal information to boost intimacy prediction
and analysis respectively. And the CCRNN method also pro-
vides an important evidence that the fusion of both temporal
and spatial characteristics from brain activity is benefical to
intimacy detection. In terms of improved performance, it is
clear that an attention mechanism can improve the prediction
accuracy of the cascade convolutional recurrent neural network
modules.

V. CONCLUSION

The proposed cascade model in the paper is motivated by
the existing progress on deep models, and takes advantage
of CNN, LSTM, and the attention mechanism for intimacy
prediction. With the proposed model, we achieved a potent
improvement in the current state-of-the-art for the task of
intimacy prediction on the fNIRS-based dataset. The increase
in performance in comparison to other existing models shows
that an attention mechanism can improve the performance of
a cascade convolutional recurrent neural network for intimacy
prediction. An overall analysis of the performance of our pro-
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posed method was provided and compared to other techniques.
In the future, we will expend our dataset by increasing the
number of subjects to make it publicly available to the research
community, and a multi-modal fusion method will also be
investigated to further boost the performance of the intimacy
prediction task.
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