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ABSTRACT

EEG-based emotion recognition is an effective way to infer
the inner emotional state of human beings. Recently, deep
learning methods, particularly long short-term memory recur-
rent neural networks (LSTM-RNNSs), have made encouraging
progress for in the field of emotion recognition. However, the
LSTM-RNNSs are time-consuming and have difficulty avoid-
ing the problem of exploding/vanishing gradients when dur-
ing training. In addition, EEG-based emotion recognition of-
ten suffers due to the existence of silent and emotional irrel-
evant frames from intra-channel. Not all channels carry the
same emotional discriminative information. In order to tackle
these problems, a hierarchical attention-based temporal con-
volutional networks (HATCN) for efficient EEG-based emo-
tion recognition is proposed. Firstly, a spectrogram represen-
tation is generated from raw EEG signals in each channel to
capture their time and frequency information. Secondly, tem-
poral convolutional networks (TCNs) are utilised to automat-
ically learn more robust/intrinsic long-term dynamic charac-
ters in emotion response. Next, a hierarchical attention mech-
anism is investigated that aggregates the emotional informa-
tion at both the frame and channel level. The experimental
results on the DEAP dataset show that our method achieves
an average recognition accuracy of 0.716 and an F1-score of
0.642 over four emotional dimensions and outperforms other
state-of-the-art methods in a user-independent scenario.

Index Terms— emotion recognition, EEG signals, tem-
poral convolutional networks, hierarchical attention mecha-
nism
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1. INTRODUCTION

Emotional intelligence [1] plays an important role in
Human-Computer Interaction (HCI), which can provide users
with a smoother interface and give them appropriate feedback
or recommendation. For example, detecting the user’s emo-
tional state can be used for adaptive music recommendation,
to suggest music clips that match the current emotional state
or to help the user overcome negative emotions.

Due to the objectiveness of the central nervous system (C-
NS) on the human emotional presentation, many recent work-
s [2] have emerged to explore the relationships between EEG
signals and their corresponding emotional states. Conven-
tional approaches to recognising emotional states rely heav-
ily on hand-crafted features, which requires professional do-
main knowledge and extensive preprocessing for the specif-
ic task [3]. Owing to the success attained by deep learning
techniques in classification tasks, convolutional neural net-
works (CNN5s) are increasingly utilised to automatically cap-
ture feature representation for EEG-based emotion recogni-
tion. Multi-channel EEG signals are usually converted into
2D images and fed into CNNs to facilitate the classification of
users’ emotions using EEG signals [4]. Hierarchical convo-
lutional neural networks (HCNNs) [5] have further been pro-
posed to classify users’ emotional states; under this approach,
differential entropy features from different channels are used
as two-dimensional maps to train the HCNNs. Although these
methods have improved the performance of EEG-based emo-
tion recognition to a certain extent, CNN-based approaches
still lack the ability to model the temporal dynamics of emo-
tional response.

Considering that EEG signals are essentially multi-
channel time-series signals, another intuitive solution for
emotion recognition is to use recurrent neural networks
(RNNs) to obtain long-term dependencies in emotional rep-
resentation. RNN-based approaches have demonstrated their
ability to capture temporal information in the EEG-based
emotion recognition context [3]. Moreover, recent studies
have focused on designing hybrid architectures using a com-
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Fig. 1. The framework of the hierarchical attention-based
temporal convolutional networks (HATCN) .

bination of CNN and RNN approaches, such as cascaded or
parallel convolutional recurrent networks [6,7] . However,
such frameworks are affected by certain limitations. In RN-
N, the predictions of the emotional label must wait until all
predecessors have finished their tasks [8]. Moreover, it is
difficult for LSTM-RNNSs to avoid the exploding/vanishing
gradient problem when input sequences are long [9]. Recent-
ly, due to their advantageous parallelism, flexible receptive
field and stable gradient, temporal convolutional networks [8]
have proven effective at capturing long range patterns [10].

In addition, benefiting from flexibility in the decoding
phase, attention mechanisms have demonstrated their ca-
pability to extract key sequential information and automat-
ically skip redundant information for emotion recognition
tasks [11]. However, limited research has been undertaken to
explore the combination of temporal convolutional network
(TCN) and a hierarchical attention mechanism for extract-
ing emotionally salient information from spectrograms for
the task of EEG-based emotion recognition. Motivated by
the above analysis, in this work, we propose hierarchical
attention-based temporal convolutional networks (HATCN)
for efficient EEG-based emotion recognition that operates by
leveraging a hierarchical attention mechanism based on TCN.
The main contributions of this paper are as follows:

1) Compared with CNN-/RNN-based approaches, TCN is
more capable of efficiently learning spatial-temporal features
from spectrogram representation and modelling the temporal
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dependencies between their activations;

2) To better capture salient emotional information from
both an intra- and inter-channel perspective, a hierarchical at-
tention mechanism is utilised that can allocate importance to
EEG signals at the frame and channel level and aggregate this
information to form a higher-level representation.

3) Experimental results indicate that our method outper-
forms the existing methods in a user-independent scenario.

2. METHODOLOGY

2.1. System overview

As illustrated in Figure 1, in our model, a spectrogram is
first generated from the raw signal for each channel, which
provides important time and frequency information. Second-
ly, the generated spectrogram is fed into a TCN to automati-
cally capture the spatial-temporal feature representation. Sub-
sequently, a hierarchical attention mechanism is designed for
extracting the emotional information from both within and be-
tween the EEG signal channels. Finally, a softmax classifica-
tion is utilised to predict the final emotion state.

2.2. Spectrogram representation

Spectrogram representation is generally considered as
sufficiently discriminative for these purposes, as it captures
the different characteristics of signals by employing distinc-
tive patterns.Here, EEG signals in each channel are trans-
formed into spectrogram images by means of STFT using
a Hamming window function (window length: 3 s, overlap:
1/8 ).

2.3. Temporal Convolutional Network (TCN)

To better capture intrinsic time-frequency information
from the spectrogram, a temporal convolutional network [8]
is utilised to learn the temporal dynamics representation. A
TCN cell consists of three parts, namely causal convolutions,
dilated convolutions and residual connections. In causal con-
volutions, information cannot be passed from the future to
the past. Moreover, given that sequence modelling should be
capable of looking ’very far’ into the past, dilated convolu-
tions are employed to enable an exponentially large receptive
field. More specifically, for a sequence input x € R", the
dilated convolution operation F' on element s of the sequence
is defined as follows:

k—1

F(s) = (axaf)(s) =) [() @smais M

where d denotes the dilation factor, k£ denotes the filter size,
and s—d-3 accounts for the direction of the past. In formula I,
using a larger dilation enables an output at the top level to rep-
resent a wider range of inputs, which effectively expands the
receptive field. This ensures that there exists a filter capable



of hitting every input within the effective history, while also
allowing for an extremely large effective history using deep
networks [8].

To facilitate the stabilisation of deeper and larger TCNs, a
residual block [12] is employed in place of one convolutional
layer, enabling the effective learning of modifications to the
identity mapping rather than the entire transformation.

2.4. Hierarchical Attention Mechanism

Intra-channel Attention. The goal of intra-channel atten-
tion is to find the key frames that are more emotionally infor-
mative than others. The output of TCN h,,; from each chan-
nel is input into a full connection layer, and its hidden repre-
sentation u,y,; is calculated by formula (2). Next, the similar-
ity between u,,; and the intra-channel context vector ;,irq
is obtained and normalised weight «,,,; denoting the impor-
tance of the frame x,,¢, which can be measured by a softmax
function as in formula (3). Subsequently, we calculate the e-
poch vector e,, as a weighted sum of the sample annotations
based on their weights via formula (4). The vector u;y¢rq can
be regarded as a frame-level feature representation of a fixed
query, namely *what are the most important frames’.

Ume = tanh(Wingrahmt + bintra)s )
exp(uzzuintra)
Qmt = T T s (3)
Zt:l exp(umtuintr(z)
T
€m = Zf:l Qmithmt.- )

Inter-channel Attention. Similar to intra-channel atten-
tion, the inter-channel attention layer is employed to reward
the clue modalities that contribute to correctly classifying e-
motional states. Similarly, the e,, from each channel is fed
into a dense layer, and its hidden representation ., is cal-
culated by formula (5). The similarity between u,, and the
inter-channel context vector u;ner is then computed and the
normalised importance weight «,,, is measured via a softmax
function as formula (6). Then, we next obtain the sequence
vector v as a weighted sum of the epoch annotations based
on their weights via formula (7), which fuses all the infor-
mation of epochs in a sequence. The context vector U;nter,
the default weights W;,+,, and the bias vector are randomly
initialised and fine-tuned during the training process:

Um = tanh(Winterem + binter)7 (5)

exp(uz uinter)

Gm = S~ ) ©)
Zﬁfil exp(uz,: uinter)
M
v = Zm:l Amem.- @)
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2.5. Emotion classification

Vector v represents a learnt feature vector of the EEG se-
quence, which includes more discriminative and robust emo-
tional information from both intra- and inter-channel perspec-
tives. Finally, the emotion can be classified by means of the
following equation:

p = softmax(W.v +b.) ®)

In short, our model is trained by minimising the cross-entropy
between the predicted label and the real label.

3. EXPERIMENTS AND ANALYSIS

3.1. DEAP Dataset

In this paper, we used the DEAP dataset [13] to validate
our proposed method. In this dataset, 32-channel EEG and
8-channel peripheral physiological signals from 32 subject-
s were recorded, when she/he watched selectively 40 one-
minute music videos from 120 emotional stimuli. The emo-
tional label for each music video is annotated by self-report on
four dimensions: Arousal, Valence, Dominance, and Liking.
The original affective label scales (from 1 to 9) are mapped
into either a high level, or low level category by thresholding
at level 5 (high level>5, low level<5). In this paper, we use
EEG signals in this dataset to build our model.

3.2. Experimental Setup and Evaluation Metrics

In this paper, leave-one-subject-out cross-validation is
used to evaluate the performance of several methods for
the purposes of user-independent emotion recognition. We
compare the performance of our methods with the following
existing methods on the DEAP dataset: MKL [14], Bayes
classifier [15], SVM [16], and CNN-, LSTM-, and TCN-
based methods. All deep learning-based approaches are
implemented using the Tensorflow library. For each classifi-
cation algorithm, we manually tune its parameters to achieve
optimal performance. Accuracy (ACC) and macro-F1 score
(F1-score) are the evaluation measures employed to assess e-
motion recognition performance. We evaluate the recognition
performance on the arousal, valence, dominance, and liking
dimensions. Further details on our proposed model are given
below: (a) the temporal convolutional network contains 32
nodes; (b) the dropout rate is set to 0.5; (c) batch normalisa-
tion techniques and a PReLU activation function are applied
to prevent overfitting; (d) the Adam optimiser with a learning
rate of 0.001 is used for training; (¢) the batch size is set to
64.

3.3. Experimental Results

Table 1 presents the experimental results of existing meth-
ods and our proposed method on the DEAP dataset. We can



Table 1. Comparison results in terms of ACC and F1-score with other existing methods on the DEAP dataset.

Classifier Arousal Valence Dominance Liking Average
ACC  Fl-score ACC  Fl-score ACC  Fl-score ACC  F1l-score ACC  Fl-score
MKL [14] 0.580 0.520 | 0.590 0.550 N/A N/A | 0.660 0.510 | 0.610 0.527
Bayes Classifier [15] 0.570 N/A 0.620 N/A N/A N/A N/A N/A 0.595 N/A
SVM [16] 0.605 0.570 | 0.656 0.645 | 0.583 0.533 | 0.583 0.533 | 0.607 0.570
1-layer CNN+DNN 0.616 0.561 | 0.617 0.591 | 0.601 0.521 | 0.662 0.581 | 0.624 0.564
2-layer CNN+DNN 0.605 0.563 | 0.588 0.558 | 0.630 0.564 | 0.632 0.537 | 0.614 0.556
3-layer CNN+DNN 0.599 0.546 | 0.595 0.571 | 0.607 0.529 | 0.652 0.542 | 0.613 0.547
1-layer BLSTM+DNN 0.643 0.587 | 0.627 0.592 | 0.670 0.586 | 0.698 0.573 | 0.660 0.585
2-layer BLSTM+DNN 0.643 0.587 0.630 0.595 0.661 0.560 0.696 0.564 0.658 0.577
1-layer BLSTM+Attention | 0.655 0.596 | 0.629 0.583 | 0.671 0.565 | 0.712 0.584 | 0.667 0.582
2-layer BLSTM+Attention | 0.637 0.588 | 0.638 0.595 | 0.671 0.587 | 0.685 0.576 | 0.658 0.587
1-layer TCN+DNN 0.649 0.601 | 0.634 0.581 | 0.679 0.597 | 0.705 0.587 | 0.667 0.592
2-layer TCN+DNN 0.643 0.587 | 0.627 0.592 | 0.670 0.586 | 0.698 0.573 | 0.660 0.585
1-layer TCN+Attention 0.701 0.623 | 0.672 0.618 | 0.703 0.623 | 0.732 0.630 | 0.702 0.624
Ours 0.710 0.646 | 0.691 0.657 | 0.719 0.621 | 0.742 0.645 | 0.716 0.642
Table 2. Overview of the studies for emotion recognition on DEAP dataset
Accuracy
Reference Year  Features Classifiers ~ Evaluation Methods
Arousal Valence Dominance
Koelstra et al. [13] 2012 Power spectral features NBC leave-one-trial-out validation 0.620 0.576 N/A
Lietal. [17] 2015 DBN features SVM 10-fold cross-validation 0.642 0.584 0.658
Zhuang et al. [18] 2017 The first difference of time series SVM leave-one-trial-out validation 0.691 0.720 N/A
Arevalillo-Herrdez et al [19] 2019 Power spectral features SVM leave-one-subject-out validation 0.540 0.640 N/A
Hao Chao et al. [20] 2019 Multiband Feature Matrix CapsNet 10-fold cross-validation 0.683 0.667 0.673
Ours Spectrogram representation HATCN leave-one-subject-out validation 0.710 0.691 0.719

clearly conclude the following: 1) Apart from Fl-score for
dominance, our method outperforms all other methods in all
evaluation measures for all emotional dimensions. 2) Deep
learning methods achieve comparable or superior results to
shallow learning methods. 3) Due to their lack of sequence
modelling ability, CNN-based methods achieve the worst per-
formance out of all deep learning methods. 4) Among the fu-
sion strategies with DNNs, the TCN-based methods achieve
better recognition results than CNN- and LSTM-based meth-
ods, which implies that TCN is better suited to capture high-
level feature representation. 5) Compared with TCN+DNN
methods, our proposed method achieves the best performance
overall, which implies the effectiveness of hierarchical atten-
tion mechanisms for multi-channel emotion recognition.

3.4. Discussion

In general, our proposed model achieves the best perfor-
mance in terms of accuracy and Fl-score. The main reason
for this is that the TCN is capable of extracting spatial and
temporal features, while the hierarchical attention mechanis-
m effectively retains the key emotional information from both
intra- and inter-channel EEG signals. In addition, due to the
limitations of hand-crafted features in terms of spatial and
temporal representation, shallow learning methods find it d-
ifficult to achieve satisfactory recognition results. The results
from deep learning methods imply that it is crucial to use ei-
ther spatial or temporal information to boost emotion recog-
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nition. In terms of performance improvements, it is clear that
the hierarchical attention mechanism improves the recogni-
tion accuracy of the TCN modules.

Moreover, in Table 2, we provide an overview of exist-
ing studies with different evaluation methods on the DEAP
dataset for EEG-based emotion recognition. This comparison
reveals that it is more difficult to establish a user-independent
model with the LOSOCV method because of the influence
of individual differencesEven under these conditions, our
method still improves the accuracy for the valence and arousal
dimensions compared with most existing methods.

4. CONCLUSION

In this letter, we proposed a hierarchical attention-based
deep network architecture for efficient EEG-based emotion
recognition, in which a temporal convolutional network was
utilised to learn high-level feature representation and model
temporal dependencies from spectrograms. The hierarchical
attention mechanism was found to be capable of capturing
discriminative emotional information from both frame- and
modality-level of EEG signals, thereby improving the perfor-
mance of emotion recognition systems. Experimental results
demonstrated that our proposed model achieves competitive
results on the DEAP dataset. In future efforts, meta-learning
strategies shall also be investigated to further boost the per-
formance of the emotion recognition system.
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