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ABSTRACT

With the rise of deep learning, deep knowledge transfer has
emerged as one of the most effective techniques for getting
state-of-the-art performance using deep neural networks. A
lot of recent research has focused on understanding the mech-
anisms of transfer learning in the image and language do-
mains. We perform a similar investigation for the case of
speech emotion recognition (SER), and conclude that trans-
fer learning for SER is influenced both by the choice of pre-
training task and by the differences in acoustic conditions be-
tween the upstream and downstream data sets, with the former
having a bigger impact. The effect of each factor is isolated
by first transferring knowledge between different tasks on the
same data, and then from the original data to corrupted ver-
sions of it but for the same task. We also demonstrate that
layers closer to the input see more adaptation than ones closer
to the output in both cases, a finding which explains why pre-
vious works often found it necessary to fine-tune all layers
during transfer learning.

Index Terms— Speech emotion recognition, transfer
learning, representation learning

1. INTRODUCTION

Deep learning (DL) approaches have gained significant
prominence in latter years. One of the most commonly ac-
cepted explanations for their effectiveness is that deep neural
network (DNN) architectures learn generic representations
that are transferable across different tasks|[1, 2]. This has
led to a wide amount of literature on leveraging past infor-
mation to improve performance and increase convergence on
new tasks and/or data sets, most recently with the advent of
self-supervised learning [3, 4].

However, this technique does not always yield better per-
formance, resulting in the well-documented effect of “nega-
tive transfer” [5, 6]. This raises the question of when trans-
fer learning is successful, and, specifically, to which extent
it is influenced by the juxtaposition between pre-training and
downstream tasks, input features, architecture type, and the
different data sets at play. To this end, Neyshabur ez al. [7] in-
vestigated transfer learning in the visual domain and posited
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that downstream tasks benefit from pre-training both because
the models are learning transferable high-level features, and
because they learn low-level statistics. These observations
can be attributed to the notion of compositionality that is ex-
tensively studied in the vision domain [8].

A lot of prior work has focused on learning generalis-
able representations in the audio domain as well, either us-
ing supervised [9, 10, 11], unsupervised [12, 13, 14], or self-
supervised approaches [15, 16, 17, 18]. The topic is becoming
increasingly relevant with the rise of numerous applications
where data is scarce, e. g., in the medical domain [19].

In this work, we focus on speech emotion recognition
(SER) as the downstream application, an area that is receiv-
ing considerable attention in the community, but for which
big data is not yet widely available [20]. Although DNNs are
already outperforming traditional approaches [21], that is not
true for all tasks and data sets [22]. This has led the com-
munity to adopt transfer learning approaches, starting from
feature-based [23] and recently moving to DL approaches [24,
25, 26]. Hence, understanding how transfer learning works
could lead to the design of more powerful algorithms that un-
lock the full potential of DL for SER, and other low-resource
audio tasks.

Our main contribution lies in disentangling the effects of
the pre-training task from those of acoustic mismatches be-
tween the respective data sets; two factors we expect to play
a big role in a successful transfer. To this end, we first utilize
three different data sets and tasks for pre-training to illustrate
the relative importance of both factors in an actual applica-
tion. We then exploit the fact that our SER data set has been
annotated for multiple, distinct emotional schemes with dif-
ferent degrees of similarity between them. This allows us to
isolate the effect of task similarity by training on one scheme
and transferring knowledge to another on the same data set.
Finally, we isolate the effect of acoustic similarity by transfer-
ring knowledge from clean to corrupted versions of the same
data. Our experiments show that while both factors are im-
portant, it is primarily the lack of task similarity that leads to
negative transfer, whereas even extreme acoustic divergence
can be overcome.



Moreover, we make the surprising observation that layers
closer to the input are more susceptible to adaptation, a find-
ing that could explain why authors in prior works have found
it necessary to fine-tune all layers rather than the last ones [10,
17]. This is an important finding as fine-tuning more layers
adds an overhead to optimisation since more parameters need
to be adapted.

2. ARCHITECTURE

Our experiments are carried out using the Cnnl4 architecture
recently introduced by Kong et al. [10]. It has been trained
for the task of audio tagging on AudioSet[27]. The authors
have open-sourced their code and trained weights!. We use
the 16kHz variant, because the data sets we use also come
in 16 kHz. As features, we used log-Mel spectrograms com-
puted with 64 Mel bins, a window size of 32 ms, and a hop
size of 10 ms.

Cnnl4 follows the VGG architecture design [28]. After
the last convolution layer, the features are pooled across the
feature dimensions using both max and mean pooling, and
subsequently fed into two linear layers. Dropout with a prob-
ability of 0.2 is applied after every second convolution layer.
The architecture is shown in Figure 1.

3. DATA

As a downstream data set for transfer learning, we use MSP-
Podcast (v1.7) [29], a recently-introduced data set for SER. It
is split in speaker independent partitions:

e atraining set consisting of 38 179 segments

* a development set made of 7538 segments, collected

from 44 speakers (22 male — 22 female)

¢ a 12902 segment test set, consisting of 60 speakers (30

male — 30 female)

MSP-Podcast has been annotated for the emotional di-
mensions of arousal, valence, dominance, as well as for 8
emotional categories, plus an extra other category. In the
present work, we focus on the emotional dimensions. These
have been annotated on a 7-point Likert scale on the utterance
level, and scores by individual annotators have been averaged
to obtain a consensus vote. Similar to other approaches in the
literature [30, 31], we bin the continuous values to a 3-point
scale. We use the following mapping:

e low: [1-3]

e mid: (3-5]

* high: (5-7]

This results in a heavily unbalanced distribution, with 9% of
the data in the low range, 67% in the mid range, and 24% in
the high range.

These dimensions are well-validated constructs used to
define affect [32], and have been shown to manifest through
different acoustic cues [33]. Although they quantify differ-
ent aspects of emotional expression, they are not completely

Ihttps://github.com/qiugiangkong/audioset_tagging_cnn
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Fig. 1: A schematic of the Cnnl4 architecture. “@” desig-
nates the number of feature maps in each convolution block,
and is preceded by the kernel size. Each block consists of two
identical convolution layers, followed by average pooling,
rectified linear unit (ReLU), and batch normalisation (BN).
All filters are applied with a stride of 1.

unrelated to one another. Their similarity can be measured
by the Pearson correlation between the three emotional di-
mensions. On the MSP-Podcast training set, arousal shows
a 0.2412 correlation to valence, and a 0.7953 correlation to
dominance. This is indicative of the degree of task similarity
across those three schemes, a fact we exploit in our transfer
learning experiments.

We also make use of three additional data sets for pre-
training, which we will refer to as upstream data sets: Au-
dioSet [27] which the original authors show helps for SER,
VoxCelebl [34], where we pre-train for speaker identification
as it has been shown to translate well to SER [26], and IEMO-
CAP [35], which is annotated for the same emotional dimen-
sions. Due to space limitations, we refer to the original pub-
lications for a detailed description of each data set.

4. EXPERIMENTS

We perform three groups of experiments:
* training on different data sets; fine-tuning on MSP-
Podcast for the arousal task
« training on different tasks on MSP-Podcast; fine-tuning
on arousal
e training on clean arousal data; fine-tuning on bandlim-
ited arousal data



Table 1: Unweighted average recall (UAR)% results on MSP-Podcast for ternary arousal classification on the utterance level.
In parentheses, we show the epoch on which it was achieved, defined as the one where peak performance was reached on the
validation set. Column name refers to the data set and task on which the network was pre-trained prior to fine-tuning on the
arousal task. Random refers to training the model from random initialization. We report performance after re-training either all

layers, or just the lincar ones (last two).

Initialisation | Random IEMOCAP AudioSet VoxCeleb1 MSP-Podcast MSP-Podcast
(arousal) (audio tagging) (speaker identification) (valence) (dominance)
All layers | 68.76 (58)  67.95 (16) 65.47 (28) 67.36 (6) 62.24 (56) 67.97 (13)
Linear only | - 61.15 (23) 58.62 (2) 62.45 (9) 44.61 (53) 65.29 (20)

Unless otherwise mentioned, all experiments were run us-
ing a standard stochastic gradient descent (SGD) optimiser
with a constant learning rate of 0.001, Nesterov momentum
of 0.9[36], and a batch size of 8. The networks were trained
for a total of 60 epochs. We only show results for the epoch
that yielded the best performance on the validation set. In
order to deal with the imbalance in target labels, we use a
balanced non-negative likelihood loss (NLLoss), obtained by
multiplying each term with the inverse of the frequency of the
corresponding class in the training set.

We first train a standard baseline by training the model
from a randomised initialisation. This gives us 68.76% UAR
after 58 epochs of training. We refer to this model as Cnnl4-
Baseline.

For all transfer learning experiments, we try two variants:

* Fine-tuning all layers: with this experiment, we are in-

terested in seeing how the network adapts to new data.

* Fine-tuning only the linear layers: with this experi-

ment, we are interested in seeing how the network is

able to leverage the features learnt during pre-training.
In order to measure how the model is adapting to the new
task, a good proxy is the distance between the weights of the
layers before and after training, as shown by Neyshabur et al.
[7]. To this end, we use the cosine distance:

T-y
ENA .

Our first experiments are performed using models pre-
trained on the upstream data sets mentioned in Section 3. For
AudioSet, we use the weights released by Kong et al. [10] and
refer to this pre-trained model as Cnnl4-AudioSet. For Vox-
Celebl, we train the network for 100 epochs using a standard
NLLoss, and select the checkpoint that gives the best accu-
racy on the validation set (64% on epoch 92), a model we
will refer to as Cnnl4-VoxCeleb. Finally, for IEMOCAP, we
train the network for 60 epochs, and select the checkpoint that
gives the best UAR on the validation set (64% on epoch 33).
We use the same binning and train/dev/test split as Zhang et
al. [31]. We refer to this model as Cnnl4-IEMOCAP.

In order to disentangle the effects of task and acoustic
differences between the upstream and downstream tasks, we
make use of the fact that MSP-Podcast has been annotated

d(.’l‘,y) =1-
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(a) Baseline and transfer learning performance when transferring
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(b) Baseline (dashed) and transfer learning (continuous) perfor-
mance when transferring knowledge from clean to corrupted data
for the arousal classification task.

Fig. 2: Test set UAR results computed on each epoch.

for three different emotional attributes, as described in Sec-
tion 3. We thus pre-train one model on valence, and an-
other on dominance, which we refer to as Cnnl4-Valence
and Cnnl4-Dominance, respectively, and fine-tune them for
arousal. During pre-training on the original tasks, the valence
model reaches a peak performance of 63.56% UAR on epoch
52, whereas the dominance model reaches 54.87% on epoch
33.

Finally, we are interested in systematically studying the
effects of acoustic similarity isolated from the effects task
similarity. We simulate different degrees of acoustic simi-
larity by passing the data through narrow bandpass filters that
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(b) Layerwise cosine distances when transferring knowledge from
clean to corrupted data for the arousal classification task.

Fig. 3: Layerwise cosine distance for the best performing
(continuous) and last checkpoints (dashed) compared to their
respective initial states.

remove a large part of the spectrum, whereas task similarity
is kept constant by transferring knowledge to and from the
arousal classification task. We use 4th order Butterworth fil-
ters with a central frequency of 500 Hz, and test out the fol-
lowing frequency bandwidths: [20, 40, 60, 80, 100, 200, 300,
400].

5. RESULTS AND DISCUSSION

Results on the effectiveness of transfer learning are mixed:
although we were not able to surpass baseline performance
when using the original data, Table 1 and Figure 2a both
show that pre-training accelerates convergence. In addition,
fine-tuning all layers was always more beneficial to fine-
tuning only the linear ones, a finding consistent with previous
work [10, 17]. This is also in accord with the trend exhibited
by layerwise cosine distance in Figure 3a. Earlier layers see
more adaptation that latter ones with respect to their initial-
ization, with the trend exacerbated by further training for all
models except CNN14-VoxCeleb.

Our main focus is on distinguishing between the effects
of task and acoustic similarity. Initial experiments using
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different upstream data sets shown in Table 1 illustrate that
both effects are at play. The fact that Cnnl4-AudioSet per-
forms worse than Cnnl4-IEMOCAP and Cnnl4-VoxCeleb
for arousal classification indicates that task similarity is more
important than acoustic similarity; although AudioSet is big-
ger and presents more acoustic diversity than the other two
data sets, the audio tagging task is also substantially different
from arousal classification.

Experiments on knowledge transfer from different la-
belling schemes to arousal on MSP-Podcast further illustrate
the importance of task similarity. Pre-training on valence,
which shows substantially less correlation to arousal than
dominance, also results in substantially worse performance
and takes longer to converge. The relative importance of task
similarity vs acoustic similarity is also highlighted by a direct
comparison between Cnnl4-Valence and Cnnl4-IEMOCAP.
The latter is pre-trained on overall less data, coming from a
different data set recorded in a very narrow set of conditions,
but on the same task. Nevertheless, it performs substantially
better than the former which was pre-trained on the same
data, but for a different task.

Finally, our experiments on transferring knowledge to
corrupted versions of the same data but for the same task
(arousal), show that successful knowledge transfer, while de-
pendant on the degree of acoustic mismatch, is possible. UAR
results in Figure 2b demonstrate that starting from pre-trained
networks results in better performance, faster convergence,
and better initialisation, even though the corrupted acoustic
signals are fundamentally different from the original. As
expected, a wider bandwidth leads to overall better perfor-
mance, both with, and without pre-training. Weight-space
distances shown in Figure 3b show that fine-tuning primar-
ily affects the earlier layers, an indication that these layers
are also responsible for adapting to changes in the acoustic
conditions between the upstream and downstream data sets.

6. CONCLUSION

We have experimentally shown that transfer learning for SER
depends on both acoustic and task similarity, with the latter
being the deciding factor. Results show that the wrong choice
of task can be detrimental to transfer learning performance.
In addition, we have ascertained that layers closer to the input
are subject to more adaptation than those closer to the output;
a fact explaining why numerous previous works show better
performance when fine-tuning all layers rather than simply
the last ones.

These findings should guide the design of architectures
and pre-training strategies for SER. As shown, different emo-
tional dimensions can lead to fundamentally different repre-
sentations, a fact that makes the quest for a universal repre-
sentation very challenging. In order to obtain a holistic emo-
tional characterisation of a speech segment, we need repre-
sentations that can generalise across several distinct tasks, and
that should be reflected on the pre-training regiment.
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