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Abstract
The large amount of audiovisual content being shared online
today has drawn substantial attention to the prospect of audio-
visual self-supervised learning. Recent works have focused on
each of these modalities separately, while others have attempted
to model both simultaneously in a cross-modal fashion. How-
ever, comparatively little attention has been given to leveraging
one modality as a training objective to learn from the other. In
this work, we propose Learning visual speech Representations
from Audio via self-supervision (LiRA). Specifically, we train
a ResNet+Conformer model to predict acoustic features from
unlabelled visual speech. We find that this pre-trained model can
be leveraged towards word-level and sentence-level lip-reading
through feature extraction and fine-tuning experiments. We show
that our approach significantly outperforms other self-supervised
methods on the Lip Reading in the Wild (LRW) dataset and
achieves state-of-the-art performance on Lip Reading Sentences
2 (LRS2) using only a fraction of the total labelled data.
Index Terms: self-supervised learning, lip-reading, visual
speech recognition, visual representations, conformer

1. Introduction
Self-supervised learning aims to leverage unlabelled data by
extracting the training objective directly from the input itself,
in an attempt to model meaningful representations of the pro-
posed modality which capture its content and structure. In works
adopting this methodology, this task is usually known as the
“pretext task” and this initial training procedure is known as the
“pre-training” stage. After pre-training, the network is trained
on the “downstream task”, which generally involves a smaller
set of manually labelled data. This methodology has received
substantial attention in recent years within the computer vision
community. Pretext tasks for visual self-supervision include
image colourisation [42], jigsaw puzzle solving [21], as well
as combinations of these and other tasks [12]. Self-supervised
learning has also been explored in the speech community through
works such as Contrastive Predicting Coding (CPC) [22] and
wav2vec [34], which predict/discriminate future segments of
audio samples; LIM (Local Info Max) [32], which maximises
mutual information for the same speaker; and, more recently,
PASE (Problem Agnostic Speech Encoder) [26, 33], which pre-
dicts established audio features such as STFT and MFCC.

Self-supervision has also been adopted in the audiovisual
domain. Recent approaches include audiovisual fusion [27,
28], clustering [4], and distillation [31]; cross-modal discrim-
ination [23]; cyclic translation between modalities [30]; and
permutative predictive coding [38]. Shukla et al. [35] focus
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on learning audio representations by facial reconstruction from
waveform speech. Conversely, [24] predict frequency-based sum-
maries of ambient sound from video, while other recent works
apply audio-visual synchronisation [5, 7, 13] to learn visual em-
beddings. A task that can benefit from self-supervised learning
is lip-reading. Current state-of-the-art lip-reading models rely on
annotating hundreds of hours of visual speech data [18], which
is costly. To solve this issue, Afouras et al. [3] propose using a
pre-trained Automatic Speech Recognition (ASR) model to pro-
duce machine-generated captions for unsupervised pre-training.
This provides automatically labelled data but still relies on an
ASR model trained on large amounts of labelled data.

In this work, we aim to leverage the vast amount of available
audiovisual speech data to learn generic visual speech features
and improve state-of-the-art lip-reading models by predicting au-
dio features from visual speech. The targeted audio features are
extracted from waveform audio without the need for additional
labels using an established speech encoder (PASE+ [33]). Using
the proposed approach, the learnt visual features are explicitly
guided by audio which contains rich information about speech.
This in turn can lead to learning visual features which are more
suitable for speech recognition. After this training procedure, we
apply our model (Fig. 2) for lip-reading on a transcribed visual
speech dataset.

Our research contributions are as follows: 1) We present
LiRA, which learns powerful visual speech representations by
predicting acoustic features from raw video taken from large
audio-visual datasets. 2) We demonstrate that LiRA provides
a good initialisation for fine-tuning lip-reading models which
consistently outperforms training from scratch, and that this
method is particularly beneficial for smaller labelled datasets.
3) We show that LiRA outperforms previous self-supervised
methods for word-level lip-reading, achieving an accuracy of
88.1% on LRW by pre-training on unlabelled data. 4) Finally,
we leverage our self-supervised approach towards sentence-level
lip-reading, and find that our fine-tuned model achieves state-of-
the-art performance for LRS2.

2. Methodology
2.1. Pretext task

LiRA predicts PASE+ features from raw video and is composed
of three distinct components. The first is the spatial encoder,
which is a traditional 2D ResNet-18 preceded by a 3D front-end
layer. The second component is the temporal encoder – the
conformer – which receives as input the frame-wise features
produced by the spatial encoder and returns a set of features
of the same size. The conformer encoder combines traditional
attention-based transformer blocks, which excel at capturing
global temporal dependencies, with convolutional layers, which
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Figure 1: The high-level architecture of our model and our
methodology for audiovisual self-supervised training.

model local patterns efficiently [10]. The final component is the
projection head (based on the MLP – Multi-Layer Perceptron –
workers presented in [26]), which projects these representations
into the predicted PASE+ features. To train the model, we apply
an L1 loss between the generated embeddings and the features
extracted from the pre-trained (frozen) PASE+ model, as shown
in Fig. 1. We would also like to mention that we have also
experimented with predicting MFCC features but the results
were worse than predicting PASE+ features.

2.2. Downstream task

To evaluate the visual speech representations, we run three varia-
tions of end-to-end lip-reading experiments. The training proce-
dure is illustrated in Fig. 2. LiRA-Supervised models are trained
from scratch based on the same encoder as in the self-supervised
training [16]. This serves as our baseline model since it is trained
only with the labelled training data. LiRA-Frozen models are
trained using LiRA features from the pre-trained encoder. This
allows us to evaluate the visual representations learned during
self-supervised learning. Finally, LiRA-FineTuned models use
the same model as LiRA-Supervised but are initialised with the
pre-trained encoder weights from the pretext task. By using
this configuration, we can evaluate the model initialisation capa-
bilities of the proposed self-supervised learning approach. For
each of these methods, we adopt a separate model for each lip-
reading task - six models in total. For word-level lip-reading,
we use a Multi-Scale Temporal Convolutional Network (MS-
TCN) [19] on top of the encoder, followed by a linear classifier
for classification. For sentence-level lip-reading, we follow the
state-of-the-art lip-reading model [16] on LRS2 and build a hy-
brid CTC/attention model. We use the same conformer encoder
architecture as in the pre-training phase, followed by the trans-
former decoder for sequence-to-sequence training [39]. We also
perform fine-tuning experiments using the pre-trained model.

3. Experimental Setup
3.1. Datasets

In this work, we use an unlabelled version of Lip Reading Sen-
tences 3 (LRS3) for pre-training and evaluate the performance
of speech representations on LRW and LRS2. LRW [6] is com-
prised of approximately 500 000 1.16 second labelled utterances
(173 hours in total) featuring a specific word from a 500 word
vocabulary. It features hundreds of different speakers recorded
in a variety of different backgrounds and head poses. LRS2 [1]
is composed of approximately 150 000 transcribed utterances
of varying lengths (224.5 hours in total). This corpus presents
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Figure 2: The variations of the end-to-end lip-reading archi-
tecture. The sub-figures in the top row ((a),(b),(c)) refer to the
word-level lip-reading training procedures, while the sub-figures
in the bottom row ((d),(e),(f)) refer to sentence-level lip-reading.
From left to right, (a) and (d) denote training from scratch (the
whole model is initialised randomly); (b) and (e) are feature ex-
traction experiments based on visual features extracted from the
pre-trained model; and (c) and (f) are fine-tuning experiments.
Blue coloured blocks are trained from scratch on the downstream
task; yellow coloured blocks are loaded from the pre-trained
model and kept frozen during the downstream task; and green
coloured blocks are loaded from the pre-trained model and are
then fine-tuned for the downstream task. We abbreviate the fol-
lowing model layers: TM: Transformer, FC: Fully-Connected
layer, MS-TCN: Multi-Scale Temporal Convolutional Network.

a greater challenge since it features a largely unconstrained vo-
cabulary of more than 40 000 words. Both datasets are collected
from BBC programs.

LRS3 [2] similarly contains approximately 150 000 utter-
ances of varying lengths (438.9 hours in total) taken from TED
talks. However, these utterances are substantially longer than the
ones featured in LRS2, resulting in effectively double the total
amount of hours of video and a larger vocabulary. This dataset
guarantees no overlap between the speakers featured in the train
and test sets, meaning that the test set is entirely comprised of
speakers that were not seen in other sets.

3.2. Pre-processing

To crop the mouth Regions of Interest (ROIs), we start by de-
tecting the 68-point facial landmarks using dlib [11]. We then
normalise each frame using a neutral reference frame to remove
rotation and size differences. Given the transformed facial land-
marks, a fixed bounding box is used to crop mouth ROIs with a
size of 96× 96.

3.3. Data augmentation

Following [15], we produce augmented visual streams by ap-
plying the techniques of horizontal flipping with a probability
of 0.5 and random cropping to a size of 88 × 88. During the
testing phase, instead of randomly cropping, we crop a patch of
size 88 × 88 from the centre of the image. For the word-level
classification, mixup with a weight of 0.4 is employed.

3012



Table 1: A comparison of the performance between the baseline
methods and ours (pre-trained on LRS3) on the LRW dataset.

Methods Strategy Acc. (%)

ResNet + BLSTM [37] Supervised 83.0
Two-stream 3D CNN [40] Supervised 84.1
ResNet + BLSTM [36] Supervised 84.3
ResNet + DenseTCN [17] Supervised 88.4
PerfectMatch [7] Self-supervised 71.6
PT-CDDL [8] Self-supervised 75.9
AV-PPC [38] Self-supervised 84.8

LiRA-Supervised [15] Supervised 87.4
LiRA-Frozen Self-supervised 83.1
LiRA-FineTuned Self-supervised 88.1

3.4. Training settings in the pretext task

The 3D front-end module preceding our ResNet consists of
a convolutional layer with kernel size (5, 7, 7) followed by
a max pooling layer. The conformer, on the other hand, is
comprised of an initial embedding module – feed forward layer
combined with layer normalisation, dropout (0.1), activation
(ReLU – Rectified Linear Unit) and relative positional encoding
(as proposed in [9]) – followed by a set of conformer [10] blocks
which varies according to the dataset used for the downstream
task (6 blocks for LRW, 12 blocks for LRS2). The conformer
blocks feature the following parameters: dff = 2048, nhead = 4,
dq = 256, dk = 256, dv = 256; where dff is the hidden
dimension of the feed-forward modules, nhead is the number of
self-attention heads, and dq, dk, dv are the dimensions of the
key (K), query (Q), and value (V) in the self-attention layers
respectively. The MLP consists of a linear layer with a hidden
dimension of 256 units, ReLU activation, dropout, and a linear
layer to project the representation to 256-dimensional latent
space. For prediction, we average the PASE+ features, which are
computed at 100 frames per second (fps), over time to match the
frame rate of the input visual features (25 fps). We optimise our
model using Adam (β1 = 0.9, β2 = 0.98, ε = 10−9) combined
with the Noam scheduler [39] (25 000 warm-up steps). The
model is trained on LRS3 with a batch size of 32. For simplicity,
we randomly sample 1 second from each clip and use it as the
input to our network, discarding any utterances with less than 1
second in length.

3.5. Training settings in downstream tasks

LiRA-Supervised In LiRA-Supervised, we train word-level
(Fig. 2a) and sentence-level lip-reading models (Fig. 2d) from
scratch. In particular, for the task of word-level lip-reading, we
add a MS-TCN followed by a linear classifier with an output
dimension of 500 on top of the encoder like [17]. A cross-
entropy loss is employed to optimise the whole model using
Adam with decoupled Weight decay (AdamW) [14] with β1 =
0.9, β2 = 0.999, ε = 10−8 and a weight decay of 0.01 for
80 epochs with a batch size of 32. The initial learning rate is
set to 0.0003. For the task of sentence-level lip-reading, we
use 12 multi-head attention blocks (dff = 2048, nhead = 4,
dq = 256, dk = 256, dv = 256) together with a linear layer on
the top of conformer blocks like [16]. Following [20], we use
a combination of CTC and cross-entropy loss to train a hybrid
CTC/Attention architecture for 50 epochs with a batch size of
8. In this case, we use Adam with β1 = 0.9, β2 = 0.98 and
ε = 10−9 with the first 25 000 steps for warm-up. The initial
learning rate is set to 0.0004. At the decoding phase, we use a
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Figure 3: Accuracy of feature classification (LiRA-Frozen) on
LRW based on features extracted from different layers after
pre-training on LRS3 via self-supervision. “res-b3” and “res-
b4” refer to the output of blocks 3 and 4 from the ResNet-18
respectively; and “ce-b2” to “ce-b12” refer to the layers from
every two conformer blocks from bottom to top.

beam size of 20 for beam search. During decoding, we also apply
a transformer-based language model trained on LRS2, LRS3,
and Librispeech 960h [25] (16.2 million words in total). Due to
graphic memory limitations, we exclude utterances with more
than 600 frames during training.
LiRA-Frozen At the end of self-supervised training, the fea-
tures extracted from the pre-trained frozen encoder are fed to a
classifier for evaluation. For word-level lip-reading, we use a
MS-TCN, followed by a linear layer with an output size of 500
for classification (Fig. 2b). For the sentence-level lip-reading,
the LiRA features are first fed to 12 conformer blocks, and then
the encoded representations are used for CTC/attention joint
training (Fig. 2e).
LiRA-FineTuned We follow the same hyperparameter set-
ting as LiRA-Supervised, but instead of training from scratch,
we initialise the encoder with the pre-trained weights from the
pretext task and then fine-tune the entire model for word-level
lip-reading (Fig. 2c) and sentence-level lip-reading (Fig. 2f).

4. Results
4.1. Word-level lip-reading
We first evaluate the performance of LiRA-Supervised by train-
ing the model from scratch. This leads to an accuracy of 87.4%
on LRW which is very close to the state-of-art performance. For
LiRA-Frozen, which is pre-trained on LRS3, the learnt visual
speech representations are evaluated on word-level lip-reading
by training a MS-TCN classifier on top of the frozen representa-
tions, as illustrated in Fig. 2b. Feature extraction performance
(LiRA-Frozen) for different layers is portrayed in Fig. 3. We
observe that the representations extracted from the last layer of
the ResNet-18 achieve a maximum accuracy of 83.1 % as seen
in Table 1. It is clear that the performance generally decreases as
the layer becomes deeper, which may indicate that the features
extracted in deeper layers are further tuned towards the pretext
task and therefore fail to generalise as well for other tasks.

The performance of the 3 downstream scenarios while vary-
ing the amount of training data on LRW is shown in Fig. 4a. We
use LRS3 for self-supervised pre-training. We observe that the
feature extraction approach leads to superior performance com-
pared to LiRA-Supervised when using smaller fractions of the
labelled training set (1-2 %). This indicates that the pre-trained
model learns useful visual features which also work well on
LRW. By adopting this methodology, we can simply train the
classification layers while the encoder remains frozen, and hence
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Figure 4: Effect of the size of training data on downstream task performance. (a): Accuracy of the end-to-end model as a function of the
percentage of the training set (on a logarithmic scale) used for training on LRW. (b) WER achieved by the end-to-end model as a function
of the percentage of labelled data used for training on LRS2. All LiRA-Frozen and LiRA-FineTuned models are pre-trained on LRS3 via
self-supervision. LiRA-Frozen models are trained using features extracted from the last layer of the ResNet-18 in the pre-trained model,
since it achieves the best performance as demonstrated in Fig. 3. “CL” refers to the model being trained using curriculum learning.
LRW and LRS2 contain 165 and 222 hours of labelled training data respectively.

Table 2: A comparison of the Word Error Rate (WER) between
the baseline methods and ours (pre-trained on LRS3) on the
LRS2 dataset. CL: Curriculum learning.

Methods Strategy WER. (%)

Hyb. CTC/Att. [29] Supervised 63.5
Conv-seq2seq [43] Supervised 51.7
TDNN [41] Supervised 48.9
TM-seq2seq [1] Supervised 48.3
KD-seq2seq [3] Unsupervised 51.3

LiRA-Supervised [16] Supervised (CL) 39.1
LiRA-FineTuned Self-supervised 38.8

significantly reduce the training time of our model. If we fine-
tune the full model, including the encoder, then the performance
improves further as shown in Fig. 4a.

We also observe that the gap between the performance of
LiRA-FineTuned and LiRA-Supervised becomes smaller when
we increase the amount of labelled data for training. This demon-
strates that pre-training using the proposed self-supervised task
is particularly beneficial when the labelled training set is very
small. In the extreme case, where only 1 % of the labelled
training data is used, LiRA-Supervised achieves an accuracy
of 3.6 %. In contrast, we obtain 24.5 % accuracy when LiRA-
FineTuned is trained using the same amount of data. This is
mainly due to the fact that the self-supervised training provides
a good initialisation for network training. We also show that
LiRA-FineTuned provides an absolute improvement of 0.8 % in
accuracy over LiRA-Supervised when both are trained on full
LRW. This demonstrates that LiRA-FineTuned consistently out-
performs LiRA-Supervised, even for larger labelled training sets.

4.2. Sentence-level lip-reading

To investigate the performance of visual speech representations
in a more challenging task, we run training from scratch (Fig. 2d)
and fine-tuning (Fig. 2f) experiments on LRS2 after pre-training
on LRS3. We present our results as a function of the fraction of
labelled data used during training.

Results are shown in Fig. 4b. It is evident that the per-
formance of LiRA-FineTuned significantly outperforms the su-

pervised baseline. We also observe that the performance of
LiRA-Supervised is hard to optimise without a good initialisa-
tion. The performance becomes worse and worse as the training
set increases beyond 18 % of the total amount of labelled data.
This is likely due to the large amount of very long utterances
featured in LRS2, which makes training from scratch especially
difficult. To overcome this problem, we use curriculum learning.
In particular, we first train the model using 11 % of the labelled
training set, which is composed of videos with less than 155
frames in length and then use this model for initialisation when
training on the entire training set. This curriculum learning strat-
egy results in a substantially more effective training procedure,
achieving 39.1 % WER for the full dataset.

Fine-tuning the self-supervised model leads to a small im-
provement over the curriculum learning strategy resulting in a
38.8 % WER. This is the new state-of-the-art performance on
the LRS2 dataset when no external labelled datasets are used for
training. We also observe that it leads to a 9.5 % absolute im-
provement compared to the previous state-of-the-art model [1],
as reported in Table 2. Furthermore, as displayed in Fig. 4, we
are able to outperform the previous state-of-the-art of 48.3 %
WER using 18× fewer labelled data – 76 hours (36 % of LRS2)
vs 1 362 hours (MVLRS, LRS2, and LRS3).

5. Conclusion
We present LiRA, which learns visual speech representations by
cross-modal self-supervised learning. We train a visual model by
predicting acoustic features from visual speech, and observe that
it can be adapted for lip-reading with remarkable success. By
fine-tuning our models for this new task, we achieve an accuracy
of 88.1 % on LRW and report a WER of 38.8 % on LRS2. Given
the extent of modern audiovisual corpora, we believe it would be
promising to leverage this method towards other visual tasks such
as emotion recognition and speaker recognition in the future.
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