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Abstract—Post-Earnings-Announcement Drift (PEAD) has tra-
ditionally been studied using regression models in the literature
which often involve smaller data sets and smaller groups of
factors whose analysis results tend to be more linear in nature. In
this paper, we explore using machine learning models to overcome
those limitations and aim to find an optimal supervised model in
forecasting drift direction following an earnings release. We test a
deep neural network (DNN), an extreme gradient boosting model
(XGB) as well as support vector machines (SVM) with different
kernels and use a long list of carefully prepared and engineered
input features including data from quarterly earnings reports
from 1106 companies in the Russell 1000 index between 1997
and 2018. We find that XGB performs marginally better than
the considered DNN and both are significantly better than the
SVM variants. We use both Cochran’s Q Test and McNemar’s
Test to prove that our findings are statistically meaningful. We
also find that movement of stocks in different industrial sectors
respond differently to the same factors when using the same
models and provided analysis on that.

I. INTRODUCTION

Post-Earnings-Announcement Drift, or PEAD, is a market
phenomenon that was first studied by Ball and Brown [1]
who noted that a stock’s abnormal returns would drift in the
direction as indicated by the perceived quality of reported
financial results of the company. While PEAD has garnered
much attention in earlier literature, we see limitations in
regression based approaches widely adopted in those studies,
especially in the way companies are pre-selected by a priori
conditions. When measuring the effect of stock earnings on
abnormal returns, Qiu [2] would separately pool companies
with positive and negative earnings surprises before conduct-
ing regression analysis on multiple factors against the level
of returns. Similarly Kim [3] sought to pre-group different
portfolios by different characteristics of the factors under
analysis and tried to analyse and determine the relationship
between respective portfolios’ return and the corresponding
economic factors that segregated the portfolios. We believe
that stock markets do not just react symmetrically to negative
and positive earnings surprises nor linearly to a static set of
factors. We further believe it is important that we study the
combination of a large set of drivers that may impact the
near term excess returns of a stock following an earnings
event. To achieve that, we introduce machine learning to the
study of PEAD dynamics and aim to capture those nonlinear
combination of drivers that were not well studied in regression
methods.
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To begin with, we attempt to overcome constraints com-
monly seen in earlier researches on PEAD: we adopt a much
larger input feature space which includes financial report data,
earnings surprise data, near term momentum indicator data
and short interest data and both raw data and engineered
data are considered; we do not segregate companies by a
static list of pre-determined attributes (subsample analysis)
[4]; our company universe includes every company that was a
constituent of the Russell 1000 index between 1997 and 2018
and is a larger set than those in most prior PEAD studies of
similar nature.

To deploy machine learning to serve the research goals,
we have chosen three types of supervised learning methods
to work through the high noises embedded in the price and
signal data: a deep neural network (DNN), Support Vector
Machines (SVMs) with different kernels, and an eXtreme
Gradient Boosting (XGB) model. We chronically separate
the raw data into in-sample and out-of-sample time frames
whose lengths vary depending on the particular test scenario.
We use the in-sample training data to optimise a model’s
hyperparameters. Having tried and ruled out the grid search
method as inexhaustive and slow, we have chosen to use the
highly adaptable Genetic Algorithm (GA) to tune our models
as seen in the work of Deng et al. [5], and use a broad value
range and a small granular step for each of the hyperparam-
eters. We employ a 5x2-fold cross validation (CV) within
each GA iteration for estimating the optimal combination of
each model’s hyperparameters. Our results identify both XGB
and DNNs as capable of producing meaningful accuracy in
forecasting the direction of 30-day cumulative abnormal stock
movement following an earnings release when we examine
their performances every year between 2015 and 2018 with
XGB being marginally better than a DNN. SVM, however,
perform significantly worse on the same tasks. In our studies,
we not only collectively look at all the stocks in each test
time framework, we also delve into stocks that belong to
specific industrial sectors. We discover that, while working
with the same feature space, the same models produce different
levels of accuracy for different sectors. This can be seen as
a proof that movement of stocks from different industries
is subject to different drivers which we have produced an
analysis of. Finally, we carry out the Cochran’s Q test and
McNemar’s test to reject the null hypothesis and to prove
that the differences in model performance as we identified



are statistically meaningful.

II. RELATED WORK

Ball and Brown [1] first studied Post-Earnings-
Announcement Drift as a stock market anomaly and observed
the possibility to predict return for up to two months following
the event of annual earnings announcements. Bhushan
suggests that the market’s delayed response to earnings
can be explained by the existence of sophisticated and
unsophisticated investors, transaction costs, and economies
of scale in money management [6]. Ayes, Li, and Yeung [7]
examined attributions to distinct PEADs on the same news
and found via regression analysis that distinct behaviours by
traders of different levels of sophistication as well as different
trade sizes could explain distinct drift movements observed in
response to the same earning results. The work by Bhushan
and Ayes et al. in particular has painted a picture of inherent
complexity in the way markets interpret earning results,
adding to the challenges of trading on such an economic
event and prompting us to use supervised learning models as
nonlinear tools to assist in our analysis.

The literature has in recent years seen a lot of focus on
stock price forecasting by machine learning with some paying
special attention to fundamental metrics sourced from earnings
reports. Olson and Mossman [8] studied 2 352 Canadian stocks
and used 61 financial ratios with their models. In the task of
forecasting 12-month returns, they observed that a artificial
neural network outperformed traditional regression methods.
They showed that fundamental metrics helped them achieve
excessive risk-adjusted returns. Other studies went beyond fun-
damental metrics and involved more financial data. Working
with 578 NASDAQ stocks, Namdari and Li [9] picked 12
financial metrics via feature selection and a group of technical
signals as inputs to a Multi Layer Peceptron model. They were
able to achieve the best accuracy of 65.87 % in predicting
stock movement directions when combining fundamental and
technical data in the model input space.

In addition to MLP, SVM and decision tree based boosting
models such as XGB are also popular choices in the literature.
Zhang [10] constructed a novel ensemble method integrated
with the AdaBoost algorithm, probabilistic SVM and GA.
He showed the new ensemble method achieved preferable
profit in the simulation of stock investment using 20 shares
from the SZSE and 16 stocks from NASDAQ. Madge [12]
used the daily closing price for 34 technology stocks on a
SVM model with radial kernel to calculate price volatility and
momentum for individual stocks and for the overall sector.
When attempting to predict future stock price movements,
they found little predictive ability in the short run but definite
predictive prowess in the long-run. Part of the methods by
Chatzis et al. [13] to evaluate the possibility of a future global
market crash is by forecasting 1-day and 20-day stock market
returns. A vast set of data from global stock, bond, and FX
markets were used. They tested Logistic Regression, SVMs,
Random Forest, DNNs, and XGB and declared the superiority

of XGB over others by examining the forecast results through
a list of statistical measurement metrics.

The abundance of model choices makes it imperative to
evaluate and compare the performance of models. Sheta, et
al. [14] studied the performance of ANN, SVM, and Multiple
Linear Regression in the prediction of the S&P500 market
index. Using macro economic indicators and 27 technical indi-
cators in their experiments, they observed that SVM generated
comparatively better results than the other models tested. Hsu
et al. used both ANN and SVM to study the influence on
the predictability of a financial market and the feasibility of
profitable model-based trading by the maturity of the market,
the forecasting method employed, the horizon for which it
generates predictions, and the methodology used to assess the
model and simulate model-based trading [15].

Finally it is worth pointing out that the proliferation of
machine learning in financial studies did not always come
with enough attention on the generalisation quality of data.
For example, Bradbury [16] used a small group of 172 firms
to research the relationships among unexpected earnings, earn-
ings volatility, firm size, and voluntary semi-annual earnings
disclosures. Beyaz et al. [17] used both fundamental analysis
and technical analysis to forecast stock prices six months and
a year into the future using data from 140 S&P500 companies.
Such limitations have been well addressed in this paper given
the large amount of company data we are using.

ITII. FEATURE GENERATION AND DATA PRE-PROCESSING

The input feature space to our models consists of four
groups of data all of which are sourced from Bloomberg:
Financial statements data, Earnings Surprise data, Momentum
Indicator data, Short Interest data.

Each quarterly earnings publication of a company is consid-
ered as a data point. We only include those data points where
the full set of data in the chosen feature space is available
on Bloomberg and discarded data points which suffered badly
with missing data in their earnings reports. Since we needed to
know if an earnings report was published before market open,
after market close or during trading hours, we also discarded
the data points which did not have explicit information on the
publication time of day. This leaves us with close to 50000
data points in our final population.

Table I lists 29 metrics from financial reports chosen by us.
We have further created engineered features based on quarterly
change and yearly change of each earnings metric.

New features are engineered using Earnings Surprise data,
as we wanted to develop more granular measurement of the
impact by Earnings Per Share (EPS). Similarly, new features
are created using the raw RSI and Moving Average indicators
so that we allow the models to account for any stock’s recent
movement momentum. This is, because information leakage
could happen before earnings come out and could have been
traded on in the markets. Finally short interest ratio is included
as it provides good indication of how heavily shorted a stock
is compared to its trading volume prior to an earnings event.



Current Ratio Price to Sales Ratios

Cash Operating Margin DNN XGB SVM
Cash from Operating Activities Price to Book Ratios Number of epochs Max depth Kernel method
Cost of Revenue Price to Cashflow Ratios Hidden layer neuron | Sub sample Gamma

count

Dividend Payout Ratio

Dividend Yield

Free Cash Flow

Gross Profit

Income from Continued Operations
Inventory Turnover

Net Debt to EBIT

Net Income

Operating Expenses

Operating Income

Quick Ratio
Return On Assets
Return On Common Equity
Revenue
Short Term Debt
Total Asset
Total Asset
Total Debt to Total Assets
Total Debt to Total Equity
Total Inventory
Total Liabilities
TABLE 1
FINANCIAL REPORT METRICS CHOSEN AS INPUT FEATURES WHOSE
QUARTERLY AND YEARLY PERCENTAGE CHANGES ARE ALSO INCLUDED
IN THE INPUT SPACE

Next we perform data pre-processing on the raw data to
minimise the impact of outliers as well as to standardise data
across the companies. First, Winsorization [18] is employed
for outlier reduction. In this process, we dynamically set the
upper and lower bounds for each company so as to preserve
the original data structure as much as possible. Second, a
selective group of features are standardised. Standardisation
is only carried out on the training data set, and the statistics
are re-applied to the testing set.

IV. MODELS AND METHODS

As outlined, our model candidates to forecast post earnings
price drift include a DNN, an XGB, and SVMs with different
kernels. Deep learning has been a cornerstone in machine
learning for the last decade and we have chosen it as the
benchmark model for comparison. Training a neural network is
a convex optimisation problem with the loss function defined
as:

L(w) £ Zwa) (1

Where L;(w) is a loss function for data point ¢ €
{1,2,..., M} and w are the model weights being optimised. A
neural network is a nonlinear system due to the presence of
an activation function on each neuron (except for the output
neuron as it can be linear). An activation function o(x) can
take a lot of forms such as sigmoid, tanh, or Rectified Linear
Unit (ReLU), and it makes the output of a neuron appear as
f(x) = o(w’' X + b), with X being inputs to the neuron and
b being the bias. To minimise the loss function, we use batch
Gradient Descend to optimise model weights iteratively by
using the learning rate o and the Jacobian matrix of derivatives
of the loss function with respect to all the model weights

Vi(w)= 2k, 8L . 52
w; = w; — aVL(w). ()

SVMs were first invented by Vladimir Vapnik and his
colleagues in 1963 with its current standard form e-SVM

Column sample by tree | C (model’s penalty pa-

rameter)

Dropout rate

Regularisation Gamma

Lambda

Epsilon

Learning rate Learning Rate

Hidden layer count Minimum child weight

TABLE 11
MODEL HYPERPARAMETERS OPTIMISED BY GA + 5X2 CV FOR DNN,
XGB AND XVM

proposed by Cortes and Vapnik in 1995 [19]. Unlike regression
based methods which aim at minimising the error function,
SVM finds a hypothesis function f (z), which represents a
hyperplane in the input feature space whose prediction output
7; deviates away from the actually observed value y; by at
most €. In our experiments we have tested the linear kernel,
the sigmoid kernel, the Radial Basis Function (RBF) kernel as
well as the polynomial kernels with degrees of 2, 3, 4 and 5.

Extreme Gradient Boosting or XGBoost, invented by Tianqi
Chen [22], is a scalable tree boosting supervised learning
model. A number of features such as cache awareness, or
weight awareness and sparsity awareness [20] [21] give it
standout performance in many applications. The former pro-
vides fast access to gradient statistics in memory and the
latter two allows the algorithms to handle weighted data and
sparse data very well [22]. A regularised learning objective is
introduced within a tree structure to reduce overfitting in the
process of branch pruning and tree splitting.

XGB utilises independent regression trees represented by
hypothesis fj. The leaf scores by each tree structure help form
the decision rules so as to classify each set of inputs z; into
leaves and the final predicted output is calculated by summing
up the scores in the leaves concerned:

K
i = ¢lai) =Y fulw), fx €F, 3)
k=1
where z; is a data set in matrix form A € M, x,(R) with
m data points and n features and [F is the space of regression
trees. The scoring function for leaf splitting is

Lsplit =
1 (ZiGIL 9i)? (Zie]R 9i)? (D ier 9i)? _
2 ZieIL hi + A ZiEIR hi + X Zie] hi + X

“

A method called the exact greedy algorithm uses the
scores to enumerate all the possible splits for continuous
features, optimising each level of a tree and minimising the
overall loss function along the way.

V. HYPERPARAMETER OPTIMISATION

GA as an adaptable and easily extensible heuristic optimi-
sation method has been chosen to perform model tuning on
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Fig. 1. Hyperparameter Tuning using GA + CV

All Sectors (accuracy %) 2018 2017 2016 2015
XGB 56.75 | 58.32 | 61.09 | 59.46
SVM 50.43 | 50.86 | 53.25 | 53.82
DNN 56.69 | 57.63 | 60.02 | 58.31
‘ABLE TIT

AVERAGED CLASSIFICATION SUCCESS RATES OF 100 RUNS FROM 2015 TO
2018 USING GA OPTIMISED DNN, XGB AND SVM. THE SUCCESS RATE
IS BASED ON THE ACCURACY OF A MODEL CORRECTLY PREDICTING THE

MOVEMENT DIRECTION (UP OR DOWN) OF A STOCK’S 30-DAY PEAD
FOLLOWING AN EARNING EVENT.

all the selected models under experiment. For SVM we see
researchers in the literature typically go with a small handful
of kernel methods. For instance Tay and Gao chose a Gaussian
kernel with SVM to forecast financial time series [11] and
Madge used Radial basis function (RBF) kernel in his attempt
to forecast stock price movement [12]. Instead we have chosen
7 different kernels (RBF, Sigmoid, linear, and polynomial of
degrees 2, 3, 4 and 5) and use GA to optimise the SVMs’
output accuracy out of all these kernels. This ensures we arc
not limited to a small number of common kernels as seen in the
literature and instead take full advantage of GA’s optimisation
prowess to help us identify the best kernel and its accompa-
nying model parameters for our SVM model. Similarly, when
working with DNN, researchers in the literature often pre-
fix the number of hidden layers or the number of neurons in
each hidden layer for their models and only carry out model
tuning on common hyperparameters such as dropout rate and
learning rate. Again, this practice can be subjected to sub-
optimal model accuracy as the modeller has not included the
model structure as part of the model optimisation process and
instead only focuses on the hyper parameters of a predefined
structure. Recognising the deficiency of this model calibration
process, we are including the number of hidden layers and
the number of neurons in each hidden layer as optimisation
hyperparameters, effectively tuning the neural network model
structure. We have given both the hidden layer count and
neuron count in each layer a large enough range so that a
DNN can go deeper if the GA optimisation finds it necessary.
Table II gives the list of hyperparameters of every model that
we have put through a GA for tuning.

Forty groups of initial values, which together is considered
as a generation, are randomly generated for each model’s
hyperparameter set. Each group is called a population and
each hyperparameter within a group is a chromosome. The GA
process fits a model using each population of hyperparameters
and validates the quality of a fitted model by calculating a
fitness value. Populations which produce high fitness values
are replaced with new populations of values through meth-
ods of cross-breading and mutation. This process is iterated
through 20 generations and the final hyperparameter values are
chosen as those that yield the lowest fitness value. The most
important component of the GA process is the 5x2-fold cross
validation which has been chosen over a simple k-fold CV
as recommended by Dietterich [23]. This is to ensure each
data point appears only in the training or validation dataset
for a single estimate of fitness and hence, the two datasets
are totally independent. To do it, we randomly split the data
set reserved for hyperparameter tuning into two halves. Data
in the first half is standardised before being used to train the
model. Data in the second half is used for validation and is also
standardised, but by using the same statistics generated in the
standardisation process of the the first half’s data. Such a train-
and-validate process is repeated 5 times and the fitness value
is the average of the 5 iterations. Figure 1 illustrates how GAs
works together with cross validation to produce the best set
of hyperparameters which results in the highest classification
rate (smallest fitness value) over the validation set.

VI. RESULTS
A. Predicting Drift Direction

We focus our study on a stock’s 30-day post earnings
Cumulative Abnormal Return (CAR). We set our model output
as the drift direction turning our research into a classification
problem. The cumulative abnormal return from 77 to 7, for
stock %, is defined below.

Tn T,
CAR(T1,To) = Y (ARi(1)) = > _ (ri(t) — E(rs(1))),
t=T1 t=T1

)

where r;(t) is the actual one-day stock return, E(r;(t)) is

the expected one-day return of stock ¢. Each stock’s expected

return is calculated using the Capital Asset Pricing Model
(CAPM) model [24]:

E(ri) =rp+ Bi(E(rm) —15), (©)

where 7 is the risk free rate, beta; is a company’s system-
atic risk, and F(r,,) is the market expected return. Historical
10Y U.S. Treasury Yield which estimates r¢, S&P500 index
return which estimates E(r,,), as well as each company’s
historical beta at the time of each carnings reporting are all
sourced from Bloomberg.

In the first group of tests, we perform forecast on PEAD
direction following all the earnings events in every year
between 2015 and 2018. Hyperparameters are optimised for



[ 2018 2017 2016 2015 Average
(accuracy%) | XGB | SVM | DNN | XGB | SVM | DNN | XGB | SVM | DNN | XGB | SVM | DNN | XGB | SVM | DNN
Industrial 52.09 | 61.14 | 58.51 | 48.62 | 57.20 | 59.04 | 59.72  60.03 | 6227 | 57.17 | 60.12 | 60.69 | 54.40 | 59.62
Basic Materials | 56.69 | 51.01 | 54.91 | 5991 | 57.04 | 56.76 | 54.95 | 57.14 | 5421 | 61.06 | 52.14 | 57.09 | 58.15 | 54.33 | 55.74
Cosumer Cyclical | 56.87 | 51.23 | 58.31 | 60.30 | 54.49 | 58.83 | 58.39 | 49.84 5574 | 59.06 | 49.84 | 60.67 58.65 | 52.53 | 58.39
Consumer Non-Cyclical | 57.43 | 53.00 | 58.41 | 62.20 | 50.91 | 60.67 60.28 | 5091 = 58.72 | 59.79 | 50.91 | 60.62 | 59.93 | 53.82 | 59.61
Financial | 55.37 | 48.46 = 53.52 | 53.32 | 51.01 | 53.30 | 60.12 | 53.73 | 59.14 | 56.34 | 48.69 | 51.82 | 56.29 | 50.47 | 54.45
Technology | 5591 | 55.60 | 58.54 | 54.83 | 55.74 | 56.35 | 58.00 | 59.64 60.78 | 61.01 | 45.51 | 59.13 | 57.44 | 54.12 | 58.70
Communications | 53.22 | 47.92 | 51.78 | 53.87 | 53.81 | 47.71 @ 57.50 | 51.95 | 54.30 | 57.41 | 46.35 | 50.56 55.50 | 50.01 | 51.08
Energy | 53.61 | 4450 4845 | 51.01 [ 47.51 | 47.00 | 52.49 | 5235 @ 46.96 | 55.49 | 45.66 | 51.37 | 53.15 47.50 | 48.45
Utilities | 49.92 | 47.47 | 49.15 | 49.95 | 51.77 | 42.06 | 46.74 | 46.78 | 49.70 | 46.19 | 42.73 | 47.12 | 48.20 | 47.19 | 47.01

TABLE IV

AVERAGED CLASSIFICATION SUCCESS RATES OF 100 RUNS FROM 2015 10O 2018 USING GA OPTIMISED XGB, SVM, AND DNN ON STOCKS FROM
INDIVIDUAL INDUSTRIAL SECTORS. THE SUCCESS RATE IS BASED ON THE ACCURACY OF A MODEL CORRECTLY PREDICTING THE MOVEMENT
DIRECTION (UP OR DOWN) OF A STOCK’S 30-DAY PEAD FOLLOWING AN EARNING EVENT.

2018 2017 2016 2015 Average
XGB | SVM [ DNN | XGB | SVM | DNN | XGB | SVM | DNN | XGB | SVM | DNN | XGB | SVM | DNN
6 | 0 | 3 7 | 1 | 1 5] 3 6 | 0 | 3 I O
TABLE V

NUMBER OF SECTORS WHERE THE HIGHEST OUT-OF-SAMPLE PREDICTION ACCURACY IS OBSERVED UNDER A MODEL

Test Year Q value P value

2015 27.52 1.05E-06

2016 48.22 3.38E-11

2017 88.21 7.00E-20

2018 56.69 4.88E-13
TABLE VI

TEST STATISTICS FROM COCHRAN’S Q TEST ON WHETHER THERE IS
STATISTICAL DIFFERENCE AMONG THE CLASSIFICATION RESULTS BY
DNN, XGB AND SVM. THE RESULTS SHOW THAT IN EVERY ONE OF THE
CHOSEN TEST YEARS, THE CALCULATED P VALUE IS MUCH SMALLER
THAN A CHOSEN ALPHA VALUE OF 0.05 WHICH DEFINES THE
SIGNIFICANCE LEVEL, ALLOWING US TO REJECT THE NULL HYPOTHESIS
AND PROVING THERE IS STATISTICAL SIGNIFICANCE IN THE DIFFERENCES
BETWEEN TEST RESULTS BY THE THREE MODELS.

Test DNN vs XGB | DNN vs SVM | XGB vs SVM

Year

2015 0.60854777 6.59E-05 7.00E-05

2016 0.43330609 3.86E-09 1.57E-06

2017 0.67178157 1.25E-14 3.03E-12

2018 0.13876126 8.11E-09 3.85E-09
TABLE VII

TEST STATISTICS FROM MCNEMAR’S TEST. USING A SIGNIFICANCE
LEVEL OF 0.05 (ALPHA), THE CALCULATED STATISTICS IN DNN vs SVM
AND XGB vS SVM ARE MUCH SMALLER THAN THE ALPHA VALUE,
ALLOWING US TO REJECT THE NULL HYPOTHESIS AND HENCE PROVING
THAT THE UNDERPERFORMANCE OF SVM IN THESE TASKS AGAINST XGB
AND DNN IS STATISTICALLY SIGNIFICANT. HOWEVER, WE ARE NOT ABLE
TO REJECT THE NULL HYPOTHESIS IN DNN vs XGB AND HENCE CAN
NOT STATISTICALLY DISTINGUISH THE PERFORMANCE BETWEEN DNN
AND XGB.

each of the DNN, SVM, and XGB models using data pre-
ceding the year under test. Each testing set contains all the
relevant companies that filed for quarterly earnings with U. S.
Securities and Exchange Commission (SEC) in the testing
year. Most companies filed four times and each is considered
an independent data point in the data set. All the earnings
reported prior to the test year are included in the training set.

We adjust for imbalanced classes for all the models before
using the data. Our model output is a binary movement, i.e.,

positive or negative cumulative abnormal stock return 30 days
after an earnings release. The number of ups and downs are
not equal in our data set, and hence, the need to adjust
for this imbalance arises. Under each test scenario, sample
weight adjustments are first calculated for the DNN and XGB
based on the full training data set which is then used for
class imbalance adjustment during testing. For SVM, no prior
weight adjustment calculation is needed, because the SVM
library can internally “balance’ the given data when instructed.

In each experiment, 100 tests are run using the same training
and testing set and the average classification accuracy on
the out-of-sample test set is calculated. Table III presents
the averaged prediction accuracy of the three models when
including stocks from all the sectors. As evidenced by this
result, XGB and DNN outperform the SVM by a meaningful
margin. XGB performs better than the DNN most of the time,
although the margin of difference is a lot smaller than that
between SVM and DNN or XGB.

To ensure our findings are not by statistical chance, we
compute the statistical significance of our results. Since we
have three candidate models, we are conducting a multiple
hypotheses testing. Inspired by the work by Raschka [25],
our first step is to conduct an omnibus test under the null
hypothesis that there is no statistical difference between the
classification accuracies. Omnibus tests are statistical tests
designed to check whether random samples depart from a null
hypothesis. We have chosen the non-parametric Cochran’s Q
test for this task, since it works well with related categories
where the response is binary. As in [25], we produce an n x M
matrix, where n is the number of test examples, and M the
number of classifiers. The entry ijth of such a matrix is 0 if a
data example z; by the classifier C; is incorrect, otherwise 1.
Our results are presented in table VI. We use a significance
level of o« = 0.05 and successfully reject the null hypothesis
that the proportion of ‘successes’ is the same in all groups.

Next, we conduct pairwise tests using McNemar’s test
which was proven by Dietterich [23] to perform well in



comparing two models on an independent test set with binary
response which produces one of the lowest type I error. We use
the mlxtend library written by Raschka [26] with results given
in table VII. Again, using a 0.05 significance level, we are able
to reject the null hypothesis between XGB and SVM as well as
DNN vs SVM, proving that the underperformance of SVM in
these tasks against XGB and DNN is statistically significant.
However, we are not able to reject the null hypothesis in DNN
vs XGB.

B. Drift Analysis at Sector Level

We run the same tests on stocks that belong to each
of the nine industrial sectors Industrial, Basic Materials,
Consumer Cyclical, Consumer Non-Cyclical, Financial, Tech-
nology, Communications, Energy, and Utilities as seen on
Bloomberg, so as to give a more granular view on each model’s
performance on data sets of diffing underlying characteristics.

Table IV presents the grid of results under the three models
on each sector between 2015 and 2018. Each number on the
grid is the classification success rate on the drift direction
of out-of-sample stocks in a particular sector. Table V sum-
marises the number of sectors, where the highest out-of-sample
prediction accuracy is observed under a model. Consistent with
the results presented in the previous section, we see XGB
produces the highest classification success rates, whereas SVM
is considerably poorer in this task. This is especially the case in
sectors where the models generally have higher success rates
such as in the Consumer Cyclical and Consumer Non-Cyclical
sectors.

It is interesting to observe that the same models produce
excellent results with out-of-sample stocks from most indus-
trial sectors, but not with the likes of Energy and Utilities.
This is clear evidence that our data is more impactful to
some sectors than others. We provide two explanations for
this observation. First, it is evident that other forms of data
would have produced meaningful impact on stock’s post-
earnings-release movements should we have included them in
our feature space. We have identified a variety of data which
includes management’s guidance, recent revisions of analysts’
price fore-cast, other text information carried in financial
reports, and meeting minutes with analysts amongst others,
as further data to consider in future studies. Second, there is
not a static combination of features driving the movement of
stocks from different sectors following their earnings release.
The driving forces are dynamic, and the implicit weighting of
the same group of features are evidently different for different
sectors. XGB and in a way DNN have demonstrated their
prowess in our findings to produce a high degree of accuracy
in forecasting PEAD direction when the feature data carries
enough signals in them, despite the dynamism in the driving
factors, which prompts us to believe that more consistent
results would be achievable across all the sectors should we
improve upon signal extraction from the features available. In
that sense, combining our chosen supervised learning methods
with representation learning [27] or data augmentation appears
promising in the next stage’s research.

VII. CONCLUSION

Post-Earnings-Announcement Drift (PEAD) as a stock mar-
ket anomaly has traditionally been studied using regression
based approaches which often focus on a limited list of
factors under study. Results of such studies are linear and
tend to focus on explaining the impactfulness of individual
factors. Also, most studies do not tend to use a large data
set and sometimes use a priori assumptions to segregate
companies into groups prior to analysis. Attempting to plug
this gap in the literature, we use supervised learning models to
provide a nonlinear analysis on PEAD and prove effectiveness
of machine learning models in predicting the direction of
Cumulative Abnormal Returns (CAR) following an earnings
event. In this process, we selected to use a much bigger set
of numerical features including financial report data, earnings
surprise data, near term momentum data, and short interest
ratios with some features specifically engineered, all of which
have been sourced over a long time frame of twenty-one years.
Our results are two fold. First, we demonstrated that when
properly configured using a Genetic Algorithm, supervised
learning models combined with our selected input features are
genuinely capturing the dynamics that drive the direction of
PEAD with an out-of-sample classification success rate up to
62.9 % depending on the test scenarios. Second, we studied
some of the most popular supervised models, DNN, XGB,
and SVM in the same series of studies. Backed up by results
by Cochran’s Q Test and McNemar’s Test, we illustrated how
significantly better XGB and DNN have performed than SVM
did when meansured by the classification accuracy, although
the slightly superior results of XGB over DNN as we observed
are not understood as statistically significant enough. We
further observed that the current set of features provided a
varying degree of driving force over the PEAD movement of
stocks from different industrial sectors and at a different time.

This gives us a future research direction where one should
aim to put more emphasis on both capturing and taking
advantage of more forms of drivers in the feature space as well
as working with representation learning and data augmentation
techniques.
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