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Abstract

Throughout this thesis, we introduce the class of f -E-metrics, a parameteri-
zable class of metrics for probability distributions, containing the Prokhorov
and Wasserstein-∞ metrics. Starting with the theoretical foundations, we
show the similarities and differences between the latter two metrics and
explore the two topologies the f -E-class induces. This provides a joint
framework for the previously mostly independently considered metrics,
highlighting their connections. Figuratively speaking, this is a way of com-
paring how much mass has to be transported how far to transform one
distribution into the other. The f -E-metric is then attained at the balance
of the distance and the f -weighted mass. In contrast to the Wasserstein-p
metric, which averages all transported mass together with the distances,
f -E-metrics are only considering a cutoff point. In Proposition 2.5.1 and
Proposition 2.5.2, we provide two generally valid algorithms for the exact
computation of the distance of finite support distributions of size m ≥ n.
Obtaining a worst case complexity of O

(
mn2 log(m)

)
, the computation of

the f -E-class is instantly on par with the well researched Wasserstein-p metric.

We further introduce for the first time quasi-convex metrics, a concept
linking metric and ordered spaces. This allows for sorting the supports of
our probability distributions in corresponding metric spaces while keeping a
strong link with the underlying metric. The theoretical foundation lies within
Monge sequences, which we cover throughout this thesis. Combining these,
we can significantly improve the general complexity to quasi-linearity for the
Prokhorov and Wasserstein-∞ metric. We proof correctness and worst case
complexities for all algorithms, setting them on par with the Wasserstein-p
metric. In detail, we obtain a general complexity of O

(
mn2 log(m)

)
and

refined for the quasi-convex case to a strongly quasi-linear O
(
m log(m)

)
for the Wasserstein-∞ metric in Corollary 4.2.18 and a weakly quasi-linear
O
(
mmax{log(m), 1

accX
}
)

depending on the support of the distributions for
the Prokhorov metric in Theorem 4.1.12.
We compare the f -E-class with existing metrics to embed it in the current tool
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set and show their relationships. We conclude with a numerical analysis of
our algorithms to check correctness and complexity based on implementations
in MATLAB.

In total, we have newly developed a broad class of probability metrics, con-
taining the well known Prokhorov and Wasserstein-∞ metric, analyzed their
theoretical properties and provided a comprehensive set of exact and efficient
algorithms for their computation for finitely supported measures.
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Zusammenfassung

In dieser Arbeit führen wir die Klasse der f -E-Metriken ein, eine parametrisier-
bare Klasse von Metriken für Wahrscheinlichkeitsverteilungen, die die
Prokhorov und Wasserstein-∞-Metriken enthält. Beginnend mit den the-
oretischen Grundlagen zeigen wir die Gemeinsamkeiten und Unterschiede
zwischen letzteren beiden Metriken und untersuchen die zwei induzierten
Topologien, die die f -E-Klasse enthält. Damit wird ein gemeinsamer Rahmen
für die bisher meist unabhängig voneinander betrachteten Metriken geschaffen
und ihre Zusammenhänge verdeutlicht. Bildlich gesprochen wird hierbei
verglichen, wie viel Masse wie weit transportiert werden muss, um eine
Verteilung in die andere zu transformieren. Die f -E-Metrik ergibt sich dann
aus dem Gleichgewicht zwischen der Entfernung und der mit f -gewichteten
Masse. Im Gegensatz zur Wasserstein-p Metrik, die die gesamte transportierte
Masse zusammen mit den Entfernungen mittelt, wird bei der f -E-Metrik
nur ein Trennpunkt betrachtet. In Proposition 2.5.1 und Proposition 2.5.2
stellen wir zwei allgemeingültige Algorithmen für die exakte Berechnung des
Abstands von Wahrscheinlichkeitsverteilungen mit endlichen Trägern der
Größen m ≥ n vor. Mit einer Worst-Case-Komplexität von O

(
mn2 log(m)

)
ist die Berechnung der f -E-Klasse somit aus dem Stand gleichwertig mit der
gut erforschten Wasserstein-p Metrik.

Weiterhin führen wir als Erste quasikonvexe Metriken ein, ein Konzept,
das metrische und geordnete Räume miteinander verbindet. Dies erlaubt es
uns, die Träger unserer Wahrscheinlichkeitsverteilungen in entsprechenden
metrischen Räumen zu ordnen und dabei eine starke Verbindung mit der
zugrundeliegenden Metrik zu bewahren. Die theoretische Grundlage hierfür
bieten Monge-Folgen, die wir ebenfalls in dieser Arbeit behandeln. Indem wir
diese kombinieren, können wir die allgemeine Komplexität deutlich verbessern
und erhalten Quasi-Linearität für die Prokhorov und Wasserstein-∞ Metrik .
Wir beweisen Korrektheit und Worst-Case-Komplexität für alle Algorithmen
und erhalten die selben Komplexitäten wie für die Wasserstein-p Metrik. Im
Detail erhalten wir eine allgemeine Komplexität von O

(
mn2 log(m)

)
und
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verbessern diese für den quasi-konvexen Fall zu einem stark quasi-linearen
O
(
m log(m)

)
für die Wasserstein-∞-Metrik in Corollary 4.2.18 und einem

schwach quasi-linearen O
(
mmax{log(m), 1

accX
}
)
in Abhängigkeit vom Träger

der Verteilungen für die Prokhorov Metrik in Theorem 4.1.12.
Wir vergleichen die f -E-Klasse mit bestehenden Metriken und zeigen ihre
Relation zu diesen. Wir schließen mit einer numerischen Analyse unserer
Algorithmen zur Überprüfung der Korrektheit und Komplexität anhand von
Implementierungen in MATLAB ab.

Insgesamt haben wir in dieser Arbeit eine breite Klasse von Wahrschein-
lichkeitsmetriken neu entwickelt, die die bekannten Prokhorov und
Wasserstein-∞ Metriken enthält, ihre theoretischen Eigenschaften analysiert
und einen umfassenden Satz von exakten und effizienten Algorithmen für
deren Berechnung für Wahrscheinlichkeitsverteilungen mit endlichem Träger
vorgestellt.
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1 Introduction

Let us start by motivating the use of metrics for probability distributions and
why we see the need for the f -E-class.

1.1 History of Metrics in Probability Theory

The usual way of introducing convergence in a classical calculus course is via
metrics. It presents a way of mathematically defining convergence as one would
understand it figuratively, by quantifying closeness. A metric on the space S
is defined as bivariate function d : S × S → R≥ fulfilling only three simple
properties:

• d (x, y) = 0⇔ x = y for all x, y ∈ S (identity of indiscernibles)

• d (x, y) = d (y, x) for all x, y ∈ S (symmetry)

• d (x, z) ≤ d (x, y) + d (y, z) for all x, y, z ∈ S (triangle inequality)

These properties equal what one would expect from a distance in everyday
life, the “identity of indiscernibles” states that two objects have no distance
if and only if they are the same, the “symmetry” keeps the distance the
same whether one travels from x to y or the other direction from y to x

and the “triangle inequality” ensures detours can’t shorten the total way
traveled. A sequence of points xn ⊂ S is then said to converge to a point
x ∈ S, if d (xn, x) −−−→

n→∞
0, i.e. ∀ε > 0∃N ∈ N : d (xn, x) < ε for all

n ≥ N . This translates convergence to a finally decreasing to zero distance,
as one would expect. Of course, many generalizations and variants exist,
including quasimetrics, metametrics and semimetrics, all varying one or
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History of Metrics in Probability Theory

more properties. The advantage of working with metrics is their generality –
the concept is independent of the actual space S. One intuitively thinks of
the real line R and the euclidean metric d (x, y) = |x− y| as the standard
example of a metric, but many more metric spaces exist, like the space of
continuous functions or as in this exposition, the space of probability measures.

By imposing stricter rules on a metric, the typical next step are norms on
vector spaces. On the contrary easing up the concept of metrics leads to
topologies, which we will look further into. Instead of quantifying a distance to
define closeness, a topology directly lists all respective neighborhoods N ⊂ S

of every point x ∈ S, fulfilling certain properties. This states a relaxation
of the concept of metrics, as no general comparison of the neighborhoods is
possible in contrast to the classic distance in a metric sense.

In probability theory, the classical concepts lie somewhere in between metric
and topological spaces: To do so, we consider measures M1,M2, . . . on a
metric space (S, d ).
The most common definition of convergence of probability measures is the
weak convergence, Mn

w−−−→
n→∞

M :⇐⇒ EMn [f ] −−−→
n→∞

EM[f ] for all bounded
and continuous functions f : S → R. As its name suggests, it is the weakest
form of convergence, i.e. other types of convergence imply weak convergence,
but not vice versa. We only require the convergence of the expected values,
but do not require or quantify a certain speed. This is obviously due to
the fact that the convergence speed of 2 · f is half the speed of f , i.e. the
convergence speed can be slowed down indefinitely. While this problem can
be overcome quite easily, e.g. by imposing a constraint on the maximal value
‖f‖∞, it complicates the otherwise straightforward definition. But this also
raises concerns regarding the “right” choice of constraint. More common than
limiting the maximum is limiting the Lipschitz-norm1 ‖f‖Lip ≤ 1, which
defines the Wasserstein-metric2 (Gibbs and Su, 2002, Chapter 2, Section

1The Lipschitz-norm is defined as ‖f‖Lip
..= supx,y∈S

|f(x)−f(y)|
d (x,y)

2The Wasserstein-metric is defined as dW (M1,M2) ..= sup‖f‖Lip≤1
∣∣EM1 [f ]− EM2 [f ]

∣∣

2



Wasserstein). The most prominent occurrence of weak convergence, now for
random variables, is the central limit theorem:

Theorem. Let X1, X2, . . . be independent and identically distributed (i.i.d.)
random variables with mean µ and variance σ2, then

1√
n

n∑
i=1

(Xi − µ)
w−−−→

n→∞
N (0, σ2)

Application include the approximation of i.i.d. sums by normal distributions
to simplify modeling and calculations. This justifies the regularly made
assumption of normally distributed errors in statistics.

Stronger types of convergence of sequences of random variables include con-
vergence in probability and almost sure convergence. In contrast to weak con-
vergence, they relate to sequences of real-valued random variables X1, X2, . . .

instead of probability distributions M1,M2, . . . .

Definition. Let X1, X2, . . . and X be random variables, Xn is said to converge
in probability to X, if

lim
n→∞

P
[
|Xn −X| > ε

]
= 0 for all ε > 0.

The sequence is said to converge almost surely, if

P
[

lim
n→∞

Xn = X

]
= 1.

As both notations define a stricter sense of convergence, they imply weak
convergence for the associated distributions. Common occurrences are the law
of large numbers and the law of iterated logarithm.

Theorem. Let X1, X2, . . . be independent and identically distributed random
variables with mean 0 and variance 1, then

lim sup
n→∞

±
∑n

i=1Xi√
2n log log n

= 1 almost surely.

3



History of Metrics in Probability Theory

In contrast to other classical convergence results stating characteristics of
the limit, the law of iterated logarithms also quantifies how the limit is
approached. It states how far the sample average will deviate from the mean
on a regular basis.

A result lying in between classical convergence results and our desired focus
on quantifying distances is the Dvoretzky–Kiefer–Wolfowitz inequality for real
valued random variables.

Theorem. Dvoretzky et al. (1956)
Let X1, X2, . . . be independent and identically distributed random variables with
cumulative distribution function F and denote by Fn the empirical distribution
function of the first n observations, i.e. Fn(x) ..= 1

n

∑n
i=1 1Xi≤x, then

P

[
sup
x∈R

∣∣Fn(x)− F (x)
∣∣ > ε

]
≤ Ce−2nε2 for all ε > 0,

for some constant C > 0. Massart (1990) later showed C = 2.

Essentially, the probability of large deviations in the distribution function de-
clines exponentially with the sample size. This can be used in two ways, one by
having a fixed sample size N and obtaining a-posteriori exceedance probabili-
ties for all error sizes ε. Or by a-priori defining maximal exceedance probabili-
ties for certain error levels and calculating a necessary sample size guaranteeing
these bounds. This is especially relevant for regulated areas, i.e. risk manage-
ment in finance or medicines studies.
The deviation measured in the Dvoretzky–Kiefer–Wolfowitz inequality is well
known as the Kolmogorov metric

Definition. Let F,G be cumulative distribution functions, then their Kol-
mogorov distance is defined as

dK(F,G) ..= sup
x∈R

∣∣F (x)−G(x)
∣∣ .

It is well known from the Kolmogorov(-Smirnov)-test, a statistical method to
check whether a sampled distribution stems from a given distribution (zero-

4



hypothesis) or not. While being restricted to real-valued distributions, its com-
putation is already challenging. As F (x) − G(x) is the difference of two cu-
mulative distribution functions, it possesses in general no helpful properties
besides being continuous from right with the left sided limit existing (càdlàg).
Even if densities are available, the constant sign changes complicate matters.
A setting providing easier means of computation is if at least one distribution
is discrete or even has finite support, i.e. G(x) =

∑l
i=1 1Xi≤x for some Xi.

If we denote the support as Γ ..= {Xi | i = 1, . . . , l}, the calculation of the
supremum can be reduced to a finite set

sup
x∈R

∣∣F (x)−G(x)
∣∣ = max

i=1,...,l
max{

∣∣F (Xi)−G(Xi)
∣∣ ,∣∣F (X−i )−G(X−i )

∣∣},
with F (x−) ..= limy↑x F (y) denoting the limit from below.

Our interest in probability metrics was sparked by a problem in stochastic
optimization, how sensitive the optimal solution is with respect to deviations
in the distribution. Consider a classical stochastic optimization problem

min
x∈Rd

fM1(x, Z)

subject to x ∈ C
(SPM1)

for an optimal variable x ∈ Rd constrained to a set C and a random parameter
Z. Here the objective function fM1 is parametrized by a probability measure
M1, e.g. EM1 [g(x, Z)] or a quantile of the distribution of g(x, Z) under M1.
Let us denote the optimal solution of SPM1 by x∗M1

. This setting assumes
exact knowledge of the distribution M1, which often holds not true, either
by necessary discretizations or simply missing information. So instead of the
real problem SPM1 , one might find oneself solving SPM2 for a slightly different
distributionM2, obtaining a different optimal control x∗M2

. Important questions
then include how much the two optimal solutions deviate from each other in
relation to the distance between M1 and M2,∥∥x∗M1

− x∗M2

∥∥ ≤ h
(

d (M1,M2)
)

for some h : R≥ → R≥ or how much worse x∗M2
performs than x∗M1

in the real
problem

fM1(x∗M2
, Z)− fM1(x∗M1

, Z) < h
(

d (M1,M2)
)
.

5



Joining Probability Theory and Optimization

That means given d (M1,M2), we can bound the maximal deviations of the
optimal control and its objective value. In the case of discretization, this can be
used to calculate a priori an acceptable discretization level for approximatively
solving SPM1 .

1.2 Joining Probability Theory and

Optimization

While there certainly is an interest in probability metrics from a probability
theory point of view, their computation has only been covered selectively. Prob-
ably the most researched metric is the Wasserstein metric due to its link to
optimal transport. Figuratively, optimal transport is the problem of matching
given supplies and demands of one good while minimizing the occurring costs.
Imagine heaps of earth of different sizes p1, . . . , pm at locations X1, . . . , Xm and
a plan how the earth should be distributed at locations Y1, . . . , Yn with masses
q1, . . . , qn; and denote the distance between the sites Xi and Yj by ci,j.

The problem dates back to the eighteenth century, when it was introduced
by Monge (1781). In its simplest form of equal supply and demand on each
site, i.e. p1 = · · · = pm = q1 = · · · = qn with m = n, this reduces to an
assignment problem. The optimal transportation plan can be expressed as an
permutation σ : {1, . . . ,m} → {1, . . . ,m}, linking each point of supply i with
exactly one point of demand σ(i). As they allow a specifically tailored solving
approach and constitute a whole area of research themselves, we do not go
into detail here and only mention the most prominent algorithm: assignment
problems can be solved by the so called “Hungarian method”, introduced by
Kuhn (1955), based on ideas by the Hungarian mathematicians Dénes Kőnig
and Jenő Egerváry.

The problem was generalized by Kantorovitch (1958), therefore also referred
to as the Kantorovich-Monge problem. As linear programming, it developed
as a way to quantify logistical problem during World War II, like the rationing

6



of food and reallocating troops. Allowing arbitrary positive supplies and de-
mands, only requiring equal totals

∑m
i=1 pi =

∑n
j=1 qj, gives a min cost flow

problem by introducing source s and sink t:

s X2

X1

Xm

Y2

Y1

Yn

t

p 1

p2

p
m

q
1

q2

q n

c 2,
1

c
1,2

c1,1

cm,n

Figure 1.1: Network of a min cost flow formulation of the optimal transport
problem with supply nodes X1, . . . , Xm, demand nodes Y1, . . . , Yn.
Labels below edges are flow constraints, labels above costs, missing
labels are no flow constraints and zero costs.

In recent years, optimal transport became more and more relevant again, es-
pecially due to Villani (2009), a book thoroughly dedicated to this topic. Over
the years, nearly all important scientific prizes have been awarded to related
topics, especially the Nobel prize in economics 1975 to Leonid Kantorovich
and Tjalling Koopmans “"for their contributions to the theory of optimum al-
location of resources"”, the Henri Poincaré prize 2009 and the Fields medal in
2010 to Cédric Villani. Villani (2009) covers in detail the theory of continuous
optimal transport, instead of finite sets of supply and demand, continuous ar-
eas are considered. This is achieved by using density functions f and g instead
of probability masses pi and qj, norming the total mass to 1. While previously
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Joining Probability Theory and Optimization

transport maps were represented by matrices mi,j, now maps m(x, y) are used.
Their interpretation of the concepts remains the same, but mathematically,
new opportunities arise. The gradient ∇m(x, y) is of special interest as it has
geometric meaning in the field of gradient flows. Throughout this thesis, we
focus solely on the discrete setting, but refer to Ambrosio et al. (2005) for a
detailed introduction.

This connects to our area of interest by interpreting every outcome Xi/Yj and
their respective probabilities pi/qj of a random variables as supply (demand)
and its mass. An obvious consequence is a total mass of supply and demand
of
∑m

i=1 pi = 1 =
∑n

j=1 qj. The distance between two probability distributions
is therefore the cost of transforming one into the other.

So far, we have just superficially used the term “cost” of transportation without
specifying how to calculate it. The most intuitive approach is summing up
all occurring path costs multiplied by the amount of goods transported on
it, mi,j from Xi to Yj,

∑m,n
i,j=1 mi,jci,j. This defines the Wasserstein-1 metric,

the most prominent probability metric. In probability theoretic terms, this
can be interpreted as minimizing the mean cost. By squaring the path costs,∑m,n

i,j=1 mi,jc
2
i,j, we analogously minimize the variance of cost, with its square-

root defining the Wasserstein-2 metric. In general, the Wasserstein-p metric
for 1 ≤ p <∞ is defined as p

√∑m,n
i,j=1mi,jc

p
i,j. These are well studied problems,

both mathematically and numerically, discrete and continuously.

One closely related metric we will cover in this thesis is the Wasserstein-∞
metric, the limit p → ∞ of the Wasserstein-p metric. It follows the classical
intuition of p-metrics, increasing the weight of bigger costs and in the limit only
taking the most expensive path into account maxi,j 1mi,j>0 · ci,j. Applications
include budgeting rules minimizing maximum costs per path or contractor,
or if one considers the transportation time as its cost, minimizing the time it
takes to transport all goods.

The Wasserstein metrics stem directly from economic concepts, but a multi-
tude of mathematically interesting cost functions is available. A major problem
in real world statistics is the occurrence of outliers and their methodical treat-
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ment. How does one decide whether an extreme observation is the result of an
unlikely event or simply a measurement error? One metric dealing with this
trade-off is the Prokhorov metric Prokhorov (1956). It can roughly be stated
as “the smallest value δ such that at most δ goods have to be transported at
costs higher than δ”. This eases outliers by ignoring the costs for transporting
a small fraction δ of the total mass along high cost paths.

1.3 Literature around the f-E-class

While we are the first to introduce f -E-metrics, two representatives are well
known, the Prokhorov and the Wasserstein-∞ metric. As the name suggests,
the Prokhorov metric was first introduced by Prokhorov (1956). His motivation
was to quantify weak convergence for stochastic processes, but the resulting
metric can be used for any metric space. Strassen (1965) built on this to ob-
tain results for the existence of specific joint measures given their marginals
by looking at the neighborhood of sets. This can be seen as the first graphi-
cal interpretation of the Prokhorov metric. Dudley (1968) was able to further
improve this visual interpretation, and linking it to matching problems, a spe-
cial case of the previously discussed transportation problems. While results
up to then were for general probability measures, Schay (1974) restricted the
setting to probability measures with finite support. This was the first step
towards computing the Prokhorov metric, introducing a linear programming
formulation of an occurring subproblem. The dual problem, the focus of García-
Palomares and Giné (1977), provides an alternative approach to the results of
Schay (1974).
The restriction to probability measures with finite support raised the ques-
tion how good these approximate continuous ones. As the Prokhorov metric
metrizises weak convergence, the only common metric to do so without further
restrictions, the convergence of the sampled distribution to the original one is
given for increasing sample size. Kersting (1978) addressed the question of con-
vergence speed, providing results for distributions on R under some regularity
constraints.
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Literature around the f -E-class

We will build on Garel (1981); Garel and Massé (2009), the first to provide a
computation algorithm for the Prokhorov metric for probability measures with
finite support. As they were focused on fast approximation via discretization of
continuous measures, they were not interested in exactness. However, we will
refine one of their steps to develop exact and efficient computation algorithms.
As the Prokhorov metric has gained mostly theoretical attention, we are not
aware of other computational results. This makes us the first to provide exact
algorithms with known worst case complexity.

The Prokhorov metric uses a fixed 1 : 1 ratio to interchange costs and outlier
mass. We focus on investigating a class of probability metrics which are robust
with respect to such outliers, but allowing a free and dynamic choice of the
exchange rate. To the best of our knowledge, we are to first to introduce this
class of metrics, based on a result by Dudley (1968), which we refer to as
the f -E-class. It incorporates the Wasserstein-∞ metric and the Prokhorov
metric and embeds them in a consistent framework.

The Wasserstein-∞ metric is usually defined as the limit p → ∞ of the
Wasserstein-p metric. A different approach, as discussed by Givens and
Shortt (1984), defines it as the minimized maximal covered distance of the
transportation plan, allowing for easy visualization. This is in-line with the
expected behavior, as an higher exponent weights large deviances more,
ultimately only weighting the largest deviance. Champion et al. (2008) char-
acterizes the existence of optimal transport maps realizing the Wasserstein-∞
metric. Similar to the Prokhorov metric, advances for the convergence rate of
sampled measures have been made, notably by Kloeckner, B. (2012); Trillos
and Slepčev (2015); Liu et al. (2018).
Bobkov and Ledoux (2016) provided an explicit characterization of an optimal
transportation plan for probability measures on the real line. We generalize
this result for certain ordered, metric spaces, and develop exact and efficient
algorithms for probability measures with finite support on such metric spaces.

Our f -E-class provides a uniform framework for the Prokhorov and
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Wasserstein-∞ metric, while also introducing a whole new class of metrics
along their structure. A first step in this direction has been done by Rachev
and Rüschendorf (1992), but only for a limited, parametrized class of metrics.

1.4 Contributions and Structure of this Thesis

We start by introducing what we call the f -E-class in Definition 2.1.10, a
framework of probability metrics inspired by the Prokhorov-metric in Chap-
ter 2. We are able to separate the class into two disjoint sets in Theorem 2.1.21
and Lemma 2.1.23 by their created topologies and therefore showing the ex-
istence of uncountable infinite metrics equivalent to the weak topology. After
analyzing the theoretical properties, we provide two exact and efficient algo-
rithms in Proposition 2.5.1 and Proposition 2.5.2 for their computation for
finitely-supported probability distributions. To the best of our knowledge, we
are the first to do so. While for the Wasserstein-∞ metric special cases like
R have been analyzed, the Prokhorov metric has never been computationally
analyzed for exact algorithms. We achieve the same computational complexity
as the widely used Wasserstein-p metric. We therefore provide a metric robust
to outliers as an viable alternative to the current state of the art.

In Chapter 3 we introduce quasiconvex metrics in Definition 3.3.1, motivated
by Norfolk (1991), a generalization of one-dimensional spaces retaining neces-
sary ordering properties allowing fast computation of our metrics. While the
concept is a straight forward combination of ordered and metric spaces, they
have not been the subject of research until now. This leads to the discussion of
Monge sequences, a setting where greedy algorithms are exact algorithms, see
Theorem 3.2.3. We show how we can modify our algorithms to take advantage
of the ordering of the support and achieve significantly reduced complexities
in Theorem 3.4.3.

Chapter 4 is dedicated to the Prokhorov and Wasserstein-∞ metric in detail,
covering their theory and providing specifically tailored algorithms. For the
Prokhorov metric, we show a significant improvement Corollary 4.1.8 of the
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Contributions and Structure of this Thesis

approach of Garel and Massé (2009). We then focus on the Prokhorov metric
on R in Subsection 4.1.5 and present an exact, weakly quasi-linear algorithm
Theorem 4.1.12 to show the computationally accessibility of the Prokhorov
metric. We hope this inspires further research along the Prokhorov metric,
which so far has been appealing only from a theoretical point of view, but was
not considered to be computationally feasible.

Along the same idea, we analyze the Wasserstein-∞ metric on quasi-convex
spaces in Subsection 4.2.5 and present an exact, strongly quasi-linear algo-
rithm Corollary 4.2.18. This generalizes the results of (Bobkov and Ledoux,
2016, Equation (2.3)) from R with the euclidean metric to general quasi-convex
spaces. We summarize our findings in Section 4.3, showing the Prokhorov and
Wasserstein-∞metrics are computationally on par with the Wasserstein-pmet-
ric.

We embed the f -E-class into well known probability metrics, by comparing it
to the Wasserstein-p and Lévy metrics in Chapter 5.

To show the practicality of our newly introduced algorithms, we conduct a nu-
merical analysis in Chapter 6 of the Prokhorov metric, verifying the theoretical
complexities and efficiency of the quasi-convex setting.

We conclude with Chapter 7, summarizing our achievements and providing an
outlook to inspire further research.
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2 Metrics of the f-E-Class

In this thesis, we cover two metrics for probability measure from a class going
back to (Dudley, 1968, Theorem 1).

2.1 Definition and Properties

As these metrics take into account deviations in the probabilities as well as in
the support, we need to define the neighborhood of a Borel set. We will follow
Huber (1981) throughout this part.

Let Ω be a Polish space (i.e. separable and complete) with a metric d Ω and
Borel-σ-algebra A ..= B(Ω). Furthermore, letM1(Ω,A) be the set of all prob-
ability measures on [Ω,A].

Definition 2.1.1
For δ ≥ 0, let the closed δ-neighborhood Aδ of a Borel set A ∈ A be given by

Aδ ..=
{
x ∈ Ω | d Ω(x,A) ≤ δ

}
,

where d Ω(x,A) ..= infy∈A d Ω(x, y) is the distance of a point x to the set A.

(Dudley, 1968, Theorem 1) covers the relationship between the behavior of
M1[A] and M2[Aδ] for two probability measure M1,M2 ∈ M1(Ω,A) and an
optimal couplingM of these two. To fix notation, let us denote byM⊗

1 (Ω,A) ..=

M1(Ω× Ω,A⊗ A) the product space and abbreviate

M
[

d Ω(x, y) > δ
]

..= M
[{

(x, y) ∈ Ω× Ω
∣∣ d Ω(x, y) > δ

}]
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Definition and Properties

for M ∈ M⊗
1 (Ω,A). Further, let us abbreviate the set of probability mea-

sures on M⊗
1 (Ω,A) with given marginal measures M1,M2 ∈ M1(Ω,A) as

M⊗
1 (M1,M2), i.e.

M⊗
1 (M1,M2) ..= {M ∈M⊗

1 (Ω,A) |π1(M) = M1 and π2(M) = M2},

with projections π1(M)[A] = M[A × Ω] and π2(M)[B] = M[Ω × B] for all
A,B ∈ A.

Theorem 2.1.2
(Dudley, 1968, Theorem 1) Let M1, M2 ∈ M1(Ω,A) and δ, ε ≥ 0, then the
following are equivalent:

1. M1[A] ≤M2[Aδ] + ε for all closed A ⊂ Ω.

2. For any γ > 0 there exists a M ∈ M⊗
1 (M1,M2) with

M
[

d Ω(x, y) > δ + γ
]
≤ ε+ γ.

If furthermore [Ω, d Ω] is inner regular, i.e. for all probability measures M1 ∈
M1(Ω,A) and all Borel sets A ∈ A it holds

M1[A] = sup
{
M1[K] | K ⊂ A,K compact

}
,

then the same holds for γ = 0.

Lemma 2.1.3
(Dudley, 1968, p. 1566 ff.) If [Ω, d Ω] is a Polish space, [Ω,A] is inner regular.

Theorem 2.1.4
(Dudley, 1968, Theorem 2) Let M1, M2 ∈ M1(Ω,A) and δ, ε ≥ 0, then, if
[Ω, d Ω] is inner regular, the following are equivalent:

1. M1[A] ≤M2[Aδ] + ε for all closed A ⊂ Ω.

2. There exists a M ∈M⊗
1 (M1,M2) with M

[
d Ω(x, y) > δ

]
≤ ε.

14



As d Ω is symmetric, an obvious consequence of Theorem 2.1.2 is the symmetry
of the first property:

Corollary 2.1.5
For all M1, M2 ∈M1(Ω,A) and δ, ε ≥ 0

M1[A] ≤M2[Aδ]+ε for all closed A ⊂ Ω⇐⇒M2[A] ≤M1[Aδ]+ε for all closed A ⊂ Ω

holds.

To obtain the smallest ε fulfilling this relationship, we introduce the exceedance
function, i.e. how much more mass lies outside the δ neighborhood Aδ.

Definition 2.1.6
Let us define the exceedance of M1 and M2 for δ ≥ 0 as

EM1,M2(δ) ..= 1− sup
M∈M⊗1 (M1,M2)

M
[

d Ω(x, y) ≤ δ
]

= inf
M∈M⊗1 (M1,M2)

M
[

d Ω(x, y) > δ
]
,

where we omit the margins if they are clear from the context, i.e. E(δ) ..=

EM1,M2(δ).

Again, inner regularity allows for an easier formulation.

Corollary 2.1.7
If [Ω, d Ω] is inner regular, we have

sup
M∈M⊗1 (M1,M2)

M
[

d Ω(x, y) ≤ δ
]

= max
M∈M⊗1 (M1,M2)

M
[

d Ω(x, y) ≤ δ
]

for all M1, M2 ∈M1(Ω,A) and δ ≥ 0, and especially for our notation

E(δ) = min
M∈M⊗1 (M1,M2)

M
[

d Ω(x, y) > δ
]
.

Observation 2.1.8
The definition of the exceedance E is in line with the idea of Theorem 2.1.4 in
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Definition and Properties

case of inner regularity:

M1[A] ≤M2[Aδ] + E(δ) for all δ > 0 and M1, M2 ∈M1(Ω,A).

Furthermore as E is the smallest value admitting this, an alternative definition
of E is obviously

E(δ) = sup
A⊂Ω

A closed

M1[A]−M2[Aδ]

The motivation behind the exceedance E(δ) is the amount of mass that has to
be transported further than δ in an optimal transportation plan.

As we will extensively study the exceedance E , let us give an overview of its
properties.

Lemma 2.1.9
The exceedance E satisfies the following:

1. E is monotonically decreasing with limδ→∞ E(δ) = 0.

2. E is càdlàg, i.e. continuous from right and the limit from the left exists.

3. E(δ) ∈ [0, 1] for all δ ≥ 0.

4. E(0) = 0⇐⇒M1 = M2.

Proof. All of these properties are due the close relationship of E to the cumu-
lative distribution function.

This allows us to define a broad class of metrics for probability measures by
prescribing a certain relationship between δ and E(δ) and searching for the
smallest such δ:

Definition 2.1.10
Let M1, M2 ∈M1(Ω,A) and f : R≥ → R≥ be monotonically increasing, then

d f (M1,M2) ..= inf
{
δ ≥ 0 | f(δ) ≥ EM1,M2(δ)

}
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defines a prototype for distances on M1(Ω,A), which we will call f -E-
prototypes. We say f defines a f -E-metric if d f (·, ·) fulfills the metric proper-
ties.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
/
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0.8

1
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Figure 2.1: Illustration of an f -E-metric for f(δ) = δ, which we will later
identify as the Prokhorov metric d P , for a small example with
M1[{0}] = M1[{1

5
}] = M1[{2

5
}] = M1[{3

5
}] = M1[{4

5
}] = M1[{1}] =

1
6
and M2[{0}] = M2[{1

3
}] = M2[{2

3
}] = M2[{1}] = 1

4
.

To assure this defines a metric on M1(Ω,A), further restrictions for f must
hold:

Lemma 2.1.11

1. If f is càdlàg and f(0) = 0 holds, d f (M1,M2) = 0 if and only if M1 =

M2.

2. If f(δ0) > 0 for some δ0 > 0, d f (M1,M2) < ∞ for all M1, M2 ∈
M1(Ω,A).

1Alternatively, one could prescribe a relationship between ε and g(ε), following our nomen-
clature called g(ε)-ε-metrics, but we will not pursue this approach.
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Definition and Properties

3. If f is super-additive, the triangle inequality holds: d f (M1,M3) ≤
d f (M1,M2) + d f (M2,M3) for all M1, M2, M3 ∈M1(Ω,A)

Proof.

1. “⇒” Let M1 6= M2, that is E(0) > 0, and as E and f are càdlàg:

lim
δ↓0
E(δ) = E(0) > 0 = f(0) = lim

δ↓0
f(δ),

and therefore d f (M1,M2) > 0.
“⇐” For M1 = M2 we have E(δ) = 0 for all δ ≥ 0 and therefore E(δ) ≤
f(δ) for all δ ≥ 0.

2. We have limδ→∞ E(δ) = 0 < f(δ0) ≤ limδ→∞ f(δ), so there exists a δ ≥ 0

such that f(δ) ≥ E(δ).

3. Let d f (M1,M2) = δ1,2 and d f (M2,M3) = δ2,3, then

M1[A] ≤M2[Aδ1,2 ] + f(δ1,2) ≤M3[
(
Aδ1,2

)δ2,3
] + f(δ1,2) + f(δ2,3),

so it suffices to show
(
Aδ1,2

)δ2,3 ⊂ Aδ1,2+δ2,3 which follows directly from
the triangle inequality for d Ω and f(δ1,2) + f(δ2,3) ≤ f(δ1,2 + δ2,3), the
super-additivity of f . So we know d f (M1,M3) ≤ δ1,2 + δ2,3.

Combing all these properties, we obtain sufficient criteria for f to define a
f -E-metric onM1(Ω,A):

Corollary 2.1.12
Let f : R≥ → R≥ be

• monotonically increasing,

• càdlàg2 and

• super-additive3 with
2While this restriction can be relaxed to continuity in 0 as super-additivity implies the
existence of all left-sided limits, càdlàg allows for a more intuitive interpretation.

3This implies monotonically increasing, which we list separately for illustration.
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• f(0) = 0 and f(δ0) > 0 for some δ0 > 0,

then d f (M1,M2) ..= inf
{
δ ≥ 0 | f(δ) ≥ EM1,M2(δ)

}
defines a metric on

M1(Ω,A).

This introduces a broad class of new metrics for probability measures,
parametrized by the function f . A more restrictive concept has been explored
by Rachev and Rüschendorf (1992), looking at linear functions f . Most metrics
for probability measures provide an intuitive explanation or visual concept as
to why they are defined the way they are. For the Wasserstein-metric it is the
average cost of transporting the supply M1 to fulfill the demand M2, hence
the name Earthmover’s distance. The Kullback-Leibler divergence is closely
related to the concept of entropy and the Lévy- and Kolmogorov-metric
have graphical interpretations within cumulative distribution functions. The
motivation for the f -E-metrics is in the sense of the Wasserstein-metric:
Having d f = δ can be interpreted as “No more than f(δ) mass has to be
transported further than δ”.

Famous examples of this class are the Wasserstein-∞ metric dW∞(M1,M2)

with f(δ) ≡ 0 and the Prokhorov metric d P (M1,M2) with f(δ) = δ.

Remark 2.1.13
Note f(δ) ≡ 0 does not fulfill Corollary 2.1.12, but still defines a f -E-metric if
for all M1,M2, there exists a δ0 such that EM1,M2(δ0) = 0. If supx,y∈Ω d Ω(x, y)

is bounded, this is always fulfilled.

As the main motivation for metrics is the quantification of closeness, their
relationship with topologies is of great interest.

Definition 2.1.14
The tuple T ⊂ P(M) is called a topology on the set M , if

1. ∅ ∈ T and M ∈ T
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Definition and Properties

2. ∪i∈IAi ∈ T for all Ai ∈ T for all finite and infinite index sets I

3. ∩i∈I Ai ∈ T for all Ai ∈ T for all finite index sets I

While metrics provide a quantified distance d (P, ·), topologies only provide
the concept of neighborhoods, e.g. open sets containing P. Convergence with
respect to a topology is therefore defined as ultimately joining every neighbor-
hood:

Definition 2.1.15
A sequence Pn ∈ M1(Ω,A) converges to P ∈ M1(Ω,A) with respect to the
topology T , if

∀A ∈ T : P ∈ A ∃N ∈ N : Pn ∈ A for all n ≥ N

and we write Pn
T−−−→

n→∞
P.

As every metric space produces a topology by taking all open sets with respect
to the metric, one is interested in their relationship.

Definition 2.1.16
We say a metric d : M×M → R metrizises a topology (M, T ), if their notions
of convergence are equivalent:

Pn
T−−−→

n→∞
P ⇐⇒ d (Pn,P) −−−→

n→∞
0 for all P,Pn ∈M.

For probability measures, the most common topology and concept of conver-
gence is the weak topology. We will start by recapping the weak convergence
and analyzing its neighborhoods, leading to properties of f necessary and suf-
ficient for d f to metrizise the weak topology.

Definition 2.1.17
A sequence Pn ∈M1(Ω,A) converges weakly to P ∈M1(Ω,A), if∫

Ω

f(ω) dPn −−−→
n→∞

∫
Ω

f(ω) dP for all f : Ω→ R continuous and bounded
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and we write Pn
w−−−→

n→∞
P.

We will cover some of the various equivalent characterizations in the following
Lemma.

Lemma 2.1.18
Portmanteau Theorem
The following statements are equivalent for all Pn, P ∈M1(Ω,A):

1. Pn
w−−−→

n→∞
P.

2. lim infn→∞ Pn[G] ≥ P[G] for all open G ⊂ Ω.

3. lim supn→∞ Pn[A] ≤ P[A] for all closed A ⊂ Ω.

4. limn→∞ Pn[B] = P[B] for all B ⊂ Ω with P-null boundary (P[int(A)] =

P[A] = P[cl(A)]).

A proof can be found in (Huber, 1981, Lemma 2.2).

An easier way to define a topology is through a base:

Definition 2.1.19
We say a collection B of subsets of M is the base of a topology on M , if

1. ∪B∈BB = M , i.e. B covers M and

2. for B1, B2 ∈ B, for all x ∈ B1 ∩ B2, there exists a B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩B2.

We say B is the base of T , if

T =
{
∪A | A ⊆ B

}
Directly following from this Lemma, we obtain various bases for neighborhood
systems in the weak topology.

Corollary 2.1.20
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Definition and Properties

The following sets form bases for the neighborhood of a probability measure
P ∈ M1(Ω,A) with respect to the weak topology for finite sets Φ of bounded
continuous functions, G of open sets, A of closed sets and B for sets with P-null
boundary and ε > 0:

1.
{
Q ∈M1(Ω,A)

∣∣∣∣∣∫Ω
ϕ dQ−

∫
Ω
ϕ dP

∣∣ < ε, ∀ϕ ∈ Φ
}

2.
{
Q ∈M1(Ω,A)

∣∣Q[G] > P[G]− ε, ∀G ∈ G
}

3.
{
Q ∈M1(Ω,A)

∣∣Q[A] < P[A] + ε, ∀A ∈ A
}

4.
{
Q ∈M1(Ω,A)

∣∣∣∣∣Q[B]− P[B]
∣∣ < ε, ∀B ∈ B

}
Having recapped useful characterizations of the weak topology, we are able to
relate it to our f -E-metrics.

Theorem 2.1.21
For all Ω, it holds:

∀δ > 0 : f(δ) > 0⇐⇒ d f metrizises the weak convergence onM1(Ω,A).

Note this is a powerful result, as solely characteristics of f influence the con-
vergence, independent of the underlying metric space (Ω, d Ω).

For the proof, we follow (Huber, 1981, Theorem 2.14) closely:

Proof. “⇒” We start by showing f(δ) > 0 for all δ > 0 is sufficient:
As f is càdlàg with f(0) = 0, we get ∀ε > 0 ∃δ > 0 : 0 < f(δ) < ε.

– Every weak topology neighborhood contains a f -E-neighborhood:
Let ε > 0, P ∈ M1(Ω,A) and a closed A ∈ A be given, we show
that U ..=

{
Q ∈M1(Ω,A)

∣∣Q[A] < P[A] + ε, ∀A ∈ A
}
contains a f -

E-neighborhood, i.e. d f (P,Q) < δ ⇒ Q ∈ U for some δ > 0.
Choose 0 < δ < ε such that P[Aδ] < P[A] + 1

2
ε and f(δ) < 1

2
ε, this

is possible as A is closed and f continuous in 0. For Q ∈M1(Ω,A)

with d f (P,Q):

Q[A] ≤ P[Aδ] + f(δ) < P[A] + ε
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and therefore Q ∈ U .

– Every f -E-neighborhood contains a weak topology-neighborhood:
Let δ > 0 and P ∈ M1(Ω,A) be given, we show there exists
ε > 0 such that

{
Q ∈M1(Ω,A)

∣∣∣∣∣Q[B]− P[B]
∣∣ < ε, ∀B ∈ B

}
⊂{

Q ∈M1(Ω,A)
∣∣ d f (P,Q) < δ

}
for some B.

Choose ε > 0 such that ε < 1
2
δ and ε < 1

2
f(δ). As (Ω, d Ω) is

separable, there exists a finite union B′ of B ∈ A with

diam(B) < ε and P


 ⋃
B∈B′

B

c
 < ε

and we can choose the B to be disjoint and have P-null boundary.
Let Q ∈ U ..=

{
Q ∈M1(Ω,A)

∣∣∣∣∣Q[B]− P[B]
∣∣ < ε for all B ∈ B

}
with B ..=

[
{
⋃
B∈I B

∣∣I ⊂ B′} and A ∈ A arbitrary. Define

C ..=
⋃
B∈B

B∩A6=∅

B

as the B-approximation of A. Then

A ⊂ C ∪

 ⋃
B∈B′

B

c

and C ⊂ Aε

and hence

P[A] < P[C] + ε < Q[C] + ε+ ε < Q[Aε] + f(δ) ≤ Q[Aδ] + f(δ).

This shows df (Q,P) < δ and concludes the sufficiency.

“⇐” Assume there exists a θ > 0 with f(θ) = 0 and consider the probability
measures P[{0}] = 1 and Pn[{0}] = 1− 1

n
, Pn[{θ}] = 1

n
. Clearly,

P[{0}] > Pn
[
{0}δ

]
+ f(δ) for all δ < θ

and therefore d f (P,Pn) ≥ θ, but Pn
w−−−→

n→∞
P holds.
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Definition and Properties

Remark 2.1.22
Theorem 2.1.21 implies the topological equivalence of all f -E-metrics with
f(δ) > 0 for all δ > 0. The most prominent representative of this class is
the Prokhorov metric.

In the same spirit, all f -E-metrics with f(δ) = 0 for some δ > 0 induce the same
topology. The most prominent representative of this class is the Wasserstein-∞
metric.

Lemma 2.1.23
Let f and g define f -E-metrics with f(δf ) = 0 for some δf > 0 and g(δg) = 0

for some δg > 0 and Pn, P ∈M1(Ω,A), then

d f (Pn,P) −−−→
n→∞

0 ⇐⇒ d g(Pn,P) −−−→
n→∞

0.

Proof. Let Pn, P ∈M1(Ω,A) with d f (Pn,P) −−−→
n→∞

0, i.e.

∀δ > 0 ∃N ∈ N : d f (Pn,P) < δ ∀n ≥ N,

that is
P[A] ≤ Pn[Aδ] + f(δ) ∀A ∈ A, n ≥ N

and especially for δ ≤ min{δf , δg}

P[A] ≤ Pn[Aδ] + f(δ) = Pn[Aδ] = Pn[Aδ] + g(δ) ∀A ∈ A, n ≥ N

and therefore
∀δ > 0 ∃N ∈ N : d g(Pn,P) < δ ∀n ≥ N.

The other direction works the same way with f and g interchanged.

The class of f -E-metrics therefore only induces two different topologies, with
one being stricter than the other:

Lemma 2.1.24
Let f and g define f -E-metrics with f(δf ) > 0 for all δf > 0 and g(δg) = 0 for
some δg > 0 and Pn, P ∈M1(Ω,A), then

d g(Pn,P) −−−→
n→∞

0 =⇒ d f (Pn,P) −−−→
n→∞

0.
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Proof. Let Pn, P ∈M1(Ω,A) with d g(Pn,P) −−−→
n→∞

0, i.e.

∀δ > 0∃N ∈ N : d g(Pn,P) < δ ∀n ≥ N,

that is
P[A] ≤ Pn[Aδ] + g(δ) ∀A ∈ A, n ≥ N

and especially for δ ≤ δg

P[A] ≤ Pn[Aδ] + g(δ) = Pn[Aδ] ≤ Pn[Aδ] + f(δ) ∀A ∈ A, n ≥ N

and therefore

∀δ > 0∃N ∈ N : d f (Pn,P) < δ ∀n ≥ N.

2.2 Relationship to Metrics for Random

Variables

As there is an inherent connection between probability measures and random
variables, there is also a close relationship between respective metrics.
Let (Ω′,A′,W) be a rich enough probability space (see (Rachev et al., 2013,
Theorem 2.7.1)) andX, Y : (Ω′,A′)→ (Ω,A) random variables, i.e. measurable
function, and let L0(Ω,A) be the set of all random variables. We denote by
M1 the pushforward measure of X, i.e. M1(A) ..= W ◦X−1(A) for all A ∈ A,
and by M2 the pushforward measure of Y .

Definition 2.2.1
Let X, Y ∈ L0(Ω,A) and f : R≥ → R≥ be monotonically increasing, we call

d W
f (X, Y ) ..= inf

{
ε > 0

∣∣W[ d Ω(X, Y ) > ε] ≤ f(ε)
}

the f -E-metric for random variables.

Instead of optimizing the joint measure, we can optimize over random variables
as well:
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Probability Measures with Finite Support

Corollary 2.2.2
Given two probability measures M1, M2 ∈M1(Ω,A), we have

d f (M1,M2) = inf
X∼M1
Y∼M2

d W
f (X, Y )

for random variables X, Y : (Ω′,A′)→ (Ω,A).

Proof. We prove this by constructing a 1:1 relationship between a probability
measure M on (Ω×Ω,A×A) and a pair of random variables X, Y : (Ω′,A′)→
(Ω,A):

• Given jointly X and Y , we define W[A × B] ..=

M
[
{ω | X(ω) ∈ A, Y (ω) ∈ B}

]
• Given W ∈ L0(Ω×Ω,A×A), we obtain jointly X and Y as in (Dudley,

1968, Theorem 1).

We cover this to simplify notation and proofs later on. This is especially rele-
vant for transformations of measures, e.g. shifting and scaling of the support,
where M1 + a and αM1 are less intuitive than X + a and αX.

2.3 Probability Measures with Finite Support

As the focus of this thesis lies on the efficient and exact computation of
f -E-metrics, we will focus on probability measures with finite support. Let
X ..= supp(M1) = {X1, . . . , Xm} with M1[{Xi}] = pi for i = 1, . . . ,m and
Y ..= supp(M2) = {Y1, . . . , Yn} with M2[{Yj}] = qj for j = 1, . . . , n denote
the support and probabilities of two finite-support probability measures M1

and M2 ∈ M1(Ω,A). We will assume m ≥ n for the remainder of this paper
without loss of generality, as well as pi, qj > 0 for i = 1, . . . ,m and j = 1, . . . , n.

This setup has direct consequences for the exceedance E . While some of these
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have previously been mentioned, we repeat them to create a single Proposition
collecting all properties relevant to the computation of f -E-metrics.

Proposition 2.3.1
In case of finite-support measures M1,M2 ∈M1(Ω,A), the function E : R≥ →
[0, 1] has the following properties:

i) E is monotonically decreasing,

ii) E is piecewise constant with at most m · n jumps,

iii) E is càdlàg (continue à droite, limite à gauche), and

iv) E(δ) = 0 for all δ ≥ d max
..= max

i=1,...,m
j=1,...,n

d Ω(Xi, Yj).

Lemma 2.3.2
In the finite support setup, d f (M1,M2) <∞ holds even if f ≡ 0.

Proof. As E(δ) = 0 and f(δ) ≥ 0 holds for δ ≥ d max, we have E(δ) ≤ f(δ)

and therefore d f (M1,M2) ≤ d max.

So following Corollary 2.1.12, we obtain a relaxed set of requirements in the
finite support setting:

Corollary 2.3.3
If |Ω| <∞ and f : R≥ → R≥ is

• monotonically increasing,

• càdlàg and

• super-additive with

• f(0) = 0,

then d f (M1,M2) ..= inf
{
δ ≥ 0 | f(δ) ≥ EM1,M2(δ)

}
defines a f -E-metric on

M1(Ω,A).
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Computation of f -E-Metrics for Probability Measures with Finite Support

Remark 2.3.4
Illustrative speaking, we need to ensure f(δ) ≥ E(δ) for some δ ≥ 0. This was
previously achieved by requiring f(δ0) > 0 for some δ0, as we have E(δ)

δ→∞−−−→ 0.
Given the finite support setting, we obtain E(δ1) = 0 for some δ1 ≥ 0, fulfilling
the same inequality.

2.4 Computation of f-E-Metrics for Probability

Measures with Finite Support

This sets the stage for the main part of this thesis, the efficient computation
of f -E-metrics in a finite support setting.
As a reminder, we want to solve

d f (M1,M2) ..= inf
{
δ ≥ 0 | f(δ) ≥ EM1,M2(δ)

}
.

To do this in an efficient way, we will split the computation in two disjoint
problems:

• So far, we have no way of calculating E(δ). As it will be necessary to
continually evaluate the exceedance, we want to find an efficient way to
do so. We will refer to this as “solving the subproblem for δ”

• As we will see, the calculation of E will always be computationally ex-
pensive. We therefore need to find an efficient search strategy to reduce
the number of evaluations.

Let us start with the evaluation of the exceedance E : In our specific setup,
as the setM⊗

1 (M1,M2) only consists of finite-support measures with support
X × Y = {X1, . . . , Xm} × {Y1, . . . , Yn}, one can directly build upon ideas of
Schay (1974) and García-Palomares and Giné (1977) and obtain

E(δ) = 1− max
µ∈Rm×n≥0

m∑
i=1

n∑
j=1

µij1d Ω(Xi,Yj)≤δ

s.t.
n∑
j=1

µij = pi for i = 1, . . . ,m

m∑
i=1

µij = qj for j = 1, . . . , n.

(TP)
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Schay (1974) treated this as a standard linear program without further ex-
ploring its structure. Shortly after, García-Palomares and Giné (1977) realized
the transportation problem structure, allowing for a more efficient treatment.
Garel (1981) recognized that due to the special structure of the objective func-
tion (TP) can also be interpreted as an ordinary max flow problem (instead of
a more general min cost flow): Consider a network with nodes Xi, i = 1, . . . ,m

and Yj, j = 1, . . . , n; the Xi are linked with the source s by edges with capaci-
ties pi and the Yj are linked with the sink t by edges with capacities qj. Further-
more, there are edges Xi → Yj with capacity 1 if and only if d Ω(Xi, Yj) ≤ δ.
Consequently, in Garel (1981) and Garel and Massé (2009) it is suggested
to solve (TP) with the Ford-Fulkerson algorithm4. Taking into account the
progress which has been made in recent years for maximum flow algorithms,
the Ford-Fulkerson algorithm should of course be replaced by some more effi-
cient variant. However, due to a special problem structure, the above discussion
becomes merely irrelevant: It can easily be observed that the max flow problem
actually represents a bipartite max flow problem – a fact that has remained
unnoticed until today. Due to this observation, it is most beneficial to solve
the bipartite max flow problem for example with Karzanov’s algorithm, with
a complexity analysis carries out by Gusfield et al. (1987).

Theorem 2.4.1
(Gusfield et al., 1987, Theorem 2.2) The bipartite max flow problem withm ≥ n

nodes can be exactly solved in O(mn2).

We can use this to our advantage and obtain a complexity of C(E) = O(mn2)

per evaluation of the exceedance without further assumptions. However, if the
support sizes m and n align smoothly, i.e. m = l · n for a l ∈ N, together
with uniform probabilities p1 = · · · = pm = 1

m
and q1 = · · · = qn = 1

n
, the

complexity reduces further.

4For practical purposes, they suggested to rely on the Network Simplex algorithm which
is rather efficient in practical settings, see e.g. Kovács (2015). From a theoretical point
of view, however, the complexity is not competitive, see e.g. Orlin (1997).
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Computation of f -E-Metrics for Probability Measures with Finite Support

Theorem 2.4.2
(Lee and Sidford, 2014, Theorem 7) The bipartite max flow problem with m ≥ n

nodes can be exactly solved in Õ(m1.5n log2(U)) with capacity ratio U .

We omit the discussion of the capacity ratio here and refer to the detailed work
of Lee and Sidford (2013). In the case of uniform probabilities with m = n, we
obtain C(E) = O(m2.5) with U = 1.

Since we have established a quite efficient worst case complexity for the sub-
problem (TP) by exploiting the bipartite structure, we now turn to the question
how to find the optimal δ. Not surprisingly, due to finite number of jumps of
the exceedance E , it is sufficient to solve a finite number of subproblems to
determine d f (M1,M2). This was first noted by (Garel and Massé, 2009, p. 78)
for the Prokhorov metric, which coincides with the δ− δ-metric (i.e. f(δ) = δ)
in our setup.

Theorem 2.4.3
Given the set

∆(M1,M2) ..= { d Ω(Xi, Yj) | i = 1, . . . ,m, j = 1, . . . , n} ∪ {0}

the f -E-metric d f (M1,M2) can be computed as

d f (M1,M2) = min
(
δmin, f

−1(E(δmax))
)

where

δmin ..= min{δ ∈ ∆(M1,M2) | E(δ) ≤ f(δ})

δmax ..= max{δ ∈ ∆(M1,M2) | E(δ) > f(δ)},

where we set δmax ..= 0 if E(δ) ≤ f(δ) for all δ ∈ ∆(M1,M2).

Remark 2.4.4
While a closed form solution to f−1(E(δmax)) might not always be available,
we will pretend to do so:
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• δmin ≤ f−1(E(δmax)) is equivalent to f(δmin) ≤ E(δmax) and can easily be
checked

• f−1(E(δmax)) > δmin is therefore the only problematic case. But this can
easily be overcome by a simple bisection as f is monotonically with f(0) ≤
E(δmax) and f(δmin) > E(δmax)

As f might not be continuous, f−1(ε) refers to min
{
δ
∣∣f(δ) ≥ ε

}
. Also regard-

ing the complexity, this additional step is negligible as regular evaluations of
f are necessary throughout our algorithms and independent of m and n, so
especially f ∈ O(1).

Remark 2.4.5
For δmax = 0 we have d f (M1,M2) = 0. We will therefore assume δmax > 0

from now on.

Thanks to the above result, the computation of d f (M1,M2) reduces to finding
δmin and δmax in the set of candidates ∆(M1,M2). This can be achieved by
calculating E(δ) for all δ ∈ ∆(M1,M2), which coincides with a bipartite max
flow problem as explained above. For illustrative purposes, let us visualize this
method on a small example with f(δ) ..= δ, which we will refer to later on for
further explanations.

Example 2.4.6
Let X ..= {0, 1

5
, 2

5
, 3

5
, 4

5
, 1} and Y ..= {0, 1

3
, 2

3
, 1} with p1 = · · · = p6 = 1

6
and

q1 = · · · = q4 = 1
4
. This gives us

∆(M1,M2) = {0, 1

15
,

2

15
,

3

15
,

4

15
,

5

15
,

6

15
,

7

15
,

9

15
,

10

15
,

12

15
, 1}

and E(0) = 1 − 2
6
, E( 1

15
) = 1 − 4

6
, E( 2

15
) = 1 − 5

6
and E( 3

15
) = 0, which is

visualized in Figure 2.2. Therefore, we obtain δmin = 3
15

and δmax = 2
15

and
finally d P (M1,M2) = min

(
3
15
, E( 2

15
)
)

= min
(

3
15
, 1− 5

6

)
= 1

6
.

While this approach always leads to an exact computation of the f -E-metric,
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Efficient Search Strategies to obtain δmax and δmin
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Figure 2.2: Illustration of E for a small example with X = {0, 1
5
, 2

5
, 3

5
, 4

5
, 1}

and Y = {0, 1
3
, 2

3
, 1} with p1 = · · · = p6 = 1

6
and q1 = · · · = q4 = 1

4
.

it is clearly inefficient for large m and n as it requires up to mn solutions of
bipartite max flow problems. In total, this results in an aggregated complexity
of O(m2n3).

2.5 Efficient Search Strategies to obtain δmax

and δmin

In this section, we introduce two novel and significantly more efficient ap-
proaches to obtain δmin and δmax. Both approaches are based on bisection
instead of fixpoint iterations. For this purpose, let us use the notation

∆(M1,M2) =: {δ1, . . . , δL}

with δ1 < · · · < δL sorted and obtain
(
E(δk)

)
k
to be monotonically decreasing

with k = 1, . . . , L ≤ mn as E is monotonically decreasing by Proposition 2.3.1.
Valid starting bounds are ensured as

• E(δL) = 0 ≤ f(δL) and

• E(δ1) = E(0) ≥ 0 = f(0) = f(δ1) hold.
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2.5.1 Bisecting ∆(M1,M2)

2.5.1 Bisecting ∆(M1,M2)

Starting with ∆(M1,M2), we propose to successively half the size of the set of
possible candidates via bisection. By the monotonicity of

(
E(δk)

)
k∈∆ we can

compute E(δk) for k ..=
⌊

1
2
(l + u)

⌋
, starting with l = 1 and u = L. This reduces

the set of candidates to (δl, . . . , δk) in the case of E(δk) ≤ δk or (δk, . . . , δu) in
the case of E(δk) > δk. This process effectively reduces the number of possible
candidates by a factor of two and can be repeated until δu = δmin and δl = δmax

provide the bounds of the bisection with u = l + 1.

Algorithm 1 ∆-Bisection
Compute and sort ∆(M1,M2) such that δ1 < · · · < δL

Set l ..= 1, u ..= L

while u− l > 1 do

Set k ..=
⌊

1
2
(l + u)

⌋
Compute E(δk)

if E(δk) < f(δk) then
Set u ..= k

else if E(δk) > f(δk) then
Set l ..= k

else
return d f (M1,M2) ..= δ

end if
end while

return d f (M1,M2) ..= min
(
δu, f

−1(E(δl))
)

Proposition 2.5.1
∆-Bisection: strongly polynomial complexity & exactness
For the ∆-Bisection Algorithm 1 holds:

(i) it can be implemented in O
(
log(mn) max(mn, C(E))

)
= O(mn2 log(m))

time, and
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Efficient Search Strategies to obtain δmax and δmin

(ii) it computes d f (M1,M2) exactly.

Proof. (i) Computing and sorting δ1, . . . , δL can be done in O
(
mn log(mn)

)
.

The sorting is followed by at most dlog2(L)e iterations of the while-loop as
(u− l) is halved in each iteration and the while-condition is (u− l) > 1.
The complexity C(E) of the subproblem is O(mn2).
(ii) By (i) the algorithm terminates. In each step, E(δl) ≥ f(δl) and E(δu) ≤
f(δu) is ensured by selecting the lower or upper half of (δl, . . . , δk, . . . , δu). Thus
we always have δl ≤ δmax and δu ≥ δmin. At the end of the bisection, u− l ≤ 1

guarantees δu = δmin and δl = δmax, which is sufficient by Theorem 2.4.3.

2.5.2 Bisecting [0, D]

It is also possible to execute the bisection over the interval [0, D] for a fitting
D and obtain an exact value for d f (M1,M2). As we need [0, D] to contain
δmin and δmax for exactness, f(D) ≥ E(D) has to hold. For this approach one
has to determine the necessary accuracy

acc∆ ..= min
{∣∣δ − δ′∣∣ | δ, δ′ ∈ ∆(M1,M2); δ 6= δ′

}
,

which can be calculated inO(mn) given∆(M1,M2) is sorted, i.e. in aggregation
inO(mn log(m)) time. The bisection can then be stopped whenever the interval
becomes smaller than acc∆. Subsequently, one identifies δmin and δmax to obtain
d f (M1,M2). This results in a weakly polynomial version of the algorithm with
dlog2( D

acc∆
)e while-iterations.

Proposition 2.5.2
[0, D]-Bisection: weakly polynomial complexity & exactness
For the [0, D]-Bisection Algorithm 2 with D ≥ δmax holds:

(i) it can be implemented in O
(

max(mn log(mn), log( D
acc∆

)C(E))
)
, and

(ii) it computes d f (M1,M2) exactly.

Proof. (i) Computing and sorting δ1, . . . , δL can be done in O
(
mn log(mn)

)
.
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2.5.2 Bisecting [0, D]

This is followed by at most dlog2( D
acc∆

)e iterations of the while-loop as (δu−δl)
is halved in each iteration and the while-condition is (δu − δl) > acc∆. After
the loop, δ̄ ∈ ∆(M1,M2) ∩ [δl, δu] can be found in O (mn) if it exists.
(ii) By (i) the algorithm terminates. In each step, E(δl) ≥ f(δl) and E(δu) ≤
f(δu) is ensured by selecting the lower or upper half of [δl, δu]. After the loop
and by the choice of acc∆, we have

∣∣∆(M1,M2) ∩ [δl, δu]
∣∣ ≤ 1 which guarantees

a unique δ̄ if the set is not empty. An empty set implies E(δl) = E(δu) which
gives us d f (M1,M2) = f−1(E(δu)). If this is not the case, δmin has to be
determined which is equal to the last iteration of the ∆-Bisection. Note that
δmax is not required, as we have E(δl) = E(δmax). As before, this is sufficient
by Theorem 2.4.3.

To allow the practical computation of d f (M1,M2), we present valid choices of
D.

Lemma 2.5.3
The choices

1. D ..= δL and

2. D ..= d 1
λ
eδ> for all δ> > 0 with f(δ>) = λ > 0

ensure valid starting bounds for the [0, D]-Bisection.

Proof. 1. We have E(δL) = 0 ≤ f(δL) and therefore δmin ≤ δL.

2. Setting D ..= d 1
λ
eδ> ensures f(D) ≥ 1 by the super-additivity of f and,

as E is bounded by 1, f(D) ≥ 1 ≥ E(D).

Corollary 2.5.4
As D ..= d 1

λ
eδ> is independent of M1 and M2 and only depends on f , it can

be considered constant for our complexity analysis, the [0, D]-Bisection can
therefore be implemented in O

(
max(mn log(mn), log( 1

acc∆
)C(E))

)
.
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Efficient Search Strategies to obtain δmax and δmin

However from a computational point of view, the choice of D will certainly
impact the runtime. It can be easily seen that the [0, D]-Bisection might require
more iterations than the ∆-Bisection. This is due to δL

acc∆
≥
∣∣∆(M1,M2)

∣∣−1 =

L−1, with equality only for the optimal equidistant spacing of the δi in [0, δL].
This can be overcome by updating the stopping criterion δu − δl ≤ acc∆ to
δu−δl ≤ acc∆l,u with acc∆l,u ..= min

{
|δ − δ′| > 0 | δ, δ′ ∈ ∆(M1,M2) ∩ [δl, δu]

}
in each step, which still gives a unique δ after the loop as before. The cost of
updating acc∆l,u is O(mn) and does therefore not change the complexity per
iteration which is dominated by C(E).

Remark 2.5.5
The [0, D]-Bisection can also be modified to obtain an approximation of the f -
E-metric, say up to acc precision. Changing the stopping criterion to δu− δl <
acc gives

∣∣min(δu, f
−1(E(δl)))− d f (M1,M2)

∣∣ < acc. As the defining property
of the f -E-metric stems solely from the x-axis, this is independent of f and
f−1.

Summarising, we obtain the following complexities for the computation of the
f -E-metric in the general case:

Straightforward ∆-Bisection
[0, D]-Bisection (exact)

[0, D]-Bisection (exact up to acc)

O(mn · C(E)) O
(
log(mn) max(mn, C(E))

) O
(

max(mn log(mn), log( 1
acc∆

)C(E))
)

O
(
max(mn log(mn), log( 1

acc
)C(E))

)
Table 2.1: Complexities of the computation of the f -E-metric for general met-

rics
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2.5.2 Bisecting [0, D]

Algorithm 2 [0, D]-Bisection
Compute ∆(M1,M2)

Set δl ..= 0, δu ..= D

while δu − δl > acc∆ do

Set δ ..= 1
2
(δl + δu)

Compute E(δ)

if E(δ) < f(δ) then
Set δu ..= δ

else if E(δ) > f(δ) then
Set δl ..= δ

else
return d f (M1,M2) ..= δ

end if
end while

if ∆(M1,M2) ∩ [δl, δu] = ∅ then
return d f (M1,M2) ..= f−1(E(δl))

else
∆(M1,M2) ∩ [δl, δu] = {δ̄}
if E(δ̄) < f(δ̄) then
δmin ..= δ̄

return d f (M1,M2) ..= min{δmin, f−1(E(δl))}
else
δmin ..= min{δ′ ∈ ∆(M1,M2) | δ′ ≥ δ̄}
return d f (M1,M2) ..= min{δmin, f−1(E(δl))}

end if
end if
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3 Quasi-Convex Metrics

In this chapter, we will discuss settings [Ω, d Ω] allowing faster computation
of E and therefore of f -E-metrics. The most common space allowing efficient
computation will be R with the classical Euclidean distance |x− y|, but we will
embed this in a more general context we call quasi-convex metrics. Figuratively,
quasi-convex metrics relate an ordering of the points to their distances and
require them to “agree” in a certain sense. If the space is accordingly ordered,
greedy algorithms can exactly compute the exceedance E , allowing us to drop
the bipartite max flow. This is based on Drescher et al. (2018) and Drescher
and Werner (2019).

3.1 Treating E as a Transportation Problem

For the sake of completeness, let us repeat (TP) here

E(δ) = 1− max
µ∈Rm×n≥0

m∑
i=1

n∑
j=1

µij1d Ω(xi,yj)≤δ

s.t.
n∑
j=1

µij = pi for i = 1, . . . ,m

m∑
i=1

µij = qj for j = 1, . . . , n.

(TP)

In Section 2.4, we recommended to treat this as a bipartite max flow problem
to obtain a complexity of C(E) = O(mn2) if no further structure is available,
holding for every choice of [Ω, d Ω]. From now on, we will consider (TP) as an
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arbitrary transportation problem:

E(δ) = 1 + min
µ∈Rm×n≥0

m∑
i=1

n∑
j=1

µijc
δ
ij

s.t.
n∑
j=1

µij = pi for i = 1, . . . ,m

m∑
i=1

µij = qj for j = 1, . . . , n

(TPC)

with cost-matrix Cδ ..= (cδij)ij defined as

cδij
..=

−1 for d Ω(Xi, Yj) ≤ δ,

0 otherwise.

We introduce a total ordering ≤ of Ω, and write [Ω,≤, d Ω] for the ordered
metric space [Ω, d Ω]. Let us assume X1 < · · · < Xm and Y1 < · · · < Yn to
be sorted and distinct, i.e. Xi1 6= Xi2 for i1 6= i2 and Yj1 6= Yj2 for j1 6= j2.
This can always be achieved with a complexity of at most O(m log(m)). In the
case of identical points, we add their probabilities to preserve the distribution.
We follow the concept of Monge sequences in the sense of Hoffman (1963) and
Alon et al. (1989), who also show the optimality of greedy-type methods.

3.2 Monge Sequences

We call a bijective mapping π : I ..= {(i, j) | i = 1, . . . ,m and j =

1, . . . , n} −→ {1, 2, . . . ,mn} (a numerical representation of) a sorting of the
indices I and write (i, j) <π (r, s) ⇐⇒ π((i, j)) < π((r, s)). Furthermore we
define (ik, jk) ..= π−1(k) to obtain indices from their rank.

Definition 3.2.1
A sorting π of the indices I is called a Monge sequence for Cδ, if and only if,
for every 1 ≤ i, r ≤ m, 1 ≤ j, s ≤ n the following condition is satisfied:

If (i, j) precedes both (i, s) and (r, j) with respect to π, then
cδij + cδrs ≤ cδis + cδrj.
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Monge Sequences

We are now ready to formulate the greedy-type algorithm, i.e. a north-west-
corner-rule after sorting, to obtain a feasible transportation plan.

Algorithm 3 Greedy transportation plan (for given sorting π)
Set µi,j ..= 0 for all i = 1, . . . ,m, j = 1, . . . , n

for k = 1, . . . ,mn do
µikjk

..= min(pik , qjk)

pik
..= pik − µik,jk

qjk
..= qjk − µik,jk

end for
return µ

We refer to its output πµg as the greedy solution with respect to the sorting
π. It is well known that the greedy transportation plan algorithm provides a
feasible solution for (TP), in fact even a basis solution.

Proposition 3.2.2
At most m + n− 1 entries of the greedy transportation plan πµg are non-zero
and πµg is a feasible transportation plan.

Proof. In the beginning, the transportation plan µ is initialised as zero. After
each positive assignment to µik,jk , pik or qjk will be reduced to zero. Thus
pi = qj = 0 holds for all i = 1, . . . ,m, j = 1, . . . , n after at most m+n positive
assignments.
After m + n − 1 positive assignments, at most one pi or qj can be non-zero.
Assuming pi > 0 or qj > 0 leads to a contradiction to

∑m
i=1 pi =

∑n
j=1 qj,

which holds in the beginning and, as both sides are decreased simultaneously,
in every step. Thus at most m+ n− 1 entries in µ are non-zero.

If we could choose the sorting π in such a way that the corresponding cost
matrix has the Monge property (after sorting), we would obtain optimality of
the greedy transportation plan as shown by Hoffman (1963).
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Theorem 3.2.3
If π is an Monge sequence for Cδ, the greedy solution πµg is optimal for (TP).

The existence of a Monge sequence for a given instance of (TP) can be checked
– along with its construction, if existent – with the algorithm of (Alon et al.,
1989, Theorem 5.4), which has complexity O(mn2 log(m)). However, solving
(TP) directly with a bipartite max flow algorithm has complexity O(mn2).
Therefore, other and more efficient ways of determining a Monge sequence
in our context are asked for. For this purpose, let us subsequently consider
quasi-convex metrics, as in this case Monge sequences can be easily obtained
in linear time.

3.3 Quasi-Convex Metrics

In the following, we introduce and analyze quasi-convex metrics, as these will
then allow for an easy construction of Monge sequences. Although quasi-convex
metrics might seem to be a rather special construction, let us emphasize that
at least the most important space for applications, i.e. (R,≤,|·|), represents a
totally ordered space with a quasi-convex metric.

Definition 3.3.1
Motivated by Norfolk (1991), for a totally ordered space [Ω,≤] let us call a
metric d Ω(·, ·) : Ω× Ω→ R≥0 quasi-convex, if and only if for all xl ≤ xu:

∀xm ∈ [xl, xu] : max{ d Ω(xl, xm), d Ω(xm, xu)} ≤ d Ω(xl, xu),

where [xl, xu] ..= {x ∈ Ω | xl ≤ x ≤ xu} denotes the corresponding order
interval.

Instead of referring to midpoints inside the interval, it is also possible to con-
sider extreme points only:

Definition 3.3.2
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Quasi-Convex Metrics

We say a metric d Ω(·, ·) : Ω×Ω→ R≥0 has the crossing property, if and only
if for all xl < xu and yl < yu it holds:

d Ω(xl, yl) ≤ max{ d Ω(xl, yu), d Ω(xu, yl)}, and

d Ω(xu, yu) ≤ max{ d Ω(xl, yu), d Ω(xu, yl)}.

While quasi-convexity addresses the inner points of an interval, the crossing
property describes the relationship between two different intervals. Intuitively,
these two concepts seem to be quite unrelated, however, the following propo-
sition shows that these properties are indeed equivalent.

Proposition 3.3.3
A metric in a totally ordered space [Ω,≤] is quasi-convex if and only if it has
the crossing property.

Proof. “⇒” Let xl < xu, yl < yu and w.l.o.g. d Ω(xl, yu) = δ and d Ω(xu, yl) ≤ δ

for some δ. We have to show d Ω(xl, yl) ≤ δ and d Ω(xu, yu) ≤ δ. Let us present
the two major cases exemplarily, the remaining cases easily follow by the same
line of arguments:
a) For xu, yl ∈ [xl, yu] we have d Ω(xu, yu) ≤ d Ω(xl, yu) ≤ δ and d Ω(xl, yl) ≤
d Ω(xl, yu) ≤ δ by quasi-convexity.

xl yl xu yu

= δ

≤ δ

Case a): one interval is contained in the other

b) If this is not the case, we have two overlapping intervals, e.g. for xl ≤ yl <

yu ≤ xu:
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xl yl yu xu

= δ

≤ δ

Case b): overlapping intervals

Here we have yu ∈ [yl, xu] and yl ∈ [xl, yu] and obtain the crossing property
again by quasi-convexity.
“⇐” Follows from the case where xu = yl for xl < yu or yu = xl otherwise.

As we have already indicated above, the most important case of distributions
on the real line belongs to the class of quasi-convex metrics, if the usual distance
is chosen.

Proposition 3.3.4
The Euclidean metric d Ω(x, y) = |x− y| on (R,≤) is quasi-convex.

Proof. Let xl < xm < xu and d Ω(xl, xu) ≤ δ for some δ ≥ 0.
This gives d Ω(xl, xm) = xm−xl ≤ xu−xl = d Ω(xl, xu) ≤ δ and d Ω(xm, xu) =

xu − xm ≤ xu − xl = d Ω(xl, xu) ≤ δ.

Remark 3.3.5
Proposition 3.3.4 can easily be generalized to monotonically increasing trans-
formations of the Euclidean metric.

Let us point out that it is important that the usual metric is chosen on R, as
other choices might not lead to a quasi-convex metric:

Example 3.3.6
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Quasi-Convex Metrics

On R, consider the metric

d R(x, y) =


0 if x = y

1 if 0 < |x− y| ≤ 2

1
2

+ 1
|x−y| if 2 < |x− y|

with xl = 0, xm = 2 and xu = 4, we see 3
4

= d R(xl, xu) < d R(xl, xm) =

d R(xm, xu) = 1, which contradicts quasi-convexity.

To answer the question whether it is possible to extend the above proposition
to higher dimension, let us provide the following negative answer. For this
purpose, let us give a metric on R2 which is not quasi-convex:

Example 3.3.7
Consider R2 with the lexicographic ordering and the Euclidean norm for the
points xl = (0, 0), xm = (1, 2) and xu = (2, 0). We have xl < xm < xu, but
||xu − xl|| = 2 < ||xm − xl|| = ||xu − xm|| =

√
5.

Let us now consider the main benefit when working in a totally ordered
space with quasi-convex metric. Indeed, the crossing property has direct con-
sequences for the (negative) cost matrix of (TP):

Corollary 3.3.8
If the metric d Ω has the crossing property, the corresponding cost matrix Cδ

for (TP) satisfies

cδ
ilju

= −1 and cδ
iujl

= −1 =⇒ cδ
iljl

= −1 and cδiuju = −1

for all il < iu and jl < ju.

Remark 3.3.9
Considering the network representation of the corresponding max flow problem,
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the motivation for the naming of the crossing property becomes transparent: for
ordered vertices Xi and Yj with crossing edges Xil−Yju and Xiu−Yjl, the direct
edges Xil − Yjl and Xiu − Yju have to exist as well. Removing the source and
the sink of the network hence gives a strongly ordered graph in the sense of
(Spinrad et al., 1986, Definition 3).

3.4 Constructing Monge Sequences in the Case

of Quasi-convex Metrics

Thanks to the above preparations, we can now easily construct a Monge se-
quence πδ for Cδ. The main idea of the Algorithm 4 is to split the indices
I into two parts which we will call Iδ−1

..= {(i, j) | d Ω(Xi, Yj) ≤ δ} and
Iδ0

..= {(i, j) | d Ω(Xi, Yj) > δ} depending on the associated costs. These are
then sorted with respect to the rows of Cδ. 1

Lemma 3.4.1
If d Ω is quasi-convex, πδ obtained from Algorithm 4 is a Monge sequence for
Cδ. The complexity of Algorithm 4 is O(mn).

Proof. Let 1 ≤ i, r ≤ m, 1 ≤ j, s ≤ n and (i, j) precede both (i, s) and (r, j) in
πδ. We will show cδij + cδrs ≤ cδis + cδrj.
In the case of cδij = 0:
By definition (i, j) is in Iδ0 and so are (i, s) and (r, j) because they are preceeded
by (i, j) in πδ. Thereby we have cδij = cδis = cδrj = 0 and since cδrs is either 0 or
−1 the assumption holds.
In the case cδij = −1:
If cδis + cδrj ≥ −1 the assumption follows directly. If cδis + cδrj = −2 we have
cδrs = −1 from Corollary 3.3.8.
The complexity O(mn) is due to the fact that each tuple (i, j) has to be

1I would like to especially thank Jonas Schwinn for his contributions to this part by guid-
ing me through the theory of Monge sequences and how they relate to transportation
problems, which he analyzed in his thesis Schwinn (2019).
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Constructing Monge Sequences in the Case of Quasi-convex Metrics

Algorithm 4 Monge sequence for quasi-convex d Ω

Set πδ−1(i, j) ..= 0, πδ0(i, j) ..= 0, πδ(i, j) ..= 0 for all i = 1, . . . ,m, j = 1, . . . , n

Set k ..= 1, l ..= 0

for i = 1, . . . ,m do
for j = 1, . . . , n do
if d Ω(Xi, Yj) ≤ δ then

Set πδ−1(i, j) ..= k

Set k ..= k + 1

else
Set πδ0(i, j) ..= l

Set l ..= l + 1

end if
end for

end for
for i = 1, . . . ,m, j = 1, . . . , n do
if πδ−1(i, j) 6= 0 then
Set πδ(i, j) = πδ−1(i, j)

else
Set πδ(i, j) = πδ0(i, j) + k

end if
end for
return πδ

considered and that the effort for each tuple is constant.

Remark 3.4.2
In direct consequence of Lemma 3.4.1, this reduces the complexity C(E) from
O(mn2) to O(mn) in case of a quasi-convex metric. Table 2.1 remains valid
with this reduced complexity:
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Straightforward ∆-Bisection
[0, D]-Bisection (exact)

[0, D]-Bisection (exact up to acc)

O(m2n2) O
(
log(mn)mn

) O
(
mn log(max(mn, 1

acc∆
))
)

O
(
mn log(max(mn, 1

acc
))
)

Table 3.1: Complexities of the computation of the f -E-metric for quasi-convex
metrics

As we have seen in Proposition 3.2.2, the greedy solution πµg only needs at
most m + n − 1 elements of the Monge sequence. If it is possible to directly
obtain these elements, then the complexity will be further reduced fromO(mn)

as in Lemma 3.4.1 to a linear time complexity of O(m). For this purpose, let
us subsequently introduce the reduced Monge sequence & transportation plan
algorithm to avoid the calculation of the full Monge sequence, i.e. to avoid the
full sorting. Instead, the reduced Monge sequence algorithm directly executes
a greedy algorithm on a reduced sequence to achieve this further reduction in
complexity.

The algorithm consists of two major phases: In the first phase, it traverses the
sorted sets X and Y to assign flow to indices (i, j) satisfying d Ω(Xi, Yj) ≤ δ

to obtain E(δ). As they are sorted to a Monge sequence, we obtain an optimal
flow. In the optional second phase, the transportation plan is extended to a
feasible and optimal solution of the transportation problem.

Note that Algorithm 6 is only necessary if one is interested in an optimal
transportation plan µ realizing the optimal value E(δ) which is determined in
Algorithm 5.

Theorem 3.4.3
If d Ω is quasi-convex on a totally ordered space, then the reduced Monge al-
gorithm 5 computes the greedy solution with respect to the Monge sequence πδ

for (TP). In this case, the greedy solution is optimal and the complexity of the
subproblem C(E) reduces from O(mn2) to O(m).
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Constructing Monge Sequences in the Case of Quasi-convex Metrics

Proof. In the first part the algorithm considers all indices (i, j) such that
d Ω(Xi, Yj) ≤ δ in row-wise order with respect to Cδ. Therefore the indices
are treated in the order of πδ−1, the first part of the Monge sequence πδ, with
the exception that indices (r, s) where pr = 0 or qs = 0 are skipped. This
reduces the complexity to O(m) instead of O(mn). When all indices in πδ−1

have been considered, the algorithm optionally switches to Algorithm 6 and
likewise considers indices (i, j) such that d Ω(Xi, Yj) > δ in the order of πδ0.
Since the algorithm imposes the maximal value on µij whenever indices (i, j)

are considered, it computes the greedy solution with respect to πδ.

The second claim on the optimality of the greedy transportation plan follows
directly from Theorem 3.2.3.

Concerning the statement on the reduced complexity, the argumentation is
as follows: In each iteration of Algorithm 5 at least one of the indices i or j
will be increased by 1. This can either happen by reducing the corresponding
probability to 0 or by pushing the point to the queue. Therefore, we have at
most m + n− 1 iterations of the while-loop. Analogously, in each iteration of
the optional Algorithm 6 at least one element in XR or YR is removed and
thereby Algorithm 6 also has at most m+ n− 1 iterations.

Remark 3.4.4
While i or j are increased by 1 in each iteration, it can happen that both i and
j are increased simultaneously. This will occur for pi = qj and decrease the
necessary number of iterations and therefore computation time. For example,
taking m = n and pi = qj = 1

m
for all i, j halves the number of necessary

iterations.

Naturally, the question arises, whether one can still find a Monge-sequence for
the cost-matrix of TPC in Rd for d ≥ 2. However, this is not even possible
for the Euclidean norm. Consider the counterexample in Figure 3.1 for d = 2

and m = n = 3 where an edge (Xi, Yj) is equivalent to d Ω(Xi, Yj) ≤ δ. The

48



X1

Y1 Y2

X2 X3

Y3

Figure 3.1: Counterexample for the existence of Monge-sequences in the case
of d = 2.

corresponding cost-matrix is then given by

Cδ =

−1 −1 0

−1 0 −1

0 −1 −1


where the non-existence of Monge-sequences can be proved for instance by the
algorithm presented in Alon et al. (1989).
Observe though that this does not necessarily mean the greedy-algorithm will
not succeed on this instance, but there are choices of the pi and qi such that
the solution of the greedy-algorithm will be suboptimal. For the exact ∆-
Bisection, it has to be noted that now the sorting of the distances dominates
the complexity. For the [0, D]-Bisection, the distances ∆ do not have to be
sorted, in fact they can remain unknown. However, while we obtain a strongly
polynomial complexity estimate for the ∆-Bisection, we could only obtain a
weakly polynomial complexity for the [0, D]-Bisection. It has to be noted that
in contrast to the previous section, the [0, D]-Bisection does not yield the exact
solution any more, but is only exact up to an accuracy of log( 1

acc
).

Summarising, we obtain the following complexities based on the reduced
Monge sequence & transportation plan algorithm:
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Constructing Monge Sequences in the Case of Quasi-convex Metrics

∆-Bisection (exact) [0, D]-Bisection (exact up to acc)
O(mn log(mn)) O

(
mmax(log(m), log( 1

acc
))
)

Table 3.2: Complexities of the computation of the f -E-metric for quasi-convex
metrics on (Ω,≤)

This wraps up the computation of f -E-metrics for probability measures with
finite support for general functions f . In the following chapters, we will inves-
tigate the two most prominent members of this class, the Prokhorov- and the
Wasserstein-∞ metric. We will investigate how we can use specific properties
of f to further improve computational efficiency.
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Algorithm 5 Reduced Monge sequence & transportation plan
Set ε ..= 1 and µij ..= 0 for all i = 1, . . . ,m and j = 1, . . . , n

Set XR ..= ∅ and YR ..= ∅
Set i ..= 1, j ..= 1

while i ≤ m and j ≤ n do
if d Ω(Xi, Yj) ≤ δ then
µij ..= min

(
pi, qj

)
pi ..= pi − µij
qj ..= qj − µij
ε ..= ε− µij
if pi = 0 then
i ..= i+ 1

end if
if qj = 0 then
j ..= j + 1

end if
else
if Xi < Yj then
XR ..= XR ∪ {i}
i ..= i+ 1

else
YR ..= YR ∪ {j}
j ..= j + 1

end if
end if

end while
while i ≤ m do
XR ..= XR ∪ {i}
i ..= i+ 1

end while
while j ≤ n do
YR ..= YR ∪ {j}
j ..= j + 1

end while
optional: call transportation plan(XR, p,YR, q, µ) to obtain feasible µ
return E(δ) ..= ε 51



Constructing Monge Sequences in the Case of Quasi-convex Metrics

Algorithm 6 Transportation plan
while XR 6= ∅ and YR 6= ∅ do
Denote by i the first node in XR and by j the first node in YR.
µij ..= min

(
pi, qj

)
pi ..= pi − µij
qj ..= qj − µij
if pi = 0 then
XR ..= XR \ {i}

end if
if qj = 0 then
YR ..= YR \ {j}

end if
end while
return µ
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4 Well-known f-E-metrics

While the class of f -E-metrics is very broad, we have seen its topological
split in only two distinct subclasses. We will investigate one representative per
subclass

• Prokhorov metric – with f(δ) = δ, it is metrizising the weak topology

• Wasserstein-∞ – with f(δ) = 0, it is inducing the stricter topology

Fixing f allows us to take advantage of its specific form to obtain more efficient,
but also more specific, computation algorithms.

4.1 The Prokhorov Metric

This chapter is based on the results of Drescher et al. (2018).

4.1.1 Definition and Elementary Properties

The usual definition of the Prokhorov goes back to Prokhorov (1956):

Definition 4.1.1
For two probability measures M1,M2 ∈M1(Ω,A), their Prokhorov distance is
defined as

d P (M1,M2) ..= inf
{
δ > 0 |M1[A] ≤M2[Aδ] + δ for all A ∈ A

}
.

This fits within our f -E-metrics concept for the simple choice f(δ) = δ.
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The Prokhorov Metric

At this point, let us introduce the Ky-Fan metric for random variables. As
a short reminder of our notation, random variables map from a rich enough
probability space (Ω′,A′,W) into our metric space (Ω,A).

Definition 4.1.2
The Ky-Fan metric of two random variables X, Y : (Ω′,A′)→ (Ω,A) is defined
as

d W
KF (X, Y ) ..= inf

{
ε > 0

∣∣W[ d Ω(X, Y ) > ε] ≤ ε
}
,

i.e. our f -E-metric for random variables with f ≡ 0.

Following Corollary 2.2.2, we see the relationship between the Prokhorov met-
ric and the Ky-Fan metric.

Lemma 4.1.3
Given two probability measures M1, M2 ∈M1(Ω,A), we have

d P (M1,M2) = inf
X∼M1
Y∼M2

d W
KF (X, Y )

for random variables X, Y : (Ω′,A′)→ (Ω,A).

Let us emphasize the well-known fact that the Prokhorov metric metrizises
the weak topology on M1(Ω,A), see e.g. (Huber, 1981, Theorem 3.8), with-
out any further prerequisites and thus constitutes one of the most important
probability metrics.

Lemma 4.1.4
The Prokhorov metric metrizises the weak topology on M1(Ω,A) for metric
spaces (Ω, d Ω).

Proof. We obviously have f(δ) = δ > 0 for all δ > 0, so Theorem 2.1.21 yields
the statement.

As we only cover the computation for probability measures with finite support,
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4.1.1 Definition and Elementary Properties

we need to approximate general distributions. As e.g. demonstrated in Graf
and Luschgy (2009), arbitrary measures P can be approximated sufficiently well
by finite-support measures Pm. This can for instance be achieved via optimal
quantizers, quantiles, but also by straightforward random sampling. Luckily,
the joint approximation error can be bounded by the sum of the separate
approximation errors:

Lemma 4.1.5
Let (M, d ) be a metric space and A, Ã, B, B̃ ∈M . Then∣∣∣ d (A,B)− d (Ã, B̃)

∣∣∣ ≤ d (A, Ã) + d (B, B̃).

Proof. Without loss of generality assume d (A,B) ≥ d (Ã, B̃):

d (A,B)− d (Ã, B̃) = d (A,B)− d (A, Ã)+ d (A, Ã) + d (B, B̃)− d (B, B̃)− d (Ã, B̃),

it remains to be shown:

d (A,B)− d (A, Ã)− d (B, B̃)− d (Ã, B̃) ≤ 0.

This is a direct consequence of the triangle inequality of d

d (A,B) ≤ d (A, Ã) + d (Ã, B̃) + d (B, B̃).

All these approaches lead to weak convergence by increasingm and n to obtain
finer discretizations and therefore∣∣ d P (M1,M2)− d P (Mm

1 ,Mn
2 )
∣∣ −−−−→
n,m→∞

0.

A convergence rate of m−
1
d in a d-dimensional space Ω for absolutely contin-

uous measures with compact support is shown in (Graf and Luschgy, 2009,
Theorem 4.3), statements for further distribution classes can also be found
there. (Kersting, 1978, Theorem 1) also discusses convergence rates, under
very specific properties of the cumulative distribution function.
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The Prokhorov Metric

4.1.2 The Prokhorov Metric on Rd

While our setup works for general metrics spaces [Ω, d Ω], the most prevalent
case will certainly be [Rd,‖·‖]. We dedicate this subsection to Rd to cover
specific properties of the Prokhorov metric.
To do so, let us fix some notation regarding the transformation of probability
measures:

• Pα for α > 0 is the scaling of the support, i.e. Pα[B] ..= P[ 1
α
B] for all

B ∈ B(Rd),

• P + a for a ∈ Rd is the shifting of the support, i.e. P + a[B] ..= P[B − a]

for all B ∈ B(Rd) and

• Pϕ for a mapping ϕ : Rd → Rk is the transformation of the support, i.e.
Pϕ[B] ..= P[ϕ−1(B)] for all B ∈ B(Rk)

with αB = {αb | b ∈ B} etc. This notation is inspired by corresponding
random variables as we will see in the following proofs.

These transformations have direct consequences for the Prokhorov metric.

Lemma 4.1.6
Let M1, M2 ∈M1(Rd,B(Rd)). Then

1. α d P (M1,M2) ≤ d P (M1α,M2α) ≤ d P (M1,M2) for all α ∈ (0, 1),

2. d P (M1,M2) ≤ d P (M1β,M2β) ≤ β d P (M1,M2) for all β > 1,

3. d P (M1 + a,M2 + a) = d P (M1,M2) for all a ∈ Rd and

4. for linear projections π : Rd → Rk, d P (M1π,M2π) ≤ d P (M1,M2).

Proof. We prove all properties for the Ky-Fan metric d W
KF (X, Y ) for two ran-

dom variables X ∼ M1 and Y ∼ M2, so the Lemma follows by taking the
infimum as in Corollary 2.2.2.

1. While there exists a proof by Startek (2010), we provide a significantly
simplified proof here:
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Let α ∈ (0, 1), then

d W
KF (αX,αY ) = inf{ε > 0 |W[ ‖αX − αY ‖ > ε] ≤ ε}

pos. hom.
= inf{ε > 0 |W[α ‖X − Y ‖︸ ︷︷ ︸

< ‖X−Y ‖

> ε] ≤ ε}

≤ inf{ε > 0 |W[ ‖X − Y ‖ > ε] ≤ ε}

= d W
KF (X, Y )

and

d W
KF (αX,αY ) = inf{ε > 0 |W[ ‖αX − αY ‖ > ε] ≤ ε}

pos. hom.
= inf{ε > 0 |W[ ‖X − Y ‖ > ε

α
] ≤ ε}

= inf{ε > 0 |W[ ‖X − Y ‖ > ε] ≤ αε}

≥ inf{ε > 0 |W[ ‖X − Y ‖ > αε] ≤ αε}

= α d W
KF (X, Y ).

2. The argument for β > 1 follows the idea of α < 1.

3. Let a ∈ Rd, we obviously have
∥∥(X + a)− (Y + a)

∥∥ = ‖X − Y ‖ and
therefore d W

KF (X + a, Y + a) = d W
KF (X, Y ).

4.

d W
KF (πX, πY ) = inf{ε > 0 |W[ ‖πX − πY ‖k > ε] ≤ ε}

= inf{ε > 0 |W[ ‖X − Y ‖︸ ︷︷ ︸
≤‖X−Y ‖d

> ε] ≤ ε}

≤ inf{ε > 0 |W[ ‖X − Y ‖d > ε] ≤ ε}

= d W
KF (X, Y )

Remark 4.1.7
These properties are not unique to Rd but can easily be transferred to other
metric spaces and other metrics of th f -E-class: 1. and 2. hold if dΩ is positive
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homogeneous and f is linear, 3. holds as long as dΩ is translation invariant
and 4. holds for all contractions f .

Especially the fourth property is helpful to obtain lower bounds for the
Prokhorov metric. In Subsection 4.1.5, we show the existence of an highly
efficient algorithm for probability measures on R, allowing us to obtain fast
bounds in Rd.

4.1.3 Fixpoint Iteration

While we are the first to provide an exact computation algorithm for f -E-
metrics, previous approximation ideas exist. Specifically for the Prokhorov
metric, Garel (1981) and Garel and Massé (2009) propose a fixpoint iteration,
as E(δ) = δ implies d P (M1,M2) = δ. But as we will see in a following example,
it is not necessary, nor always successful.

In the example in Figure 4.1 (as discussed in Figure 2.2), it holds that
d P (M1,M2) = 1

6
= δ = E(1

6
), which represents a fixpoint of the function

E . This observation immediately leads to the idea of using a fixpoint iteration.
Consequently, this was already suggested in the numerical study (Garel and
Massé, 2009, Section 4). There, they employ the fixpoint strategy δk+1

..= E(δk)

to obtain the next iterate for δ. They note that this approach often leads to
convergence to d P (M1,M2). However, two major issues seem to have been
unnoticed by Garel and Massé (2009):

• First of all, as the function E is not continuous, the existence of a fixpoint
is not always guaranteed. For example, this would be the case if the red
line intersects with a vertical segment of the blue line in Figure 2.2.

• Second, even if a fixpoint exists, the fixpoint iteration does not necessarily
converge to a fixpoint.

For example, as can be seen in Figure 4.2, any starting point other than the true
Prokhorov distance leads to a failure of the fixpoint iteration. Furthermore,
we sketch a strategy for building a counterexample for arbitrary m,n. Take
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Figure 4.1: Illustration of E for a small example with X = {0, 1
5
, 2

5
, 3

5
, 4

5
, 1}

and Y = {0, 1
3
, 2

3
, 1} with p1 = · · · = p6 = 1

6
and q1 = · · · = q4 = 1

4
.

the Xi i.i.d. with mean 0 and the Yj i.i.d. with mean 0.5, both with a very
small variance. This forces the exceedance function to be flat outside of a
small interval around 0.5 and very steep within. Starting the fixpoint iteration
outside the interval obviously fails within the first step. Therefore, fixpoint
iteration has to be discarded as an reliable approach for the computation of
the Prokhorov metric.
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Figure 4.2: Illustration of an example where the fixpoint iteration of E fails,
although a fixpoint exists.
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4.1.4 Applying the ∆-Bisection to the Prokhorov Metric

As the Prokhorov metric is a f -E-metric, it can be computed by the bisections
we presented in Subsection 2.5.1 and Subsection 2.5.2.

Corollary 4.1.8
The Prokhorov metric for probability measures with finite support can be exactly
computed in O(mn2 log(m)) with the ∆-Bisection.

This is a significant improvement over the previous best complexity of
O(m2n3) due to Garel and Massé (2009) .

Due to the nice behavior of f , it is also simple to obtain a valid upper bound
D for the [0, D]-Bisection.

Lemma 4.1.9
Letting D ..= 1 is a valid starting point for the [0, D] bisection, i.e. δmin ≤ 1

and δmax ≤ 1.

Proof. We follow Lemma 2.5.3 and obtain D = n 1
n
for all n ∈ N as f( 1

n
) = 1

n

guarantees f(1) = 1 ≥ E(1).

4.1.5 Computation of d P for the Euclidean Distance on

R in Quasi-Linear Time

Conducting the bisection over the set of distances ∆(M1,M2) as described in
Section 2.5.1 requires the computation and sorting of up to mn distances in
∆(M1,M2). This still dominates the computation time of the reduced Monge
algorithm and results in a strongly polynomial complexity of O

(
mn log(mn)

)
,

which is already a significant improvement over the previous complexity.
However, as we can see in Table 3.2, there is a mismatch between the exact
∆-Bisection and the inexact [0, 1]-Bisection, which we did not observe in
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the general setting. Previously, we were able to use the [0, 1]-Bisection as
an exact and an inexact algorithm, solely depending on the selection of acc.
This is no longer possible as we need acc ≤ acc∆ for exactness, which we can
not determine without knowing ∆(M1,M2) – which has at least complexity
O(mn) and thus has larger complexity than the inexact [0, 1]-Bisection.
After Proposition 2.5.2, we showed the sufficiency of an alternative stopping
criterion leading to exactness by updating acc∆ to acc∆l,u , the required
accuracy for the remaining candidates. On (R,≤,|·|), we can use this to our
advantage by starting with the [0, 1]-Bisection until we are able to efficiently
calculate a similar stopping criterion leading to the exact Prokhorov distance.
Subsequently we combine these results to obtain a weakly quasi-linear
algorithm for the exact computation of the Prokhorov metric on (R,≤,|·|).

To avoid the the still dominating sorting of all distances, we propose a different
approach consisting of a combination of both previous bisections. Given the
minimal distance accX of two elements in X, we first bisect the interval [0, 1]

until the difference between the maximal possible Prokhorov distance δu and
the minimal possible Prokhorov distance δl is smaller than accX . At this point
it is possible to efficiently compute a set (δl = δ1, δ2 . . . , δR−1, δR = δu) of
remaining candidates for δmin and δmax withR ≤ 2n+2. Then, these candidates
are found by matching each element Yj with at most two elements in X, as
can be seen in Figure 4.3. For an efficient computation of this list, we heavily
exploit properties of (R,≤,|·|) beyond those used in Subsection 4.2.5. We then
continue with Algorithm 1 for the remaining candidates.

We are now ready to present the final version of the efficient algorithm for
(R,≤,|·|):

Proposition 4.1.10
The quasi-linear Prokhorov algorithm can be implemented in
O
(
m ·max(log(m), log( 1

accX
))
)
on (R,≤,|·|).

Proof. Initialization: Sorting X and Y can be done in O
(
m log(m)

)
and
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Xi−1

Xi

Xi+1

Yj−1

Yj

Yj+1

Xk+1

Xk

Xk−1

δu

δl

δu

δl
...

...

...

accX >

accX >

Figure 4.3: By definition of accX , for any elements Xs and Xl, s 6= l, it holds
d Ω(Xs, Xl) ≥ accX . This implies, for |δu − δl| < accX , we find
at most two elements Xi and Xk for each element Yj such that
Xi ∈ [Yj − δu, Yj − δl] and Xk ∈ [Yj + δl, Yj + δu].

O
(
n log(n)

)
respectively. Afterwards accX can be determined in O(m) steps

by traversing the sorted elements in X , as we have

accX = min
1≤i≤m−1

|Xi −Xi+1| = min
1≤i<j≤m

∣∣Xi −Xj

∣∣
by the quasi-convexity of |·|.
[0, 1]-Bisection: After dlog2( 1

accX
)e loops of the first bisection, we have |δu − δl|

< accX as the bisection halves |δu − δl| in each step. In each iteration, a sub-
problem is solved in O(m) with the Reduced Monge Algorithm.
Candidate list : Now we can traverse the list Y1, . . . , Yn and find for each
Yj at most two elements Xi and Xk such that Xi ∈ [Yj − δu, Yj − δl] and
Xk ∈ [Yj + δl, Yj + δu] as in Figure 4.3 and compute their distances d Ω(Xi, Yj)

and d Ω(Xk, Yj). Since X is sorted and |·| is quasi-convex, this can be done
via bisection in O

(
n log(m)

)
as it is done illustratively in Algorithm 8 for

[Yj − δu, Yj − δl].
We can not have another Xh in [Yj +δl, Yj +δu] as then w.l.o.g. Yj < Xk < Xh

gives |Xh −Xk| =
∣∣Xh − Yj

∣∣ −∣∣Xk − Yj
∣∣ ≤ δu − δl < accX , which contradicts

the definition of accX . The same argument holds for [Yj − δu, Yj − δl]. Note
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that this argument is unique to (R,≤,|·|) and does not hold for general ordered
spaces with quasi-convex metrics.
∆R-Bisection: The algorithm is completed by a final bisection in at most
dlog2(R)e ≤ dlog2(2n + 2)e steps over the set δ1, . . . , δR, where again a sub-
problem is solved in each loop.
Thereby, summing up the three parts of the algorithm and taking m ≥ n into
account, one obtains an overall complexity of O

(
mmax(log(m), log( 1

accX
))
)

for the quasi-linear Prokhorov computation on (R,≤,|·|).

Note that one likewise obtains the complexity O
(
mmax(log(m), log( 1

accY
))
)

by exchanging the roles of X and Y in the algorithm.

Proposition 4.1.11
The quasi-linear Prokhorov Algorithm computes d P (M1,M2) on (R,≤,|·|) ex-
actly.

Proof. After the first bisection, the sorted remaining candidates δ1 < · · · < δR

satisfy E(δ1) > δ1 and E(δR) ≤ δR by Proposition 2.5.2. Furthermore, we have
[δl, δu]∩∆(M1,M2) = {δ2, . . . , δR−1}: Assume a δ′ ∈ [δl, δu]∩∆(M1,M2) is not
found between the two bisections. Then there exist i, j such that d Ω(Xi, Yj) =

δ′ and therefore Xi ∈ [Yj − δu, Yj − δl] or Xi ∈ [Yj + δl, Yj + δu] most hold. As
we previously have checked all these intervals, δ′ was already found.
As in Proposition 2.5.2, we have E(δ1) ≥ E(δmax), but δmin can not be obtained
as before. If we have δmin ∈ ∆R(δl, δu), it will be found by the ∆-Bisection.
Assume δmin /∈ ∆R(δl, δu), that is δu = δR < δmin. As we already know E(δR) ≤
δR, we can conclude d P (M1,M2) ≤ δR < δmin and therefore E(δmax) < δmin.
This shows us that δmin ∈ ∆R(δl, δu) if and only if δmin influences d P (M1,M2).
We can therefore start Algorithm 1, the ∆-Bisection, with the reduced set
∆R(δl, δu). Thus the statement reduces to Proposition 2.5.1.

Combing the exactness and complexity results, we obtain one of our central
results:
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Theorem 4.1.12
The quasi-linear Prokhorov Algorithm computes d P (M1,M2) on (R,≤,|·|) ex-
actly in weakly quasi-linear time.

Proof. The exactness has been shown in Proposition 4.1.11, the weak quasi-
linearity in Proposition 4.1.10.

4.2 The Wasserstein-∞ Metric

This chapter is based on the results of Drescher and Werner (2019).

4.2.1 Introduction

To the best of our knowledge, there is currently no general method available
for an exact computation of the Wasserstein-∞ metric; not even for the case of
measures with finite support. At the time being, the only two computationally
tractable cases known to us are:

• The computation of the Wasserstein-∞ metric on the real line – which
leads to a one-dimensional global minimization problem, see Bobkov and
Ledoux (2016), Equation (2.3). In case of measures with finite support
of size m and n (m ≥ n), this quite obviously reduces to a O(m log(m))

algorithm.

• The computation of the Wasserstein-∞ metric in Rk, restricted to the
special case of measures with equal mass 1/m on each of m distinct
points and equal sized supports (i.e. m = n), see (Efrat et al., 2001,
Table 1). There, exploiting the geometry of Rk and using an reduction
to a matching problem, an O(m3/2 log(m)) algorithm is given for the
Wasserstein-∞ metric in R2 for arbitrary lp-distance, while for Rk, k ≥ 2,
a complexity of O(m3/2 logk−1(m)) only holds for the l∞-distance.

In the following, we are providing an O(mn2 log(m)) algorithm for the general
case of measures with finite support of sizem and n,m ≥ n, in arbitrary metric
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spaces. We would like to emphasize that the general O(mn2 log(m)) algorithm
is the first exact algorithm for the Wasserstein-∞ metric in the general setup.
This is especially important as this can for example be used to approximate
arbitrary measures with compact support by measures of finite support, cf.
(Kloeckner, B., 2012, Lemma 3.5), which in turn allows to approximate the
Wasserstein-∞ distance for measures with compact support in arbitrary metric
spaces. Further, we improve the general algorithm to O(m log(m)) for totally
ordered spaces with a quasi-convex distance. This especially includes the case
of the real line and thus matches above mentioned complexity. While not im-
proving over the existing algorithm for R, it still introduces a new feature
to the analysis, as it allows to consider different (quasi-convex) metrics than
the usual absolute value. Further, it offers a different, yet novel view on the
situation in R.

To motivate our approach, note that while the Wasserstein-∞ metric is usually
defined in terms of the (monotonous limit of the) Wasserstein-p metric, it
is surprisingly closely related to the Prokhorov metric. We will exploit this
connection in the following for the analysis of the subsequent algorithms.

4.2.2 The Wasserstein-∞ Metric – Definition and

Elementary Properties

We do not follow the usual motivation of the Wasserstein-∞metric to stay close
to the idea of f -E-metrics. A thorough discussion of the usual approach Defini-
tion 5.1.6 via the Wasserstein-p metric can be found in Section 5.1. The follow-
ing theorem therefore provides a different representation of the Wasserstein-∞
metric, which already dates back to Givens and Shortt (1984).

Theorem 4.2.1
(Bobkov and Ledoux, 2016, Theorem 2.8) The Wasserstein-∞ metric dW∞ of
M1,M2 ∈M1(Ω,A) can also be defined as

dW∞(M1,M2) = inf
{
δ > 0 |M1[A] ≤M2[Aδ] for all A ∈ A

}
.
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Remark 4.2.2
Technically, W∞ is only a metric if it is restricted to the set of measures{
M̃ |

∫
Ω

d Ω(x, y) d M̃[x] <∞
}

for some y ∈ Ω. Allowing all measures, a dis-
tance of∞ might occur. We will implicitly assume a finite distance for all mea-
sures when referring to the Wasserstein-∞ metric, i.e. restrictingM1(Ω,A).

This definition lets us put the Wasserstein-∞ metric within our f -E-metric
concept.

Corollary 4.2.3
The Wasserstein-∞ metric is a f -E-metric with f(δ) = 0 for all δ ≥ 0.

From this representation, some immediate and well-known bounds for the
Wasserstein-∞ metric can be obtained rather easily. Let us mention that al-
though the second statement seems to be common knowledge, we could not
find a proof for it; therefore we have opted to provide a short proof for this
inequality.

Proposition 4.2.4
For all M1,M2 inM1(Ω,A) we have the following bounds:

i) dW∞(M1,M2) ≥ d P (M1,M2) for the Prokhorov metric and

ii) dW∞(M1,M2) ≥ dH(supp(M1), supp(M2)) for the Hausdorff distance of
the supports.

Proof. The first statement follows directly from the the previous representa-
tion of the Wasserstein-∞ metric in Theorem 4.2.1, when compared to the
definition of the Prokhorov metric: instead of requiring M1[A] ≤ M2[Aδ]

for the Wasserstein-∞ metric, the Prokhorov metric only requires M1[A] ≤
M2[Aδ] + δ for all A ∈ A, which obviously represents a relaxation. For
the second statement, let X := supp(M1) and Y := supp(M2). By defini-
tion, dH(X ,Y) = max(e(X ,Y), e(Y ,X )) for e(X ,Y) = supx∈X d Ω(x,Y) with
d Ω(x,Y) ..= infy∈Y d(x, y). W.l.o.g. we assume e(X ,Y) ≥ e(Y ,X ). Fix ε > 0 ar-
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bitrary and choose some x∗ ∈ X such that d Ω(x∗,Y) ≥ supx∈X d Ω(x,Y)−ε/3.
As x∗ ∈ X = supp(M1), M1

[
{x∗}ε/3

]
> 0 has to hold. We therefore have that

for δ := dW∞(M1,M2)+ε/3, it holds by the representation of the Wasserstein-
∞ metric in Theorem 4.2.1 that M2

[
[{x∗}ε/3]δ

]
> 0. Since Y = supp(M2),

this implies that [{x∗}ε/3]δ ∩ Y 6= ∅. As [{x∗}ε/3]δ ⊂ {x∗}ε/3+δ, there is a
y∗ ∈ Y with d Ω(x∗, y∗) ≤ ε/3 + δ = dW∞(M1,M2) + 2ε/3. Thus, d Ω(x∗,Y) ≤
dW∞(M1,M2) + 2ε/3, which, by the choice of x∗ with dH(X ,Y) = e(X ,Y) =

supx∈X d Ω(x,Y) ≤ d Ω(x∗,Y) + ε/3 leads to dH(X ,Y) ≤ dW∞(M1,M2) + ε.
As ε > 0 was arbitrary, the third statement follows.

Proposition 4.2.5
In case of finite-support measures M1,M2 ∈ M1(Ω,A), we have the following
bounds1:

i) dW∞(M1,M2) ≥ max
i=1,...,m

min
j=1,...,n

d Ω(Xi, Yj)

ii) dW∞(M1,M2) ≥ max
j=1,...,n

min
i=1,...,m

d Ω(Xi, Yj)

iii) dW∞(M1,M2) ≤ d max

Proof. The first two properties follow from Proposition 4.2.4 ii) and for the
third, consider E( d max) = 0.

As for the Prokhorov metric, let us relate the Wasserstein-∞ metric to its
counterpart for random variables. As a short reminder of our notation, random
variables map from a rich enough probability space (Ω′,A′,W) into our metric
space (Ω,A). Let us introduce the L∞-metric for random variables, inspired
by the common L∞-norm.

Definition 4.2.6
1Let us remark that these bounds can be exploited to reduce run time (but not complexity)
of the general algorithm. However, as they cannot be used efficiently for the specific
algorithm, we have opted to not mention these bounds further in the exposition.
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We define the L∞-metric of two random variables X, Y : (Ω′,A′)→ (Ω,A) as

d∞Ω (X, Y ) ..= inf
{
ε > 0

∣∣W[ d Ω(X, Y ) > ε] ≤ 0
}
,

i.e. our f -E-metric for random variables with f ≡ 0.

Remark 4.2.7
While this way of defining the L∞-metric is motivated by our concept of f -E-
metrics, an equivalent but more accessible definition is available:

d∞Ω (X, Y ) = ess sup W d Ω(X, Y ).

The metric properties are now obvious consequences of the metric properties
of d Ω.

Remark 4.2.8
This is motivated by the L∞-norm for random variables on normed spaces, i.e.
if d Ω(x, y) ..=‖x− y‖ for a norm ‖·‖ on Ω, we have

‖X − Y ‖∞ = ess sup W‖X − Y ‖ = ess sup W d Ω(X, Y ) = inf
{
ε > 0

∣∣W[ d Ω(X, Y ) > ε] ≤ 0
}
.

Following Corollary 2.2.2, we see the relationship between the Wasserstein-∞
metric and the L∞-metric.

Lemma 4.2.9
Given two probability measures M1, M2 ∈M1(Ω,A), we have

dW∞(M1,M2) = inf
X∼M1
Y∼M2

d∞Ω (X, Y )

for random variables X, Y : (Ω′,A′)→ (Ω,A).

4.2.3 The Wasserstein-∞ Metric in Rd

This part follows Subsection 4.1.2 very closely to provide similar relationships
for the Wasserstein-∞ metric on Rd. We keep the notation from before, Pα is
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the scaled probability measure, P+ a the shifted and Pϕ the transformed one.

These transformations have direct consequences for the Wasserstein-∞ metric.

Lemma 4.2.10
Let M1, M2 ∈M1(Rd,B(Rd)), then

1. dW∞(M1α,M2α) = α dW∞(M1,M2) for all α > 0,

2. dW∞(M1 + a,M2 + a) = dW∞(M1,M2) for all a ∈ Rd and

3. for linear projections π : Rd → Rk, dW∞(M1π,M2π) ≤ dW∞(M1,M2).

Proof. We prove all properties for the L∞-metric d∞Ω (X, Y ) for two random
variables X ∼ M1 and Y ∼ M2, so the lemma follows by taking the infimum
as in Corollary 2.2.2.

1. Let α > 0, then

d∞Ω (αX,αY ) = inf{ε > 0 |W[ ‖αX − αY ‖ > ε] ≤ 0}
pos. hom.

= inf{ε > 0 |W[α ‖X − Y ‖ > ε] ≤ 0}

= inf{ε > 0 |W[ ‖X − Y ‖ > ε

α
] ≤ 0}

= α d∞Ω (X, Y )

2. Let a ∈ Rd, we obviously have
∥∥(X + a)− (Y + a)

∥∥ = ‖X − Y ‖ and
therefore d∞Ω (X + a, Y + a) = d∞Ω (X, Y ).

3.

d∞Ω (πX, πY ) = inf{ε > 0 |W[ ‖πX − πY ‖k > ε] ≤ 0}

= inf{ε > 0 |W[ ‖X − Y ‖︸ ︷︷ ︸
≤‖X−Y ‖d

> ε] ≤ ε}

≤ inf{ε > 0 |W[ ‖X − Y ‖d > ε] ≤ 0}

= d∞Ω (X, Y )
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Remark 4.2.11
Again, these properties are not unique to Rd but can easily be transferred to
other metric spaces: 1. holds if dΩ is positive homogeneous and f is linear, 2.

holds as long as dΩ is translation invariant and 3. holds for all contractions f .

Especially the third property is helpful to obtain lower bounds for the
Wasserstein-∞ metric. In Subsection 4.2.5, we show the existence of an highly
efficient algorithm for probability measures on R, allowing us to obtain fast
bounds in Rd.

4.2.4 Applying the ∆-Bisection to the Wasserstein-∞
Metric

As the Wasserstein-∞ metric is a f -E-metric, it can be computed by the bi-
sections we presented in Subsection 2.5.1 and Subsection 2.5.2.

Corollary 4.2.12
The Wasserstein-∞ metric for probability measures with finite support can be
exactly computed in O(mn2 log(m)) with the ∆-Bisection.

We are the first to provide such an algorithm without further assumptions.
Previous approaches covered only special cases like Ω = R ( Bobkov and
Ledoux (2016)), or pi = qj for all i = 1, . . . ,m and j = 1, . . . , n((Efrat et al.,
2001, Table 1).

As before, we could also bisect the interval [0, d max], but the bisection of ∆ is
computationally more efficient.
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4.2.5 A Quasi-linear Time Algorithm for the Quasi-convex Setting

4.2.5 A Quasi-linear Time Algorithm for the

Quasi-convex Setting

While the evaluation of the exceedance in a general setting reduces to a clas-
sical bipartite max flow problem, it is possible to exploit the given problem
structure for a significantly more efficient approach in important special cases.
For this purposes, let us from now on assume that (Ω,≤) represents a totally
ordered space. Let us further assume X1 < · · · < Xm and Y1 < · · · < Yn to
be sorted (with respect to the total ordering). Let us further recall a well-
known representation of the Wasserstein-p metric on R, see e.g. (Major, 1978,
Theorem 8.1):

Theorem 4.2.13
Consider (Ω,A) = (R,B(R)) with the Euclidean distance and let M1,M2 ∈
M1(Ω,A). For f : R → R convex (e.g. f(z) = |z|p for some p ≥ 1), the
following equality holds:

inf
M∈M⊗1 (Ω,B(Ω))
π1(M)=M1

π2(M)=M2

∫
R×R

f(x− y) dM(x, y) =

∫ 1

0

f
(
M−1

1 (u)−M−1
2 (u)

)
du.

Here, M−1
1 (u) ..= inf

{
x ∈ R |M1

[{
z ∈ R | z ≤ x

}]
≥ u

}
denotes the inverse

of the cumulative distribution function.

This explicitly and uniquely characterizes the optimal joint mea-
sure M∗ via the distribution functions as M∗

[
(−∞, x], (−∞, y]

]
..=

min
(
M1[(−∞, x]],M2[(−∞, y]]

)
. The corresponding copula is also known as

the comonotonicity copula. Quite importantly, note that the assumption of
convexity can not be loosened to quasi-convexity: For X1 = 0, X2 = Y1 = 1

and Y2 = 2 with p1 = p2 = q1 = q2 = 1
2
and f(x) =

√
x, the right hand side

equals 1, while the minimum is
√

2
2
.

Using f(z) = |z|p, taking the p-th root on both sides and letting p → ∞
indicates2 that the analogous statement also holds for dW∞(M1,M2). Instead

2A rigorous proof actually needs that the objective functions parametrized by p converge
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The Wasserstein-∞ Metric

of relying on such a limit argument, we instead resort to the main idea of the
proof of (Major, 1978, Theorem 8.1) and transfer it to our setting of totally
ordered spaces with a quasi-convex metric to obtain the following even more
general result:

Theorem 4.2.14
Let Ω be a totally ordered space with a quasi-convex metric d Ω and let M1,

M2 ∈M1(Ω,A) be measures with finite support. Then it holds that

dW∞(M1,M2) = sup
u∈[0,1]

d Ω

(
M−1

1 (u),M−1
2 (u)

)
,

where M−1
1 (u) ..= min

{
x ∈ X |M1

[{
z ∈ X | z ≤ x

}]
≥ u

}
denotes (a gener-

alized variant of) the inverse of the cumulative distribution function.

Theorem 4.2.14 matches (Bobkov and Ledoux, 2016, Equation (2.3)), covering
the real line with the Euclidean distance, for measures with finite support in our
generalized framework. As mentioned above, for the proof of Theorem 4.2.14 we
resort to the proof of (Major, 1978, Theorem 8.1), adjusted to our framework.

Proof. Thanks to Givens and Shortt (1984), Equation (2), we have

dW∞(M1,M2) = inf
M∈M⊗1 (Ω,B(Ω))
π1(M)=M1

π2(M)=M2

ess sup M
(x,y)∈X×Y

d Ω(x, y).

As in Theorem 2.1.4, the infimum is attained by some (discrete) joint measure
M∗. To shorten notation, let us introduce lowercase letters for the point masses
m∗(x, y) ..= M∗[{(x, y)}] We will argue in the following that we can assume a
property of the support of the optimal measure M∗ which is in gist similar to
the crossing property for a metric:

(∆) For all xl < xu ∈ X and for all yl < yu ∈ Y : min
{
m∗(xl, yu),m∗(xu, yl)

}
= 0

in an uniform manner.
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4.2.5 A Quasi-linear Time Algorithm for the Quasi-convex Setting

For this purpose, assume that there exist xl < xu ∈ X and yl < yu ∈ Y such
that property (∆) is violated, i.e. such that

m ..= min
{
m∗(xl, yu),m∗(xu, yl)

}
> 0.

Then, a related measure M̃∗ can be defined as follows, see also Figure 4.4 for
an illustration:

m̃∗(xl, yl) ..= m∗(xl, yl) +m,

m̃∗(xu, yu) ..= m∗(xu, yu) +m,

m̃∗(xu, yl) ..= m∗(xu, yl)−m,

m̃∗(xl, yu) ..= m∗(xl, yu)−m,

m̃∗(x, y) ..= m∗(x, y) otherwise.

The marginal distributions of M̃∗ obviously remain unchanged, hence M̃∗ ∈
M⊗

1 (M1,M2) holds.

Y

X

yl

yu

xl xu

m m

Figure 4.4: Illustration of mass transfer ”towards the diagonal”.

As M̃∗ can only differ from M∗ on the set D ..={
(xl, yl), (xl, yu), (xu, yl), (xu, yu)

}
, it suffices to show

ess sup M̃∗
ρ∈D

ρ ≤ ess sup M∗
ρ∈D

ρ.
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The Wasserstein-∞ Metric

The crossing property of d Ω yields

max{ d Ω(xl, yl), d Ω(xu, yu)} ≤ max{ d Ω(xl, yu), d Ω(xu, yl)}.

By changing from M∗ to M̃∗, mass is always shifted ”towards the diagonal”,
i.e. away from the two points (xl, yu) and (xu, yl). Obviously, this can only
decrease, but never increase the essential supremum over D. In summary,

ess sup M̃∗
(x,y)∈X×Y

d Ω(x, y) ≤ ess sup M∗
(x,y)∈X×Y

d Ω(x, y),

and, by repeating this step at most a finite number of times, the existence of
a solution with property (∆) is obtained as claimed in the beginning.

We further note that property (∆), together with the marginal distributions,
uniquely defines a joint distribution, namely the comonotonic coupling (this
can for example easily be seen by a north-west-corner-rule like argument).
Since the comonotonic coupling is the only joint measure satisfying (∆), it
must already be optimal.

Remark 4.2.15
We have stated Theorem 4.2.14 only for the case of measures with finite sup-
port. Of course, the statement can be generalised to arbitrary measures with
compact support by approximating these measures with a suitable quantization
in the gist of (Kloeckner, B., 2012, Lemma 3.5). The difficulty of approximat-
ing M1 lies in covering supp(M1), not the selection of optimal probabilities.
This is closely linked to centroidal Voronoi tessellations. If the measure M1

is unknown and has to be approximated by sampling, further assumptions are
necessary, i.e. if supp(M1) is not connected, the sample measure will almost
surely not converge with respect to the Wasserstein-∞ metric. Under further
density assumptions, (Trillos and Slepčev, 2015, Theorem 1.1) and (Liu et al.,
2018, Theorem 1.1) provide explicit convergence rates in m. As a rigorous proof
nevertheless requires some more technical steps and the result is not of use in
our discrete setup, we have preferred to focus on the discrete setup presented
here.
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Remark 4.2.16
This result is closely linked to (Jylhä, 2015, Theorem 3.15), where a sufficient
optimality criterion for distances of the form d R(x, y) = g(x − y) for quasi-
convex g : R → R for the real line is shown. While the property (∆), called
(IM) in Jylhä (2015), is sufficient in totally ordered spaces, it is no more
in higher dimensions. However, it can be lifted to (ICM), a more complex
variation already discussed in (Champion et al., 2008, Definition 3.1), which
is harder to verify.

Remark 4.2.17
By close inspection of the proof of Theorem 4.2.14, we see that the statement
can be generalized to

inf
M∈M⊗1 (Ω,B(Ω))
π1(M)=M1

π2(M)=M2

ess sup M
(x,y)∈X×Y

G( d Ω(x, y)) = sup
u∈[0,1]

G
(

d Ω

(
M−1

1 (u),M−1
2 (u)

))
.

where G : R≥0 → R≥0 is some arbitrary monotonically increasing function.
We especially note that the loss of the triangle inequality after transformation
is of no harm to the efficient computation.

Corollary 4.2.18
Efficient Wasserstein-∞ computation
In a totally ordered space with quasi-convex metric, dW∞(M1,M2) can be com-
puted exactly in O

(
m log(m)

)
time for measures with finite support.

Proof. Thanks to the analytical characterization of the opti-
mal coupling in Theorem 4.2.14, it now only remains to calculate
maxu∈[0,1] d Ω

(
M−1

1 (u),M−1
2 (u)

)
efficiently. This can for example be achieved

by jointly sorting X ∪ Y to obtain all potential points of discontinuity of
d Ω

(
M−1

1 (u),M−1
2 (u)

)
. The maximum is of course attained in one of these

points. As the sorting can be carried out in O(m log(m)) and the maximum
can then be found in O(m), the quasi-linear complexity follows.
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Algorithmic Conclusion

While the complexity obtained in Corollary 4.2.18 does not improve over the
existing complexity for (R,≤,|·|), our approach covers several additional set-
tings which were not covered before.

Example 4.2.19
Consider for example the Huber-like distance

d Ω(x, y) ..=

|x− y|
2 if 0 ≤|x− y| ≤ 1

|x− y| if |x− y| > 1,

which is differentiable around 0 in contrast to the usual absolute value. This
distance is now covered by Theorem 4.2.14 together with the preceding remark.

Example 4.2.20
The most popular application is probably the metric d c(x, y) ..= |x−y|

1+|x−y| on R, as
this metric compactifies R. We especially note that d c represents again a quasi-
convex metric, although the same argumentation as in the previous example
would have been sufficient to guarantee fast computations for the Wasserstein-
∞ metric based on d c.

4.3 Algorithmic Conclusion

We were able to provide exact algorithms for the computation of the Prokhorov
and the Wasserstein-∞ metric, both with a complexity of O(mn2 log(m)).
To the best of our knowledge, we are the first to provide an exact algorithm
for the Wasserstein-∞ for measures with finite support. For the Prokhorov
metric, we were able to significantly improve upon the previously known
complexity of O(m2n3).

76



In the case of a quasi-convex metrics, we generalize the Wasserstein-∞ metric
characterization of Jylhä (2015) from R to arbitrary totally ordered spaces.
Our results include an explicit representation of the joint measure and a
quasi-linear O(m log(m)) algorithm. For the Prokhorov metric, we achieved a
weakly quasi-linear complexity of O

(
m ·max(log(m), log( 1

accX
))
)
.

This sets them computationally on par with the widely used Wasserstein-p
metrics.

d P dW∞ Wp

(Ω, d Ω) O(mn2 log(m)) O(mn2 log(m)) O(mn2 log(m))3

(R,|·|) O
(
m ·max(log(m), log( 1

accX
))
)

O(m log(m)) O(m log(m))

Table 4.1: Comparing the complexities of the Prokhorov, Wasserstein-∞ and
Wasserstein-p metric

3This only holds for m = k · n for a k ∈ N, see Kleinschmidt and Schannath (1995).
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Algorithmic Conclusion

Algorithm 7 quasi-linear computation of the Prokhorov metric on (R,≤,|·|)
Sort X and Y such that X1 < · · · < Xm and Y1 < · · · < Yn

Compute accX = min
i=1,...,m−1

|Xi −Xi+1|
Set δl ..= 0, δu ..= 1

while |δu − δl| ≥ accX do

δ ..= δu+δl
2

Compute E(δ) with Reduced Monge Algorithm

if E(δ) ≤ δ then
δu ..= δ

else
δl ..= δ

end if
end while

Set ∆R(δl, δu) ..= (∆(M1,M2) ∩ [δl, δu]) ∪ {δl} ∪ {δu}
Compute list of candidates δl = δ1, δ2 . . . , δR−1, δR = δu in ∆R(δl, δu)

Sort δ1 < · · · < δR

Set l ..= 1, u ..= R

while u− l > 1 do

k ..=
⌊

1
2
(l + u)

⌋
Compute E(δk) with Reduced Monge Algorithm

if E(δk) ≤ δk then
u ..= k

else
l ..= k

end if
end while

return d P (M1,M2) ..= min
(
δu, E(δl)

)

Bisec-
tion of [0, 1]

Bisection of
∆R(δl, δu)
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Algorithm 8 Finding the remaining Xh in [Yj − δu, Yj − δl]
Set i ..= 1, k ..= m

while k − i > 1 do
h ..= b1

2
(i+ k)c

if Xi > Yj − δl or Xk < Yj − δu then
return ∅

else if Xh > Yj − δl then
Set k ..= h

else if Xh < Yj − δu then
Set i ..= h

else
return {Xh}

end if
end while
if Yj − δu ≤ Xi ≤ Yj − δl then
return {Xi}

else if Yj − δu ≤ Xk ≤ Yj − δl then
return {Xk}

else
return ∅

end if
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5 Relationship to other metrics

As there is a multitude of probability metrics available, we dedicate this chapter
to the relationships between our f -E metrics and commonly used metrics. For
a short and comprehensive overview of probability metrics and their relations,
let us refer to Gibbs and Su (2002), especially Figure 1.

5.1 Wasserstein-p metric

The Wasserstein metric goes back to the Monge–Kantorovich transportation
problem, see Kantorovitch (1958), where goods have to be transported in a cost
efficient manner from points of supply to match demand. For an overview, let
us refer to Villani (2009) and the references therein.

Definition 5.1.1
(Villani, 2009, Definition 6.1) The Wasserstein-p metric Wp for 1 ≤ p < ∞
between two probability measures M1, M2 ∈M1(Ω,A) is defined as

Wp(M1,M2) ..= inf
M∈M⊗1 (M1,M2)

(∫
Ω

d Ω(x, y)p dM[(x, y)]

)1/p

We call each M ∈M⊗
1 (M1,M2) a transport plan or a coupling of M1 and M2.

Proposition 5.1.2
(Villani, 2009, p. 106) The Wasserstein-p metric defines a metric onM1(Ω,A)

for each 1 ≤ p <∞.
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Remark 5.1.3
Technically, Wp is only a metric if it is restricted to the set of measures{
M̃ |

∫
Ω

d Ω(x, y) d M̃[x] <∞
}

for some y ∈ Ω. Allowing all measures, a dis-
tance of ∞ might occur.

Remark 5.1.4
Let us emphasize the well-known fact that the Wasserstein metric metrizises
the weak topology on M1(Ω,A), if the diameter of Ω is bounded, i.e.
sup
x,y∈Ω

d Ω(x, y)p <∞, see Villani (2009), Theorem 6.9.

Similar to the Lp metrics, the Wasserstein-p metric is monotone with respect
to p.

Proposition 5.1.5
(Villani, 2009, Remark 6.6) For M1, M2 ∈ M1(Ω,A) and 1 ≤ p ≤ q < ∞,
Wp(M1,M2) ≤ Wq(M1,M2) holds.

As the name Wasserstein-∞ metric suggests, it is usually defined as the limit
p→∞ of the Wasserstein-p metric.

Definition 5.1.6
(Bobkov and Ledoux, 2016, Sec 2.1) The Wasserstein-∞ metric W∞ of M1,

M2 ∈M1(Ω,A) can also be defined as the limit p→∞ of Wp(M1,M2):

dW∞(M1,M2) ..= lim
p→∞

Wp(M1,M2) = sup
p≥1

Wp(M1,M2)

The equivalence of the two provided definitions is shown in Theorem 4.2.1.

Although Definition 5.1.6 represents the most common definition of the
Wasserstein-∞ metric, it is not the most convenient representation to obtain
an exact algorithm for its computation.

This remains true even in the case of measures with finite support (where the
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Wasserstein-p metric

individual Wasserstein-p metric can be computed exactly) due to the fact that
still the computation of a limit is required.

Corollary 5.1.7
For all M1,M2 in M1(Ω,A) we have dW∞(M1,M2) ≥ Wp(M1,M2) for all
p ≥ 1.

Proof. This is an immediate consequence of the monotonicity of Wp.

One a more conceptual level, the Wasserstein-p metric takes all occurring dis-
tances of ∆ into account, where as f -E metrics only look at one specific dis-
tance. This is in-line with the classical jump from Lp metrics to the L∞ metric
and therefore most obvious with the Wasserstein-∞ metric. However, this also
allows us to relate the Wasserstein-p to the exceedance E :

Theorem 5.1.8
Let M1,M2 ∈M1(Ω,A) and p ≥ 1, then

Wp(M1,M2) = inf
M∈M⊗1 (M1,M2)

(∫ ∞
0

pEM(t)sp−1 d s

)1/p

,

where we use the notation EM(δ) ..= M
[

d Ω(x, y) > δ
]
.

Proof. We have

Wp(M1,M2)p = inf
M∈M⊗1 (M1,M2)

∫
Ω

d Ω(x, y)p dM[(x, y)]

= inf
M∈M⊗1 (M1,M2)

EM
[

d Ω(x, y)p
]

= inf
M∈M⊗1 (M1,M2)

∫ ∞
0

(
1− F d Ω(x,y)p(t)

)
d t

= inf
M∈M⊗1 (M1,M2)

∫ ∞
0

(
1− F d Ω(x,y)(t

1
p )
)

d t

t=sp
= inf

M∈M⊗1 (M1,M2)

∫ ∞
0

1− F d Ω(x,y)(s)︸ ︷︷ ︸
=M[ d Ω(x,y)≤s]

 p sp−1 d s
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= inf
M∈M⊗1 (M1,M2)

∫ ∞
0

pEM(s)psp−1 d (s)

Most notably, we obtain for p = 1:

Corollary 5.1.9
Let M1,M2 inM1(Ω,A), then

W1(M1,M2) = inf
M∈M⊗1 (M1,M2)

∫ ∞
0

EM(t) d (t).

Remark 5.1.10
Note the difference between EM(·) and E(·), where the first fixes the joint mea-
sure M and then varies the argument δ in contrast to second, which opti-
mizes the joint measure M for each δ individually. Therefore, the inequality
E(δ) ≤ EM(δ) holds for all δ and M ∈M⊗

1 (M1,M2).

Corollary 5.1.11
Let M1,M2 inM1(Ω,A) and p ≥ 1, then

Wp(M1,M2) ≥
(∫ ∞

0

p E(s)sp−1 d s

)1/p

.

This can be used to construct a computational advantage. Given Wp(M1,M2),
an upper bound for the integral, we can invert the idea of upper Dar-
boux integrals to bound E(·). Assume having calculated E(δ) for δ ∈
[0, δlow] ∪ [δhigh, δmax]. We can now estimate an upper bound for the integral(∫ δhigh

δlow
p E(s)sp−1 d s

)1/p

and therefore also limit E(δ) for δ ∈ (δlow, δhigh)
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Lévy Metric

5.2 Lévy Metric

For Ω = R, the Lévy metric constitutes a simplified version of the Prokhorov
metric.

Definition 5.2.1
(Huber, 1981, Def 2.7) Let F,G be to cumulative distribution functions on
Ω = R, then their Lévy metric is defined as

d L(F,G) ..= inf
{
ε > 0 | G(x− ε)− ε ≤ F (x) ≤ G(x+ ε) + ε for all x ∈ R

}
.

Lemma 5.2.2
(Huber, 1981, Lemma 2.8) The Lévy metric defines a metric onM1(R,B(R)).

As the Prokhorov metric, the Lévy metric metrizises the weak topology.

Theorem 5.2.3
(Huber, 1981, Theorem 2.9) The Lévy metric metrizises the weak topology.

An immediate consequence is the topological equivalence of both metrics.

Corollary 5.2.4
The Prokhorov metric and the Lévy metric are topologically equivalent.

However, we are unable to bound the Prokhorov metric terms of the Lévy
metric and obtain only an one-way inequality.

Lemma 5.2.5
(Huber, 1981, Equation 2.24) For all M1, M2 ∈ M1(R,B(R)) and their re-
spective cumulative distribution functions FM1 and FM2,

d L(FM1 , FM2) ≤ d P (M1,M2)
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holds.

Proof. Clearly, the set of all Borel sets considered by the Prokhorov metric
includes alls sets of the form (−∞, x) for all x ∈ R and as M1[(−∞, x)] =

FM1(x), the lemma follows.
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6 Numerical Analysis

This chapter is dedicated to multiple numerical analyses, including practical
running times, verification of worst case complexities and efficiency of lower
bounds. All tests were carried out on a standard laptop (processor: Intel
Core i7-5600U, 2.60 GHz, RAM: 16GB). The implementations were done
in Matlab. We used the network-simplex of IBMs Ilog Cplex 12.6.3 for
Matlab R2015b to solve the max flow problems when necessary. We do
not present the times of the [0, 1]-Bisection, as they are very similar to the
∆-Bisection.

6.1 Verifying our Theoretical Complexities

In this section, we report a numerical analysis to validate the complexities of
Algorithm 1 (∆-Bisection) and Algorithm 7 (Quasi-linear Prokhorov) for the
euclidean metric on Ω = R. The input for both algorithms was given in the
form of unsorted X1, . . . , Xm and Y1, . . . , Yn as well as p1 = · · · = pm = 1

m
and

q1 = · · · = qn = 1
n
as one would obtain them from random observations. The

computation times therefore include the sorting of the support (Quasi-linear
Prokhorov) and the calculation and sorting of the distances (∆-Bisection).
We selected the following three problem classes

• m-discretization of N (0, 1) versus n-discretization of N (0, 1)

• m-discretization of U(0, 1) versus n-discretization of U(0, 1)

• m-discretization of N (0, 1) versus n-discretization of standard Cauchy
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6.1.1 Quasi-Linear Prokhorov

and combined their computation times. Each entry of the tables consists of
the mean time over all problem classes and its standard error. We omit in-
stances where the X and Y are drawn from multivariate distributions, as the
∆-Bisection is independent of the dimension. As mentioned in Remark 3.4.4,
the instances with similarm and n have decreased computation time. To verify
the complexity, we have therefore increased n by one, which we omit in the
tables.

6.1.1 Quasi-Linear Prokhorov

The theoretical complexity of the Quasi-linear Prokhorov algorithm for the
Euclidean metric is O

(
m ·max(log(m), log( 1

accX
))
)
. By steps(m,n), we denote

the average number of steps of the first bisection, the reduction of candidates,
to take log( 1

accX
) into account. Table 6.1 lists the average computation times

TQ(m,n) and its standard error in seconds.

In Table 6.2, we divide TQ(m,n) by TQreg(m,n) ..= (m + n) · (log2(m + n)

+ steps(m,n)) to obtain a nearly constant ratio. This verifies the theoretical
complexity as shown in Proposition 4.1.10. In our test cases, the steps(m,n)

term dominates the log2(m+n) term. For example, for the U [0, 1] distribution,
accX is always less or equal to 1

m
and likely smaller than 1

m+n
.

In Table 6.3, we list the computation times for big “N (0, 1) versus N (0, 1)”
problems, averaged over 200 instances per discretization level.

As a rough guideline, we are able to solve instances of size m = n = 40.000 in
one second, and of size m = n = 3.000.000 in one minute.

6.1.2 ∆-Bisection

The theoretical complexity of the ∆-Bisection for the Euclidean metric is
O
(
mn2 log(mn)

)
. Table 6.4 lists the average computation times T∆(m,n) and

its standard error in seconds.

In Table 6.5, we divide T∆(m,n) by T∆NWS(m,n) ..= (m + n)mn log2(m +
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Verifying our Theoretical Complexities

m vs. n 1 000 2 000 5 000 10 000 20 000 30 000 40 000 50 000
1 000 0.02 0.03 0.05 0.10 0.20 0.30 0.40 0.51

0.0001 0.0002 0.0003 0.0005 0.0010 0.0015 0.0021 0.0027
2 000 0.03 0.03 0.06 0.12 0.22 0.32 0.43 0.55

0.0002 0.0002 0.0004 0.0006 0.0011 0.0017 0.0022 0.0028
5 000 0.05 0.07 0.10 0.15 0.26 0.37 0.50 0.61

0.0003 0.0004 0.0006 0.0009 0.0015 0.0020 0.0029 0.0032
10 000 0.10 0.12 0.15 0.21 0.33 0.44 0.57 0.70

0.0006 0.0007 0.0010 0.0014 0.0019 0.0025 0.0034 0.0038
20 000 0.20 0.22 0.26 0.33 0.45 0.59 0.72 0.85

0.0011 0.0012 0.0015 0.0020 0.0028 0.0035 0.0044 0.0047
30 000 0.30 0.32 0.37 0.44 0.59 0.72 0.86 0.99

0.0016 0.0018 0.0021 0.0026 0.0036 0.0047 0.0050 0.0056
40 000 0.40 0.43 0.50 0.58 0.72 0.86 0.98 1.12

0.0022 0.0023 0.0029 0.0034 0.0045 0.0051 0.0063 0.0062
50 000 0.52 0.55 0.62 0.70 0.85 0.99 1.13 1.26

0.0028 0.0030 0.0034 0.0040 0.0050 0.0059 0.0068 0.0080

Table 6.1: Average computation time TQ(m,n) and standard error of the
Quasi-linear Prokhorov algorithm in seconds

n) log2(mn), the worst case complexity of the network simplex, and observe
a better average complexity than expected in worst case. In Table 6.6, we
divide T∆(m,n) by T∆BMF (m,n) ..= (m ∨ n)(m ∧ n)2 log2(mn), the bipartite
max flow worst case complexity, and observe a different behaviour. For m and
n of similar order, Cplex is faster than the bipartite max flow, but for n� m,
the bipartite max flow is superior as it was observed in Gusfield et al. (1987).
Regressing T∆(m,n) against polynomials of m and n suggests a complexity of
T∆reg(m,n) ..= (mn)1.13 log2(mn). In contrast to the Reduced Monge Algorithm,
the complexity of the ∆-Bisection differs from its worst case complexity. We
suppose this is due to the fact that the complexity C(E) varies with δ. The
amount of edges in the network is determined by δ and is only bounded by mn
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6.1.3 Comparison of the Algorithms

m vs. n 1 000 2 000 5 000 10 000 20 000 30 000 40 000 50 000
1 000 1.13 1.12 1.03 0.97 0.91 0.87 0.86 0.86
2 000 1.12 1.11 1.07 1.02 0.95 0.92 0.91 0.91
5 000 1.04 1.08 1.07 1.05 1.01 0.98 0.99 0.96
10 000 0.97 1.02 1.06 1.05 1.03 1.01 1.02 1.01
20 000 0.91 0.96 1.01 1.04 1.03 1.05 1.04 1.04
30 000 0.88 0.92 0.98 1.01 1.05 1.04 1.05 1.04
40 000 0.86 0.90 0.99 1.02 1.05 1.05 1.04 1.04
50 000 0.86 0.91 0.97 1.01 1.04 1.05 1.05 1.04

Table 6.2: Ratio TQ(m,n) / TQreg(m,n)

m = n 100 000 500 000 1 000 000 2 000 000 3 500 000 5 000 000
avg. time in s 2.90 16.47 17.75 37.23 67.28 98.59
standard error 0.008 0.026 0.030 0.059 0.092 0.138

Table 6.3: Average computation time TQ(m,n) and standard error of the
Quasi-linear Prokhorov algorithm in seconds for large instances

from above, but most likely smaller.

In total, we are able to solve instances of size m = n = 4.000 in roughly a
minute.

6.1.3 Comparison of the Algorithms

As expected, the Quasi-linear Prokhorov algorithm is far superior to the
∆-Bisection regarding its running time. To be precise, a 1 000 vs. 1 000

evaluation with the ∆-Bisection takes on average over twice as long as a
50 000 vs. 50 000 evaluation with the Quasi-linear Prokhorov algorithm.
Additionally, the ∆-Bisection is more demanding in terms of memory, O(mn)

vs. O(m) respectively. Thus, due to memory limitations, the biggest instances
we could solve were m = n = 10 000 in about 10 minutes for the ∆-Bisection
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Obtaining Fast Lower Bounds

m vs. n 1 000 1 500 2 000 3 000 4 000
1 000 2.69 4.27 5.88 9.56 13.65

0.022 0.038 0.061 0.107 0.159
1 500 4.29 6.72 9.51 15.39 22

0.038 0.064 0.100 0.177 0.268
2 000 6.02 9.52 13.29 21.72 30.56

0.055 0.099 0.147 0.265 0.395
3 000 9.69 15.46 21.83 35.06 49.37

0.098 0.175 0.259 0.462 0.680
4 000 13.91 22.18 30.78 49.64 69.46

0.149 0.261 0.386 0.664 1.010

Table 6.4: Average computation time T∆(m,n) and standard error of the ∆-
Bisection in seconds based on the Network simplex for E(·)

and m = n = 100 000 000 in about 40 minutes for the Quasi-linear Prokhorov
algorithm.

6.2 Obtaining Fast Lower Bounds

As we have a significant speed up and, more importantly, maximum problem
size for one-dimensional spaces, we can project from a multidimensional space
to one-dimensional subspaces and obtain a lower bound. While this bound is
not exact enough to quantify distances or convergence speeds, it can be used to
reject convergence. This is based on the results Lemma 4.1.6 and Lemma 4.2.10,
stating a monotonically decreasing behavior with respect to linear projections.

To show the speed up, we take a sequence of two-dimensional normal distri-
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m vs. n 1 000 1 500 2 000 3 000 4 000
1 000 1.98 1.57 1.30 0.99 0.81
1 500 1.58 1.31 1.15 0.91 0.76
2 000 1.33 1.15 1.01 0.84 0.71
3 000 1.00 0.91 0.84 0.72 0.63
4 000 0.83 0.77 0.71 0.63 0.56

Table 6.5: Ratio T∆(m,n) / T∆NWS(m,n)

m vs. n 1 000 1 500 2 000 3 000 4 000
1 000 1.28 1.31 1.33 1.40 1.47
1 500 1.32 0.89 0.93 0.97 1.02
2 000 1.36 0.93 0.72 0.76 0.79
3 000 1.42 0.98 0.76 0.53 0.55
4 000 1.50 1.03 0.79 0.55 0.43

Table 6.6: Ratio T∆(m,n) / T∆BMF (m,n)

butions Fk with mean (0, 0), and covariance

σk ..=

 0.1 0.05 + 0.05 · 10

√
1
k

0.05 + 0.05 · 10

√
1
k

0.1


which we compare with the two-dimensional normal distribution F , also with
mean (0, 0) but covariance

σi ..=

 0.1 0.03

0.03 0.1

 .

As σk 9 σ, we expect d P (Fk, F ) 9 0 and also d̂ P (Fk, F ) 9 0 for the lower
bounds obtained from projection. For each sample point Xj, we obtain its one-
dimensional estimator by projecting it on a one-dimensional linear subspace
containing (0, 0). To increase the accuracy of our bound, we compute 4 projec-
tions (parametrized by the angle between the x-axis and the subspace, 0◦, 45◦,
90◦ and 135◦) and use the maximal obtained distance per distribution as lower

91



Obtaining Fast Lower Bounds

bound. We use sample sizes m = n = 2000 and report the exact and estimated
distances as well as their respective computation times in Figure 6.1.

Figure 6.1: Comparison of exact Prokhorov distance with a total computa-
tion time of 28.5 minutes and lower bound obtained from one-
dimensional projections with a total computation time of 2.5 sec-
onds.

It can be clearly seen from the projections that no convergence happens and
the projection is indeed a lower bound. Moreover, while the exact computation
took roughly 28.5 minutes for all 25 distances, the projections were obtained
in less than 2.5 seconds. This is a time gain of factor > 675, a significant
advantage.
Besides faster computation the projection method can also be used to deal
with sample sizes > 10000, the memory limit we explored in Subsection 6.1.3.
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6.3 Verifying the Convergence Rate of

Sampled Distributions

In this part we numerically verify the theoretical convergence rates of Graf and
Luschgy (2009) and Kersting (1978) of N−

1
d and see better rates in practice.

Especially for the uniform distribution Figure 6.2 on [0, 1], we see a polynomial
convergence instead of the linear worst case.

0 100 200 300 400 500
N

0

0.05

0.1

0.15

0.2

0.25

0.3

di
st

an
ce

Convergence of sampled distributions to original

Figure 6.2: Distance of a sampled distribution with N samples to its original
one, a [0, 1] uniform distribution, averaged over 50 draws per N .

6.4 Verifying Weak Convergence

In Figure 6.3, we randomly discretize normal distributions with varying mean
µ ∈ [−0.5, 0.5] and σ ∈ [0.5, 1.5] form = n = 25 000 and plot their approximate
distance d P (N (0, 1),N (µ, σ)). We see the expected convergence for µ→ 0 and
σ → 1 as the Prokhorov distance decreases.

In Figure 6.4 we keep σ = 1 fixed and vary only µ ∈ [−0.1, 0.1] and in Fig-
ure 6.5 we fix µ = 1 and vary σ ∈ [0.6, 1.4]. In this cases, the discretizations
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Verifying Weak Convergence

Figure 6.3: Prokhorov distance of N (0, 1) to N (µ, σ)

were obtained from the quantiles to smooth the graph. As above, we see the
convergence of the distributions for µ→ 0 and σ → 0 respectively.
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Figure 6.4: Prokhorov distance of N (0, 1) to N (µ, 1)

Figure 6.5: Prokhorov distance of N (0, 1) to N (0, σ)

95



7 Outlook

Achievements

Throughout this thesis, we have newly introduced the f -E-class of probability
metrics. This is an extensive set of metrics, and provides a joint theoretical
and computational framework for the Prokhorov and Wasserstein-∞ metrics.
We showed the split in two separate topologies gives a straightforward
classification of the f -E-class, based solely on the behavior of the f function
around 0. While the Prokhorov and the Wasserstein-∞ metric are the most
well known representatives of each class, a new broad class of metrics is now
accessible for further research and applications.
We focused on exact and efficient computation of these metrics for finite-
support distributions, we were able to show correctness and worst case
complexities for our algorithms. For the Prokhorov metric, we are in general
the first do so, and for the Wasserstein-∞ metric, algorithms were only
available for special settings, i.e. on R. Most notably, we achieved the same
complexities as the Wasserstein-p metric in general settings, the most widely
used and researched probability metric by far. This broadens the set of
computationally accessible metrics One shortcoming of the Wasserstein-p
metric, metrizising the weak topology only on specific underlying metric
spaces, can be overcome by selecting a metric of the Prokhorov class of
f -E-metrics, i.e. f(δ) > 0 for all δ > 0.

As a next step, we introduced the concept of quasi-convex metric, a framework
combining ordered and metric spaces. This includes the most common case of

96



R with the usual order and the Euclidean metric, but generalizes it. For this,
we were able to show the existence of Monge sequences for the evaluation
of the exceedance, a setting where greedy flow algorithms are exact, and
therefore highly efficient.

We further refined this by explicitly looking at R with the usual order
and the Euclidean metric for the Prokhorov metric, and provided an exact
weakly quasi-linear algorithm. This is by far the most detailed analysis of the
computation of the Prokhorov metric to date to the best of our knowledge.
Similar steps were carried out for the Wasserstein-∞ metric to obtain an
exact strongly quasi-linear algorithm for general quasi-convex settings.

In total, we have developed a broad class of probability metrics, analyzed
their theoretical properties and provide a comprehensive set of exact and
efficient algorithms for finitely supported measures.

Applications

As the constraints of the f -E-class are the classical transportation constraints,
our metrics provide a broader class of objective functions.
A Prokhorov metric of 0.05 can colloquially be interpreted as “At most 5% of
the mass has higher transportation cost than 0.05”. In Applications, this could
be used as a measure for reliability, i.e. “At least 95% have low costs”. The
extreme case, the Wasserstein-∞-metric, says all mass has to be transported
for cost no higher than its value, i.e. the single most expensive part drives
the value. Interesting settings for this objective include time optimization, i.e.
after which time will all goods be transported.

In Computer Vision, the classical approach is via various types of neural nets,
usually convolutional neural nets. These are powerful to extract single objects
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7 Outlook

of interest out of the picture, i.e. for cars “Is there a pedestrian on the road?”.
While this constitutes a prevalent use case within computer vision, it can not
be used to check “optical” similarity of two pictures, i.e. do they look similar to
the human eye. This can be answered by transportation metrics, and therefore
also by our f -E-class. Potential use cases lie within copyright infringements,
however these metrics are not stable with respect to simple transformation
like trimming and mirroring. Image comparison also constitutes one of the
common benchmarks for transportation algorithms Schrieber et al. (2017)

A typical statistical test is whether an empirical distribution G stems from
a certain distribution F or not. This can be done by taking sampled distri-
butions F1, F2, . . . of the same sample size n as G of F and calculating their
distances d i

..= d (F, Fi) by a metric of ones choice. Sorting the d i constructs
confidence intervals of distances, generating a cut-off value C solely based on
the confidence level. For d (F,G) > C we reject the hypothesis “G is sampled
from F ”, otherwise we accept it. The advantage over other tests lies in the
topological properties of the f -E-class, i.e. robustness against outliers for the
Prokhorov metric or higher sensitivity for the Wasserstein-∞ metric.
In general, metrics of the f -E-class can be used wherever other probability
metrics have been used previously and broaden the tool set by allowing more
flexibility.

Open Problems

While we were fully able to match the complexities of exact algorithms for
the Wasserstein-p metric, O(mn2 log(m)), in the general setting with the
Prokhorov and Wasserstein-∞ metric, we were only able to match the strongly
quasi-linear complexity O(m log(m)) with the Wasserstein-∞ metric. This
leaves a gap for the Prokhorov metric, as our algorithm is weakly quasi-linear,
O
(
m ·max(log(m), log( 1

accX
))
)
. Practically this has no big impact, as 1

accX

usually does not exceed m by relevant magnitude. But it remains open
whether this gap can be closed or is inherent to its structure.
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As our algorithms work solely for measures with finite support, approximation
results for continuous distributions are needed to ensure reliable results for
arbitrary distributions. For an overview, independent of the choice of metric,
we refer to Graf and Luschgy (2000), introducing the problem and covering
general geometric observations. Results for the Prokhorov metric can be found
in Graf and Luschgy (2009), with results for specific settings dating back to
Kersting (1978) and Massart (1988). Roughly speaking, the approximation
error declines behaves like

(
1
n

) 1
d in Rd with support of size n. These convergence

questions have obviously only been tackled for the Prokhorov and Wasserstein-
∞ metric so far, but not in general for our newly introduced class of f -E . We
assume similar convergence rates hold true, based on regularity properties of
f and f−1, most likely its Lipschitz constant. We have not covered this topic
to focus on the algorithmic aspects, hopefully sparking interest in f -E metrics
for further research.
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