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Abstract

Motivation: The majority of biomedical knowledge is stored in structured databases or as unstructured text in scien-
tific publications. This vast amount of information has led to numerous machine learning-based biological applica-
tions using either text through natural language processing (NLP) or structured data through knowledge graph
embedding models. However, representations based on a single modality are inherently limited.

Results: To generate better representations of biological knowledge, we propose STonKGs, a Sophisticated
Transformer trained on biomedical text and Knowledge Graphs (KGs). This multimodal Transformer uses combined
input sequences of structured information from KGs and unstructured text data from biomedical literature to learn
joint representations in a shared embedding space. First, we pre-trained STonKGs on a knowledge base assembled
by the Integrated Network and Dynamical Reasoning Assembler consisting of millions of text-triple pairs extracted
from biomedical literature by multiple NLP systems. Then, we benchmarked STonKGs against three baseline
models trained on either one of the modalities (i.e. text or KG) across eight different classification tasks, each corre-
sponding to a different biological application. Our results demonstrate that STonKGs outperforms both baselines,
especially on the more challenging tasks with respect to the number of classes, improving upon the F1-score of the
best baseline by up to 0.084 (i.e. from 0.881 to 0.965). Finally, our pre-trained model as well as the model architecture
can be adapted to various other transfer learning applications.

Availability and implementation: We make the source code and the Python package of STonKGs available at
GitHub (https://github.com/stonkgs/stonkgs) and PyPI (https://pypi.org/project/stonkgs/). The pre-trained STonKGs
models and the task-specific classification models are respectively available at https://huggingface.co/stonkgs/
stonkgs-150k and https://zenodo.org/communities/stonkgs.

Contact: helena.balabin@gmail.com or daniel.domingo.fernandez@scai.fraunhofer.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, the availability of biomedical data has increased
drastically (Dash et al., 2019). Such data originate from a vast collec-
tion of modalities such as high-throughput experiments, clinical text
documents as well as cell-based and biochemical assay data. The in-
formation derived from research carried out on those data is com-
monly stored in two distinct forms: (i) as unstructured free text in
scientific publications, and (ii) in condensed, structured biomedical

networks. However, the biology represented in the literature strongly
depends on the different contexts that it occurs in. For instance,
certain proteins or chemicals may exclusively interact with others in a
specific tissue or cell type (Stacey et al., 2018), or specific biochemical
reactions may only take place under certain conditions. Consequently,
to exploit the biomedical knowledge stored in both structured and un-
structured formats, it is crucial to study each relation in the relevant
context it was observed in. While networks often lack this contextual
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information due to their inherent degree of abstraction (Saqi et al.,
2019), unstructured text contains context at the expense of explicit lo-
gical structure. Thus, the complementary strengths from both sources
could be leveraged to enable a more complete, context-specific and ac-
tionable representation of biological knowledge.

Biomedical knowledge graphs (KGs) represent information in a
structured manner to encode the broad spectrum of complex inter-
actions occurring in biology. To exploit the information contained
in KGs through machine learning algorithms, numerous knowledge
graph embedding models (KGEMs) have been developed to encode
the entities and relations of KGs in a higher-dimensional vector
space while attempting to retain their structural properties (Ji et al.,
2021). Utilizing the resulting vector representations, more sophisti-
cated tasks can be conducted (i.e. link prediction, node classification
and graph classification). When these KGs contain more detailed,
contextualized descriptions of biological interactions (e.g. the type
of interaction and the conditions in which it occurs), the perform-
ance of KGEMs can be substantially improved. Such improvements
can be achieved by incorporating metadata that specifies the context
of each relation (e.g. the pH value in which a molecular interaction
occurs or the specific cell type in which a protein is expressed).
Therefore, context-specific KGs have recently been used in combin-
ation with other data modalities in several biomedical applications.
For instance, Federico and Monti (2021) demonstrated how to gain
insights on specific human cell-line processes by annotating protein–
protein interaction networks with contextualized cell-line informa-
tion extracted from the scientific literature. Similarly, a recent study
from Doncheva et al. (2021) introduced a methodology that pro-
poses the most suitable organism to model a human pathway by
evaluating whether the expression of genes in a certain pathway
across four species (i.e. rat, mouse, pig and humans) is maintained in
the same tissue. To achieve this, the authors leveraged a contextual-
ized protein–protein interaction network generated with ortholog
information together with transcriptomics data and mentions of
proteins in the scientific publications.

Due to the availability and abundance of unstructured text data
in scientific literature, natural language processing (NLP) has be-
come an important tool for extracting information on biomedical
contexts. Similar to KGEMs, language models (LMs) are used to
transform their input, namely word sequences, into a high-
dimensional vector space, resulting in so-called embeddings. One
approach to learning these embeddings in a contextualized manner
is through the use of the attention mechanism (Vaswani et al.,
2017), which is, for instance, used in the Bidirectional Encoder
Representations from Transformers (BERT) model by Devlin et al.
(2019). Its biomedical counterpart, BioBERT (Lee et al., 2019), is
pre-trained on a large PubMed text corpus to learn a contextualized
representation of biomedical knowledge. Such a pre-trained
Transformer can then be used on a variety of classification tasks
(e.g. named entity recognition (Li et al., 2016), sequence classifica-
tion (Baker et al., 2016) and question answering (Tsatsaronis et al.,
2015)) with minimal model architecture adaptations in a so-called
fine-tuning procedure. The goal is to leverage and flexibly adapt the
pre-trained embedding representations, which is especially beneficial
for fine-tuning tasks with small training datasets. For example, mul-
tiple pre-trained Transformer-based models achieved state-of-the-art
performances on tasks with small datasets encompassed in the
General Language Understanding and Evaluation (GLUE) bench-
mark (Wang et al., 2018).

To incorporate other data modalities, Transformers with cross-
modal attention have been proposed as an extension to purely text-
based Transformer models. For instance, Tsai et al. (2019) used
cross-modal attention to capture complex interdependencies be-
tween text, video and audio data to enhance the frame of reference
of context-specific LMs. More recently, Kamath et al. (2021)
improved state-of-the-art performances on multiple visual reasoning
tasks by applying a cross encoder on a concatenation of textual and
visual embeddings. Moreover, several Transformer-based LMs have
demonstrated the benefit of incorporating structured KG data in the
general (Zhang et al., 2019) as well as the biomedical domain (Fei
et al., 2020; He et al., 2020).In addition, there are several

approaches for combining KG and text data that are not based on
Transformers (e.g. Toutanova et al., 2015; Wang et al., 2014).
However, the former approaches operate at a word level (rather
than sentence level) by combining textual embeddings from LMs
and entity embeddings from KGs through entity linking (i.e. the pro-
cess of aligning text tokens and KG entities). Recently, Sun et al.
(2020) proposed a different strategy for combining information
from KGs and text by concatenating word, entity and relation
embeddings at the sentence level. Similarly, Nadkarni et al. (2021)
have combined textual descriptions of nodes with embedding repre-
sentations learned by KGEMs for link prediction. Finally,
Transformer-based LMs have also been directly applied on graph-
structured data (Ying et al., 2021).

Here, we present STonKGs, a Sophisticated Transformer trained
on biomedical text and KGs. STonKGs is a multimodal approach
that combines subgraph-level information from a KG with corre-
sponding sentence-level text data from the literature, improving
upon previous embedding representations by encompassing the two
complementary data sources in a shared embedding space. We dem-
onstrate STonKGs on a KG consisting of millions of text-triple pairs
extracted from the biomedical literature and pathway databases,
assembled using the Integrated Network and Dynamical Reasoning
Assembler (INDRA) (Gyori et al., 2017). Using this dataset, we
benchmark STonKGs against two baseline models [i.e. BioBERT
(Lee et al., 2019) and node2vec (Grover and Leskovec, 2016)] in a
transfer learning setting on eight different fine-tuning tasks corre-
sponding to distinct biological applications. Our results highlight
how combining both modalities can enable STonKGs to outperform
both baselines, particularly the more complex classification tasks
(i.e. those with the larger number of classes). Furthermore, the
STonKGs model architecture can be easily adapted to other applica-
tions on text-triple pairs in the biomedical as well as other distinct
domains. We released the source code and pre-trained STonKGs
models at https://github.com/stonkgs/ stonkgs and https://hugging
face.co/stonkgs/stonkgs-150k.

2 Materials and methods

Our main goal was to evaluate the effect of combining text and KG
data in the proposed model architecture (i.e. STonKGs). As a data
resource, we used the INDRA KG, which contains millions of triples
with text evidence and annotations, further described in Section 2.1
(Fig. 1A). We compared our proposed STonKGs model against three
baseline models which only used one of the respective knowledge
sources in a unified experimental setting (see Section 2.2 and
Fig. 1B). Next, we outline our evaluation setting consisting of eight
different classification tasks (Section 2.3). Finally, we describe the
software implementation and hardware used to conduct this work
in Section 2.4.

2.1 Dataset
To combine the structured information represented in a KG with un-
structured text, we required a KG containing relations for each triple
and the corresponding text evidence from which the triple has been
extracted. As a result, our dataset consisted of text-triple pairs such
as (‘Sorafenib is a multi-kinase inhibitor that inhibits various kinases
including VEGFR-2’, (Sorafenib, directlyDecreases, VEGFR-2),
which is represented as (a(pubchem.compound : 216239), directly
Decreases, kin(p(hgnc : 6307)))). We used a KG containing
35 150 093 triples assembled by INDRA (Gyori et al., 2017) from
pathway databases and the output of text mining systems
(Supplementary Table S1) run on (i) PubMed abstracts, (ii) PubMed
Central full text articles and (iii) several publishers’ text mining cor-
pora available as of April 2021 (see Supplementary Fig. S1 for
details on node and relation types). The original version of the
INDRA KG comprised non-grounded nodes (i.e. nodes that could
not be normalized to a standardized ontology) and triples without
text evidence, both of which were filtered out in a preliminary data
cleaning step (described in Supplementary Text S1). Ultimately, the
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preprocessed version of the INDRA KG consisted of 174 534 nodes
and 13 609 994 triples. Of these triples, 127 149 were selected for each
of the eight fine-tuning tasks since these are the only triples that contain
labels and thus, are suitable for a classification task. These triples have
been manually curated to indicate context-specific information (i.e. an-
notation class) or the relation type (see Supplementary Table S2). The
13 482 845 remaining non-annotated triples were used in the unlabeled
pre-training procedure (see Supplementary Text S1).

2.2 Models
As shown in Figure 1, all three models were operating under the
same experimental conditions (i.e. in the same transfer learning set-
ting, evaluated on the same tasks), with the exception of their uti-
lized modalities. In contrast to the NLP- and KG-baselines (i.e. text
evidence and triple-based models), STonKGs jointly builds upon
both modalities. The following Sections outline our proposed
STonKGs model architecture as well as the three baseline models
used as a benchmark. All three models shared the same twofold
training procedure, consisting of a pre-training and a fine-tuning
part. The architectural change in the fine-tuning procedure was
equivalent across all three models and consisted of placing a classifi-
cation head (i.e. neural network components that process the output
of a model to generate class labels) on top of the pre-trained model.

2.2.1 NLP-Baseline

The NLP-baseline was built on the pre-trained BioBERT v.1.1
model (Lee et al., 2019), a Transformer-based LM trained for 1 mil-
lion steps on chunks of 512 tokens from a 4.5 billion token corpus
stemming from PubMed abstracts (see Supplementary Table S3 for
an overview on the hyperparameters of this model). To prepare the
text evidence from INDRA statements for the NLP-baseline, the
contiguous string of text was first split into single (sub)words (i.e.
tokens), using the pre-trained tokenizer of BioBERT. The resulting
token sequence was extended with special classification and separ-
ator tokens (i.e. [CLS] and [SEP]), and then padded or truncated ac-
cordingly to match the fixed input length of the LM (512 tokens,

corresponding to a paragraph). Passing the sequence through
BioBERT yielded token embedding vectors for a given text evidence,
in which each of these embedding vectors is based on the weighted
average of its surrounding tokens that is learnt by the attention
mechanism of a pre-trained Transformer (Vaswani et al., 2017).
This procedure ensures that each token embedding vector contains
the context of its surrounding tokens.

To adapt BioBERT as a classifier for text evidence in a fine-tuning
procedure, further model components, namely, pooling and a final lin-
ear layer with a softmax activation function, were added to enable se-
quence classification. In line with a commonly used aggregation
technique derived from Devlin et al. (2019), our pooling procedure
consists of using the special classifier (i.e. [CLS]) token embedding vec-
tor as a representation of the overall token embedding sequence for a
given text evidence. This token embedding vector is used as an input
for the final linear layer to generate class probabilities for the provided
text evidence. Finally, we would like to note that in this transfer learn-
ing setting, we not only trained the parameters of the sequence classifi-
cation components, but also fine-tuned all parameters of the entire
model architecture, including the weights of the BioBERT model.

2.2.2 KG-Baseline

The inputs for the KG-baseline are high-dimensional node embed-
dings learnt by node2vec (Grover and Leskovec, 2016) using a walk
length of 127 (all other hyperparameters are listed in Supplementary
Table S3). Similar to the embeddings of word sequences produced
by word2vec (Mikolov et al., 2013), node2vec generates embed-
dings for node sequences based on random walks. As a result, the
embedding of a given node is formed based on the structure of its
surrounding network neighborhood.

In concordance with the other two models, our KG-baseline
relied on sequential inputs for each triple. Therefore, we designed a
novel approach that generated a sequential representation for each
triple while incorporating the embeddings generated by node2vec
(see Fig. 2). The general idea behind the sequential representation is
to generate a sequence of embeddings eðhi; ti Þ for the two nodes

Fig. 1. Methodology workflow. This figure illustrates the classification of the context annotation for a given text-triple pair. In this example, the models aim to predict the spe-

cies in which a certain biological process was observed (e.g. mice). (A) The three models (i.e. the two baselines and the proposed STonKGs model) are trained and evaluated in

a shared experimental setting. (B) For each text evidence and triple pair, the two baseline models exclusively use a single modality, whereas STonKGs leverages both
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hi; ti in the i-th triple ðhi; ri; tiÞ: To do so, our proposed approach
leveraged the sequence of random walks h ¼ ðhi; . . . ; hn Þ and t ¼
ðti; . . . ; tn Þ generated by node2vec for hi and ti; replacing each ran-

dom walk by the embeddings eh
�! ¼ ðehi

�!; . . . ; ehn
Þ

��!
and et

�! ¼
ðeti

�!; . . . ; etn
Þ

��!
learnt for each node in the walk. Subsequently, we

acquired the embedding sequence of a given triple as the concaten-
ation of the random walk-based embedding sequences of its two

nodes eðhi; ti Þ ¼ concatðeh
!; et

�!Þ ¼ ð ehi

�!; . . . ; ehn

�!; eti

!; . . . ; etn

�!Þ.
This final random walk-based sequential representation, as opposed
to other alternatives, ensured a fair comparison, since the other two
models (i.e. NLP baseline and STonKGs) are also based on sequen-
tial inputs.

Similar to the NLP baseline outlined in Section 2.2.1, the embed-
ding sequences for each triple are pooled, and passed through a lin-
ear layer with a softmax activation function to generate the final
classification labels. Here, the pooling operation is defined as the
dimension-wise maximum of the sequence embeddings, consequent-
ly mapping the sequence to a single vector. Since the KG-baseline
uses static embeddings for the final classification task, the
KG-baseline did not technically fit into the pre-training and fine-
tuning paradigm used in NLP. However, for the sake of consistency,
we will refer to the feature extraction based on transfer learning (i.e.
embeddings from node2vec) used in the KG-baseline as pre-training
and the final classification tasks as fine-tuning procedures as well.

To validate the effectiveness of our novel sequence representa-
tion approach, we conducted an additional study using TransE
(Bordes et al., 2013) as an alternative KGEM. More specifically, this
model architecture is generating an embedding sequence
ðeh
!; er
!; et
!Þ by directly concatenating the embeddings of the head,

relation and tail entities learnt by TransE (using the same embedding
dimension as the original KG-baseline). Analogous to the sequence
representations derived from node2vec, the TransE-based sequence
is pooled using the dimension-wise maximum, and passed to the
same classification architecture again.

2.2.3 STonKGs

Similar to BERT, STonKGs consists of multiple stacked
Transformer layers with the attention mechanism forming the core
of the overall model architecture. However, in contrast to the stand-
ard attention mechanism applied on text tokens, STonKGs uses a
joint Transformer on a concatenation of text tokens and KG nodes,
as illustrated in Figure 3. In accordance with the terminology intro-
duced by Kamath et al. (2021) for their joint Transformer (on image
and text data), this Transformer is hereafter referred to as a cross

encoder. The rationale behind using a cross encoder over other in-
formation fusion techniques was that it allows for learning implicit
alignments between text tokens and KG nodes without requiring
any entity linking step between the two modalities. More specifical-
ly, the interdependencies in the combined input sequence are repre-
sented by attention weights, shown by the links between the inputs
in Figure 3. These weights are learnable parameters used to calculate
weighted average representation of a given entity (i.e. text token or
node of the input sequence) based on the embedding vectors of its
surrounding entities from both modalities. As a result, the calculated
representation of each entity contains contextual information from
the KG and text input.

To construct the cross encoder of STonKGs, we used the same
hyperparameters as the BERTBASE model (see Devlin et al., 2019),
such as the maximum sequence length (512 tokens), hidden state
dimension, number of Transformer layers and attention heads.
We used embeddings of the combined text and KG input sequen-
ces as the input to STonKGs, based on the text-triple pairs
extracted from the INDRA statements. The overall input sequence
length was split into half, to comprise 256 text tokens and 256
KG nodes (including special tokens). The initial embedding
sequences of the text-triple pairs were generated with BioBERT
and node2vec for text and triples, respectively, which we will
refer to as the NLP- and KG-backbone in the following (based on
the steps outlined in Sections 2.2.1 and 2.2.2). However, instead
of simply concatenating the random walk-based embedding
sequences of the two nodes of a triple, we further added a [SEP]
token between and after the two random walk sequences

ð ehi

�!; . . . ; ehn

�!; ½SEP�; et0

�!; . . . ; etn

�!; ½SEP�Þ, as shown in
Figure 3. The use of the special separator token intends to struc-
turally differentiate between text and KG data in the input se-
quence, similar to the distinction of two input sentences in the
original BERT model. Moreover, we masked some of the input
using the embedding vector of the special [MASK] token from the
NLP-backbone (the masking strategy is explained in detail
below). In addition, we used positional and segment embeddings
to further distinguish text and KG nodes of the combined input se-
quence in our cross encoder. Given the described inputs of
STonKGs, the model has three different training objectives during
pre-training, which are jointly used to learn the parameters of the
cross encoder:

1. Masked Language Modeling (MLM): For the first 256 text

tokens, we used the same MLM task and followed the same

masking procedure used in the pre-training process of BERT.

Fig. 2. Transforming KG embeddings into sequential inputs. For a given triple

ðhi; ri ; tiÞ; we generate the final random walk-based embedding representation eðhi; ti Þ
based on the following steps: (i) Obtain the random walks based on the pre-trained node2-

vec model: h ¼ hi; . . . ; hnð Þand t ¼ ti ; . . . ; tnð Þ for hi and ti. (ii) Embed each node

in those random walks, resulting in two random walk-based embedding sequences:

eh
�! ¼ ðehi

�! ; . . . ; ehn
Þ

��!
and et

�! ¼ ðeti

�!; . . . ; etn
Þ

��!
. (iii) Generate the final embedding

sequence eðhi; ti Þ ¼ concatðeh
!; et

�!Þ ¼ ð ehi

�! ; . . . ; ehn

�!; eti

�! ; . . . ; etn

�!Þ

Fig. 3. Cross-modal attention between text data (token sequences) and KG data (tri-

ple sequences). The input is a concatenation of a token and a triple sequence. Each

element in the initial input sequence consists of its respective BioBERT embedding.

The resulting hidden states are processed by two different heads for text tokens and

KG nodes, respectively. While the MLM head is returning probabilities for each

token of the NLP-backbone, the MEM head is converting the hidden states onto

probabilities for each node of the KG-backbone
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The goal of this task is to correctly predict the masked tokens

based on a so-called MLM head. This head consists of a linear

layer followed by the softmax function, which maps the final

hidden states of the cross encoder to probabilities for each token

in the vocabulary of the NLP-backbone.

2. Masked Entity Modeling (MEM): Inspired by the original MLM

task, we built a counterpart for predicting masked nodes for the

latter half of the combined input sequence (i.e. the KG input),

again using the same masking strategy as in BERT. In this case,

the goal is to correctly predict masked nodes in the random

walk-based embedding sequences. Analogous to the MLM head,

our custom MEM head consists of a linear layer followed by a

softmax function. However, unlike the MLM head, the MEM

head maps the hidden states to probabilities for each node occur-

ring in the KG of the KG-backbone (as well as the [SEP] token,

to remain consistent with the added [SEP] tokens) (see Fig. 3).

3. Next ‘Sentence’ Prediction (NSP): Similar to the original NSP

task, we designed an equivalent training objective that aims to

correctly predict whether a text and triple belong to each other,

or whether they are randomly chosen from distinct INDRA

statements. In accordance with Devlin et al. (2019), we also

used the final hidden state of the [CLS] token for this binary pre-

diction task. However, to preserve as much of the original train-

ing data as possible, we decided to augment the training data

(rather than replace entries in it) with negative samples. In our

case, we used 25% of the original pre-training dataset size,

which is significantly smaller than the 50% used in BERT.

As a result, the pre-training objective of STonKGs consists of mini-
mizing the total loss, more specifically, the sum of the losses across all
three training objectives: Ltotal ¼ LMLMþLMEMþLNSP. All relevant
hyperparameters used for the pre-training process of STonKGs (e.g.
batch size and learning rate) are listed in Supplementary Table S3.

To evaluate STonKGs on each of the eight fine-tuning tasks
(explained in the next section), we followed the same procedure that
is outlined in Section 2.2.1 (NLP-baseline). Consequently, we used a
classification head on top of the pre-trained STonKGs architecture,
consisting of a pooling step, a linear layer and a softmax activation
function to generate class probabilities for a given text-triple pair.
Similar to the NLP-baseline, we also utilized the [CLS] token for
pooling, and tuned all parameters of the entire STonKGs model
architecture in our fine-tuning tasks.

2.3 Evaluation
In line with other Transformer-based transfer learning approaches,
we used the majority of the INDRA text-triple pairs, predominantly
unannotated triples, for pre-training (see Section 2.1), and the
remaining annotated text-triple pairs (approximately 1.63%) were
used for the fine-tuning datasets. We evaluated the models on a
benchmark consisting of eight fine-tuning tasks, namely, two rela-
tion-type classification tasks, four context annotation tasks and two
correct/incorrect tasks (tasks 1–2, 3–6, 7–8 in Table 1, respectively).
The relation-type tasks consist of two binary classifications in which
each model either predicts the polarity (i.e. increase or decrease) or
the type of interaction (i.e. direct or indirect interaction) of a given
triple. Due to the direct encoding of the relation type, using a
TransE-based approach on these two tasks would lead to an unfair
advantage. Hence, we left out the relation-type tasks in the evalu-
ation of TransE-based variants. The four context annotation tasks
aim to predict the class (i.e. the context) of given text-triple pairs in
a variety of biomedical settings: (i) cell line, (ii) disease, (iii) cellular
location and (iv) species. All of these cases represent multiclass clas-
sification tasks using between three and ten classes depending on the
most common occurrences of classes in each of the contexts. Finally,
the two correct/incorrect tasks consist of a binary classification task
where the model determines whether the text-triple pair is correct or
incorrect, and a multiclass task where the model not only determines

whether it is correct or incorrect but also which type of error it is.
The sample sizes of the task-specific fine-tuning datasets ranged
from 3760 to 78 979 text-triple pairs, depending on the availability
of triple annotations. An overview on the tasks as well as their re-
spective summary statistics can be found in Supplementary Table
S2. The distribution of classes of the fine-tuning tasks can be found
in Supplementary Figure S2.

The performance of the models was evaluated on all eight classi-
fication tasks via a fivefold cross-validation procedure using
weighted F1-scores (i.e. averages of the class-specific F1-scores
weighted by number of true instances per class). To train and evalu-
ate all three models on the same cross-validation splits, we created
the splits deterministically (justifications for the model evaluation
choices are given in Supplementary Text S2). All models were fine-
tuned for five epochs on the training data using a batch size of 16
and the AdamW (Loshchilov and Hutter, 2019) optimizer with a lin-
early decreasing learning rate initially set to 5*10�5.

In addition to the proposed baselines, we run three ablation stud-
ies or variants of the STonKGs model to analyze the effect of certain
model design choices on the fine-tuning tasks:

1. Fewer training steps: We created two versions of the STonKGs

model, STonKGs150k and STonKGs300k, which were pre-trained

for 150 000 and 300 000 steps (i.e. updates of the weights), re-

spectively. More specifically, this was achieved through model

checkpointing (i.e. STonKGs150k is an interim checkpoint of

STonKGs300k). In doing so, we were able to observe the effect of

reducing the number of training steps on the model performance

in the fine-tuning procedures.

2. No NSP objective: Since the effectiveness of the NSP task for

pre-training has been questioned (see Liu et al., 2019), we

decided to design a variant of STonKGs150k (termed

STonKGsNO NSP) that only uses the MLM and MEM training

objectives. In result, this ablation measures whether the learned

distinction between associated and randomly coupled text-triple

pairs has an effect on fine-tuning task performances.

3. Different sequential representation of KG data: Similar to the

second KG-baseline introduced in Section 2.2.2, we replaced

the random walk-based embedding sequence in the overall in-

put with a TransE-based representation of a triple in each

text-triple pair. As a result, STonKGsTransE uses a direct con-

catenation of head, relation and tail embeddings learnt by

TransE (Supplementary Fig. S3). With this, we intended to

analyze the effect of our novel sequence representation ap-

proach on the performance of STonKGs. Since both the

TransE-based KG-baseline as well as STonKGsTransE are

directly encoding the relation type r, using the relation-type

tasks (task 1-2) for evaluation would lead to an unfair advan-

tage. Therefore, these two models were not evaluated on the

polarity and interaction type tasks.

2.4 Implementation details
Both the NLP-baseline as well as STonKGs are implemented using
the HuggingFace transformers library (v.4.6.1). More specifically,
the NLP-baseline was initialized using the dmis-lab/biobert-v1.1
BioBERT model available at the HuggingFace model hub. For
STonKGs, we leveraged the BertForPreTraining class as a basis, and
modified its prediction heads and forward pass function. The
STonKGs model was pre-trained on 4x NVIDIA A100 40GB Tensor
Core GPUs. The pre-training procedure took 284.18 h (11.84 days)
and 568.35 h (23.68 days) for STonKGs150k and STonKGs300k, re-
spectively. Finally, to set up the KG-baseline, we used the nodevec-
tors library (v.0.1.23) for learning the random walk-based
embedding sequences, and built a PyTorch Lightning (v.1.2.3)
model on top. We trained our random walk-based embedding

STonKGs 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac001/6497782 by H

ochschul- und Kreisbibliothek Bonn-R
hein-Sieg user on 20 January 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac001#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac001#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac001#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac001#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac001#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac001#supplementary-data


sequences on a symmetric multiprocessing (SMP) node with four
Intel Xeon Platinum 8160 processors and 1.5TB RAM.

3 Results

3.1 Benchmarking
To analyze the differences in performance across the models in our
benchmark setting, it is important to understand the information
that is exploited by each baseline model. While the KG-baseline
aimed to represent topological node information, the NLP-baseline
leveraged the unstructured textual information underlying the rela-
tions between the extracted named entities (e.g. ‘Rosiglitazone dir-
ectly increases Pdk4 transcriptional-levels in mice’). In our
benchmark, six of the classification tasks consisted of predicting
both types and context for each relation (e.g. a specific biological
interaction is observed in a specific disease or species). Thus, the
NLP-baseline seemed more suited for these tasks compared with the
KG-baseline, since the information could explicitly be stated in the
evidence itself. Indeed, this was confirmed by our results, where we

observed a better performance of the NLP-baseline over the KG-
baseline across all tasks. In addition, our proposed KG-baseline was
limited by the use of static embeddings, as opposed to the transfer
learning paradigm applied in both Transformer-based models (i.e.
the NLP-baseline and STonKGs), which was based on fine-tuning
the entire model architecture on given task-specific data. Below, we
analyze the performances of the three presented models, as well as
the ablated versions, across our proposed benchmark (Table 2).

First, we focus on the four more challenging classification tasks
(i.e. those containing more than five classes), namely, tasks 3–5 and 8
(see Table 2), where we observed that STonKGs considerably outper-
formed both baselines. Here, STonKGs achieved between 0.01 and
0.08 larger F1-scores compared with the NLP-baseline. Compared
with the random walk-based KG-baseline, these differences were even
larger resulting in F1-scores about 0.1–0.52 higher for STonKGs. The
TransE-based KG-baseline showed similar tendencies compared with
the node-walk-based one, even though relation embeddings are
included as an input. Specifically for the cell line and disease tasks
(task 3 and 4), both KG-baseline variants failed to predict the correct
entity class among the 10 possible classes, which was not the case for

Table 1. Overview on the fine-tuning classification tasks

Task Description Number of classes Classes Example

(1) Polarity Directionality effect of the

source node on the target

node

Binary Increase and decrease ‘HSP70 [. . .] increases ENPP1

transcript and protein levels’

(PMID : 19083193)

(2) Interaction type Whether it is known to be a

physical interaction between

the source and the target

node

Binary Direct and indirect interaction ‘SHP repressed [. . .] transcrip-

tion of PEPCK through dir-

ect interaction with C/

EBPalpha protein’ (PMID :

17094771)

(3) Cell line Cell line in which the given re-

lation has been described

10 HEK293, DMS114, HeLa,

NIH-3T3, HepG2, MCF7,

COS-1, THP-1, LNCAP and

U-937

‘We show that upon stimula-

tion of HeLa cells by

CXCL12, CXCR4 becomes

tyrosine phosphorylated’

(PMID : 15819887)

(4) Disease Disease context in which the

particular relation occurs

10 Neuroblastoma, breast cancer,

lung cancer, atherosclerosis,

multiple myeloma, leuke-

mia, melanoma, osteosar-

coma, lung non-small cell

carcinoma

‘ [. . .] nicotine [. . .] activates

the MAPK signaling path-

way in lung cancer’ (PMID :

14729617)

(5) Location Cellular location in which the

particular relation occurs

5 Cell nucleus, extracellular

space, cell membrane, cyto-

plasm and extracellular

matrix

‘The activated MSK1 translo-

cates to the nucleus and acti-

vates CREB [. . .].’ (PMID :

9687510)

(6) Species Species in which the particular

relation has been described

3 Human, mouse and rat ‘Mutation of putative GRK

phosphorylation sites in the

cannabinoid receptor 1

(CB1R) confers resistance to

cannabinoid tolerance and

hypersensitivity to cannabi-

noids in mice’ (PMID :

24719095)

(7) Correct/Incorrect (Binary) Whether the extracted triple

correctly corresponds to the

text or not

Binary Correct and incorrect Examples are available at

INDRA’s curation guide-

lines (https://indra.readthe

docs.io/en/latest/tutorials/

html_curation.html#cura

tion-guidelines)

8) Correct/Incorrect

(Multiclass)

Whether the extracted triple

correctly corresponds to the

text or not (including all

error types)

8 Correct, no relation, wrong re-

lation, grounding, polarity,

act versus amt, entity boun-

daries, hypothesis

Note: While the two binary tasks (i.e. the polarity and interaction-type tasks) intend to evaluate the models’ abilities to classify the relation type of the triple,

the other four tasks deal with the classification of different types of contexts in which a given triple can appear in. Finally, the two tasks aim at predicting whether

the triple has been correctly extracted from the text evidence.
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task 5 and 8, which both contain a lower number of classes. This sug-
gests that it was particularly challenging for the KG-baselines to per-
form well across an increasing number of classes. On the other hand,
when looking at the remaining four classification tasks containing
only two or three classes (i.e. task 1–2 and 6–7), we observed that
both the NLP-baseline as well as STonKGs resulted in higher F1-
scores than the KG-baselines. However, while STonKGs clearly out-
performed the NLP-baseline with a difference of 0.067 on task 7,
there were only minimal differences between the two models across
tasks 1–2 and 6. While the NLP-baseline led to a 0.009 and 0.005 im-
provement on the polarity and species tasks, STonKGs achieved a
0.004 F1-score improvement on the interaction task.

Interestingly, the random walk-based KG-baseline was only
slightly worse than the other two models on the interaction type and
species classification tasks. Moreover, the TransE-based KG-base-
line approach resulted in an F1-score of 0.534 on the species task. In
addition, on the polarity task, the performance of the random walk-
based KG-baseline was similar to a random classifier. The relative
increase in performance of the random walk-based KG-baseline on
the interaction-type task compared with the polarity task can be
attributed to imbalanced associations between nodes and class labels
(e.g. a given node might be exclusively present in indirect interac-
tions) (see Supplementary Fig. S4). Moreover, in the case of species
classification, the relatively high performance of the KG-baselines,
specifically of the random-walk-based one, was not surprising as the
nodes in the INDRA KG can indirectly encode species information.
For instance, protein nodes corresponding to the same ortholog gene
were represented by species–specific identifiers [e.g. HGNC:
PRKCG (human) and UP: P63319 (rat)].

When comparing STonKGs300k and STonKGs150k, there was no
significant difference in model performance. This was not surprising
given the already low loss exhibited by STonKGs150k and the
minor further reduction of the loss in STonKGs300k (Supplementary
Fig. S5). Moreover, the STonKGsNO NSP model resulted in slightly
lower performances than the STonKGs150k model on almost all the
evaluation tasks (apart from task 3), thus, suggesting that the NSP
training objective was potentially beneficial for the overall pre-
training procedure. In contrast, STonKGsTransE led to the same or
improved performances compared with the other STonKGs variants
on task 5–8, hence it can be seen as a valid alternative approach.
However, on task 3 and 4, STonKGsTransE performed considerably
worse, proving the effectiveness of the random-walk-based sequence
representation of a triple in more complex tasks with a higher num-
ber of classes.

3.2 STonKGs and applications
The source code and trained models are, respectively, available at
https://github.com/stonkgs/stonkgs and https://github.com/stonkgs/

results. The documentation is available at https://stonkgs.readthe
docs.io/. The pre-trained STonKGs model can be downloaded from
the HuggingFace model hub (https://huggingface.co/stonkgs/
stonkgs-150k).

To demonstrate the generalizability of the pre-trained
STonKGs model (discussed in detail in Supplementary Text S3), we
fine-tuned it on INDRA-independent text-triple pairs specific to
two neurodegenerative indication areas (i.e. Alzheimer’s disease,
Parkinson’s disease) (Domingo-Fernández et al., 2017) (presented
in Supplementary Text S4). Furthermore, the fine-tuned STonKGs
models, which are also released, can also be used to automatically
annotate text-triple pairs with respect to the defined classes for
each fine-tuning task (e.g. human, mouse and rat for the species
context annotation task); thus, facilitating automatic annotations
of biomedical KGs in a variety of contexts.

4 Discussion

In this work, we introduced STonKGs, a multimodal Transformer
trained on millions of text-triple pairs from biomedical literature
assembled by INDRA. STonKGs combines text and KG embed-
dings using a novel approach based on exploiting random walks
learnt by node2vec to generate sequential input data. We demon-
strate the utility of our approach in a benchmark consisting of
eight fine-tuning tasks. Here, STonKGs outperformed two baseline
models, which were trained solely on either text or KG data, on
the majority of the benchmark tasks. Each of the eight fine-tuning
tasks represents a different classification problem with a specific
biological use-case, hence confirming the generalizability of our
proposed transfer learning approach. In addition to the bench-
mark, we conducted further ablation studies to measure the influ-
ence of the number of training steps and the NSP training objective
on the overall performance of STonKGs. Finally, the source code
and the pre-trained model are available at https://github.com/
stonkgs, enabling to leverage both the pre-trained STonKGs model
as well as the overall model architecture for a variety of additional
ML-based tasks that use text and KG data.

There exist some limitations to our proposed STonKGs model.
First, while we have trained STonKGs on a novel and comprehen-
sive KG that has not been utilized by any other Transformer-
based model before, the INDRA KG is comparatively smaller
than other large-scale available non-biomedical KGs such as
Wikidata (Vrande�ci�c and Krötzsch, 2014) and DBpedia (Bizer
et al., 2009). This is mainly caused by the challenging tasks of rec-
ognizing biological entities and extracting their relations, given
the ambiguity and complexity of biomedical jargon. Furthermore,
INDRA aims at high precision and the used extraction process
focuses on high quality rather than completeness. This impacted

Table 2. Benchmark comparison of the baseline models and ablation variants of STonKGs on the chosen classification tasks

Model Relation type classification task Context annotation classification task Correct/incorrect classification task

(1) Polarity (2) Interaction type (3) Cell line (4) Disease (5) Location (6) Species (7) Binary (8) Multiclass

NLP-Baseline (BioBERT) 0.940 0.991 0.238 0.214 0.397 0.865 0.911 0.881

KG-Baseline (node2vec) 0.448 0.945 0.020 0.030 0.295 0.670 0.708 0.446

KG-Baseline (TransE) N/A N/A 0.046 0.081 0.320 0.534 0.485 0.195

STonKGs300k 0.930 0.995 0.252 0.248 0.405 0.860 0.977 0.964

STonKGs150k 0.931 0.995 0.256 0.240 0.404 0.860 0.978 0.963

STonKGsNO NSP 0.918 0.992 0.261 0.236 0.401 0.857 0.977 0.960

STonKGsTransE N/A N/A 0.238 0.216 0.406 0.857 0.978 0.965

Absolute performance gain �0.009 þ0.004 þ0.023 þ0.034 þ0.009 �0.005 þ0.067 þ0.084

Relative performance gain �0.96% þ0.40% þ8.81% þ15.89% þ2.27% �0.58% þ7.35% þ9.53%

Note: Performance is measured as the average F1-score across the five cross-validation splits. For each classification task, the best model performance is high-

lighted in bold font. While the absolute performance gains are calculated based on the difference between the best STonKGs variant and the best baseline (i.e. the

NLP baseline), the relative performance gains are obtained by dividing that difference by the F1-score of the best baseline and expressing the value as a percentage:
ðSTonKGsBEST�NLPÞ

NLP � 100. If one of the STonKGs variants outperforms the baselines on a given task, the respective absolute and relative differences are highlighted in

green, otherwise, they are colored in red.
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the text-triple pairs present in the fine-tuning datasets (i.e. some
of them contain only several thousand text-triple pairs). Second,
one characteristic property of the INDRA KG is that its textual
evidence have been extracted on sentence level, consequently they
are shorter in length compared with text sequences used in other
Transformer-based LMs (e.g. Devlin et al., 2019; Zaheer et al.,
2020). Given the complexity of biological scientific literature, the
contextual representations learned by STonKGs could benefit
from longer sequences (i.e. the context of a given triple is often
mentioned in the surrounding sentences). Moreover, for some
tasks, the small difference in performance between the NLP-
baseline and STonKGs suggests that the textual evidence alone
can be sufficient to tackle certain use cases. Third, while we have
generated the node embeddings based on node2vec or TransE,
other more sophisticated models such as Graph Convolutional
Networks (GCNs) and Graph Attention Networks (GATs) (Ji
et al., 2021) could be used. Moreover, the use of such models
could overcome the lack of relation embeddings in node2vec as
well as the shortcomings of the purely translation-based TransE
approach. However, this is practically infeasible due to the com-
putational complexity required given the size of our KG.
Furthermore, there are two requirements fulfilled by node2vec, but not
by other models: (i) node2vec scales well for large-scale KGs, and (ii)
sequential input is implicitly generated using random walks for each
node. Another limitation is the absence of an optimization procedure
for hyperparameters such as the batch size or the learning rate of
STonKGs due to the run time implications (i.e. pre-training required
several weeks, and running all benchmark tasks for STonKGs took
more than a day). However, we demonstrated the effectiveness of
STonKGs using the standard hyperparameters from the original BERT
model. Finally, there are at least two reasons why we could not include
other KG-extended Transformers (i.e. Fei et al., 2020; He et al., 2020;
Zhang et al., 2019) in our benchmark setting: (i) these models require
entity linking between text and KG nodes (see Introduction), and (ii)
our benchmark is specifically designed to evaluate the performance of
the models in classifying context and relation type information, which
is not covered in benchmarks of other approaches.

Although we have demonstrated a proof-of-concept of our
methodology across a variety of classification tasks, we would
like to mention possible future improvements of STonKGs. First,
the STonKGs pre-training procedure could potentially benefit
from an even larger corpus of text-triple pairs. Due to our pro-
posed transfer learning setting, additional corpora of text-triple
pairs can be flexibly fed into the model by continuing the pre-
training procedure. Second, while we have proposed a novel
method to generate contextualized graph embedding sequences
based on random walks from node2vec, more powerful KGE
models could be potentially adapted to generate sequential input
embeddings as well. Third, to maximize information gain, textual
descriptions of the KG nodes could be added to the model in a
straightforward manner. In addition, further tasks with closer re-
semblance to the expected real-world use-cases (i.e. tasks with a
larger number of classes, or a dedicated ‘unknown’ class) can be
added to the benchmark to assess the potential of STonKGs for
future application scenarios. Finally, an in-depth analysis of the
attention weights between the text tokens and KG nodes used in
STonKGs could reveal valuable insights about the interdependen-
cies between the two modalities.
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