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The K-hull of a compact set A ⊆ Rd, where K ⊆ Rd is a fixed 
compact convex body, is the intersection of all translates of K
that contain A. A set is called K-strongly convex if it coincides 
with its K-hull. We propose a general approach to the analysis 
of facial structure of K-strongly convex sets, similar to the well 
developed theory for polytopes, by introducing the notion of 
k-dimensional faces, for all k = 0, . . . , d −1. We then apply our 
theory in the case when A = Ξn is a sample of n points picked 
uniformly at random from K. We show that in this case the 
set of x ∈ Rd such that x + K contains the sample Ξn, upon 
multiplying by n, converges in distribution to the zero cell of 
a certain Poisson hyperplane tessellation. From these results
we deduce convergence in distribution of the corresponding 
f -vector of the K-hull of Ξn to a certain limiting random 
vector, without any normalisation, and also the convergence 
of all moments of the f -vector.
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List of notation

Throughout this paper we use the following notation and notions:
Subsets of Rd:

Br(x) – the closed ball of radius r > 0 centred at x ∈ Rd,
Sd−1 – the centred unit sphere in Rd.

Families of closed subsets of Rd:
C d – all compact sets in Rd, p. 6,
K d – all compact convex sets in Rd, p. 6,
K d

0 – all compact convex sets in Rd containing the origin, p. 6,
K d

(0) – all compact convex sets in Rd containing the origin in the interior, p. 6.
Operations on subsets of Rd:

K + L – the Minkowski sum of sets K, L ∈ C d,
K � L – the Minkowski difference of sets K, L ∈ C d, p. 6,

conv(A) – the convex hull of A ∈ C d,
convK(A) – the K-hull of a given set A ∈ C d, p. 6,

Ko – the polar body to a given set K ∈ K d, p. 8.
Topological operations in Rd:

cl(A) – the closure of A ⊆ Rd in the standard topology on Rd,
Int(A) – the set of all interior points of A ⊆ Rd with respect to the standard 

topology on Rd,
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∂A – the boundary of A ⊆ Rd with respect to the standard topology on Rd.
Convex geometry:

h(K,u) – the support function of K ∈ K d in direction u ∈ Rd \ {0}, p. 8,
H(K,u) – the supporting hyperplane of K ∈ K d in direction u ∈ Rd \ {0}, p. 16,
F (K,u) – the support set of K ∈ K d in direction u ∈ Rd \ {0}, that is, 

F (K, u) = K ∩H(K, u),
N(K,x) – the normal cone to K ∈ K d at x ∈ K, p. 15,
τ(K,R) – the reverse spherical image of R ⊆ Sd−1 for K ∈ K d, Eq. (4.5),
F (K) – the family of all faces of K ∈ K d, see p. 9 for the definition of a face,

Sd−1(K, ·) – the surface area measure of a convex body K ∈ K d
0 .

Probability and measures:
P, E – probability and expectation corresponding to the choice of a 

probability space (Ω, F, P),
Vd – the Lebesgue measure on Rd,

Hd−1 – the (d − 1)-dimensional Hausdorff measure on Rd,
Ξn – random set {ξ1, . . . , ξn} of n independent points uniformly distributed 

in K ∈ K d,
PK – the Poisson process on (0, ∞) ×Sd−1 with intensity measure, being the 

product of the constant Vd(K)−1, the Lebesgue measure V1 on (0, ∞)
and Sd−1(K, ·), K ∈ K d

(0), p. 23,
ΠK – the Poisson process on Rd \ {0} obtained as the image of PK under 

the mapping (0, ∞) × Sd−1 � (t, u) �→ t−1u ∈ Rd \ {0}.

A set K ∈ K d is called a convex body if IntK 
= ∅. A convex body K ∈ K d is 
called regular (or smooth) if the normal cone N(K, x) is one-dimensional for all x ∈ ∂K. 
A convex body K ∈ K d is called strictly convex if ∂K does not contain any proper 
segment.

1. Introduction

Let K be a convex body in Rd, which contains the origin in its interior. Consider a 
set Ξn := {ξ1, . . . , ξn} composed of n independent copies of a random vector ξ uniformly 
distributed in K. There is a substantial literature concerning probabilistic properties of 
random polytopes obtained as convex hulls of Ξn, see [33, Chapter 8], [13,28,29] and 
references therein. As n grows, the number of vertices of the polytope obtained as the 
convex hull of Ξn grows to infinity and one has to properly normalise it in order to come 
up with a nontrivial limit. The rate of growth heavily depends on smoothness properties 
of K. For example, if K has a sufficiently smooth boundary the average number of 
vertices is of polynomial order const · n(d−1)/(d+1), while if K is itself a polytope, this 
quantity grows logarithmically, as const · (logn)d−1, see [28].

A completely different behaviour of uniform samples on a half-sphere was discovered 
in [3]. Namely, it was shown that the average numbers of vertices and facets of the 
spherical polytope, obtained as the spherical convex hull of a uniform sample on the 
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half-sphere, converge to finite positive constants. This phenomenon was explained in 
[16] by passing to stereographic projections and establishing the convergence in distri-
bution of the properly scaled projected sample (regarded as a binomial point process in 
the usual Euclidean space) to a certain Poisson point process, whose conventional con-
vex hull turned out to be a polytope with probability one. This approach has clarified 
the aforementioned convergence of averages, provided the identification of the limiting 
constants and, moreover, has led to the proof of convergence in distribution of the en-
tire f -vector together with all power moments. Further models exhibiting a very similar 
behaviour have been considered in recent works [1,17].

A very similar phenomenon has been observed for ball hulls of random samples. Recall 
that closed convex sets can be obtained as intersections of closed half-spaces containing 
them. Replacing the family of half-spaces with all translations of a ball yields the def-
inition of the ball hull of a set A in Euclidean space as the intersection of all balls of 
a fixed radius which contain A. Accordingly, a set is called (strongly) ball convex if it 
coincides with its ball hull, see [4,5] and references therein. It has been proved in [9] that 
the mean number of vertices and edges of the (unit) ball hull of a uniform sample of 
points from the unit disk in R2 converge to the constant π2/2 as the size of the sample 
tends to infinity. Remarkably, the latter constant coincides with the limiting constant 
of the number of facets of the spherical polytope mentioned in the previous paragraph. 
This line of research was later on augmented in [11] by showing converges of variances, 
still in dimension two, and, later on, in [8] extended to the convergence of the mean value 
of the number of (appropriately defined) facets in any dimension.

Generalising the notion of strong ball convexity, it is possible to replace a Euclidean 
ball with an arbitrary convex body K and define the K-hull of A as the intersection 
of all translates of K that contain A. This concept (called the K-strong convexity) has 
been intensively studied in [2,26] and accompanying works. If K is origin symmetric, it 
can be considered as the unit ball in a Minkowski space and the K-hull of A becomes 
the ball hull of A in a Minkowski space, see [14] and [22], the latter also includes the 
case of a not necessarily origin symmetric K.

In this paper we study the K-hull, denoted by Qn, of a random sample Ξn of n
independent and uniformly distributed points in a convex body K. Then

Qn =
⋂

x∈Rd: Ξn⊆x+K

(x + K)

is the intersection of all translates of K which contain Ξn.
In dimension two and assuming that K is sufficiently smooth, it is straightforward 

to describe the facial structure of Qn in terms of vertices and edges. In this case, the 
authors of [10] show that the expected number of vertices (equivalently, the expected 
number of edges) of Qn converges to a finite value, however, the formula for the constant 
is not correct. In higher dimensions such a simple decomposition of the boundary in 
terms of vertices and edges is no longer available. In order to identify the facial structure 
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of K-hulls, in particular, of Qn, in arbitrary dimension we develop a new concept of 
the f -vector for a family of convex bodies, which boils down to the usual f -vector of a 
polytope if these bodies are singletons.

The basic result establishes convergence in distribution of the normalised Minkowski 
difference Xn between K and Qn to the zero cell Z in a hyperplane tessellation of 
Rd whose directional intensity is determined by the surface area measure of K. As a 
consequence, we prove the convergence in distribution of a properly normalised intrinsic 
volumes of Xn, as n → ∞, together with all power moments. Furthermore, we show 
the convergence in distribution (again, together with all power moments) of the vector 
determining the facial structure of Qn to a random vector, describing the facial structure 
of the zero cell Z.

In particular, it is shown that, if K is strictly convex, regular, origin symmetric, and 
also is a generating set (meaning that all intersections of its translates are summands 
of K), then the expected number of (d − 1)-dimensional K-facets of Qn converges, as 
n → ∞, to 2−dd!Vd(L)Vd(Lo), where L is the projection body of K and Lo is the polar 
body to L. This is shown to be the special case of an analogous (but more involved) 
formula proved for not necessarily origin symmetric K.

The paper is organised as follows. In Section 2 we recall main concepts of the K-
strong convexity, set the notation and recall basic properties of the K-hull operation. 
Section 3 extends the concept of an f -vector to families of convex bodies. In particular, 
we identify a general position for such families, which extends the conventional general 
position concept for families of singletons. This general concept of f -vectors for families 
of convex bodies is applied to K-hulls in Section 4. The key idea is to identify the polar 
set to the Minkowski difference between K and a strongly convex set Q as the convex 
hull of the union of polars to translated copies of K. We find conditions for this family 
to be in general position, enabling us to identify their f -vectors.

Section 5 deals with the setting of random samples. The key results of the section, 
summarised in Theorem 5.1, are a pair of dual limit relations for random convex bodies 
related to Qn. One is the already mentioned convergence in distribution of the normalised 
Minkowski difference between K and Qn, the K-hull of Ξn, to the zero cell in a certain 
hyperplane tessellation of Rd. The dual result provides convergence in distribution of 
the corresponding polar bodies, allowing us to deduce convergence in distribution of 
the f -vectors in the subsequent section. Furthermore, we also obtain the convergence in 
distribution of the intrinsic volumes and all their moments.

Finally, Section 6 establishes the convergence in distribution of the relevant f -vectors 
and also convergence of all their power moments. The limit for the expected number of 
facets has been explicitly calculated. If K is origin symmetric, this limit has a simple 
expression in terms of the volumes of the projection body of K and the polar projection 
body.

In the Appendix we prove three results that may be interesting for their own sake. 
First, we show that a certain family of random convex bodies pertained to the sample 
Ξn is in general position with probability one, akin to a similar (and easy) result for 
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random polytopes, saying that d +1 points sampled uniformly at random from K lie in a 
hyperplane with probability zero. Second, it is shown that the convergence in distribution 
of convex hulls of unions of binomial point processes on the family of convex bodies in 
Rd which contain the origin is equivalent to the convergence in distribution of the whole 
processes in the vague topology. Last but not least we extend Schneider’s result [31], 
concerning the expected number of vertices of a zero cell Z, to not necessarily even 
directional intensity measures.

2. Ball convexity with respect to a convex body

Denote by C d the family of compact sets in Rd equipped with the Hausdorff metric, 
and by K d the family of all compact convex sets in Rd. Let K d

0 be the family of compact 
convex sets which contain the origin and let K d

(0) be the family of convex bodies K (that 
is, compact convex sets with non-empty interior) whose interior IntK contains the origin. 
Thus,

C d ⊇ K d ⊇ K d
0 ⊇ K d

(0),

K d is a closed subset of C d, K d
0 is a closed subset of K d, but K d

(0) is not closed in the 
Hausdorff metric.

For a set L in Rd denote by L + x its translation by x ∈ Rd, and by

−L := {−x ∈ Rd : x ∈ L}

its reflection with respect to the origin. Further, ∂L is the topological boundary of L.
For K, L ∈ C d, their Minkowski sum is

K + L := {x + y : x ∈ K, y ∈ L},

and the set

K � L := {x ∈ Rd : L + x ⊆ K}

is called the Minkowski difference, see, e.g., [32, p. 146]. The Minkowski difference is 
empty if K does not contain a translate of L. Note the following easy result.

Lemma 2.1. For each K, L ∈ C d,

K � L = {x : L ⊆ K − x} =
⋂
y∈L

(K − y) =
⋂

y∈−L

(K + y). (2.1)

Fix a convex compact set K ∈ K d. For a compact set A in Rd, define its K-hull as

convK(A) :=
⋂

d

(K + x),

x∈R :A⊆K+x



A. Marynych, I. Molchanov / Advances in Mathematics 395 (2022) 108086 7
so that convK(A) is equal to the intersection of all translates of K which contain A. If A
is not contained in any translate of K, then its K-hull is set to be Rd. A set is said to be 
K-strongly convex if it coincides with its K-hull, see [2]. If K is the Euclidean ball, then 
convK(A) is called the ball hull of A and a K-strongly convex set is called ball convex, 
see [4,5]. If K ∈ K d

(0) is (origin) symmetric, that is, K = −K, the K-hull can be viewed 
as the ball hull in the Minkowski space with K being its unit ball, see [14].

Let cnK(A) be the set of all x such that A ⊆ K + x. By Lemma 2.1,

cnK(A) := {x ∈ Rd : A ⊆ K + x} = −(K �A),

and further

convK(A) =
⋂

x∈cnK(A)

(K + x) = K � (− cnK(A)) = K � (K �A). (2.2)

The following result shows that the mapping A �→ (K�A) = − cnK(A) can be considered 
a dual to the operation of taking K-hull of A. While the second statement is known, see 
[32, Lemma 3.1.10], we provide its short proof for completeness.

Proposition 2.2. For all A ∈ C d, we have

K �A = K � convK(A), (2.3)

and K �A is K-strongly convex. Moreover, Q ∈ K d is K-strongly convex if and only if

Q = K � (K �Q). (2.4)

Proof. Since A ⊆ convK(A), we have

K � convK(A) ⊆ K �A.

Let x ∈ K�A. Then A ⊆ K−x, so that convK(A) ⊆ K−x. Hence, convK(A) +x ⊆ K, 
meaning that x ∈ K � convK(A). By (2.1), the set K � A is K-strongly convex for all 
A. The characterisation of K-strongly convex sets by (2.4) follows from (2.2). �

A set Q is called a summand of K if K = Q + L for some set L in Rd. In this case, 
K �Q = L and K �L = Q, hence (2.4) holds. Thus, each summand of K is K-strongly 
convex. The opposite implication holds for K, being a generating set. Following [2] and 
[26], a convex set K ∈ K d is called a generating set if each intersection of its translates 
is a summand of K. In this case, the family of K-strongly convex sets coincides with the 
family of summands of K. It is known that the Euclidean ball is a generating set, and 
all convex bodies in dimension d = 2 are generating sets, see [26, Theorem 2] and [32, 
Section 3.2].
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A set A is called K-spindle convex if A contains convK({x, y}) for all x, y ∈ A. 
In general, the K-strong convexity implies the K-spindle convexity, and the inverse 
implication holds if K is a generating set, see [20, Theorem 2].

Recall that K ∈ K d is called strictly convex, if the boundary ∂K of K does not 
contain any proper segment.

Lemma 2.3. If K ∈ K d is strictly convex, then all K-strongly convex sets are also strictly 
convex. In particular, for all A ∈ C d, the set K �A is strictly convex or empty.

Proof. Let Q be K-strongly convex. The proof is particularly simple if K is a generating 
set, so that Q is a summand of K. Hence, if Q has a proper segment on its boundary, 
then K is no longer strictly convex, which is a contradiction.

If K is not necessarily a generating set, the proof follows the scheme of the proof 
of this fact for origin symmetric K in [14]. Assume that the segment conv{x1, x2} is a 
subset of ∂Q for x1 
= x2. Then

x := (x1 + x2)/2 ∈ ∂Q = ∂

( ⋂
y∈Rd:Q⊆K+y

(K + y)
)
.

Therefore, there exists a sequence (yi)i∈N such that Q ⊆ K + yi for all i and the 
distance from x to Rd \ (K + yi) converges to zero as i → ∞. Since the sequence (yi)i∈N
is necessarily bounded, assume without loss of generality that yi → y0 as i → ∞. Then 
x ∈ (∂K + y0), because x ∈ K + y0 and the distance from x to Rd \ (K + y0) is equal to 
zero. Since x1, x2 ∈ K + y0, we necessarily have x1, x2 ∈ ∂K + y0, so that ∂K contains 
a nontrivial segment, which is a contradiction. �

For a set L in Rd, its polar set is defined by

Lo := {u ∈ Rd : h(L, u) ≤ 1},

where

h(L, u) := sup{〈u, x〉 : x ∈ L}

is the support function of L and 〈·, ·〉 is the inner product in Rd. If L is convex, closed 
and contains the origin in its interior, then Lo is a convex body, and (Lo)o = L, see [32, 
Theorem 1.6.1].

It is well known that the polar set to the intersection of convex compact sets containing 
the origin is equal to the closed convex hull of the union of their polar sets, see [32, 
Theorem 1.6.3]. Thus, (2.1) yields

(K �A)o = cl conv

⎛⎝⋃
(K − y)o

⎞⎠ , (2.5)

y∈A
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see [32, Theorem 1.6.3] for finite A with the general case derived by similar arguments. 
This representation will be of major importance for us, since it leads to a description of 
the facial structure of K � A = K � convK(A) and, mutatis mutandis, of convK(A) in 
Sections 3 and 4 below.

3. Facial structure of convex hulls of collections of convex sets

3.1. General position concept

A face of a convex compact set L ∈ K d is a convex subset F of L such that x, y ∈ L

and (x + y)/2 ∈ F imply that x, y ∈ F . The family of all faces of L is denoted by F (L). 
Note that L and ∅ are also faces. All other faces are called proper, and the family of 
proper faces is denoted by

F ′(L) := F (L) \ {L,∅}.

A dimension of a face F ∈ F (L) \ {∅} is the dimension of the smallest affine subspace 
containing F . Denote by Fk(L) the family of k-dimensional faces of L. The relative 
interiors of F ∈ F (L) provide a disjoint decomposition of L, see [32, Theorem 2.1.2]. 
The topological boundary ∂L is the disjoint union of relative interiors of proper faces.

A (d − 1)-dimensional affine subspace H is said to be a supporting hyperplane of 
nonempty L ∈ K d if H intersects L and L is a subset of one of the two half-spaces 
bounded by H. A set E ⊆ L is called an exposed face if there exists a supporting 
hyperplane H of L such that E = L ∩H. Each exposed face of L is a face of L, and each 
proper face of L is contained in an exposed face of L, see [32, p. 75].

Let L := {Li, i ∈ I} ⊆ K d be a collection of convex compact sets, such that their 
convex hull

conv(L ) := conv
(⋃

i∈I

Li

)
is a compact set. Recall that conv(L ) is the set of all (finite) convex combinations∑m

j=1 λjxj for m ∈ N, λ1, . . . , λm ≥ 0, λ1 + · · · + λm = 1 and xj ∈ Lij , ij ∈ I, 
j = 1, . . . , m. A convex combination is said to be positive if all coefficients λj are strictly 
positive. By Carathéodory’s theorem, see [32, Theorem 1.1.4], it suffices to let m ≤ d +1.

Let A be an arbitrary closed convex subset of some exposed face F of conv(L ). Put

M (L , A) := {L ∈ L : L ∩A 
= ∅}.

Recalling that each proper face is a closed convex subset of some exposed face, we see 
that M (L , F ) is well defined. Furthermore, in this case we have

F = conv
( ⋃

(F ∩ L)
)
, F ∈ F

(
conv(L )

)
. (3.1)
L∈M (L ,F )
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Fig. 1. First row: Three families of convex sets (two ellipses, three ellipses and two rectangles) in R2 in 
general position. Second row: Three families of convex sets (two ellipses, three ellipses and two rectangles) 
which are not in general position. In solid: the sets A for which (3.2) is violated. Encircled: the sets L ∩A. 
The f-vectors of the families depicted in the first row are f(L ) = (2, 1), f(L ) = (3, 3) and f(L ) = (2, 1), 
respectively.

Indeed, by Carathéodory’s theorem for every x ∈ F , there exist m ≤ d + 1 and 
{L1, . . . , Lm} ⊆ L , such that x is a positive convex combination of xi ∈ Li, i = 1, . . . , m. 
By definition of a face, this implies xi ∈ F , and therefore xi ∈ Li∩F , for all i = 1, . . . , m. 
Thus, every x ∈ F can be written as a convex combination of points from F ∩ L for 
L ∈ M (L , F ), yielding

F ⊆ conv
( ⋃

L∈M (L ,F )

(F ∩ L)
)
.

The converse inclusion is obvious, hence, (3.1) holds.

Definition 3.1. The sets from L are said to be in general position if, for each closed 
convex subset A of each exposed face of conv(L ), the family M (L , A) is finite, and∑

L∈M (L ,A)

(
1 + dim(A ∩ L)

)
≤ dim(A) + 1, (3.2)

where dim denotes the affine dimension.

Some examples of families L , which are in general position, and which are not, are 
given on Fig. 1.
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Remark 3.2. If A = F is a face of conv(L ), then the inequality in (3.2) turns into the 
equality. This follows from (3.1) in view of the inequality

1 + dim(F ) = 1 + dim
(

conv
( ⋃

L∈M (L ,F )

(F ∩ L)
))

≤
∑

L∈M (L ,F )

(
1 + dim(F ∩ L)

)
,

where we have used the fact that the dimension of the convex hull of two sets of dimen-
sions m1 and m2 is at most m1 + m2 + 1.

Assume that the sets in L are in general position and Fm ∈ Fm(conv(L )) is an m-
dimensional face of conv(L ) for some m = 0, . . . , d − 1. By (3.2) applied with A = Fm, 
the cardinality of M (L , Fm) is at most m + 1, and therefore every set in

M (L ) :=
{
M (L , F ) : F ∈ F ′( conv(L )

)}
contains at most d + 1 sets from L . For k = 0, . . . , d − 1, denote by Mk(L ) the subset 
of M (L ) which consists of (unordered) (k + 1)-tuples.

Definition 3.3. Let L be a family of convex bodies in general position. The elements of 
Mk(L ) are called k-dimensional faces of the family L . The f-vector of the family L
is defined by the equality f(L ) :=

(
f0(L ), . . . , fd−1(L )

)
, where fk(L ) is the cardinality 

of Mk(L ) counted without multiplicities, k = 0, . . . , d − 1. As usual, vertices are 0-
dimensional faces of the family L , edges are 1-dimensional faces of L , etc.

It is important to stress that, in general, a face of the family L is not a face of the 
convex compact set conv(L ). For example, if L = {L} consists of a single convex body 
L, then L is the unique 0-dimensional face of the family L .

The next lemma shows essentially that every face of a family L , which is in general 
position, contains a vertex, that is, a 0-dimensional face of the family L .

Lemma 3.4. Let L be a family of convex bodies in general position. Then, for each 
F ∈ F ′(conv(L )) and L ∈ M (L , F ), there exists a G ∈ F ′(conv(L )) such that 
L ∩G = G.

Proof. Assume that L ∩F is a strict subset of F since otherwise there is nothing to prove. 
Let M (L , F ) := {L0, L1, . . . , Lk}, where L0 := L. Denote by F ′ the relative boundary 
of F . By (3.1), we have

F = conv
( k⋃

i=0
(Li ∩ F ′)

)
. (3.3)

Indeed, by (3.1), each point x ∈ F ′ is the convex combination of points yi ∈ Li ∩ F , 
i = 0, . . . , k. None of these points belongs to the relative interior of F . Thus, F ′ is a 
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subset of the right-hand side of (3.3). Since F is a subset of the convex hull of F ′, we 
obtain (3.3).

Denote mi := dim(Li ∩ F ), m′
i := dim(Li ∩ F ′), and m := dim(F ). By Remark 3.2,

k∑
i=0

(1 + mi) = m + 1.

By (3.3), each point from F is a convex combination of points from Li∩F ′, i = 0, . . . , k. 
Therefore,

k∑
i=0

(1 + m′
i) ≥ m + 1.

Thus, mi = m′
i for all i = 0, . . . , k, meaning that Li ∩ F ′ 
= ∅ and, in particular, 

L ∩ F ′ 
= ∅. Hence, there exists

F̃ ∈ F ′(F ) ⊆ F ′(conv(L )),

such that L ∩ F̃ 
= ∅. Here, the second inclusion follows from [32, Theorem 2.1.1]. The 
dimension of F̃ is at most m − 1. By induction, reducing the dimension at each step, we 
find a proper face G ∈ F ′(conv(L )) such that L ∩G = G. �
Corollary 3.5. Let L be a family of convex bodies in general position. Then

fk(L ) ≤
(
f0(L )
k + 1

)
, k = 0, . . . , d− 1.

Proof. Let L ∈ M (L , F ) for some F ∈ F ′(conv(L )). By Lemma 3.4, there exists a 
G ∈ F ′(conv(L )) such that L ∩ G = G. Then M (L , G) contains L. Assume that 
M (L , G) contains another set L′ ∈ L , which is different from L. Then L′ ∩G 
= ∅. By 
(3.2),

(
1 + dim(L ∩G)

)
+

(
1 + dim(L′ ∩G)

)
≤ dim(G) + 1,

which is a contradiction. Thus, if a (k + 1)-tuple of sets from L form a k-dimensional 
face of L , then each of these sets is a 0-dimensional face of L , and the claim follows. �
3.2. Families of strictly convex sets

For strictly convex sets, that is, for sets which do not contain any proper segment on 
the boundary, the definition of general position can be replaced by an equivalent one, 
which is much simpler.
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Proposition 3.6. If all sets in L are strictly convex, Definition 3.1 is equivalent to any 
of the following.

(i) For all m = 0, . . . , d − 1, and each m-dimensional face Fm of conv(L ), the family 
M (L , Fm) is finite and ∑

L∈M (L ,Fm)

(
1 + dim(Fm ∩ L)

)
= m + 1. (3.4)

(ii) For all m = 0, . . . , d − 1, and each m-dimensional face Fm of conv(L ), exactly 
m + 1 sets among L intersect Fm.

(iii) For all m = 0, . . . , d − 1, and each m-dimensional exposed face Fm of conv(L ), 
exactly m + 1 sets among L intersect Fm.

Proof. Definition 3.1 implies (i), since every face is a closed convex subset of some 
exposed face and in view of Remark 3.2.

Further, all non-empty sets of the form Fm ∩ L for Fm ∈ Fm(conv(L )) and m =
0, . . . , d − 1 are singletons due to the imposed strict convexity. Hence dim(Fm ∩ L) = 0
and (3.4) is equivalent to the fact that the cardinality of M (L , Fm) is equal to m + 1. 
This proves equivalence of (i) and (ii). Since every exposed face is a face, (ii) implies 
(iii).

It remains to prove that (iii) implies Definition 3.1. This is accomplished by contra-
diction. Assume that (iii) holds but there exists a closed convex subset A of an exposed 
face F such that dim(F ) = m, dim(A) = k, k = 0, . . . , m, m = 0, . . . , d − 1, and

card(M (L , A)) =
∑

L∈M (L ,A)

(
1 + dim(A ∩ L)

)
≥ k + 2. (3.5)

From condition (iii) it follows that (3.4) holds with Fm = F . Therefore, k < m. By 
the condition imposed in (iii) and strict convexity, F intersects exactly m + 1 sets in 
L and these intersections are singletons, say x1, x2, . . . , xm+1. Moreover, at least k + 2
among these singletons lie in A ⊆ F by (3.5). Without loss of generality, assume that 
x1, . . . , xk+2 ∈ A. In view of (3.1),

F = conv{x1, . . . , xm+1} ⊆ conv
(
A ∪ {xk+3, . . . , xm+1}

)
.

Evaluating the dimension on both sides yields

1 +m = 1 + dim(F ) ≤ 1 + dim(A) +
m+1∑

j=k+3

(
1 + dim({xj})

)
= 1 + k + (m− k − 1) = m,

which is a contradiction. The proof is complete. �
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Remark 3.7. Each point on the topological boundary of conv(L ) is a positive linear 
combination of points from uniquely identified sets Li1 , . . . , Lik+1 ∈ L . For strictly 
convex sets, the k-th component of the f-vector can be equivalently defined as the number 
of different (k+1)-tuples in such collections for all points from the boundary of conv(L ).

3.3. Examples

Example 3.8 (Polytopes). Let L be a finite collection of singletons Li := {xi}, i =
1, . . . , l, so that its convex hull conv(L ) is a polytope. Since singletons are strictly convex 
sets, the equivalent definition of the general position given by part (ii) of Proposition 3.6
is applicable. The general position for L means that each m-dimensional face of this 
polytope contains exactly m +1 singletons for all m = 0, . . . , d −1. Then Mk(L ) is the set 
of all k-dimensional faces of the polytope conv(L ) (here we identify a face of a polytope 
with its extreme points), and f(L ) is the usual f -vector1 of the polytope conv(L ). Thus, 
for singletons we have f

(
{{x1}, {x2}, . . . , {xl}}

)
= f

(
conv{x1, x2, . . . , xl}

)
. Note that for 

sets of singletons the general position is usually defined by requiring that no m +2 points 
lie in an affine subspace of dimension m, see, for example, [16, Lemma 4.1]. This complies 
with Definition 3.1 imposed on L and all its subfamilies.

A similar situation occurs for a collection L of sets Ki := [0, xi], i = 1, . . . , l, being 
segments with end-points at the origin and xi. Then L is in general position if and only 
if the points {0, x1, . . . , xl} are in general position, and the f-vector of L is the f -vector 
of the polytope conv({x1, x2, . . . , xl}).

Example 3.9. Let L := {L} consist of a single convex body L. Then f(L ) = (1, 0, . . . , 0), 
no matter if L is strictly convex or not. This set L is a vertex, no matter whether L
possesses higher-dimensional faces itself.

Example 3.10. Let L consist of all singletons from the boundary of the unit ball. Then 
M0(L ) is an uncountably infinite collection of vertices of L , that is, faces of L of 
dimension zero, and there are no faces of L of dimension 1, 2, . . . , d −1. Thus, f0(L ) = ∞
and all other components of the f-vector vanish.

Example 3.11 (Vertices). Assume that the sets in L are in general position and let 
A be an exposed point (that is, an exposed face of dimension zero) of conv(L ). By 
(3.2), M (L , A) consists of a single set, say, L. Thus, L ∈ M0(L ) and, according to 
Definition 3.3, L is a vertex. Note that the facial structure of L is not important at all 
here, in particular, L may contain faces (in the usual sense) of arbitrary dimensions. For 
example, on the plane, let L1 be the origin and L2 be the segment [(1, 0), (0, 1)], then 
f0(L ) = 2 and both L1 and L2 are vertices. Furthermore, f1(L ) = 1, since M1(L ) =
{L1, L2}.

1 Throughout the paper we adopt the following convention: f is used to denote the usual f-vector of a 
polytope, while f is used to denote the f-vector of a family of convex bodies in the sense of Definition 3.3.
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Example 3.12. Let L be the collection of vertices of the square [0, 1]2 on the plane. Then 
f(L ) = (4, 4). Let L ′ consist of the segment joining the origin and (0, 1) and the two 
other vertices of the unit square. Then f(L ′) = (3, 3) is different from f(L ), despite the 
two collections share the same convex hull.

Example 3.13. Assume that all sets from L are strictly convex and the union of the sets 
from L is a convex closed set. Then each face of conv(L ) is also a face of at least one 
L ∈ L . If a point x on the boundary of this union belongs to both L1 and L2 from L , 
then the general position condition is violated. Hence, L is in general position if and 
only if there exists a set L0 ∈ L such that all members of L \ {L0} are subsets of the 
interior of L0.

4. f-vectors of K-strongly convex sets

The aim of this section is to develop a notion of k-dimensional faces of a K-strongly 
convex set in Rd of any dimension k ∈ {0, 1, . . . , d − 1}. It has already been noted in 
the literature that this task is quite nontrivial even in case of ball convex sets, that is, 
when K is a Euclidean ball, see a discussion at the beginning of Section 6 in [5] and, in 
particular, Example 6.1 therein. We employ the approach developed in Section 3.

4.1. Families of convex bodies associated with K-hulls

In the following, fix K ∈ K d
(0). Let A be a subset of the interior of a translate of K. 

Introduce the family of sets

LA :=
{
(K − y)o : y ∈ A

}
. (4.1)

By (2.5)

(K �A)o = cl conv(LA). (4.2)

If the sets in LA are in general position, it is possible to define the f-vector f(LA) =(
f0(LA), . . . , fd−1(LA)

)
of the family LA. If A is a finite set, then the closure on the 

right-hand side of (4.2) can be omitted, and f(LA) has all finite components.

Example 4.1. Let A :=
{
(0, a), (0, −a)

}
on R2, where a ∈ (0, 1), and let K be the unit 

Euclidean disk. Then f(LA) = (2, 1). If A :=
{
(0, 0, a), (0, 0, −a)

}
in R3 and K is the 

unit ball, then f(LA) = (2, 1, 0).

In order to characterise the cases when LA is in general position, we need several 
further concepts from convex geometry. Recall that the normal cone to a convex body 
L ∈ K d at x ∈ L is defined by



16 A. Marynych, I. Molchanov / Advances in Mathematics 395 (2022) 108086
N(L, x) :=
{
u ∈ Rd \ {0} : x ∈ H(L, u)

}
∪ {0},

where

H(L, u) :=
{
x ∈ Rd : 〈x, u〉 = h(L, u)

}
is the supporting hyperplane to L with normal u. The normal cone is nontrivial only if 
x ∈ ∂L. Denote by

F (L, u) := L ∩H(L, u)

the support set of L in direction u; this set is a singleton {y} if L is strictly convex and 
we write F (L, u) = y in this case. The convex body L is said to be regular if N(L, x)
is one-dimensional for all x ∈ ∂L, see [32, p. 83]. For L ∈ K d

(0), this is equivalent to the 
fact that the boundary of L is C1, see [32, Theorem 2.2.4].

If F is a face of L, then N(L, F ) := N(L, x) for any x in the relative interior of F , 
see [32, Section 2.2]. Furthermore, the conjugate face to F is defined as

F̂ :=
{
x ∈ Lo : 〈x, y〉 = 1 for all y ∈ F

}
,

see [32, Section 2.1]. If F is (d − 1)-dimensional, then F̂ arises as a solution of d inde-
pendent linear equations and so is a singleton. By [32, Lemma 2.2.3],

N(L,F ) = pos F̂ ∪ {0}, (4.3)

where pos F̂ is the positive hull of F̂ , that is, the family of all linear combinations of 
points from F̂ with nonnegative coefficients.

Lemma 4.2. Assume that K ∈ K d
(0) is a strictly convex regular convex body. If A ⊆ IntK

is a finite set, then the family LA is in general position if and only if, for each x ∈ Rd

such that A ⊆ x + K and A has a nonempty intersection with ∂K + x, this intersection 
is a finite set {y1, . . . , yk} and k is equal to the dimension of the convex hull of the union 
of the normal cones N(K + x, yi), i = 1, . . . , k.

Proof. For every x ∈ Rd, put

IA(x) := (∂K + x) ∩A,

and note that −x ∈ ∂
(
∩y∈ A (K − y)

)
= ∂(K � A) if and only if A ⊆ x + K and 

IA(x) 
= ∅. By [32, Theorem 2.2.1], for every x ∈ Rd such that A ⊆ x + K and 
IA(x) 
= ∅, we have
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N(K �A,−x) = N

( ⋂
y∈A

(K − y),−x

)
= conv

( ⋃
y∈A

N(K − y,−x)
)

= conv
( ⋃

y∈IA(x)

N(K + x, y)
)
. (4.4)

This relation will be of major importance in subsequent arguments.
It follows from (4.3) that regularity and strict convexity of K imply regularity and 

strict convexity of the polar set Ko, see [32, Remark 1.7.14]. Thus, for each y ∈ IntK, 
the set (K − y)o is regular and strictly convex. By Proposition 3.6(iii), the family LA is 
in general position if and only if, for all m = 0, . . . , d − 1, each m-dimensional exposed 
face Fm of conv(LA) = (K �A)o intersects exactly m + 1 sets from LA.

In view of [32, Theorem 2.1.4], the second conjugate of each exposed face F coincides 
with F . Thus, by (4.3), the m-dimensional exposed faces of (K � A)o are in one-to-
one correspondence with their conjugate faces (exposed faces of (K � A)) having (m +
1)-dimensional normal cones. By Lemma 2.3, K � A is strictly convex, so that these 
conjugate faces are singletons. Thus, the family LA is in general position if and only if, 
for every singleton −x ∈ ∂(K�A) such that dimN(K�A, −x) = m +1, m = 0, . . . , d −1, 
exactly m + 1 sets among (∂K − y)y∈A contain −x. Equivalently, the family LA is in 
general position if and only if for every −x ∈ ∂(K �A) such that dimN(K �A, −x) =
m +1, m = 0, . . . , d − 1, we have card(IA(x)) = m +1. By (4.4), the latter is equivalent 
to the following: for every −x ∈ ∂(K�A), that is, for every x ∈ Rd such that A ⊆ x +K

and IA(x) 
= ∅, we have

dim
(

conv
( ⋃

y∈IA(x)

N(K + x, y)
))

= card(IA(x)).

The proof is complete. �
Remark 4.3. Letting m = d − 1 in Lemma 4.2, we obtain a necessary condition for the 
general position, saying that the cardinality of A ∩ (∂K + x) is at most d for all x ∈ Rd.

Definition 4.4. Let Q := convK(A), where A is a subset of the interior of K ∈ K d
(0), such 

that the family LA defined at (4.1) is in general position. Then the f-vector f(Q) of Q
is defined as f(LA).

Note that in Definition 4.4 it is not feasible to work with the family LQ defined by 
(4.1) as the family of sets (K − y)o for all y ∈ Q, because this family is not in general 
position unless Q is a singleton. Indeed, otherwise, the boundary of Q contains a (d −1)-
dimensional part of ∂K − x for some x and so Q intersects ∂K − x at infinitely many 
points, contrary to Lemma 4.2.



18 A. Marynych, I. Molchanov / Advances in Mathematics 395 (2022) 108086
4.2. Facial structure of K-hulls

A supporting K-sphere of Q := convK(A) is the set x + ∂K such that Q ⊆ x + K

and Q ∩ (x + ∂K) 
= ∅. The set Q ∩ (x + ∂K) is said to be an exposed K-face of Q, 
see [14]. Note that these definitions in [14] presume that K is strictly convex and origin 
symmetric.

If x + ∂K is an exposed K-face of Q and Q ∩ (x + ∂K) has a strictly positive (d − 1)-
dimensional Hausdorff measure, then Q ∩ (x +∂K) is called a K-facet of Q. For K being 
a Euclidean ball, this definition was used in [8] to describe the facial structure of ball 
convex sets. Each K-facet contains at least d affinely independent points, but the inverse 
implication may fail, as the following example shows.

Example 4.5. Let K be the unit Euclidean ball in R3, and let y, z be two distinct points 
in the interior of K. The K-hull Q of A := {y, z} is the intersection of all unit balls 
having y and z on the boundary. Such a ball K+x intersects Q along the arc of its great 
circle. While this arc contains 3 affinely independent points, its 2-dimensional Hausdorff 
measure vanishes and so it is not a K-facet of Q, yet it is an exposed K-face of Q. In 
view of (2.1), K�Q = (K−y) ∩ (K−z) and the polar to K�Q is the convex hull of the 
family LA := {(K−y)o, (K−z)o}. The boundary of conv(LA) is composed of the parts 
of the boundaries of (K − y)o and (K − z)o and an infinite number of one-dimensional 
faces, being segments joining points of (K−y)o and (K−z)o. Then f2(Q) = f2(LA) = 0, 
which corresponds to the absence of K-facets in Q.

Example 4.6. Let K := [−1, 1]2 on R2, and let A := {(a, 0), (0, b), (−c, 0), (−d, 0)} with 
a, b, c, d ∈ (0, 1). Then, Q = convK(A) = [−c, a] × [−d, b], and

K �Q = [c− 1, 1 − a] × [d− 1, 1 − b].

The polar body to a polytope obtained as the intersection of the half-spaces {x : 〈x, ui〉 ≤
ti}, i = 1, . . . , m, is equal to the convex hull of the points t−1

i ui, i = 1, . . . , m. Hence,

(K �Q)o = conv
{
((1/(c− 1), 0), (0, 1/(d− 1)), (1/(1 − a), 0), (0, 1/(1 − b))

}
.

Note that

(K + (a, 0))o = conv
{
(1/(1 + a), 0), (0, 1), (1/(a− 1), 0), (0,−1)

}
.

Similar calculations for other points of A show that LA is in general position and f(LA) =
(4, 4). The K-hull Q of A is the intersection of K + (a, b) and K + (−c, −d), or other 
two translations of K. In this case, Q has two K-facets.

While Example 4.6 shows that the number of K-facets of Q := convK(A) (as defined 
following [8] and [14]) may be different from the (d − 1)-th component of the f-vector, 
Lemmas 4.7 and 4.8 below provide conditions ensuring that these quantities coincide.
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For a convex body K ∈ K d, denote by Sd−1(K, ·) the surface area measure of K, 
see [32, p. 214]. The surface area measure is a measure on the unit sphere Sd−1 in Rd

with the total mass being the surface area (that is, the (d − 1)-dimensional Hausdorff 
measure) of K. If K is regular, then Sd−1(K, A) is the surface area of the part of the 
boundary of K with unit normals belonging to the Borel set A on the unit sphere.

Lemma 4.7. Assume that K ∈ K d
(0) is strictly convex and regular convex body, which is 

also a generating set. Let A ⊆ IntK be a finite set such that LA given by (4.1) is in 
general position. If Q is the K-hull of A, then the number of K-facets of Q is equal to 
the number of (d − 1)-dimensional faces of conv(LA).

Proof. Denote R := −(K � A) = −(K � Q), where the second equality follows from 
Proposition 2.2. Since A is a subset of the interior of a K, the set R contains the 
origin in its interior and is also strictly convex by Lemma 2.3. In view of (4.3), each 
(d − 1)-dimensional face F of − conv(LA) = Ro corresponds to a singleton {x} (being 
the conjugate face to F ) on the boundary of R with the normal cone N(R, x) having 
a non-empty interior. According to [32, Theorem 2.1.4], the second conjugate face of 
F is the smallest exposed face of R containing F , and so the correspondence between 
(d − 1)-dimensional faces of Ro and points x ∈ ∂R with normal cone N(R, x) having a 
nonempty interior is one-to-one. It remains to show that such points x are in one-to-one 
correspondence with the K-facets of Q.

For U ⊆ Sd−1, the reverse spherical image of U is defined by

τ(K,U) :=
⋃
v∈U

F (K, v), (4.5)

see [32, p. 88]. Plugging here U := −(N(R, x) ∩ Sd−1) and calculating the (d − 1)-
dimensional Hausdorff measure, we obtain

Hd−1

({
F (K + x,−u) : u ∈ N(R, x)

})
= Hd−1

(
τ
(
K + x,−(N(R, x) ∩ Sd−1)

))
= Sd−1

(
K + x,−

(
N(R, x) ∩ Sd−1)),

where the second equality follows from [32, Eq. (4.36)]. Since K + x is regular, the 
right-hand side is positive if and only if N(R, x) ∩Sd−1 has positive (d − 1)-dimensional 
Hausdorff measure, which, in turn, is equivalent to the fact that N(R, x) has nonempty 
interior. Thus, it remains to prove that

u ∈ N(R, x) if and only if F (K + x,−u) ∈ ∂Q and x ∈ R.

Note that u ∈ N(R, x) if and only if x ∈ F (R, u), meaning that x + v /∈ R for all v such 
that 〈v, u〉 > 0. Equivalently,
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u ∈ N(R, x) if and only if K +x ⊇ A and K +x+ v � A for all v such that 〈v, u〉 > 0.
(4.6)

We first show that x ∈ F (R, u) implies F (K + x, −u) ∈ ∂Q. Since F (K + x, −u)
belongs to the boundary of K + x, this support point does not belong to the interior of 
Q ⊆ K + x. Assume that F (K + x, −u) /∈ Q and so F (K + x, −u) /∈ K + y for some 
y ∈ R, y 
= x. Hence,

A ⊆ (K + x) ∩ (K + y) := L.

From the strict convexity of K, we conclude h(L, −u) < h(K+x, −u). Since x ∈ H(R, u)
and y ∈ R, we have that 〈y − x, u〉 ≤ 0.

Since K is a generating set, K + x = L + W for a convex body W . Hence,

h(K + x,−u) = h(L,−u) + h(W,−u),

and the support point F (K + x, −u) is the sum of F (L, −u) and w := F (W, −u). Thus,

h(K + x,−u) = h(L,−u) + 〈w,−u〉.

Since h(L, −u) < h(K+x, −u), we must have 〈w, −u〉 > 0. Thus, K+x ⊃ L +w, so that 
L ⊆ K + x + (−w) with 〈−w, u〉 > 0. Therefore, A ⊆ K + x −w. This is a contradiction 
to (4.6), since 〈−w, u〉 > 0. Thus, F (K + x, −u) ∈ ∂Q.

In the other direction, assume that y := F (K + x, −u) ∈ ∂Q and x ∈ R. If x + v ∈ R

for some v with 〈v, u〉 > 0, then y ∈ Q ⊆ K + x + v. Then

〈y,−u〉 ≤ h(K + x + v,−u) < h(K + x,−u),

contrary to the fact that 〈y, −u〉 = h(K+x, −u). Thus, u ∈ N(R, x) in view of (4.6). �
The next result establishes the equality between the number of (d − 1)-dimensional 

faces of conv(LA) and fd−1(LA). Note that such a relationship is not feasible for lower-
dimensional faces. For example, LA might have a single 0-dimensional face generated by 
some L ∈ LA, while conv(LA) has infinitely many 0-dimensional faces corresponding to 
singletons on the boundary of L.

Lemma 4.8. Assume that K is strictly convex and regular, and let A ⊆ IntK be a finite 
set such that the family LA is in general position. Suppose further that for each set 
{x1, . . . , xd} ⊆ A of cardinality d which belongs to a K-facet of Q := convK(A), this 
set of points does not belong to any other K-facet of Q. Then fd−1(LA) is equal to the 
number of (d − 1)-dimensional faces of conv(LA).

Proof. We adapt the notation used in Lemma 4.7. By definition, each (d −1)-dimensional 
face of the family LA, say, arising from the d-tuple 

{
(K − x1)o, . . . , (K − xd)o

}
, cor-
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responds to at least one face F of conv(LA). Note that {x1, . . . , xd} is a subset of a 
K-facet of Q.

Assume that there exists another face F ′ of conv(LA), which is also hit by each of 
(K − x1)o, . . . , (K − xd)o. The conjugate faces to F and F ′ are distinct singletons {x}
and {x′} such that x, x′ ∈ ∂(K�A) and {x, x′} ⊆ ∂K−xi, i = 1, . . . , d. Thus, there are 
two translates K − x and K − x′ which contain {x1, . . . , xd} on the boundary, and so 
these points belong to different exposed K-facets of Q. This contradicts the assumption 
unless F ′ = F . �
Example 4.9. Let A := {x, y} be a subset of the interior of the unit disk K in R2. Then 
the K-hull Q of {x, y} is the intersection of two discs having x and y on the boundary. 
In this case f(LA) = (2, 1), while Q has two K-facets.

5. K-strongly convex sets generated by random samples

Fix a set K ∈ K d
(0). Recall that Ξn := {ξ1, . . . , ξn} denotes a set of n independent 

points uniformly distributed in K. Motivated by the construction of disk and ball poly-
hedra in [8,9], let

Qn :=
⋂

x∈Rd: Ξn⊆K+x

(K + x) (5.1)

be the intersection of all translates of K which contain Ξn, that is, Qn = convK(Ξn). 
Note that it is possible to replace Ξn in (5.1) by its (conventional) convex hull conv(Ξn), 
so that Qn is the K-hull of Ξn and also of the polytope Pn := conv(Ξn).

Further, let

Xn := K � Ξn = − cnK(Ξn).

By Proposition 2.2, Xn is K-strongly convex and by formula (2.1)

Xn = K �Qn =
n⋂

i=1
(K − ξi).

Note that the interior of Xn almost surely contains the origin, and (2.1) yields

Xo
n = conv

(
n⋃

i=1
(K − ξi)o

)
. (5.2)

This immediately implies that both Xn and Xo
n are random convex sets, which are almost 

surely compact and have nonempty interiors, also called random convex bodies, see [25, 
Section 1.7]. Furthermore, the interiors of both Xn and Xo

n almost surely contain the 
origin, that is, Xn and Xo

n almost surely belong to K d
(0). Simulations of Qn and Xn for 

d = 2, K being a unit disk, and n = 10, 40, 100 are given on Fig. 2.



22 A. Marynych, I. Molchanov / Advances in Mathematics 395 (2022) 108086
Fig. 2. Q10 (top left) and X10 (top right), Q10 is an intersection of four unit disks; Q40 (middle left) and 
X40 (middle right), Q40 is an intersection of five unit disks; Q100 (bottom left) and X100 (bottom right), 
Q100 is an intersection of five unit disks. Note a different scaling on the plots for Xn: in all three cases the 
lines connecting the ‘vertices’ are actually arcs of the unit circle, that are rectified in the limit as suggested 
by Theorem 5.1.
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5.1. Convergence of the scaled Minkowski difference K � Ξn

Theorem 5.1 below establishes the convergence in distribution of n−1Xo
n and nXn

as random convex sets, that is, the weak convergence of the corresponding probability 
measures on K d equipped with the Hausdorff metric, see [25, Section 1.8.2]. In order to 
formulate the result we need some preparations. Recall that Vd stands for the Lebesgue 
measure on Rd, so that Vd(K) is the volume of K.

Half-spaces in Rd which contain the origin in their interior are denoted H−
u (t) and 

parametrised by (t, u) ∈ (0, ∞) ×Sd−1, where u is the unit outer normal vector and t is the 
distance from the origin to the boundary of the half-space. Let PK := {(ti, ui), i ≥ 1} be 
a Poisson process on (0, ∞) × Sd−1 with intensity measure μ, being the product of the 
Lebesgue measure on (0, ∞) times the constant Vd(K)−1 and the measure Sd−1(K, ·)
on the unit sphere (which is the surface area measure of K). Then {H−

ui
(ti), i ≥ 1}

is a collection of half-spaces whose boundaries are said to form a hyperplane process, 
inducing a tessellation of Rd, see [33]. The measure Sd−1(K, ·) is called the directional 
component of the tessellation. If Sd−1(K, ·) is an even measure (which is the case for 
an origin symmetric K), then the tessellation is stationary. Since all these half-spaces 
H−

ui
(ti) contain the origin in their interiors with probability one, their intersection is not 

empty and is a random set denoted by Z. Since the support of the directional component 
Sd−1(K, ·) of μ is not contained in any closed hemisphere, Z is almost surely bounded 
and, thus, is a random compact convex set in Rd. By the local finiteness of μ, Z is almost 
surely a polytope called the zero cell of the Poisson hyperplane tessellation.

The polar set to Z is the closed convex hull of the union of the polar sets to H−
ui

(ti), 
which are easily seen to be segments [0, t−1

i ui] with end-points at the origin and t−1
i ui. 

By the mapping theorem for Poisson processes, the points {t−1
i ui, i ≥ 1} constitute a 

Poisson point process on Rd \ {0} denoted by ΠK . The polar set Zo is the convex hull 
of the points from ΠK , and with probability one is a polytope which contain the origin 
in the interior.

Theorem 5.1. The sequence of random convex bodies (nXn)n∈N converges in distribution, 
as n → ∞, to the zero cell Z of the Poisson hyperplane tessellation introduced above. 
Furthermore, the random convex body n−1Xo

n converges in distribution to Zo as n → ∞.

Proof. We start with the second statement. Since each ξi almost surely belongs to the 
interior of K, nXn is a random compact convex set whose interior a.s. contains the origin. 
Hence, n−1Xo

n is indeed a random convex body. By [25, Theorem 1.8.14], it suffices to 
show that

P
{
n−1Xo

n ⊆ L
}
→ P {Zo ⊆ L} as n → ∞

for all L ∈ K d and lim infn→∞ P 
{
n−1Xo

n ⊆ L
}
↑ 1 as L ↑ Rd. Since the interior of Xo

n

a.s. contains the origin, it suffices to assume that L belongs to K d . In view of (5.2),
(0)
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P
{
n−1Xo

n ⊆ L
}

= P
{
n−1(K − ξi)o ⊆ L for all i = 1, 2, . . . , n

}
=

(
1 − P

{
n−1(K − ξ1)o � L

})n

=
(
1 − P

{
n−1Lo � (K − ξ1)

})n

=
(
1 − P

{
ξ1 /∈ K � n−1Lo

})n

.

By [21, Theorem 1] applied with2 C = K, A = K, P = B = W = {0}, Q = −(Lo) and 
ε = n−1, we have

lim
n→∞

nP
{
ξ1 /∈ K � n−1Lo

}
= lim

n→∞
n
Vd

(
K \ (K � n−1Lo)

)
Vd(K)

= 1
Vd(K)

∫
Sd−1

h(Lo, u)Sd−1(K, du). (5.3)

Note that the set K is gentle3 by Proposition 1 in [21] because it is a convex body and 
is topologically regular, that is, coincides with the closure of its interior. Hence,

P
{
n−1Xo

n ⊆ L
}
→ exp

⎛⎝− 1
Vd(K)

∫
Sd−1

h(Lo, u)Sd−1(K, du)

⎞⎠ as n → ∞.

The right-hand side coincides with P {Zo ⊆ L} because

P {Zo ⊆ L} = P {Lo ⊆ Z} = P {h(Lo, u) ≤ t for all (u, t) ∈ PK}

= exp
(
− μ

(
{(u, t) : h(Lo, u) > t}

))
= exp

(
− 1

Vd(K)

∫
Sd−1

h(Lo, u)Sd−1(K, du)
)
.

Since Zo is a.s. compact, lim infn→∞ P 
{
n−1Xo

n ⊆ L
}

= P {Zo ⊆ L} ↑ 1 as L ↑ Rd.
The convergence in distribution nXn → Z follows from the continuous mapping theo-

rem, since the transformation A �→ Ao is continuous on K d
(0), see [24, Theorem 4.2]. �

Remark 5.2. In a recent preprint [30], a particular case of Theorem 5.1 was proved for K
being a unit ball and Ξn replaced by a homogeneous Poisson process on K with intensity 
λ tending to infinity, see Theorem 1.2 therein. Our Theorem 5.1 holds also in the Poisson 
setting.

2 Note that the authors of [21] use a slightly different definition of the Minkowski difference involving the 
set L reflected with respect to the origin.
3 The definition can be found on p. 107 in [21].
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5.2. Convergence of intrinsic volumes and their moments

The intrinsic volumes V0, V1, . . . , Vd of a convex body L are defined by the Steiner 
formula

Vd(L + rB1(0)) =
d∑

j=0
rd−jκn−jVj(L), r ≥ 0, (5.4)

where κj = πj/2/Γ(1 + j/2) is the volume of the j-dimensional unit ball, see Eq. (4.8) 
in [32]. It is well known that all intrinsic volumes are continuous with respect to the 
convergence in the Hausdorff metric. Thus, we immediately obtain from Theorem 5.1
the following corollary.

Corollary 5.3. Assume that K ∈ K d
(0). Then, for all j = 0, . . . , d,

(Vj(nXn))j=0,...,d = (njVj(Xn))j=0,...,d
d−→ (Vj(Z))j=0,...,d as n → ∞.

With some additional efforts we can also deduce the convergence of all power moments.

Proposition 5.4. Assume that K ∈ K d
(0). Then, for all j = 0, . . . , d and m ∈ N,

lim
n→∞

nmjEVj(Xn)m = EVj(Z)m.

Proof. We need to check that the sequence (nmjV m
j (Xn))n∈N is uniformly integrable, 

for all m ∈ N and j = 0, . . . , d. It suffices to show that

sup
n∈N

(
nmjEVj(Xn)m

)
< ∞, (5.5)

for all m ∈ N and j = 0, . . . , d. By the Steiner formula (5.4), relation (5.5) holds if

sup
n∈N

EVd

(
nXn + B1(0)

)m
< ∞

for all m ∈ N. First, note that B1(y) intersects nXn if and only if there is a point 
z ∈ B1(y) such that Ξn ⊆ K − n−1z. In this case Ξn is also a subset of K + n−1B1(y). 
Hence,

EVd

(
nXn + B1(0)

)m
= E

∫
(Rd)m

1{B1(y1)∩nXn �=∅} · · ·1{B1(ym)∩nXn �=∅} d(y1, . . . , ym)

≤ E
∫
d m

1{Ξn⊆K+n−1B1(y1)} · · ·1{Ξn⊆K+n−1B1(ym)} d(y1, . . . , ym)

(R )
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=
∫

(Rd)m

P
{
Ξn ⊆ (K + n−1B1(y1)) ∩ · · · ∩ (K + n−1B1(ym))

}
d(y1, . . . , ym)

=
∫

(Rd)m

⎛⎝Vd

(
K ∩

(
K + n−1B1(y1)

)
∩ · · · ∩

(
K + n−1B1(ym)

))
Vd(K)

⎞⎠n

d(y1, . . . , ym).

Introducing the shorthand Kr := K+Br(0) and making a change of variables, we obtain

EVd

(
nXn + B1(0)

)m
≤

∫
(Rd)m

ndm

(
Vd

(
K ∩ (K1/n + y1) ∩ · · · ∩ (K1/n + ym)

)
Vd(K)

)n

d(y1, . . . , ym).

For each c > 0,

∫
(Rd)m

ndm1{‖y1‖<c/n}

(
Vd

(
K ∩ (K1/n + y1) ∩ · · · ∩ (K1/n + ym)

)
Vd(K)

)n

d(y1, . . . , ym)

≤
∫

(Rd)m

ndm1{‖y1‖<c/n}

(
Vd

(
K ∩ (K1/n + y2) ∩ · · · ∩ (K1/n + ym)

)
Vd(K)

)n

d(y1, . . . , ym)

=
∫
Rd

1{‖y1‖<c/n}dy1

∫
(Rd)m−1

ndm

(
Vd

(
K ∩ (K1/n + y2) ∩ · · · ∩ (K1/n + ym)

)
Vd(K)

)n

d(y2, . . . , ym)

= κdc
d

∫
(Rd)m−1

nd(m−1)

(
Vd

(
K ∩ (K1/n + y2) ∩ · · · ∩ (K1/n + ym)

)
Vd(K)

)n

d(y2, . . . , ym),

where κd is the volume of the unit ball. Iterating this bound yields the estimate

EVd

(
nXn + B1(0)

)m ≤ c0 +
m∑
j=1

cjIn(j),

where c0, c1, . . . , cm are nonnegative constants, which do not depend on n, and, for j ∈ N,

In(j) :=
∫

(Rd)j

1{‖yi‖≥c/n,i=1,...,j}n
dj

(
Vd

(
K ∩ (K1/n + y1) ∩ · · · ∩ (K1/n + yj)

)
Vd(K)

)n

d(y1, . . . , yj). (5.6)

Thus, it suffices to show that
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sup
n∈N

In(j) < ∞

for all j ∈ N. Note that the volume in the numerator vanishes whenever ‖yi‖ ≥ M for 
some i = 1, . . . , j and a suitable finite constant M = M(K) because then K∩ (K+yi) =
∅.

Fix an arbitrary C > 0. It is clear that there exists a δK,C ∈ (0, 1), such that, for all 
y ∈ Rd satisfying ‖y‖ ≥ C and all sufficiently large n ∈ N,

Vd(K ∩ (K1/n + y)) ≤ δK,CVd(K).

This bound yields that, for sufficiently large n ∈ N, the part of the integral in (5.6)
taken over the set {‖yi‖ ≤ M, i = 1, . . . , j} \ {‖yi‖ ≤ C, i = 1, . . . , j} is bounded by 
const · ndjδnK,C , which tends to zero as n → ∞. Thus, it suffices to check that

Ĩn(m) :=
∫

(Rd)m

1{‖yi‖∈[c/n,C],i=1,...,m}n
dm

(
Vd

(
K ∩ (K1/n + y1) ∩ · · · ∩ (K1/n + ym)

)
Vd(K)

)n

d(y1, . . . , ym), (5.7)

are uniformly bounded in n ∈ N, for each fixed m ∈ N and a suitable choice of c > 0
and C > 0.

It follows from [32, Eq. (10.1)] that there exist C > 0 and a > 0 (possibly depending 
on K) such that

Vd

(
K \ (K + ru)

)
≥ ar

for all u ∈ Sd−1 and r ∈ [0, C]. Furthermore, from the Steiner formula (5.4) it follows 
that there exists a b > 0 such that, for all n ∈ N,

Vd(K1/n) − Vd(K) ≤ b/n.

Fix arbitrary c > b/a. Combining the above estimates yields that

Vd

(
K \ (K1/n +ru)

)
≥ Vd

(
K \ (K+ru)

)
−
(
Vd(K1/n)−Vd(K)

)
≥ ar− b/n ≥ a(r−c/n),

for all u ∈ Sd−1, r ∈ [c/n, C] and sufficiently large n ∈ N. Thus,

Vd

(
K \ (K1/n + yi)

)
≥ a(‖yi‖ − c/n),

so that

Vd

(
K ∩ (K1/n + yi)

)
≤ 1 − Vd(K)−1a(‖yi‖ − c/n) =: 1 − a′(‖yi‖ − c/n),
Vd(K)
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for all yi with ‖yi‖ ∈ [c/n, C]. Note that the constants are adjusted in such a way that 
the right-hand side is always nonnegative on the domain {‖yi‖ ∈ [c/n, C], i = 1, . . . , m}. 
By passing to polar coordinates on the right-hand side of (5.7), we see that

Ĩn(m)

≤
∫

(Rd)m

1{‖yi‖∈[c/n,C],i=1,...,m}n
dm

(
1 − a′

(
max(‖y1‖, . . . , ‖ym‖) − c/n

))n

d(y1, . . . , ym)

=const ·
∫

[0,C−c/n]m

ndm
(
1 − a′ max(r1, . . . , rm)

)n
(
(r1 + c/n) · · · (rm + c/n)

)d−1 d(r1, . . . , rm)

=const ·
∫

[0,C−c/n]m

(
1 − a′n−1 max(s1, . . . , sm)

)n((s1 + c) · · · (sm + c)
)d−1 d(s1, . . . , sm)

≤const ·
∫

(0,∞)m

e−a′ max(s1,...,sm)((s1 + c) · · · (sm + c)
)d−1 d(s1, . . . , sm)

≤const ·
∫

(0,∞)m

e−a′m−1(s1+···+sm)((s1 + c) · · · (sm + c)
)d−1 d(s1, . . . , sm)

=const ·

⎛⎝ ∞∫
0

e−a′m−1s(s + c)d−1ds

⎞⎠m

< ∞

for all n ∈ N. The proof is complete. �
Remark 5.5. From the Hölder inequality we immediately obtain the convergence of all 
mixed moments of the vector (V0(nXn), V1(nXn), . . . , Vd(nXn)), as n → ∞, to the cor-
responding mixed moments of the vector of intrinsic volumes of the zero cell Z.

5.3. Convergence of point processes

The sets involved in the closed convex hull operation on the right-hand side of (5.2) are 
independent copies of the random compact set (K−ξ)o, where ξ is uniformly distributed 
in K. These n independent copies form a (binomial) point process

Ψn :=
{
(K − ξ1)o, . . . , (K − ξn)o

}
on the space K d

0 of compact convex sets containing the origin. By n−1Ψn we denote the 
scale transformation of Ψn, which is the point process composed of the sets n−1(K−ξi)o, 
i = 1, . . . , n.
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The Borel σ-algebra on K d
0 is induced by the Hausdorff metric. Let B0 be the family 

of Borel A ⊆ K d
0 \ {{0}} such that the closure of A in K d

0 does not contain {0}.4 A 
Borel measure μ on K d

0 \ {0} is said to be locally finite if μ(A ) < ∞ for all A ∈ B0. 
A sequence (μn)n∈N of locally finite measures on K d

0 \ {0} is said to converge vaguely
to a locally finite measure μ if μn(A ) → μ(A ) as n → ∞ for all A ∈ B0, which are 
continuity sets for the limiting measure. Equivalently, 

∫
fdμn →

∫
fdμ for all bounded 

continuous functions f : K d
0 \ {0} → R which vanish in a neighbourhood of {0} (in the 

Hausdorff metric).
The convergence in distribution of random measures on K d is understood with respect 

to the vague topology. This convergence concept applies to random counting measures 
(or point processes). Theorem A.2 in the Appendix yields the following result.

Theorem 5.6. The sequence of point processes (n−1Ψn)n∈N converges in distribution to 
the point process {[0, x] : x ∈ ΠK} on K d

0 .

While the atoms of n−1Ψn belong to K d
(0), the atoms of the limiting process do not, 

because they have empty interiors. This phenomenon is due to the fact that the family 
K d

(0) is not closed in K d.

6. Convergence of f-vectors of K-hulls of random samples

Throughout this section we always assume that K ∈ K d
(0) is strictly convex and 

regular.

6.1. Limit theorems for the f-vector

Lemma 4.2 yields that the finite family of convex bodies

LΞn
:= {(K − ξk)o : k = 1, . . . , n}

is in general position with probability one. Indeed, if we take x ∈ Rd such that Ξn ⊆ x +K

and ∂K+x contains ξi1 , . . . , ξil , then, with probability one, l ≤ d and the one-dimensional 
normal cones N(K + x, ξi1), . . . , N(K + x, ξil) are linearly independent, see Lemma A.1
in the Appendix.

Thus, with probability one the f-vector of Qn = convK(Ξn) is well defined and has 
all finite components. In view of Theorem 5.1, it is natural to expect that

f(Qn) = f(LΞn
) d−→ f(Zo) as n → ∞, (6.1)

4 For typographical reasons we shall write in what follows K d
0 \ {0} instead of K d

0 \ {{0}}.
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and also the convergence of moments (possibly, under further assumptions). Recall that 
Zo = conv(ΠK) is a.s. a polytope and f(Zo) = (f0(Zo), f1(Zo), . . . , fd−1(Zo)) is the 
f -vector of Zo in the usual sense. We confirm this by proving the following two results.

Theorem 6.1. Assume that K ∈ K d
(0) is strictly convex and regular. Then (6.1) holds.

Theorem 6.2. Assume that K ∈ K d
(0) is strictly convex and regular. Then, for every 

k = 0, . . . , d − 1 and every m ∈ N, we have

lim
n→∞

Efmk (Qn) = Efm
k (Zo) < ∞. (6.2)

Remark 6.3. From the Hölder inequality we immediately obtain the convergence of all 
mixed moments of the vector f(Qn), as n → ∞, to the corresponding mixed moments of 
the f -vector of Zo.

It is well known, see, for example, Corollary 2.13 and Theorem 2.14 from [34], that the 
f -vector of Zo is the reversed f -vector of Z, that is, fi(Zo) = fd−i−1(Z), i = 0, . . . , d −1. 
In particular, fd−1(Qn) converges to the number of vertices of the zero cell Z.

While it is genuinely difficult to calculate moments of the f -vector for the zero cell 
Z of an anisotropic tessellation (and even in the isotopic case all first moments have 
been obtained only recently in [15]), an explicit formula is exceptionally available for 
the expectation of f0(Z) = fd−1(Zo). If the directional distribution of the hyperplane 
tessellation is even, then

Ef0(Z) = 2−dd!Vd(L)Vd(Lo), (6.3)

see [31] and [33, p. 376]. The convex body L on the right-hand side is determined by 
the directional distribution of the hyperplane tessellation. In the special case, when 
this directional distribution is Sd−1(K, ·) and K is origin symmetric, the set L is the 
projection body of K, that is, the support function of L in direction u ∈ Sd−1 is equal to 
the (d − 1)-dimensional volume of the projection of K onto the hyperplane orthogonal 
to u. It is customary to denote the projection body of K by ΠK, see [32, Section 10.9], 
but we shall use the notation pK to avoid possible confusions with the Poisson point 
process ΠK .

Note that the scaling parameter of Sd−1(K, ·) does not matter, since it cancels out in 
the product of the volume of L and its polar body. For not necessarily origin symmetric 
K, the formula for Ef0(Z) seems to be unavailable in the literature. Using the same 
techniques as in [31], we calculate this value in Theorem A.3 in the Appendix. The 
formula reads as

Ef0(Z) = 1
d

∫
(h(pK,x))−dJ(x)dx, (6.4)
Sd−1
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where h(pK, x) is the support function of the projection body pK of K, see formula 
(A.5) below,

J(x) :=
∫

(Sd−1)d

[v1, v2, . . . , vd]1{〈v1,x〉≥0,...,〈vd,x〉≥0}Sd−1(K, dv1) · · ·Sd−1(K, dvd),

x ∈ Sd−1, (6.5)

and [v1, v2, . . . , vd] is the volume of the parallelepiped spanned by the vectors v1, . . . , vd. 
For an origin symmetric K, the quantity J(x) does not depend on x and is equal to the 
constant

J := 2−d

∫
(Sd−1)d

[v1, v2, . . . , vd]Sd−1(K, dv1) · · ·Sd−1(K, dvd) = 2−dd!Vd(pK).

In this case (6.4) reduces to (6.3) in view of

1
d

∫
Sd−1

(h(pK,x))−ddx = Vd((pK)o).

6.2. Proof of Theorem 6.1

Keeping in mind Theorem 5.6, we shall deduce Theorem 6.1 from the following lemma 
which establishes continuity of the f-vector in the sense of Definition 3.3 with respect to 
convergence of families of convex bodies regarded as point processes on K d

0 \ {0}.

Lemma 6.4. Let L (n) := {L(n)
i , i ≥ 1}, n ∈ N0, be a sequence of locally finite point 

processes on K d
0 \ {0}. Suppose that all sets in L (n), n ∈ N, are strictly convex, and 

L (n) → L (0) in the vague topology on K d
0 \ {0} as n → ∞. Further, assume the 

following:

(i) The sets in L (0) are in general position.
(ii) There exists a finite collection of singletons {x1, . . . , xM} such that

conv(L (0)) = conv{x1, . . . , xM} and

{xj} = L(0)
rj ∩ ∂ conv(L (0)), j = 1, . . . ,M,

for a set of pairwise distinct indices {r1, . . . , rM}.
(iii) The convex hull conv(L (0)) contains the origin in the interior.

Then, for all sufficiently large n ∈ N,

(a) the sets in L (n) are in general position;
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(b) f(L (n)) = f(L (0)) = f
(
conv(L (0))

)
;

(c) fd−1(L (n)) coincides with the number of (d − 1)-dimensional faces of conv(L (n)).

Proof. We start by showing that the imposed assumptions imply that we can restrict 
our attention to finite subfamilies of {L(n)

i , i ≥ 1}, n ∈ N0.
By (iii), there exists a ball B2r(0) such that

B2r(0) ⊆ Int
(
conv(L (0))

)
. (6.6)

Since L (0) is locally finite on K d
0 \ {0} and taking (ii) into account, the family L (0)

contains only a finite number of sets which intersect Bc
r(0), say, L(0)

1 , L(0)
2 , . . . , L(0)

l , and 

L
(0)
j ⊆ Br(0) for all j > l. By the imposed vague convergence, for all sufficiently large n ∈

N, the family L (n) contains exactly l sets which intersect Bc
r(0), say, L(n)

1 , L(n)
2 , . . . , L(n)

l , 
and

L
(n)
j → L

(0)
j as n → ∞, j = 1, . . . , l, (6.7)

where the convergence is understood in the Hausdorff metric. Furthermore, by the con-
tinuity of the convex hull operation, see [33, Theorem 12.3.5],

conv
( l⋃

j=1
L

(n)
j

)
→ conv

( l⋃
i=j

L
(0)
j

)
= conv(L (0)) as n → ∞. (6.8)

By (6.6) and the convergence in (6.8), Br(0) ⊆ conv
(⋃l

j=1 L
(n)
j

)
for all sufficiently large 

n, and we conclude that

conv
(
L (n)) = conv

( l⋃
i=1

L
(n)
i

)
(6.9)

and

conv
(
L (n)) → conv

(
L (0)) as n → ∞. (6.10)

In what follows we fix l and assume that n is picked so large that (6.9) holds.
Recall that the upper limit of a sequence of sets is the set of limits for all convergent 

subsequences of points selected from these sets. Furthermore, recall that the intersection 
operation is upper semicontinuous, meaning that the upper limit of intersections of two 
sets is a subset of the intersection of their upper limits, see [33, Theorem 12.2.6].

Proof of part (a). We argue by contradiction. If the sets in L (n) are not in gen-
eral position for infinitely many n ∈ N, then, by the imposed strict convexity and 
Proposition 3.6(ii), for every such n ∈ N there exist mn ∈ {0, 1, . . . , d − 1} and a face 
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F
(n)
mn ∈ Fmn

(
conv(L (n))

)
which is hit by L(n)

i1,n
, . . . , L(n)

ikn,n
, where kn ≥ mn + 2 and 

1 ≤ i1,n, . . . , ikn,n ≤ l. Since there are only finitely many possible values for mn, kn and 
i1,n, . . . , ikn,n, we can pick m ∈ {0, 1, . . . , d − 1}, k ≥ m + 2, and 1 ≤ i1, . . . , ik ≤ l, such 
that F (n)

m ∈ Fm

(
conv(L (n))

)
is hit by L(n)

i1
, . . . , L(n)

ik
for infinitely many n ∈ N.

As a face of conv(L (n)), the set F (n)
m is contained in an exposed face of conv(L (n)). 

By the definition of an exposed face, this means that

F (n)
m ⊆ conv(L (n)) ∩Hn, (6.11)

for a supporting hyperplane Hn of conv(L (n)). Let u(n) be the unit normal vector to 
Hn, so that

Hn =
{
x ∈ Rd : 〈x, u(n)〉 = h

(
conv(L (n)), u(n))},

where h
(
conv(L (n)), u(n)) is the support function of conv(L (n)) at u(n). By passing to 

a subsequence we can assume that u(n) → u(0) as n → ∞. This implies∣∣∣h( conv(L (n)), u(n))− h
(
conv(L (0)), u(0))∣∣∣

≤
∣∣∣h( conv(L (n)), u(n))− h

(
conv(L (n)), u(0))∣∣∣

+
∣∣∣h( conv(L (n)), u(0))− h

(
conv(L (0)), u(0))∣∣∣

≤
∥∥ conv(L (n))

∥∥ · ‖u(n) − u(0)‖ +
∣∣∣h( conv(L (n)), u(0))− h

(
conv(L (0)), u(0))∣∣∣

→ 0 as n → ∞, (6.12)

where ‖L‖ := sup
{
‖x‖ : x ∈ L

}
, and we have used the Lipschitz property of support 

functions (see, e.g., [32, Lemma 1.8.12]) and the fact that the convergence in (6.10) im-
plies pointwise convergence of the corresponding support functions. The above argument 
also implies that

lim sup
n→∞

Hn = lim
n→∞

Hn = H(0) :=
{
x ∈ Rd : 〈x, u(0)〉 = h

(
conv(L (0)), u(0))} (6.13)

is a supporting hyperplane of conv(L (0)).
By the Blaschke selection theorem, the sequence of convex sets (F (n)

m )n∈N has a con-
vergent subsequence. Passing to such a subsequence, assume that F (n)

m → F as n → ∞. 
We claim that the limit F is a subset of an exposed face of conv(L (0)). Indeed, letting 
n → ∞ in (6.11) and using upper semicontinuity of the intersection yield that

F = lim sup
n→∞

F (n)
m ⊆ lim sup

n→∞

(
conv(L (n)) ∩Hn

)
⊆ lim sup

n→∞
conv(L (n)) ∩ lim sup

n→∞
Hn = conv(L (0)) ∩H(0), (6.14)
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where the last equality is a consequence of (6.9) and (6.13). It remains to note that the 
dimension m′ of F is at most m and F is hit by L(0)

i1
, . . . , L(0)

ik
. The latter follows again 

from the upper semicontinuity of the intersection:

∅ 
= lim sup
n→∞

(
F (n)
m ∩ L

(n)
ij

)
⊆ lim sup

n→∞
F (n)
m ∩ lim sup

n→∞
L

(n)
ij

= F ∩ Lij , j = 1, . . . , k,

in view of (6.7). This contradicts the assumption that the sets in L (0) are in general 
position because (3.2) is violated for A = F . The proof of part (a) is complete.

Proof of part (b). The second equality in part (b) follows from the discussion in 
Example 3.8 because assumptions (i) and (ii) imply that the f -vector of conv(L (0)) is 
completely determined by the set {Lr1 , . . . , LrM } which in turn can be replaced by the 
set of singletons {x1, . . . , xM}. By the construction, the set of indices {r1, . . . , rM} is a 
subset of {1, 2, . . . , l} in view of the equality in (6.8). Without loss of generality and in 
order to avoid towering indices let us assume that l = M and rj = j for j = 1, . . . , M .

Let us prove the first equality in (b). Fix m ∈ {0, 1, . . . , d − 1} and put s :=
lim supn→∞

∑d−1
j=m fj(L (n)). By passing to a subsequence, assume that, for each n ∈ N, 

there exists a collection of s different (j + 1)-tuples, j ∈ {m, . . . , d − 1} of sets from {
L

(n)
1 , . . . , L(n)

l

}
such that for each of these tuples there exists a j-dimensional face of 

conv(L (n)), intersecting each set from the corresponding tuple. Our first goal is to show 
that

d−1∑
j=m

fj(L (0)) ≥ s = lim sup
n→∞

d−1∑
j=m

fj(L (n)), (6.15)

that is, for each aforementioned (j+1)-tuple there exists at least one face of conv(L (0))
of dimension at least j and which is hit by the limiting sets of the chosen (j + 1)-
tuple. The proof of (6.15) goes along similar lines as the proof of part (a). Namely, pick 
j ∈ {m, . . . , d − 1}, a (j + 1)-tuple 

{
L

(n)
i1,n

, . . . , L(n)
ij+1,n

}
and F (n)

j ∈ Fj(conv(L (n))) such 

that L(n)
ik,n

∩ F
(n)
j 
= ∅ for all k = 1, . . . , j + 1. By passing to subsequences, it is possible 

to assume that ik,n = ik for all k = 1, . . . , j + 1. Thus, from now on assume that for all 
n ∈ N, each L(n)

i1
, . . . , L(n)

ij+1
intersects F (n)

j ∈ Fj

(
conv(L (n))

)
. Let x(n)

ik
∈ L

(n)
ik

∩ F
(n)
k , 

k = 1, . . . , j + 1, and, by passing once again to subsequences, assume that, as n → ∞, 
x

(n)
ik

→ x
(0)
ik

for all k = 1, . . . , j + 1, and that F (n)
j → F . Since each face is a subset of an 

exposed face, F (n)
j is a subset of the support set F

(
conv(L (n)), u(n)) of conv(L (n)) in 

direction given by a unit vector u(n). By passing once again to a subsequence, assume 
that u(n) → u(0) as n → ∞. Then, F

(
conv(L (n)), u(n)) converges to a subset of an 

exposed face F
(
conv(L (0)), u(0)) of conv(L (0)), see (6.13) and (6.14) above, and F ⊆

F
(
conv(L (0)), u(0)). Therefore, for all k = 1, . . . , j + 1,

x
(0)
ik

∈ lim supL
(n)
ik

∩ F
(n)
j = L

(0)
ik

∩ F ⊆ L
(0)
ik

∩ F
(
conv(L (0)), u(0)),
n→∞
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Fig. 3. Graphical illustration for the proof of relation (6.16) for d = 3 and m = 2. A face Fm = F̃m =
conv{x1, x2, x3} of conv(L (0)) is contained in a hyperplane H passing through x1, x2, x3 and having a 
normal vector u; z is a point in the relative interior of F̃m. The sets L(n)

1 , L(n)
2 and L(n)

3 converge to the 
limiting sets (not depicted), which intersect F̃m at x1, x2 and x3, respectively. The dashed triangle is the 
sought face of conv(L (n)) which is obtained as a convex hull of appropriate points from L(n)

1 ∩ Bε(x1), 
L

(n)
2 ∩ Bε(x2) and L(n)

3 ∩ Bε(x3) for a sufficiently small ε > 0.

and, moreover, L(0)
ik

∩ F
(
conv(L (0)), u(0)) =

{
x

(0)
ik

}
by the imposed assumption (ii). 

Thus, the support set F
(
conv(L (0)), u(0)) (which is also a face because conv(L (0)) is a 

polytope) is intersected by L(0)
i1

, . . . , L(0)
ij+1

. The dimension of F
(
conv(L (0)), u(0)) is not 

smaller than m due to the imposed assumption (i). This completes the proof of (6.15).
In order to finish the proof of part (b) it remains to show that, for each m ∈

{0, 1, . . . , d − 1}, we have

lim inf
n→∞

d−1∑
j=m

fm(L (n)) ≥
d−1∑
j=m

fm(L (0)).

We shall actually prove that, for each m ∈ {0, 1, . . . , d − 1},

lim inf
n→∞

fm(L (n)) ≥ fm(L (0)), (6.16)

that is, for all sufficiently large n ∈ N and each m-dimensional face of conv(L (0))
there exists an m-dimensional face of conv(L (n)), which is hit by exactly m + 1 sets 
from {L(n)

1 , . . . , L(n)
l }. While, in view of (6.7), (6.10) and the imposed general position 

condition, the latter looks quite plausible, the rigorous proof is rather involved (see Fig. 3
for the illustration in case m = d − 1).

Fix an m-dimensional face Fm of conv(L (0)) for some m ∈ {0, 1, . . . , d − 1} and 
u ∈ N(conv(L (0)), Fm). Then Fm is a subset of the (d − 1)-dimensional hyperplane H
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orthogonal to u. By the assumptions (i) and (ii) M (L (0), Fm) is a collection of m +1 sets 
from L (0), which for simplicity is assumed to be {L(0)

1 , . . . , L(0)
m+1} and such that {xj} :=

L
(0)
j ∩Fm, j = 1, . . . , m +1. Note that Fm is the convex hull of affinely independent points 

{x1, . . . , xm+1} ⊆ H and the normal cone N(L(0)
j , xj) ⊃ N(conv(L (0)), xj) contains u, 

for all j = 1, . . . , m +1. If m < d − 1, extend this set to {x1, . . . , xd} by adding arbitrary 
fictitious points {xm+1, . . . , xd} from H in such a way that the points {x1, . . . , xd} are 
affinely independent. For every fictitious point added, introduce a fictitious set by letting 
L̃

(n)
j := L̃

(0)
j := {xj + tu : t ∈ [−c, 0]}, j = m + 2, . . . , d, n ∈ N, where c > 0 is an 

arbitrary positive constant. Finally, put

L̃
(n)
j = L

(n)
j and L̃

(0)
j := L

(0)
j for j = 1, . . . ,m + 1,

and denote by F̃m the convex hull of {x1, . . . , xd}.
The reason behind introducing these fictitious objects is the following. Recall that our 

goal is to construct an m-dimensional face of conv(L (n)) which is hit by (and only by) 
L

(n)
j , for j = 1, . . . , m + 1. We shall construct this face as an intersection of the convex 

hull conv(L (n)) with its appropriate supporting hyperplane, say, H̃n. If m < d − 1, 
neither such a face nor a supporting hyperplane H̃n is unique. By introducing fictitious 
points we remove these degrees of freedom and construct the supporting hyperplane H̃n

in a more or less straightforward way. Then we “forget” about fictitious points and sets 
and show that the constructed H̃n possesses the required properties.

Take an arbitrary point z from the relative interior of F̃m and fix a sufficiency small 
ε > 0 such that:

• ε is smaller than the distance from z to the relative boundary of F̃m;
• for arbitrary yi ∈ Bε(xi), i = 1, . . . , d, the points {y1, . . . , yd} are affinely indepen-

dent.

Clearly, z belongs to the convex hull of {y1, . . . , yd} for arbitrary yi ∈ Bε(xi) ∩ H, 
i = 1, . . . , d. Furthermore, z does not belong to the convex hull of any strict subfamily of 
sets from 

{
Bε(x1) ∩H, . . . , Bε(xd) ∩H

}
. Indeed, the convex hull of any such subfamily 

lies in the ε-neighbourhood of the relative boundary of F̃m and, therefore, does not 
contain z. For the rest of the proof the chosen u, z and the hyperplane H remain fixed. 
Put Dε = Dε(u) := H + Bε(0). Note that each ball Bε(xj), j = 1, . . . , d, is a subset of 
Dε.

Let Aε be the subset of the unit sphere formed by all vectors which are unit normals 
to the hyperplanes spanned by d affinely independent points y1, . . . , yd such that yj ∈
Bε(xj), j = 1, . . . , d. Note that Aε shrinks to {u} as ε ↓ 0. From assumption (ii) we 
infer that the normal cone N(L(0)

j , xj) has a non-empty interior for j = 1, . . . , m + 1. 
This follows from the fact that N(L(0)

j , xj) ⊇ N(conv(L (0)), xj) and xj is a vertex of the 

polytope conv(L (0)). The normal cone of the fictitious set L̃(0)
j at xj , for j = m +2, . . . , d, 
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has this property by construction. The reverse spherical image τ(L, ·), defined by (4.5), is 
continuous for every compact convex set L, see [32, Lemma 2.2.12]. Thus, by decreasing 
the chosen ε > 0 we can ensure that

τ(L̃(0)
j , Aε1) = {xj} for all j = 1, . . . , d and ε1 ∈ (0, ε). (6.17)

Since for all j = 1, . . . , m + 1 the set L(n)
j converges to L(0)

j in the Hausdorff metric 
as n → ∞, see (6.7), and the intersection of sets is upper semicontinuous, we conclude 
that L(n)

j hits Bε/2(xj) and L(n)
j ∩ Dε/2 is a subset of (L(0)

j ∩ Dε/2) + Bε/2(0) for all 
j = 1, . . . , m + 1 and all n ≥ n0 for a sufficiently large n0 ∈ N. Recall that L̃(n)

j is set 
to be equal to L̃(0)

j for all j = m + 2, . . . , d, which means that the above claims trivially 
hold for j = m + 2, . . . , d. Furthermore, from the inclusion

L̃
(n)
j ∩Dε/2 ⊆ L̃

(0)
j ∩Dε/2 + Bε/2(0) ⊆ Bε(xj), j = 1, . . . , d n ≥ n0,

and the choice of ε > 0 it follows that, for arbitrary yj ∈ L̃
(n)
j ∩Dε/2, j = 1, . . . , d, the 

points {y1, . . . , yd} are affinely independent.
Let L̄(n) be the convex hull of 

{
L̃

(n)
1 ∩Dε/2, . . . , L̃

(n)
d ∩Dε/2

}
, and consider the closed 

segment [z−εu, z+εu]. Since the projections of L̃(n)
j ∩Dε/2 on H are subsets of Bε(xj) ∩H, 

the projection of L̄(n) onto H contains z. Thus, the segment [z − εu, z + εu] intersects 
the boundary of L̄(n), and no point from this segment is a convex combination of points 
from any strict subfamily of 

{
L̃

(n)
1 ∩Dε/2, . . . , L̃

(n)
d ∩Dε/2

}
, since otherwise, z would have 

been such a combination. Define y := z + t0u, where t0 = sup
{
a ∈ R : y + au ∈ L̄(n)}.

Pick a unit vector v from N(L̄(n), y) and note that by construction v ∈ Aε, and, in 
particular, τ(L̃(0)

j , v) = xj for all j = 1, . . . , d in view of (6.17). Clearly, y ∈ F (L̄(n), v). 
Let us show that also y ∈ F ( ¯̄L(n), v), where ¯̄L(n) := conv

(
L̃

(n)
1 ∪ · · · ∪ L̃

(n)
d

)
. Assume 

that y does not belong to F ( ¯̄L(n), v). In this case, F ( ¯̄L(n), v) would not be a subset of 
Dε/2. Since F (L̃(n)

j , v) = L̃
(n)
j ∩ Hn, where Hn :=

{
x ∈ Rd : 〈x, v〉 = h(L̃(n)

j , v)
}
, and 

the intersection operation is upper semicontinuous, we have that

F (L̃(n)
j , v) ⊆ F (L̃(0)

j , v) + Bε/2(0) = τ(L̃(0)
j , v) + Bε/2(0) = Bε/2(xj) ⊆ Dε/2.

Note that

F ( ¯̄L(n), v) ⊆ conv
( d⋃

j=1
F (L̃(n)

j , v)
)
,

and, therefore, F ( ¯̄L(n), v) ⊆ Dε/2, which is a contradiction. The last display also implies 
that y ∈ F ( ¯̄L(n), v) is a convex combination 

∑d
j=1 cjyj of points yj ∈ F (L̃(n)

j , v), j =
1, . . . , d. Since F (L̃(n)

j , v) ⊆ Dε/2, we have also that yj ∈ L̃
(n)
j ∩Dε/2. Hence, the weights 

c1, . . . , cd are strictly positive, because y does not belong to the convex hull of any strict 
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subfamily of 
{
L̃

(n)
1 ∩Dε/2, . . . , L̃

(n)
d ∩Dε/2

}
. Since y belongs to the support set F ( ¯̄L(n), v), 

we have h( ¯̄L(n), v) = 〈y, v〉 and, therefore, using that the support function of the convex 
hull is equal to the maximum of support functions of the involved sets,

max
j=1,...,d

h(L̃(n)
j , v) = h( ¯̄L(n), v) = 〈y, v〉 =

d∑
j=1

cj〈yj , v〉 ≤
d∑

j=1
cjh(L̃(n)

j , v).

This is only possible if

h( ¯̄L(n), v) = h(L̃(n)
1 , v) = · · · = h(L̃(n)

d , v).

Thus, the hyperplane H̃n :=
{
x ∈ Rd : 〈x, v〉 = h(L̃(n), v)

}
intersects L(n)

1 , . . . , L(n)
m+1 at 

their support sets in direction v. Put

F (n)
m := conv

{
L

(n)
1 ∩ H̃n, . . . , L

(n)
m+1 ∩ H̃n

}
,

and note that the sets on the right-hand side are affinely independent singletons. Since 
all other sets in {L(n)

m+2, . . . , L
(n)
l } lie in the open half-space H̃−

n for all sufficiently large 

n ∈ N, we conclude that F (n)
m is an m-dimensional face of conv(L (n)).

Summarising, we have shown the existence of an m-dimensional face F (n)
m of 

conv(L (n)) which intersects Bε(xj), j = 1, . . . , m + 1, and so these faces are different 
for different faces Fm of conv(L (0)). This finishes the proof of (6.16).

Proof of part (c). Note that fd−1(L (n)) is not larger than the number of (d −
1)-dimensional faces of conv(L (n)). Consider a d-tuple of sets {L(n)

i1
, . . . , L(n)

id
} which 

contributes to fd−1(L (n)) and so generates at least one (d − 1)-dimensional face F (n)
d−1

of conv(L (n)). If it generates another (d − 1)-dimensional face F̄ (n)
d−1 for infinitely many 

n ∈ N, then, arguing as in the proof of (6.15) above, we conclude that there is a d-
tuple of sets {L(0)

i1
, . . . , L(0)

id
} from L (0) which generates two (d − 1)-dimensional faces 

of conv(L (0)). Since m = d − 1, the limiting face F
(
conv(L (0)), u(0)), constructed in 

the proof (6.15) as the limit of (d − 1)-dimensional faces of conv(L (n)), is of dimension 
d −1. This contradicts condition (ii) imposed on L (0) unless the limits of F (n)

d−1 and F̄ (n)
d−1

(in the Hausdorff metric) are identical and constitute a (d − 1)-dimensional face F (0)
d−1

of conv(L (0)). Each (d − 1)-dimensional face is an exposed one, and so the faces F (n)
d−1

and F̄ (n)
d−1 arise as intersections of conv(L (n)) with two hyperplanes H(n) and H̄(n), 

respectively. Denote by u(n) and ū(n) the unit normals to the faces F (n)
d−1 and F̄ (n)

d−1, 
respectively. Then

F
(n)
d−1 ⊆ {x ∈ H(n) : 〈x, ū(n)〉 ≤ h(F̄ (n)

d−1, ū
(n))} =: G(n),

F̄
(n)
d−1 ⊆ {x ∈ H̄(n) : 〈x, u(n)〉 ≤ h(F (n)

d−1, u
(n))} =: Ḡ(n).
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Note that G(n) (respectively, Ḡ(n)) is a subset of H(n) (respectively, H̄(n)) with the 
boundary H(n)∩H̄(n). Both H(n) and H̄(n) converge, as n → ∞, to a (d −1)-dimensional 
hyperplane H(0), which is a supporting hyperplane of conv(L (0)). The intersection of 
H(n) and H̄(n) is a (d − 2)-dimensional affine subspace which converges to a limit H ′, 
and so G(n) and Ḡ(n) converge to two subsets of H(0) bounded by H ′. Since F (n)

d−1 and 

F̄
(n)
d−1 have an identical limit as n → ∞ and these faces have disjoint relative interiors, 

the limit F (0)
d−1 is a subset of H ′. This is a contradiction, since the dimension of H ′ is 

equal to d − 2. �
Without assuming strict convexity of sets from L (n), the conclusion of Lemma 6.4 is 

wrong. For instance, this is the case if L(n)
1 and L(n)

2 are collinear segments converging 
to two singletons L1 and L2. The limiting collection is in general position, which is not 
the case for 

{
L

(n)
1 , L(n)

2
}
.

Proof of Theorem 6.1. We shall use the Skorokhod representation theorem, see [18, The-
orem 4.30] in conjunction with Theorem 5.6 and Lemma 6.4. First, we can use the 
Skorokhod representation theorem to pass to a new probability space such that conver-
gence in Theorem 5.6 holds almost surely. On this new probability space with probability 
one all the assumptions of Lemma 6.4 hold for the point processes L(n)

i := n−1(K− ξi)o, 
i = 1, . . . , n, n ∈ N, with the limit, as n → ∞, given by the point process L (0) com-
posed of L(0)

i := [0, xi], xi ∈ ΠK , where for simplicity we kept the original notation 
for the objects on the new probability space. Thus, on this new probability space there 
exists a (random) n0 ∈ N such that f(LΞn

) = f(Zo) for all n ≥ n0 with probability 
one. Going back to the original probability space, we get the required convergence in 
distribution. �
6.3. Proof of Theorem 6.2

We exploit the same approach as in the proof of Theorem 2.4 in [16]. In view of 
Theorem 6.1, it suffices to check the uniform integrability, which is equivalent to

sup
n∈N

Efmk (Qn) < ∞

for all k = 0, . . . , d − 1 and m ∈ N. By Corollary 3.5, the latter is equivalent to

sup
n∈N

Efm0 (Qn) < ∞ (6.18)

for all m ∈ N, since 
(
n
k

)
≤ nk, k = 0, . . . , d − 1.

By Proposition 3.6(ii),

f0(Qn) = f0
(
conv(LΞn

)
)
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=
n∑

i=1
1{(K−ξi)o is a vertex of the family LΞn}

≤
n∑

i=1
1{(K−ξi)o does not lie in the convex hull of (K−ξj)o, j=1,...,n, i �=j}.

Let (ηn)n∈N be a sequence of independent copies of ξ which is also independent of 
(ξn)n∈N . Raising both sides of the last display to the power m and taking expectations 
we see that (6.18) follows, once we check that

pn := nmP
{

for all j = 1, . . . ,m, (K − ηj)o � conv
( n⋃

i=1
(K − ξi)o

)}

= nmP
( m⋂

j=1
{K − ηj � Xn}

)
= O(1),

as n → ∞, for every fixed m ∈ N, where the constant in the Landau symbol may depend 
on m.

Put

χn := inf{t ≥ 0 : tK ⊇ Xn},

and note that χn ∈ (0, 1]. Using this variable we can bound pn as follows:

pn ≤ nmE
[
P

{
K − ηj � χnK for all j = 1, . . . ,m

∣∣∣Xn

}]
= nmE

(
1 − Vd(K � χnK)

Vd(K)

)m

= nmE
[(

1 − (1 − χn)d
)m]

≤ dmnmEχm
n = dmnm

1∫
0

P
{
t1/mK 
⊃ Xn

}
dt

= dmnm

1∫
0

P
{
Ko � t1/mXo

n

}
dt = dmnm

1∫
0

P {Ko � tXo
n}mtm−1dt. (6.19)

We shall now derive an appropriate upper bound for P {Ko � tXo
n}, which is uniform 

in t ∈ (0, 1]. To this end, we recall some concepts from convex geometry. The exoskeleton 
of K is the set exo(K) of points x ∈ IntK such that x does not have a unique nearest 
point from ∂K. Note that exo(K) has vanishing d-dimensional Lebesgue measure, see, 
for example, [21, p. 106]. For all x ∈ IntK \ exo(K), define the projection map p(K, x), 
which associates with x the closest point from ∂K. Write u(K, x) for the unit vector 
(p(K, x) − x)/ρ(∂K, x), where ρ(∂K, x) = ‖p(K, x) − x‖ denotes the distance from x to 
the set ∂K. Unlike [32, Chapter 4], where these concepts are used for x outside K, we 
employ them for x from the interior of K.
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Consider a supporting hyperplane H(K, p(K, x)). It is apparent that this is also the 
supporting hyperplane to the ball Bρ(∂K,x)(x) touching the boundary of K at p(K, x). 
Thus, u(K, x) belongs to the normal cone N(K, p(K, x)) and p(K, x) belongs to the 
support set F (K, u(K, x)).

For a set R ⊆ Sd−1 and t ≥ 0, put

TK(R, t) :=
{
x ∈ IntK \ exo(K) : p(K,x) ∈ τ(K,R), ρ(∂K, x) ≤ t

}
,

where τ(K, R) is the reverse spherical image of a set R defined at (4.5).
By [21, Theorem 1] applied with C = τ(K, R), A = K, P = B = W = {0}, Q = B1(0)

and ε = t, we have that

lim
t→0

t−1Vd

(
TK(R, t)

)
= Sd−1(K,R). (6.20)

Further, for R ⊆ Sd−1 and s ≥ 0, denote

R̂(s) :=
{
x ∈ Rd : x/‖x‖ ∈ R, ‖x‖ ≥ s

}
.

From Lemma 6.5 presented after this proof we see that there exist M ∈ N, ε > 0 and 
a finite disjoint family R1, . . . , RM ⊆ Sd−1 such that

(i) for all j = 1, . . . , M we have Sd−1(K, Rj) > 0;
(ii) Bε(0) ⊆ conv{y′1, . . . , y′M} for arbitrary y′j ∈ Rj , j = 1, . . . , M .

If yj ∈ R̂j(1), then y′j := yj/‖yj‖ ∈ Rj , for j = 1, . . . , M , so that

conv{y1, . . . , yM} ⊇ conv{y′1, . . . , y′M , 0} = conv{y′1, . . . , y′M} ⊇ Bε(0).

For j = 1, . . . , n, put

ζj := u(K, ξj)/ρ(∂K, ξj),

and note that

(K − ξ1)o ⊇ [0, ζ1].

Indeed, (K − ξ1)o ⊇ [0, ζ1] if and only if K − ξ ⊆ [0, ζ1]o, and [0, ζ1]o is a half-space 
H−

u(K,ξ1)
(
ρ(∂K, ξ1)

)
, which, by definition of u(K, ξ1) and ρ(∂K, ξ1), contains K − ξ1. 

Further, note that with probability one ξ1 ∈ TK(R, t) if and only if ζ1/‖ζ1‖ ∈ R and 
‖ζ1‖ ≥ t−1, that is, ζ1 ∈ R̂(t−1). Here we have used that p(K, ξ1) ∈ τ(K, R) if and only 
if u(K, ξ1) ∈ R.

We are now in position to derive a uniform upper bound on P {Ko � tXo
n}. Pick a > 0

so large that Ko ⊆ Ba(0). Choose R1, . . . , RM and ε > 0 satisfying (i) and (ii) above. 
By construction, if {ζ1, . . . , ζn} ∩ R̂j(t−1ε−1a) 
= ∅ for all j = 1, . . . , M , then
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Ba(0) ⊆ t conv{ζ1, . . . , ζn}.

Since

conv{ζ1, . . . , ζn} ⊆ Xo
n,

we obtain

P
{
Ko � tXo

n

}
≤ P

{
Ba(0) � t conv{ζ1, . . . , ζn}

}
≤

M∑
j=1

P
{
{ζ1, . . . , ζn} ∩ R̂j(t−1ε−1a) = ∅

}

=
M∑
j=1

(
1 − P

{
ζ1 ∈ R̂j(t−1ε−1a)

})n

=
M∑
j=1

(
1 − P

{
ξ1 ∈ TK(Rj , tεa

−1)
})n

.

Using (6.20) and monotonicity of Vd(TK(R, t)), whenever Sd−1(K, R) > 0, there exists 
a constant c0 = c0(R) > 0 such that

Vd

(
TK(R, t)

)
t

≥ c0, t ∈ (0, εa−1].

Therefore,

P
{
ξ1 ∈ TK(Rj , tεa

−1)
}

=
Vd

(
TK(Rj , tεa

−1)
)

Vd(K)

≥ minj=1,...,M c0(Rj)
Vd(K) tεa−1 =: c′0t, t ∈ (0, 1], j = 1, . . . ,M,

where c′0 > 0, and, thereupon,

P
{
Ko � tXo

n

}
≤ M(1 − c′0t)n, t ∈ (0, 1].

From (6.19) we finally obtain

pn ≤ dmnm

1∫
0

P
{
Ko � tXo

n

}
mtm−1dt

≤ dmnmmM

1∫
0

(1 − c′0t)ntm−1dt

= dmmM

n∫
0

(
1 − c′0s

n

)n

sm−1ds ≤ dmmM

∞∫
0

e−c′0ssm−1ds < ∞
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for all n ∈ N. The proof is complete. �
Lemma 6.5. Let Sd−1(K, ·) be the surface area measure of a convex body K. Then there 
exists a finite family of disjoint Borel sets R1, . . . , RM on the unit sphere and ε > 0, such 
that Sd−1(K, Rj) > 0 for all j = 1, . . . , M and, for all points yj ∈ Rj, j = 1, . . . , M , the 
convex hull of {y1, . . . , yM} contains the ball Bε(0).

Proof. Denote by SK the support of Sd−1(K, ·), so that SK is a closed subset of the 
unit sphere Sd−1. It is well known, see, for example, [32, Section 8.2.1], that the measure 
Sd−1(K, ·) has its centroid at the origin, that is, 

∫
Sd−1 uSd−1(K, du) = 0. Furthermore, 

SK is not a subset on any great subsphere of Sd−1. Hence, conv(SK) contains a ball 
B3ε(0) for a sufficiently small ε > 0.

Let (Pn)n∈N be a sequence of polytopes with vertices in SK such that Pn converges to 
conv(SK) in the Hausdorff metric as n → ∞. Take n0 ∈ N so large that B2ε(0) ⊆ Pn0 . 
Let z1, . . . , zM be the vertices of Pn0 , so that Pn0 = conv{z1, . . . , zM}. Pick δ > 0 such 
that the balls Bδ(zj) are disjoint for j = 1, . . . , M and put Rj(δ) := Bδ(zj) ∩ SK . Since 
conv{z1, . . . , zM} � Bδ(0) converges to Pn0 in the Hausdorff metric as δ ↓ 0, it is clear 
that we can further choose δ0 > 0 so small that Bε(0) ⊆ conv{z1, . . . , zM} � Bδ0(0). 
Thus, for an arbitrary choice of yj ∈ Rj(δ0) =: Rj , j = 1, . . . , M , we have Bε(0) ⊆
conv{y1, . . . , yM}. Since Rj is a relative neighbourhood of a point zj ∈ SK , we have 
Sd−1(K, Rj) > 0 for all j = 1, . . . , M . �
6.4. Limit theorems for the number of K-facets

In this subsection additionally to strict convexity and regularity we also assume that 
K is a generating set. The latter is needed to ensure applicability of Lemmas 4.7 and 
4.8.

Recall that, in general, fd−1(Qn) can be strictly smaller than the number of K-facets 
of Qn, see Example 4.9. Still, for the limiting polytope Zo in Theorem 6.1, the number 
of facets fd−1(Zo) coincides with the (d − 1)-st component of the f-vector for the family 
of segments {[0, x] : x ∈ ΠK}. By Lemma 4.7, the number of K-facets of Qn coincides 
with the number of (d − 1)-dimensional faces of conv(LΞn

). Further, by Lemma 6.4(c) 
the latter is equal to fd−1(LΞn

) for all n ≥ n0, where n0 ∈ N is random. Therefore, the 
number of K-facets of Qn converges in distribution to fd−1(Zo) as n → ∞.

In order to ensure the uniform integrability of the number of K-facets, we impose 
the following property on K. A strictly convex body K ∈ K d is said to satisfy a finite 
boundary intersection property if there is a finite number CK such that the cardinal-
ity of the intersection of ∂K + x1, . . . , ∂K + xd is at most CK for Lebesgue almost 
all x1, . . . , xd ∈ Rd. This property can be equivalently formulated as the fact that for 
Lebesgue almost all sets {x1, . . . , xd} ⊆ Rd, there are at most CK different translations 
of K which have these points on the boundary. It is easy to see that Euclidean balls and 
ellipsoids have this property with CK = 2. The same is the case for all strictly convex 
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bodies in the plane, see [12]. However, it is possible to construct examples of bodies 
which do not have a finite intersection property. We conjecture, however, that all origin 
symmetric strictly convex bodies have a finite boundary intersection property.

The finite boundary intersection property makes it possible to bound the number of 
K-facets of Qn in terms of the relevant component of the f-vector. Summarising, we 
obtain the following corollary.

Corollary 6.6. Assume that K ∈ K d
(0) is strictly convex, regular and is also a generating 

set. Then the number of K-facets of Qn converges in distribution to fd−1(Zo) as n → ∞. 
If K satisfies a finite boundary intersection property, then all power moments of the 
number of K-facets of Qn converge to the corresponding moments of fd−1(Zo) as n → ∞. 
In particular, the expected number of K-facets of Qn converges, as n → ∞, to the 
constant given at the right-hand side of (6.4). If K is also origin symmetric, this constant 
simplifies to 2−dd!Vd(pK)Vd((pK)o), where pK is the projection body of K.

Proof. The stated convergence in distribution has been already explained above. For the 
convergence of moments we argue as follows. If K satisfies a finite boundary intersection 
property, then, following the proof of Lemma 4.8, we see that each d-tuple of sets from 
LΞn

intersects at most CK of (d −1)-dimensional faces of conv(LΞn
). Hence, the number 

of K-facets of Qn is at most CK fd−1(Qn). The convergence of all moments follows now 
from the uniform integrability of (fmd−1(Qn))n∈N for all m ∈ N. �
6.5. Application to ball convex sets

Assume that K is the unit Euclidean ball B1(0). In this case, the limit of nXn is the 
zero cell Z of a stationary isotropic Poisson hyperplane tessellation. The Poisson process 
ΠB1(0) has intensity measure with density proportional to ‖x‖−(d+1), x ∈ Rd \ {0}, and 
its convex hull Zo is the polar set to Z.

In the isotropic case, the constants Efk(Z) have been calculated for k = 0 and k =
d − 1 in [16], see Theorem 2.4 and Remark 2.5 therein; and for arbitrary k in [15], see 
Theorem 2.1 therein. The next result follows from Theorems 6.1 and 6.2 together with 
Corollary 6.6.

Corollary 6.7. Assume that K is a unit ball in Rd. Then

f(Qn) = f(LΞn
) d−→ f

(
conv(ΠB1(0))

)
as n → ∞, (6.21)

and also the number of K-facets of Qn converges in distribution to fd−1
(
conv(ΠB1(0))

)
. 

We also have the convergence of power moments of all orders. In particular, the average 
number of K-facets of Qn converges, as n → ∞, to

Efd−1
(
conv(ΠB1(0))

)
= 2−dd!κ2

d, (6.22)
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where κd = πd/2/Γ(1 + d/2) is the volume of the d-dimensional unit ball.

The convergence of the expected number of K-facets to a constant given by (6.22)
has been proved for d = 2 in [9]5. If d = 2 the limiting constant is π2/2.

In our work, the limiting constant 2−dd!κ2
d in (6.22) appears in a somehow implicit 

way as a consequence of (6.1) and the uniform integrability. It would be nice to have 
(6.22) confirmed using direct calculations as has been done in [9] in dimension two. An 
attempt towards this goal has been made in the preprint [8], which, however, seems to 
remain incomplete up to date. However, the priority in discovering the correct constant 
in (6.22) should be given to [8], where this constant appears in its first version.
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Appendix A

A.1. Some properties of random samples from a convex body

The aim of this part is to show that the family LΞn
is in general position with 

probability one.

Lemma A.1. Assume that a convex body K ∈ K d is strictly convex and regular. Let 
ξ1, ξ2, . . . , ξd+1 be independent copies of a random variable ξ with the uniform distribution 
on K. Then

P
{
there exists x ∈ Rd such that {ξ1, ξ2, . . . , ξd+1} ⊆ (∂K − x)

}
= 0.

Furthermore, if 1 ≤ m ≤ d and η is a random vector in Rd such that {ξ1, . . . , ξm} ⊆
∂K − η a.s., then

5 Actually, the result has been proved for the average number of vertices but it is easy to see that for 
d = 2 the number of vertices and edges (K-facets) are the same, see p. 903 in [9].
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P
{
the one-dimensional normal cones N(K − η, ξi), i = 1, . . . ,m,

are linearly independent
}

= 1.

Proof. We start with the second statement and use the results of [27] about transver-
sal intersection of Lipschitz manifolds. Note that ∂K is a Lipschitz manifold since the 
boundary of K is C1. Furthermore, since K is convex we can work with usual normal 
cones instead of Clarke cones used in [27], see [6, Proposition 2.4.4]. The normal cones 
N(K, η + ξ1) and N(K, η + ξ2) are one-dimensional and different with probability one. 
Furthermore, N(K, η + ξ2) = −N(K, η + ξ1) with probability zero. Indeed, this equality 
holds only if η+ξ2 is equal to the support point of K in direction −N(K, η+ξ1), which is 
a singleton. Therefore, with probability one the Lipschitz manifolds ∂K+ξi, i = 1, . . . , d, 
intersect transversally, see [27, Section 6]. By Lemma 6 of this cited work, there exists 
an m-dimensional linear subspace of the linear hull of N(K, η + ξi), i = 1, . . . , m. In 
particular, this means that these normal cones are linearly independent.

Consider the random set

Y :=
d⋂

i=1
(∂K − ξi).

From the above proof with m = d, we see that, for almost all realisations of ξ1, . . . , ξd
and each y ∈ Y , the convex hull of the normal cones N(K − y, ξ1), . . . , N(K − y, ξd) has 
nonempty interior in Rd. It is obvious that Y ⊆ ∂Ȳ , where

Ȳ :=
d⋂

i=1
(K − ξi) = K � {ξ1, . . . , ξd}.

At any y ∈ Y , the normal cone N(Ȳ , y) is the convex hull of the normal cones N(K −
ξi, y), i = 1, . . . , d, and so is of full dimension in Rd. Thus, strict convexity and regularity 
of K yield that Sd−1

(
K, N(Ȳ , y)

)
> 0. Since the cones N(Ȳ , y) are different for different 

y, we deduce that the set Y is at most countable.
Then {ξ1, ξ2, . . . , ξd+1} ⊆ (∂K − x) if and only if x ∈ Y and ξd+1 + x ∈ ∂K. The 

probability that such an x exists is at most P {ξd+1 + Y ∩ ∂K 
= ∅}. This probability 
vanishes, since the distribution of ξd+1 is absolutely continuous, ξd+1 is independent of Y
and Y is at most countable. Alternatively, the first statement can be derived by checking 
that

P
{

dimH

( d⋂
i=1

(∂K − ξi)
)

= 0
}

= 1,

using Theorem 13.12 and Corollary 8.11 from [23], where dimH denotes the Hausdorff 
dimension. Note that this proof does not require regularity nor strict convexity of K, 
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which results in a weaker statement that Y has the Hausdorff dimension zero instead of 
being at most countable. �
A.2. Vague convergence of measures on the family of convex compact sets

Let X be a random convex set in K d
0 \ {0}, that is, X a.s. contains the origin. Its n

independent copies constitute a binomial point process denoted by Ψn.

Theorem A.2. Let (Ψn)n∈N be a sequence of binomial processes on K d
0 \ {0}, and let Ψ

be a locally finite Poisson process on K d
0 \ {0}. Then n−1Ψn converges in distribution 

to Ψ if and only if n−1Zn converges in distribution to a random compact convex set Z
as n → ∞, where Zn (respectively, Z) is the convex hull of the union of the sets from 
Ψn (respectively, Ψ).

Proof. Denote the intensity measure of the limit process Ψ by μ, and let Ψn :=
{X1, . . . , Xn} consist of n independent copies of a random convex set X with distri-
bution ν. Note that both μ and ν are measures on K d

0 \ {0}.
It is well known (as a simple version of the Grigelionis theorem for general binomial 

processes, see, e.g., [7, Proposition 11.1.IX] or [19, Corollary 4.25] or [25, Theorem 4.2.5]) 
that n−1Ψn converges in distribution to Ψ if and only if μn(·) := nν(n·) vaguely converges 
to μ on K d

0 \ {0} as n → ∞. In other words,

nP
{
n−1X ∈ A

}
→ μ(A ) as n → ∞ (A.1)

for all A ∈ B0 and such that A is a continuity set for μ.
Introduce subfamilies of K d

0 \ {0} by letting

AL := {A ∈ K d
0 \ {0} : A ⊆ L},

where L ∈ K d
0 \ {0} is an arbitrary compact convex set containing the origin and which 

is distinct from {0}. We first prove that the vague convergence μn → μ follows from 
(A.1) with μ-continuous sets of the form A c

L taken instead of general A .
Fix an ε > 0 and let L0 := Bε(0) be the closed centred ball of radius ε. It is always 

possible to ensure that A c
L0

is a continuity set for μ. For each A ∈ B0, let

μ̃n(A ) :=
μn(A ∩ A c

L0
)

μn(A c
L0

) , n ≥ 1, (A.2)

and define μ̃ by the same transformation applied to μ. Then μ̃n is a probability measure 
on K d

0 \ {0} and so on K d.
It is known that μ̃n converges in distribution to μ̃ if and only if μ̃n(AL) → μ̃(AL)

for all L ∈ K d such that AL is a continuity set for μ̃ and μ̃(AL) ↑ 1 if L increases to 
the whole space, see [25, Theorem 1.8.14]. The latter is clearly the case, since Ψ has a 
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locally finite intensity measure, hence, at most a finite number of its points intersects 
the complement of Br(0) for any r > 0.

It obviously suffices to assume in (A.1) that A is closed in the Hausdorff metric. 
Then there exists an ε > 0 such that each A ∈ A is not a subset of Bε(0) =: L0. Then 
A ∩ A c

L0
= A , so that μ̃n(A ) = μn(A )/μn(A c

L0
) and μ̃(A ) = μ(A )/μ(A c

L0
). Finally, 

note that the convergence of the denominator in (A.2) follows from (A.1) for A = A c
L0

and recall that L0 is chosen so that AL0 is μ-continuity set.
Therefore, it is possible to check (A.1) only for A = A c

L , meaning that n−1Ψn con-
verges in distribution to Ψ if and only if

nP
{
n−1X � L

}
→ μ(A c

L) as n → ∞ (A.3)

for all L ∈ K d
0 \ {0} such that AL is a continuity set for μ.

By [25, Theorem 1.8.14], n−1Zn converges in distribution to Z if and only if

P
{
n−1Zn ⊆ L

}
→ P {Z ⊆ L} as n → ∞ (A.4)

for all L ∈ K d
0 such that L is a continuity set for Z, that is, P {Z ⊆ L} = P {Z ⊆ IntL}, 

and P {Z ⊆ L} ↑ 1 as L increases to the whole space. The latter condition is the case by 
the assumed compactness of Z. Since

P {Z ⊆ L} = exp{−μ(A c
L)},

L is a continuity set for Z if and only if AL is a continuity set for μ.
Finally, note that

P
{
n−1Zn ⊆ L

}
=

(
1 − P

{
n−1X ∈ A c

L

})n

,

so that (A.3) is equivalent to (A.4). �
A.3. The expected number of vertices in the zero cell of the anisotropic Possion 
tessellation

Recall that the zero cell Z is the intersection of all half-spaces H−
ui

(ti), where PK =
{(ti, ui) : i ≥ 1} is the Poisson process on (0, ∞) × Sd−1 introduced in Subsection 5.1. 
The next theorem provides a formula for the expected number Ef0(Z) of vertices of the 
random polytope Z.

Let Hi := Hui
(ti) be the boundary of H−

ui
(ti). Denote by μ̂ the intensity measure of 

the Poisson hyperplane process {Hi : i ≥ 1} on the affine Grassmannian A(d, d − 1) of 
all (d − 1)-dimensional affine subspaces of Rd.

Theorem A.3. Let Z be the zero cell of the anisotropic Poisson tessellation induced by 
the hyperplane process {Hui

(ti) : i ≥ 1}. Then formula (6.4) holds true.
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Proof. Without loss of generality we may and do assume that Vd(K) = 1. We start by 
noticing that

h(pK,x) := 1
2

∫
Sd−1

|〈x, u〉|Sd−1(K, du) =
∫

Sd−1

〈x, u〉1{〈x,u〉≥0}Sd−1(K, du), (A.5)

which follows from the relation a1{a≥0} = (a + |a|)/2, a ∈ R, and the fact that ∫
Sd−1 uSd−1(K, du) = 0. Hence, h(pK, x) is indeed the support function of the pro-

jection body pK of K, see [32, Eq. (5.80)]. Note also that h(pK, x) is equal to the 
μ̂-content of the set of H ∈ A(d, d − 1) such that x /∈ H−.

Let f be an arbitrary nonnegative measurable function. By repeating verbatim the 
proof given in the Appendix of [31], it can be checked that∫

(A(d,d−1))d

f(x)1{H1∩···∩Hd={x}}dμ̂(H1) · · ·dμ̂(Hd) =
∫
Rd

f(x)J(x)dx,

where J(x) is given at (6.5). Using this equality with f(x) := e−h(pK,x) and the multi-
variate Mecke equation, see [33, Cor. 3.2.3], we obtain

Ef0(Z) = 1
d!

∑
i1≥1,...,id≥1

1{Hi1 ,Hi2 ,...,Hid
intersect at a vertex of Z}

= 1
d!

∫
(A(d,d−1))d

P{H1, . . . , Hd intersect at a vertex of

Z ∩H1 ∩ · · · ∩Hd}dμ̂(H1) · · ·dμ̂(Hd)

= 1
d!

∫
(A(d,d−1))d

e−h(pK,x)1{H1∩···∩Hd={x}}dμ̂(H1) · · ·dμ̂(Hd)

= 1
d!

∫
Rd

e−h(pK,x)J(x)dx.

Passing to the polar coordinates and using that h(pK, tu) = th(pK, u) and J(tu) = J(u)
for all t > 0 and u ∈ Sd−1, we obtain

Ef0(Z) = 1
d!

∞∫
0

∫
Sd−1

e−th(pK,u)J(u)td−1dtdu

= 1
d!

∫
Sd−1

J(u)
∞∫
0

e−ssd−1(h(pK,u))−ddsdu = 1
d

∫
Sd−1

(h(pK,u))−dJ(u)du.

The proof is complete. �
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