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Synthetic data generation for optical flow 
evaluation in the neurosurgical domain 

Abstract: Towards computer-assisted neurosurgery, scene 
understanding algorithms for microscope video data are 
required. Previous work utilizes optical flow to extract spatio-
temporal context from neurosurgical video sequences. 
However, to select an appropriate optical flow method, we 
need to analyze which algorithm yields the highest accuracy 
for the neurosurgical domain. Currently, there are no 
benchmark datasets available for neurosurgery. In our work, 
we present an approach to generate synthetic data for optical 
flow evaluation on the neurosurgical domain. We simulate 
image sequences and thereby take into account domain-
specific visual conditions such as surgical instrument motion. 
Then, we evaluate two optical flow algorithms, Farneback and 
PWC-Net, on our synthetic data. Qualitative and quantitative 
assessments confirm that our data can be used to evaluate 
optical flow for the neurosurgical domain. Future work will 
concentrate on extending the method by modeling additional 
effects in neurosurgery such as elastic background motion. 

Keywords: Neurosurgery, surgical microscope, optical flow, 
evaluation 

1 Introduction 

Worldwide, more than 13 million neurosurgical interventions 
are conducted annually [1]. Thereby, neurosurgeons need a 

surgical microscope, which provides them a well-illuminated, 
stereoscopic view on the surgical site (see Fig. 1). To reduce 
the surgeon's enormous intraoperative workload, there is a 
need for computational assistance in neurosurgery. This can be 
achieved by scene understanding algorithms for microscope 
video data. 
 
Spatio-temporal variations contain important information for 
automated video understanding, which can be extracted by 
optical flow. The optical flow captures the apparent motion of 
objects in a video sequence. For the neurosurgical domain, we 
show that optical flow is a powerful tool for domain-agnostic 
instrument localization [3]. Although we prove the benefits of 
optical flow, we did not yet investigate the choice of the 
algorithms due to lack of evaluation data. 
 
The question which optical flow algorithm yields highest 
accuracy on certain video data is addressed by benchmarking. 
Benchmark datasets consist of video sequences with 
corresponding ground truth. The common metric for optical 
flow accuracy is endpoint error [4]. Existing datasets such as 
FlyingChairs [5] and MPI-Sintel [6] are arguably different 
from neurosurgical data. To achieve high accuracy on the 
neurosurgical domain, optical flow algorithms must perform 
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Figure 1: Top row: Intraoperative scenes from our neurosurgical
microscope data. Bottom row: Optical flow for the scenes shown
above, estimated by PWC-Net [2]. Optical flow is displayed using 
HSV space. Hue denotes optical flow direction. Saturation decodes 
the normalized flow magnitude. 
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well given challenging visual conditions: low texture tissue, 
blur, specularly reflective surfaces, and large amplitude 
motion. While in other medical domains methods exist to 
generate synthetic data for optical flow evaluation [7], there 
are presently no such methods for neurosurgery.  
 
Contributions. Here, we present a method to generate 
synthetic neurosurgical microscope data for optical flow 
evaluation. This data takes into account the variety of surgical 
instruments and challenging visual conditions present in 
neurosurgery. In our experiments, we compare the accuracy of 
two state-of-the-art optical flow algorithms on the generated 
data. 

2 Method 

We present the approach for synthetic data generation through 
simulation of the microscope field of view (FOV). 

2.1 Synthetic data generation approach 

Evaluation of optical flow requires a sequence of at least two 
images and the corresponding optical flow ground truth. To 
evaluate optical flow algorithms, we generate short sequences 
of abstract surgical actions in the microscope FOV. From 
clinical recordings, we concluded that the majority of motion 
is caused by surgical instruments. Therefore, our approach 
focuses on simulating instrument motion.  

 
Our simulation is inspired by the geometric constraints during 
neurosurgical interventions. Typically, the surgeon operates 
under a microscope with an instrument in each hand (see Fig. 
2 (a)). We model this situation in our simulation (see Fig. 2 
(b)). According to discussions with surgical experts, the 
surgeon's instruments point towards the location of surgical 
action. We refer to this location as activity center, 𝑝  (see Fig. 
2 (c)). We model this by simulating instrument tip motion 
around a (non-visible) activity center. To achieve plausible 
instrument body motion, we constrain each instrument body i 
by a prismatic-spherical joint at the random location 𝑝 ,  
(possible surgeon's hand locations). 

 
The data generation process consists of three steps. 
 
(1) Motion modelling. Since optical flow evaluation requires 
only short temporal motion sequences, we abstain from 
simulating the complete surgery. Instead, we describe 
instrument motion by a simple randomized model (see Fig. 2 

Figure 2: (a) Clinical set-up in neurosurgery: the neurosurgeon
operates with two instruments under the microscope (© Inselspital,
Bern University Hospital, Dept. of Neurosurgery). (b) Simulation
set-up: Two instruments act inside the field of view of a microscope.
The instrument's pose is defined by a spherical-prismatic joint at 𝒑𝒉,𝒊, which represents the surgeon's hand. (c) Clinical recording
from our data: scene with marked activity center and instruments.
(d) Modeling in our simulation: activity center 𝒑𝒂𝒄 and instruments 
with tip locations 𝒑𝒕,𝒊. (e) Motion model in our simulation: The
instruments are linked to the activity center by a spring.
Additionally, a randomly oriented force (green) is applied to the
tips. 
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(e)). For each new sequence, the activity center 𝑝  is set 
randomly. Its acceleration 𝒗𝒂𝒄  is modeled by a Gaussian 
distribution in eq. 1, 
 𝒗𝒂𝒄 = 𝒩 𝟎,𝚺𝒂𝒄𝟐 ,    (1) 

where 𝚺𝒂𝒄 is tuned manually to match the clinical data. 
Possible motions are limited inside the FOV. 
 
The instrument tip motion 𝒗𝒕,𝒊 is modeled by an attraction 
force towards the activity center. Additionally, we introduce a 
random acceleration term. The velocity of the instrument tip 𝒗𝒕,𝒊  is described by eq. 2, 
 𝒗𝒕,𝒊 = 𝑘 𝒅𝒊→𝒂𝒄 + 𝒩 𝟎,𝚺𝒊𝟐 ,   (2) 

whereas 𝒅𝒊→𝒂𝒄 describes the vector to 𝑝 . Attraction of 
activity center 𝑘  and random motion component 𝚺𝒊 are also 
adjusted manually. We enforce the instruments to stay within 
the FOV by increasing 𝑘  upon leaving the FOV. Collisions of 
instrument bodies are avoided by collision detection routines.  
 
(2) Instrument shape variation. Neurosurgical interventions 
are characterized by a high variability of instrument types and 
instrument shapes, [8] lists more than 100 different 
instruments. Thus, accurate modeling of all existing 
neurosurgical instruments is impossible. Instead, we simulate 
the shape variety by generating arbitrary instrument shapes 
using structured domain randomization. 
 
Our approach consists of three main operations. Each 
operation is inspired by properties of existing instruments (see 
Fig. 3 (a)). First, we create the instrument axis as straight line 
in cylinder coordinates (𝑧,𝜙, 𝑟). Then, we manipulate the 
instrument axis by inserting a random kink (see Fig. 3 (b)) 
and/or bending the axis by inserting Beziére curves (see Fig. 3 
(c)). Third, we extrude a cross-section along the instrument 
axis. All instruments generated in our approach have rotational 
symmetric cross-sections, which depend on the radius 

𝑟 𝑧  along the z-axis. The radius function 𝑟 𝑧  is determined 
by random combination of elementary functions, including 
low-order polynomials, exponential and trigonometric 
functions.  
 
Moreover, some neurosurgical instruments such as bi-polar 
coagulator or forceps consist of two body parts. Therefore, to 
model instruments with two body parts, we clone the extruded 
instrument bodies with a certain probability. We apply a 
random transformation 𝑻 to the two instrument body parts 
relative to the instrument tip 𝑝 , . By translation and slight 
rotation, the intersection point of the bodies is moved along 
the instrument axis. 
 
(3) Background augmentation and visual property 
simulation. To increase the degree of realism in our 
simulation, we include still images from neurosurgical video 
recordings as background. Including these images prior to 
rendering allows simulation of characteristic mirroring effects 
on the instruments. To simulate realistic instrument reflection, 
we incorporate specular textures. To achieve a realistic 
lighting set-up of the microscopes, we model a co-axial light 
source. Furthermore, to simulate the usually limited depth of 
field in neurosurgical video data we apply artificial blur. 
 
Implementation. The simulation approach was implemented 
in the open-source framework Blender. First, we generate 
instruments according to the described model. Next, we create 
instrument motion sequences of arbitrary length. Optical flow 
output is directly obtained from Blender. 

Figure 3: (a) shows commonly used neurosurgical instruments that we take as motivation for our shape variation methods. (b) - (e) depict 
our shape variation methods: (b) and (c) display our approach for instrument axis manipulation. (d) shows the variation of instrument cross 
section. (e) depicts our method to generate two-part instruments. 
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2.2 Experimental setup for optical flow 
evaluation 

We evaluate our synthetic data w.r.t. accuracy of two state-of-
the-art optical flow algorithms, Farneback1 [9] and PWC-Net2 
[2]. For our analysis, we generate a dataset NeurOF 
comprising 1087 sequences, each with 10 images at a 
resolution of 960 x 540. Background images were inserted 
from video recordings of 2 tumor, 2 vascular and 2 spine cases, 
which were conducted at Inselspital Bern, Switzerland with a 
ZEISS KINEVO 900 surgical microscope. For comparison, 
we evaluate two public datasets, namely FlyingChairs [5] and 
MPI-Sintel [6]. We evaluate the accuracy of estimated optical 
flow 𝑣 ,    versus ground truth 𝑣 ,    by means of 
endpoint error in eq. 3, 
 𝐴𝐸𝑃𝐸 =  ∑ 𝑣 , −  𝑣 ,,  . (3) 

3 Results 

First, we present example images as generated by our method. 
 
We evaluate them qualitatively w.r.t. realism and image 
quality. Additionally, we present the generated optical flow 

 

 
1 OpenCV implementation. Parameters: pyramid scale = 0.5, levels 

= 3, window size = 15, iterations = 3, size pixel neighborhood = 5, STD 
for smoothing derivatives = 1.2 

ground truth. The synthetic scene shown in Fig. 4, 5 (a)-(d) 
prove that our method generates image data that resembles 
clinical neurosurgical data. Comparing clinical data (Fig. 1) 
and synthetic data (Fig. 4, 5) we observe similar visual 
appearances. The computed optical flow from the two 
algorithms in our evaluation, Farneback and PWC-Net (see 
Fig. 4, 5 (e)-(f)), indicate our data can be used to assess optical 
flow accuracy. 
 
Table 1: Numeric results for AEPE for Farneback and PWC-Net on 
different datasets. PWC-Net performs significantly better than 
Farneback on all three datasets. The AEPE for NeurOF is lower 
than for FlyingChairs and MPI-Sintel for both, Farneback and PWC-
Net. 

Dataset Farneback PWC-Net (large) 

FlyingChairs 8.18 1.44 

MPI-Sintel (final) 11.35 3.7 

NeurOF 2.48 0.81 

 
Next, we quantitatively assess the accuracy of these two 
optical flow algorithms on our synthesized data. According to 
the numerical results (see Table 1), PWC-Net performs at 
lower AEPE on NeurOF than Farneback. Qualitative results in 
Fig. 4, 5 support our numerical findings. The lower AEPE for 
PWC-Net than Farneback are in line with numeric results on 
the public datasets FlyingChairs and MPI-Sintel (see Table 1). 

2 PWC-Net large, implementation and weights 
(FlyingChairs/FlyingThings3D cycle) by 
github.com/philferriere/tfoptflow 

Figure 4: Example scene generated by our method. (a) shows the generated scene at timestep 𝑻 = 𝟎, (b) depicts timestep 𝑻 = 𝟏. (c) 
displays the overlay of (a) and (b) to highlight the motion. (d) shows the optical flow ground truth data, while (e) is the estimated optical 
flow using Farneback and (f) the flow estimated by PWC-Net. Optical flow is displayed using HSV space. Hue denotes optical flow
direction. Saturation decodes the normalized flow magnitude. 
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In direct comparison, the AEPE on NeurOF is lower than for 
FlyingChairs and MPI-Sintel. This observation is expected 
since NeurOF models only foreground instrument motion, 
while background motion is zero. 

4 Conclusions 

We demonstrate a synthetic data generation approach for the 
evaluation of optical flow on the neurosurgical domain. Our 
approach captures various effects, which are relevant for this 
domain such as large instrument motion amplitude and 
specular reflections. We verify the quality of the generated 
data through visual inspection w.r.t. optical flow calculation. 
Numerical results show that PWC-Net performs better than 
Farneback. However, our data models only instrument 
motions while the background is fixed. Future work will 
address simulation of a non-rigid background to further 
improve realism. Then, the benchmark can be extended by 
evaluating more state-of-the-art optical flow algorithms. 
Although our experiments focus on using the data generation 
approach for optical flow evaluation, our method potentially 
can also improve other computer-assisted surgery 
applications. 
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Figure 5: Further example scene generated by our method; captions see Fig. 4. 
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