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Evolutionary adaptation often occurs by the fixation of beneficial
mutations. This mode of adaptation can be characterized quanti-
tatively by a spectrum of adaptive substitutions, i.e., a distribution
for types of changes fixed in adaptation. Recent work establishes
that the changes involved in adaptation reflect common types
of mutations, raising the question of how strongly the muta-
tion spectrum shapes the spectrum of adaptive substitutions. We
address this question with a codon-based model for the spec-
trum of adaptive amino acid substitutions, applied to three large
datasets covering thousands of amino acid changes identified in
natural and experimental adaptation in Saccharomyces cerevisiae,
Escherichia coli, and Mycobacterium tuberculosis. Using species-
specific mutation spectra based on prior knowledge, we find
that the mutation spectrum has a proportional influence on the
spectrum of adaptive substitutions in all three species. Indeed,
we find that by inferring the mutation rates that best explain
the spectrum of adaptive substitutions, we can accurately recover
the species-specific mutation spectra. However, we also find that
the predictive power of the model differs substantially between
the three species. To better understand these differences, we
use population simulations to explore the factors that influence
how closely the spectrum of adaptive substitutions mirrors the
mutation spectrum. The results show that the influence of the
mutation spectrum decreases with increasing mutational supply
(Nμ) and that predictive power is strongly affected by the number
and diversity of beneficial mutations.

mutation bias | adaptation | proteins | molecular evolution |
population genetics

The spectrum of adaptive substitutions is a distribution of types
of changes fixed in adaptation. A systematic empirical picture

of the spectrum of adaptive substitutions is beginning to emerge
from methods of identifying and verifying individual adaptive
changes at the molecular level. The most familiar method is
the retrospective analysis of adaptive species differences, often
in cases where multiple substitutions target the same protein,
e.g., changes to photoreceptors involved in spectral tuning (1),
changes to adenosine triphosphatase (ATPase) involved in car-
diac glycoside resistance (2), or changes to hemoglobin involved
in altitude adaptation (3). Other retrospective analyses focus on
cases of recent local adaptation, such as the repeated emergence
of antibiotic-resistant bacteria (4, 5) or herbicide-resistant plants
(6). In addition, experimental studies of adaptation in the labo-
ratory provide large and systematic sets of data on the spectrum
of adaptive substitutions (7, 8). While the first two types of
studies tend to focus on specific target genes, the third approach,
combined with genome sequencing, casts a much broader net,
covering the entire genome. Such data were rare just 15 y ago,
but they are now sufficiently abundant—cataloging thousands of
adaptive events—that accounting for the species-specific spec-
trum of adaptive substitutions represents an important challenge.

One aspect of this challenge is to understand the role of
mutation in shaping the spectrum of adaptive substitutions. Sys-
tematic studies of the distribution of mutational types in diverse

organisms (9–17) have demonstrated the presence of a variety
of biases, including transition bias and GC:AT bias, as well as
CpG bias and other context effects (for review, see ref. 18). At
the same time, multiple studies have now shown that adaptive
substitutions are enriched for mutationally likely changes (5, 19–
27). For instance, the influence of a mutational bias favoring
transitions is evident in the evolution of antibiotic resistance
in Mycobacterium tuberculosis (5). Likewise, the evolution of
increased oxygen affinity in hemoglobins of high-altitude birds
shows a tendency to occur at CpG hotspots (24).

Such studies have shown effects of specific types of mutation
bias using statistical tests for asymmetry, i.e., tests for a significant
excess of a mutationally favored type, relative to a null expec-
tation of parity. A more general question is how strongly the
entire mutation spectrum shapes the spectrum of adaptive sub-
stitutions. That is, the entire mutation spectrum reflects (simul-
taneously) all relevant mutation biases, because it describes the
relative rates of the different mutation types. Mutation spectra
have been experimentally characterized in a diversity of species
(9–17), and these universally reveal some form of mutation bias
in that the different mutation types do not occur with the same
relative rates. Such biased mutation spectra shape the spectra
of adaptive substitutions to some degree that is, in principle,
quantifiable and measurable.

Significance

How do mutational biases influence the process of adaptation?
A common assumption is that selection alone determines the
course of adaptation from abundant preexisting variation. Yet,
theoretical work shows broad conditions under which the
mutation rate to a given type of variant strongly influences its
probability of contributing to adaptation. Here we introduce a
statistical approach to analyzing how mutation shapes protein
sequence adaptation. Using large datasets from three different
species, we show that the mutation spectrum has a propor-
tional influence on the types of changes fixed in adaptation.
We also show via computer simulations that a variety of
factors can influence how closely the spectrum of adaptive
substitutions reflects the spectrum of variants introduced by
mutation.
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Here, we provide an approach to answer this more general
question, based on modeling the spectrum of missense mutations
underlying adaptation as a function of the nucleotide mutation
spectrum. More specifically, we use negative binomial regres-
sion to model observed numbers of adaptive codon-to-amino-
acid substitutions as a function of codon frequencies and per-
nucleotide mutation rates, which we estimate from published
data on mutation frequencies. This modeling framework allows
us to measure the influence of mutation bias on adaptive evo-
lution in terms of the regression coefficient associated with the
mutation spectrum.

We separately apply this approach to three large datasets of
missense changes associated with adaptation in Saccharomyces
cerevisiae, Escherichia coli, and M. tuberculosis. We find that, in
each case, the regression on the mutation spectrum is significant,
with a regression coefficient close to 1 (proportional effect) and
significantly different from zero (no effect). This indicates that
mutational biases play an important role in determining which
mutations, among those that are beneficial, underlie molecular
adaptation. Whereas the ability to predict the spectrum of adap-
tive substitutions differs substantially among the three species,
in each case we find that experimentally determined mutation
spectra provide better model fits than the vast majority of ran-
domized mutation spectra, confirming the relevance of empirical
mutation spectra outside of the controlled conditions in which
they are typically measured. Moreover, we show that by inferring
the optimal mutational spectrum based on the spectrum of
adaptive substitutions, we can accurately recover species-specific
patterns of mutational bias previously documented via mutation-
accumulation experiments or patterns of neutral diversity.
Finally, we use simulations of a population model to explore
the possible reasons for differences in predictability of the
spectrum of adaptive substitutions. As expected, the impact of
the mutation spectrum decreases as the total mutation supply
(Nμ) increases. However, other factors are important, such
as the size and heterogeneity (in adaptive value) of the set of
adaptive mutations.

Results
Data and Model. We curated a list of previously reported missense
substitutions associated with adaptation for each of three species:
S. cerevisiae, E. coli, and M. tuberculosis (Fig. 1 A and B and
Methods). Note that “substitution” here refers to an evolutionary
change, whereas we restrict the term “mutation” to mutational
changes or categories, following the definitions provided in
SI Appendix. For S. cerevisiae, the substitutions were associated
with adaptation to high salinity (28), low glucose (28), and rich

media (29), as well as the genetic stress of gene knockout (30);
for E. coli, the substitutions were associated with adaptation
to temperature stress during laboratory evolution (8); for
M. tuberculosis, the substitutions were identified in clinical
isolates resistant to one or more of 11 antibiotics or antibiotic
classes (5). Whereas the M. tuberculosis dataset is composed
entirely, or almost entirely, of bona fide adaptive changes
that have been experimentally verified to confer antibiotic
resistance (5), the datasets for S. cerevisiae and E. coli are likely
contaminated with hitchhikers, i.e., mutations that are not drivers
of adaptation, but reached a high frequency due to linkage with a
driver. Below, we first present our results under the assumption
that substitutions in each dataset are exclusively adaptive and
then use simulations to assess the robustness of our conclusions
to various degrees of contamination.

Each dataset consists of a list of events of putatively adap-
tive missense substitution, each of which can be defined by a
specific initial and final genomic state. For example, the sub-
stitution defined by a G→C transversion in the second posi-
tion of codon 315 of katG in M. tuberculosis, which changes
Ser (AGC) to Thr (ACC), confers resistance to the antibiotic
isoniazid (31). In our dataset, we observe 445 independent in-
stances of adaptation via this specific genomic alteration; for
the sake of brevity we describe this as observing 445 “events”
corresponding to this specific adaptive “path.” Here, to define
a spectrum of adaptive substitutions, we further aggregate these
adaptive missense substitutions into types of changes. Possi-
ble types of changes include nucleotide-to-nucleotide, codon-
to-codon, codon-to-amino-acid, and amino acid-to-amino acid
changes, each of which results in a different level of aggrega-
tion of the mutational events. We focus on codon-to-amino-
acid changes, which we track only by the initial codon and final
amino acid of the substitution, without regard to the specific gene
or amino acid position where the substitution occurred. Given
that there are 354 such types of codon-to-amino-acid changes
allowed by the standard genetic code, the spectrum of adaptive
substitutions for each species is a 354-element vector n, where
each element n(c, a) is a count of the number of events of single-
nucleotide changes from codon c to amino acid a (Fig. 1C and
Methods). Table 1 reports the total number of mutational paths
and events, as well as the number of nonzero elements in the
spectrum of adaptive substitutions (out of 354) for each dataset.

Our goal is to quantify how strongly the mutation spectrum
shapes the spectrum of adaptive substitutions. To do so, we
specify a phenomenological model that treats each element in the
spectrum of adaptive substitutions as the product of the starting
codon frequency and the relevant mutation rate, raised to an

A B C D E

Fig. 1. Workflow. (A and B) We use data from laboratory evolution experiments (E. coli and S. cerevisiae) and clinical isolates (M. tuberculosis) (A) to curate
a list of genetic changes associated with adaptation for each species (B). (C) From each list of adaptive changes, we construct the spectrum of adaptive
substitutions n. Each element in this spectrum n(c, a) corresponds to one of the 354 distinct changes from codon c to amino acid a that can be produced by
a single-nucleotide mutation under the standard genetic code, and tallies the number of adaptive events for a specific codon-to-amino-acid change. (D) We
perform negative binomial regression to model the influence of mutation bias on the spectrum of adaptive events, using codon frequencies derived from
genome sequences and experimentally characterized mutation spectra. (E) We use the fitted model to predict the spectrum of adaptive substitutions.
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Table 1. Data and negative binomial regression

Data Influence of mutation spectrum
Species Paths Events β pβ

S. cerevisiae 534 713 1.05 ± 0.08 <10−16

E. coli 492 602 0.98 ± 0.14 <10−11

M. tuberculosis 283 4,413 0.85 ± 0.23 <10−3

Shown are the observed numbers of paths and events for adaptive
changes in the three datasets, along with calculated values for the mutation
coefficient β (with SE) and its P value.

exponent β representing the degree of mutational influence, e.g.,
β = 0 would indicate no influence. More specifically, we model
the expected number E[n(c, a)] of adaptive substitutions from
codon c to amino acid a as being directly proportional to the
genomic frequency f (c) of codon c [i.e., f (c) is the number of
times codon c appears in protein-coding regions of the genome
divided by the total number of codons in protein-coding regions
of the genome] and the total mutation rate μ(c, a) of codon c to
codons for amino acid a raised to the power of β, as follows:

E[n(c, a)]∝ f (c)μ(c, a)β . [1]

Taking the logarithm of this equation gives

logE[n(c, a)] = β0 + log f (c) + β logμ(c, a), [2]

where β0 is the logarithm of the constant of proportionality
(Methods and SI Appendix). This formulation allows us to es-
timate β0 and β from our observed datasets using negative
binomial regression, which is appropriate for counts data that
are overdispersed (32), as is the case for the observed spectra of
adaptive substitutions.

Given the form of this regression, β represents a coefficient of
mutational influence, capturing the effect of the entire mutation
spectrum on the entire spectrum of adaptive substitutions. An
inferred value of β = 0 indicates that E[n(c, a)] does not depend
on μ(c, a), implying that the mutation spectrum has no influence
on the spectrum of adaptive substitutions; when β = 1,E[n(c, a)]
is directly proportional to μ(c, a), indicating a strong influence of
the mutation spectrum on the spectrum of adaptive substitutions;
values of β between 0 and 1 indicate an intermediate influence.

Population-genetic theory and prior simulation studies suggest
a variety of factors likely to influence β, including population
size, absolute mutation rates, fitness landscape architecture, and
whether adaptation is short-term or long-term (33–36). In partic-
ular, prior results suggest that the supply of beneficial mutations
will often influence β.

When new mutations are sufficiently rare, beneficial mutations
sweep through the population one at a time, resulting in the
so-called origin-fixation (37) or strong-selection-weak-mutation
(SSWM) (38) regime. In this regime, the substitution rate is di-
rectly proportional to the mutation rate, implying β ≈ 1 (33, 37).
When the beneficial mutation supply is high, multiple adaptive
mutations may compete against each other, resulting in “clonal
interference” (39). Due to clonal interference, late-arising mu-
tant alleles with larger selection coefficients may prevent the
fixation of early-arising alleles favored by mutation, decreasing
the influence of mutation bias (33, 35) and leading to an expected
reduction in β.

Mutation Bias Strongly Influences Adaptation in Three Distinct
Species. To what extent does the mutation spectrum influence
the outcome of adaptive evolution? To answer this question,
we used empirical mutation spectra generated in prior studies
from mutation-accumulation experiments or patterns of neutral
diversity. These prior studies were carried out independently
of the studies used to characterize the spectrum of adaptive
substitutions. The three species differ substantially in their

mutation spectra (SI Appendix, Fig. S1A). M. tuberculosis shows
the greatest heterogeneity, with a 14.7-fold range of rates,
whereas S. cerevisiae and E. coli have smaller ranges of 5.6- and
4.7-fold, respectively. The species also differ substantially in the
rates of individual types of nucleotide mutations; e.g., the rate of
G→C transversion is 2.1-fold higher in S. cerevisiae than in E. coli
(SI Appendix, Fig. S1B), whereas the rate of A→T transversions
is 2.5-fold higher in S. cerevisiae (SI Appendix, Fig. S1C) and
2.9-fold higher in E. coli (SI Appendix, Fig. S1D) than in
M. tuberculosis.

Our first observation is that, when we reduce the adaptive
missense substitutions to the six types of underlying nucleotide
mutations, the distribution closely follows the mutation spec-
trum for each species (Fig. 2 A–C). Specifically, the correla-
tion coefficients between the mutation rates of the six mutation
types and their frequencies among adaptive substitutions are
0.83 (P = 0.041), 0.91 (P = 0.012), and 0.93 (P = 0.008) for
S. cerevisiae, E. coli, and M. tuberculosis, respectively. However,
this naive comparison ignores potentially confounding effects
of the genetic code and codon usage, where in particular the
three species differ substantially in their patterns of codon usage
(SI Appendix, Fig. S1 E–G). For example, GAA (Glu) is the most
frequent codon in S. cerevisiae (frequency 0.045) and the second
most frequent codon in E. coli (frequency 0.039), but it appears
less frequently in M. tuberculosis (frequency 0.016). Thus, we
might expect adaptive GAA→AAA (Glu→Lys) changes to occur
more frequently in S. cerevisiae and E. coli than in M. tubercu-
losis, merely by merit of the greater frequency of GAA in the
former two species. To account for this type of influence, we
apply negative binomial regression to the codon-based model
described above (Eq. 2). The results, shown in Table 1, reveal
a strong and statistically significant influence of mutation bias
in all three species, with each of the 95% confidence intervals
containing β = 1 (proportional effect), and excluding β = 0 (no
effect). Specifically, for S. cerevisiae, β = 1.05 (95% CI, 0.89
to 1.21); for E. coli, β = 0.98 (95% CI, 0.71 to 1.25); and for
M. tuberculosis, β = 0.85 (95% CI, 0.31 to 1.37), so that in all
three species, differences in mutation rates produce approxi-
mately proportional changes in the spectrum of adaptive sub-
stitutions. Whereas such strong mutational effects are typically
associated with neutral evolution, theory (33, 35, 36, 40), prior
evidence (5, 19–27), and our simulations (below) indicate that
such effects are possible even when all fixations are selective.
What this suggests about the roles of mutation and selection is
addressed further in Discussion.

Prior work has uncovered an enrichment of transition muta-
tions in the M. tuberculosis dataset, which was attributed to the
high transition–transversion ratio in the mutation spectrum of
this species (5). We therefore wondered whether the entire muta-
tion spectrum provides a better model fit than just the transition–
transversion ratio. To find out, we used a likelihood-ratio test
to compare two nested models that differ in the mutation term:
a model that uses only the transition–transversion ratio and a
model that uses both the transition–transversion ratio and the
rest of the mutation spectrum (Methods). For all three species,
we find that the model using both the transition–transversion
ratio and the rest of the mutation spectrum provides signifi-
cantly better fits and that β ≈ 1 on both terms of the regression
(SI Appendix, Table S2).

Having seen the influence of the mutation spectrum on the
spectrum of adaptive substitutions, we can also ask to what extent
the mutation spectrum, the pattern of codon usage, and the struc-
ture of the standard genetic code are jointly sufficient to explain
the spectrum of adaptive substitutions observed in each species.
Fig. 2 D–F shows the observed frequency of each type of codon-
to-amino-acid change in relation to its predicted frequency under
our fitted models. We observe from Fig. 2 D–F that despite the
mutation spectrum having its maximum theoretically predicted
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Fig. 2. Predicted and observed substitutions at the nucleotide and codon-to-amino-acid levels. (A–C) The frequency of nucleotide changes among adaptive
substitutions is plotted as a function of the empirical mutation rate for (A) S. cerevisiae, (B) E. coli, and (C) M. tuberculosis. The symbols correspond to the six
different types of point mutations (A, Inset). (D–F) The predicted spectra of adaptive substitutions are shown in relation to the observed spectra of adaptive
substitutions for (D) S. cerevisiae, (E) E. coli, and (F) M. tuberculosis. See SI Appendix, Table S3 for model predictions using codon frequencies alone. For
visualization purposes, a pseudocount of one event and a jitter of range [0,0.3] were added to both the observed and predicted numbers of events in D–F.
The dashed diagonal lines indicate y = x.

influence (β ≈ 1) in each species, the predictive power of our
model nonetheless differs substantially among the three species,
with the correlation between predicted and observed frequencies
dropping dramatically from 0.68 in S. cerevisiae, to 0.41 in E. coli,
to only 0.16 in M. tuberculosis. While all of these correlations
are statistically significant (Table 2), it is clear that the predictive
power of a model depending only on mutation rates, codon
frequencies, and the structure of the standard genetic code differs
between these three species, an observation that we will return to
shortly.

Randomization Tests Confirm the Relevance of Empirical Mutation
Spectra for Adaptive Evolution. The species-specific mutation
spectra employed above reflect either 1) mutation-accumulation
experiments under laboratory conditions in the absence of
selection (S. cerevisiae, E. coli), or 2) putatively neutral
single-nucleotide polymorphisms in natural populations (M.
tuberculosis). The observation that the 95% confidence inter-
val for the inferred values of the coefficient of mutational
influence β includes one in all three species highlights the

Table 2. Model predictions

Prediction model Spectrum elements
Species Correlation [CI] Pcorr Nonzero Entropy

S. cerevisiae 0.68 [0.62, 0.73] <10−16 265 0.91
E. coli 0.41 [0.31, 0.49] <10−14 176 0.80
M. tuberculosis 0.16 [0.05, 0.26] 0.003 111 0.53

Shown are the Pearson correlations between observed and predicted spec-
tra of adaptive substitutions, their 95% confidence intervals and P values,
the number of nonzero elements in the spectrum of adaptive substitutions
(out of 354), and the entropy of the spectrum of adaptive substitutions
normalized so that uniformity corresponds to an entropy of 1.

relevance of these species-specific mutation spectra for adaptive
evolution.

To explore the relevance of precise estimates of the mutation
spectrum more thoroughly, we repeated our regression above 106

times for each species, each time using a randomized mutation
spectrum instead of the empirical spectrum (each randomized
spectrum was generated by drawing six random uniform num-
bers and then normalizing the sum to 1). We then calculated
the difference between the log-likelihood of the model fit with
the randomized mutation spectrum and the log-likelihood of
the model fit with the empirical mutation spectrum. When this
difference is positive, the fit using the randomized mutation
spectrum explains the spectrum of adaptive substitutions better
than the fit using the empirical mutation spectrum, and when this
difference is negative the empirical mutation spectrum provides
the better explanation. Fig. 3 A–C shows that the empirical
mutation spectra almost always explain the spectra of adaptive
substitutions better: Randomly generated spectra outperform
the observed spectrum with frequency 0.002 for S. cerevisiae,
0.037 for E. coli, and 0.042 for M. tuberculosis. While so far we
have attempted to predict the spectrum of adaptive substitutions
based on experimentally characterized mutation spectra, the
strong relationship between the mutational and adaptive spectra
in these three species suggests that it might also be possible to
estimate the mutation spectrum from the spectrum of adaptive
substitutions. To do this, we again fitted a negative binomial
model but treated the rates of the six possible types of single-
nucleotide mutations as free parameters, which we estimated
using maximum likelihood. Fig. 3 D–F shows that the inferred
mutation spectra strongly resemble the experimentally charac-
terized mutation spectra, with Pearson correlation coefficients of
0.945 (P = 0.004) for S. cerevisiae, 0.960 (P = 0.002) for E. coli,
and 0.837 (P = 0.038) for M. tuberculosis. Thus, it is possible to
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A B C

D E F

Fig. 3. Empirical mutation rates explain the spectrum of adaptive substitutions better than randomized rates. In A–C, the white bars show the distribution
of log-likelihood differences for randomized vs. empirical mutation rates for (A) S. cerevisiae, (B) E. coli, and (C) M. tuberculosis. A value of 0 (dashed vertical
line) means that a randomized rate performs as well as the empirical mutation rate. The fraction of randomized rates providing a better model fit than the
empirical rates (i.e., right of 0) is 0.2%, 3.7%, and 4.2% for A, B and C, respectively. Data are based on 106 randomized rates. Note that A–C have different
limits on their horizontal axes. In D–F, the empirical mutation rate is shown in relation to the inferred mutation rate on a double-logarithmic scale for
(D) S. cerevisiae, (E) E. coli, and (F) M. tuberculosis. Symbol types correspond to D, Inset. The dashed diagonal line indicates y = x.

accurately recover species-specific mutation spectra directly from
species-specific spectra of adaptive substitutions.

What Factors Influence the Predictive Power of the Model? Al-
though the analysis above reveals a statistically significant and
approximately directly proportional contribution of mutational
biases to the spectrum of adaptive substitutions for all three
datasets, there is considerable variation in the strength of the
correlation between the predicted and observed spectra of adap-
tive substitutions, with this correlation being strongest and most
significant for S. cerevisiae and weakest and least significant for
M. tuberculosis (Table 2 and Fig. 2 D–F).

One immediate hypothesis is that this variation in predictive
power is driven by differences in the completeness of our esti-
mates of the spectrum of adaptive substitutions. Even though
our datasets include hundreds to thousands of adaptive events
per species, a substantial fraction of the 354 possible types of
codon-to-amino-acid changes are missing from the spectrum for
each species (Table 2), a situation that likely arises due to both
finite sample size effects and the limited diversity of distinct
adaptive paths under a specific ecological circumstance (e.g.,
only a limited number of mutations confer resistance to any
given antibiotic). Indeed, we note that at a qualitative level,
the smaller the number of missing codon-to-amino-acid changes,
the stronger the correlation between predicted and observed
spectra of adaptive substitutions (Table 2). Moreover, when we
aggregate the adaptive substitutions into just six types of distinct
nucleotide changes, all six types are well represented and there
is a strong correlation with the mutation spectrum for all three
species (Fig. 2 A–C).

To evaluate the influence of this kind of sampling effect on
the predictive power of our model, we first simulated random

data under the codon model assuming β = 1, sampling adaptive
events according to their expected frequencies, based on the
empirical codon frequencies and mutation spectrum of each
species, but restricting the sampled events to the observed set
of nonzero elements for each species-specific spectrum of adap-
tive substitutions. We then used negative binomial regression to
fit this simulated spectrum of adaptive substitutions and mea-
sured the correlation between the simulated spectrum of adap-
tive substitutions and the spectrum of adaptive substitutions
predicted by the fitted model. We repeated this process 103 times
for each species to obtain a distribution of correlations. These
distributions are shown in SI Appendix, Fig. S2. On average, the
correlations decreased from S. cerevisiae (0.76) to E. coli (0.75)
to M. tuberculosis (0.61), suggesting that sampling effects are
partly responsible for differences in model fits between the three
species. However, SI Appendix, Fig. S2 also shows that the cor-
relations for these simulated datasets are considerably stronger
than those obtained with models fitted to the observed spectra
of adaptive substitutions, and the decrease is far less dramatic
than the drop from 0.68 to 0.41 to 0.16 noted above (triangles in
SI Appendix, Fig. S2). This suggests that factors other than sam-
pling effects also modulate the predictive power of our modeling
framework.

To address a combination of additional factors, we turned to
population-genetic simulations of evolution in a haploid genome,
with variable parameters for population size N, mutation rate
μ, and fraction of beneficial mutations B. The model genome
consists of 500 codons subject to neutral synonymous muta-
tions and nonneutral missense mutations, where a fraction B
of missense mutational paths are beneficial, with a positive se-
lection coefficient drawn from an exponential distribution, and
other missense paths are deleterious, with effects drawn from
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a reflected gamma distribution (Methods). Note that the inclu-
sion of both advantageous and deleterious mutations allows our
simulations to capture both the effects of interference between
multiple advantageous mutations (clonal interference) (39, 41)
and the effects of selection against linked deleterious alleles (i.e.,
background selection) (42). We implemented the simulations in
SLiM v3.4 (43). For each run of the simulation, we recorded
the identity of all adaptive mutations on the first sequence to
reach fixation, repeating this process 1,000 times to produce a
simulated spectrum of adaptive substitutions similar in size to
our empirical datasets. For each combination of N, μ, and B, we
simulated 50 datasets and analyzed them using negative binomial
regression (Methods).

Previous theoretical work suggests that mutational supply Nμ
will modulate the influence of mutational biases on the spectrum
of adaptive substitutions (33–36, 44). In particular, the simplest
effect of increasing Nμ is that multiple beneficial mutations are
typically simultaneously present in the population, competing
with each other, so that the adaptive mutation that ultimately
fixes in the population is determined more by selective differ-
ences between these segregating mutations than by which ben-
eficial mutation becomes established in the population first. This
expectation is confirmed by Fig. 4A, which shows the inferred
values of β relative to Nμ for different proportions of beneficial
mutations B. At the lowest mutation supply, β is approximately
one, reflecting the direct proportionality expected for the origin-
fixation regime (33, 37). As the mutation supply increases, β
tends toward zero, reflecting a diminished influence of the muta-
tion spectrum on adaptation. At the same time, the distribution
of estimates for β becomes more dispersed (Fig. 4A), and the

individual estimates become both less significant and less certain,
as indicated by increasing average P values and increasingly large
confidence intervals (SI Appendix, Fig. S3). Similarly, the pre-
dictive power of the model decreases with increasing mutation
supply, as measured by a decreasing average correlation between
the predicted and simulated spectra of adaptive substitutions
(Fig. 4B).

The fraction of beneficial mutations B also influences the
predictive power of the fitted models, but in a somewhat more
surprising manner. Intuitively, one might think that increasing
the proportion of beneficial mutations would decrease predictive
power, as increasing B effectively increases the beneficial muta-
tional supply, allowing increased competition between simulta-
neously segregating beneficial mutations. However, Fig. 4 A and
B shows the opposite pattern. At low and intermediate levels of
mutation supply, the largest values of B (white dots) yield the
best correlations, the lowest values of B (black dots) yield the
worst correlations, and intermediate values of B (gray dots) are
intermediate. At high mutation supply, all of the correlations are
poor regardless of B.

A potential explanation for this unexpected effect of B relates
to the way that biases in nucleotide mutations have relatively
broad effects, in the sense that changing a single nucleotide
mutation rate will affect the rates of ∼60 codon-to-amino-acid
changes. Because nucleotide mutational biases thus enrich broad
classes of codon-to-amino-acid changes, they will tend to perform
poorly in predicting distributions of adaptive events when those
distributions are highly concentrated on a small set of codon-
to-amino-acid changes. Increasing B expands the set of possible
beneficial mutations to cover more diverse types of changes at

A

B

D

C

Fig. 4. Evolutionary simulations show mutation supply and mutational target size jointly modulate the predictive power of our model. (A) The inferred
mutation coefficient β as a function of Nμ for five different values of B, the fraction of beneficial mutations (the same color scheme for B is used in all
panels). Dashed horizontal lines are drawn at β = 0 and β = 1 to indicate no influence and proportional influence of the mutation spectrum on the spectrum
of adaptive substitutions, respectively. (B and C) Pearson’s correlation coefficient between predicted and simulated spectra of adaptive substitutions as a
function of Nμ for five different values of B (B) and entropy of simulated spectra of adaptive substitutions as a function of Nμ for five different values of B
(C). In A–C, the black lines show the mean and the gray areas show the SD. (D) Pearson’s correlation coefficient between predicted and simulated spectra
of adaptive substitutions is shown in relation to the entropy of the simulated spectra of adaptive substitutions for different levels of mutation supply. The
dashed vertical lines show the entropy of the spectrum of adaptive substitutions for each of our three study species.
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various genomic sites, and this effect may be expected to im-
prove the correlation of predicted and observed changes. Indeed,
weak correlations due to this effect might arise, not only from
having relatively few available adaptive paths in a given selective
environment (small B), but also from limited sampling density,
or even from a broad and well-sampled distribution of adaptive
substitutions that is nonetheless heavily skewed toward a small
number of strongly favored changes.

To quantify both the breadth of the adaptive spectrum (i.e.,
the distribution of events across the nonzero elements of the
spectrum of adaptive substitutions) and its effects on the predic-
tive power of our model, we calculated the entropy of observed
and simulated spectra of adaptive substitutions, normalized so
that the entropy has a minimum value of 0 when all adaptive
events correspond to a single codon-to-amino-acid change and a
maximum value of 1 when the adaptive events are uniformly
distributed across all possible codon-to-amino-acid changes
(Methods). Fig. 4C shows that the entropy decreases as mutation
supply increases and that for any level of mutation supply, a
lower proportion of beneficial mutations likewise decreases the
entropy. To determine whether these patterns of decreasing
entropy are sufficient to explain differences in the predictive
power of our model across the range of model parameters,
we plotted the correlation between predicted and simulated
spectra of adaptive substitutions against the entropy of the
simulated spectrum of adaptive substitutions (Fig. 4D). We see
that increasing entropy, via either a decreased mutation supply
or an increased proportion of beneficial mutations, increases
the correlation between simulated and predicted spectra of
adaptive substitutions. These observations from the evolutionary
simulations are qualitatively similar to our empirical observation
that as the entropy of the spectrum of adaptive substitutions
increases from M. tuberculosis to E. coli to S. cerevisiae, there is a
corresponding increase in the correlation between predicted and
observed spectra of adaptive substitutions (Table 1). Indeed, the
correlations for our three empirical datasets are well within the
range of what we would expect from our simulations given their
respective entropies (Fig. 4D).

To summarize, the results from our evolutionary simulations
show that the predictive power of our model is strongest when
the mutation supply is low and the mutational target size is
large. However, we note that predictive power might also be
influenced by other factors not included in our simulations, e.g.,
heterogeneity in the mutation rate across the genome, such as
that caused by local sequence context (15, 45–50).

Assessing Possible Effects of Contamination. A key assumption
of the analysis above is that the events used to populate the
spectrum of adaptive codon-to-amino-acid changes represent
adaptive substitutions. While this is likely the case for the
M. tuberculosis dataset, because these mutations have been
shown experimentally to confer antibiotic resistance (5), we now
consider the possibility that some fraction of observations in the
S. cerevisiae and E. coli datasets represent contamination such
as hitchhikers. If contaminants reflect the mutation spectrum
more than genuine adaptive changes, this will exaggerate the
correspondence with mutational predictions. Using the method
of Tenaillon et al. (8), based on the observed dN /dS ratio
(Methods), we estimate these proportions to be∼24% and∼13%
for S. cerevisiae and E. coli, respectively.

To assess the influence of contamination up to, and even be-
yond, these estimated levels, we randomly remove a fraction q of
events, sampled according to the species-specific empirical muta-
tion spectrum. This procedure simulates the removal of a hypo-
thetical contaminant fraction of size q under the worst-case sce-
nario in which the nucleotide changes in the contaminant fraction
mirror the mutation spectrum. As shown in SI Appendix, Fig. S4,
even under the assumption that 40% of the events are contam-

inants, we observe a strong and statistically significant influence
of mutation bias on adaptive evolution. In fact, we estimate that
for S. cerevisiae and E. coli, levels of contamination of ∼65% and
∼44%, respectively, would be required to increase the P value
of β to the point where the influence of mutation bias would no
longer be significant.

Discussion
A growing body of evidence suggests that specific mutation biases
influence the types of genetic changes involved in adaptation
(5, 19–27), consistent with a small body of theoretical work
on how biases in the introduction of variation—both low-level
mutational biases and higher-level systemic biases—are expected
to influence adaptive evolution (33, 35, 36, 40). Yet a general
approach for quantifying this influence was missing. Here, we
have developed and applied such a general approach to assess
how the entire mutation spectrum shapes the spectrum of adap-
tive substitutions. It uses negative binomial regression to model
the spectrum of adaptive substitutions as a function of codon
frequencies and the mutation spectrum, measuring the influence
of mutation in terms of a single statistic—the coefficient of
mutational influence β.

This statistic takes on a value of zero when the mutation spec-
trum has no influence, a value of one for a proportional influence,
and intermediate values for intermediate degrees of influence.
Applying this framework to large datasets from S. cerevisiae,
E. coli, and M. tuberculosis, we find a clear signal that the mu-
tation spectrum strongly shapes the spectrum of adaptive substi-
tutions. Specifically, the inferred values of β are not significantly
different from one in any species. This result holds even when we
account for the contamination by hitchhikers that is likely present
in the datasets for S. cerevisiae and E. coli.

Our approach also illustrates how the spectrum of adaptive
substitutions may be interrogated to reveal clues about the
genetic basis of adaptation. We used our fitted models to predict
the spectrum of adaptive substitutions in each species and
uncovered variation in their predictive capacity, decreasing from
S. cerevisiae to E. coli to M. tuberculosis. Using evolutionary
simulations, we uncovered multiple potential sources of this
variation. Specifically, we found that the degree to which the
mutation spectrum is a good predictor of the spectrum of
adaptive substitutions depends on how the adaptive events are
distributed among all possible codon-to-amino-acid changes,
with reduced predictive capacity associated with distributions
concentrated on a small number of codon-to-amino-acid
changes. Factors that affect the degree of concentration include
dataset size, population-genetic conditions, diversity of selective
environments, and the genetic architecture of adaptive traits.
Importantly, population-genetic conditions that modulate the
influence of mutation bias on adaptation, such as mutation
supply, and nonpopulation-genetic conditions, such as the
diversity of environmental conditions included in the dataset,
can affect the predictive capacity of our model in similar ways.

While additional work is needed to disambiguate these various
causes of differing model fits between species, our results are
consistent with known facts concerning the population-genetic
conditions, as well as the environmental conditions and muta-
tional target sizes for adaptive mutations for the three species
studied here. M. tuberculosis has one of the lowest mutation
supplies of all bacteria (51), a small population size upon infec-
tion (52), and the 11 antibiotics considered here target specific
gene products (5). For example, Rifampicin targets the beta
subunit of bacterial RNA polymerase, and only a small handful
of mutations to the rpoB gene that encodes this subunit cause
resistance (53). Thus, while the population-genetic conditions of
M. tuberculosis are more likely similar to origin-fixation dynamics
than to clonal interference dynamics, and the set of observations
is large, the mutational target size for antibiotic resistance is
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small. In contrast, E. coli experiences clonal interference due
to a relatively higher mutation supply (54), but adaptation to
temperature stress involves a larger mutational target (8, 55).
Similarly, S. cerevisiae experiences clonal interference due to
a high mutation supply (29), but because the data we study
include adaptation to several environmental conditions, the mu-
tational target size is large. Thus, the inferred influence of mu-
tation bias on adaptation in these three species, increasing from
M. tuberculosis to E. coli to S. cerevisiae, is consistent with our
findings from evolutionary simulations that mutation supply and
mutational target size modulate the influence of mutation bias on
adaptation. However, it may also be the case that the diminished
influence of mutation bias in M. tuberculosis, relative to E. coli
and S. cerevisiae, results from differences in the way the data were
collected (clinical isolates vs. laboratory evolution experiments).

The three species studied here also share several important
features that suggest a need for similar studies across a greater
diversity of population-genetic conditions. For example, all of
the data analyzed here were obtained either from clonally repro-
ducing experimental populations (E. coli and S. cerevisiae) or, in
the case of M. tuberculosis, from natural populations with little
or no recombination (52, 56, 57). This absence of recombination
amplifies both the role of background selection (42) and the de-
gree of interference between selected alleles (41), and it remains
an open question whether mutational biases in practice play as
large a role in sexual populations. Another important population-
genetic commonality across the datasets studied here is the low
degree of genetic diversity prior to the onset of selection, so
that adaptation likely proceeds in all three systems from new
mutations rather than standing genetic variation. This low initial
diversity is the result of either the experimental setup in the
case of E. coli and S. cerevisiae or the low worldwide nucleotide
diversity empirically observed for M. tuberculosis (56), which is
likely due to repeated bottlenecks at transmission events as well
as other factors (58).

The discovery that mutation biases strongly shape the spec-
trum of adaptive substitutions has implications for several other
related issues in evolutionary genetics. First, it has implications
for the predictability of evolution (59–61), because it shows
that mutationally favored types of changes are more likely to
contribute to evolutionary adaptation, an effect that is both
large and readily predictable from prior data on the relevant
mutation spectrum. When the spectrum of adaptive substitutions
is compared to the mutation spectrum, we see a significant
correlation (of variable strength) for the spectrum of codon-
to-amino-acid changes and a consistently strong correlation for
the six types of nucleotide changes. This can be understood as an
effect of aggregation. Many previous studies based on laboratory
evolution experiments show that aggregating distinct genomic
paths of adaptation by functional criteria (e.g., shared gene,
operon, or functional category) highlights predictable effects
that are presumably effects of selection (8), although effects of
mutation are also evident at the gene level (44). The extreme
aggregation of distinct genomic changes into just six types of nu-
cleotide changes also reveals a highly predictable effect, but it is
an effect of mutation rather than selection, because the criterion
of aggregation is the mutational type. At the opposite extreme of
aggregation—particular nucleotide changes at specific genomic
coordinates—mutation bias is unlikely to be predictive of the
genetic changes that cause adaptation.

Second, the discovery of a direct influence of mutation bias on
evolutionary adaptation parallels recent reports that driver muta-
tions in cancer reflect the underlying biases of cancer-associated
mutational processes, including exogenous effects of ultraviolet
(UV) light and tobacco exposure and endogenous effects of DNA
mismatch repair and APOBEC activity (62–64). The increased
predictability of such changes, due to mutational effects, can

inform rational drug design, as has been suggested for drugs
for leukemia, prostate cancer, breast cancer, and gastrointesti-
nal stromal tumors (26). The same may be true for designing
antibiotic treatments for mycobacteria, which evolve multidrug
resistance via a sequence of mutations, several of which interact
epistatically, such that only a subset of possible mutational tra-
jectories to multidrug resistance is possible (65).

Finally, the broadest context for the present work is a debate
about the role of so-called “internal” causes in shaping the course
of evolution. Arguments dating back to the origins of theoretical
population genetics emphasize selection as the sole directional
force in evolution, with mutation treated as a weak and inef-
fectual pressure due to the smallness of mutation rates (66–68).
Haldane (66) concluded that mutation can influence the course
of evolution only under neutral evolution or when mutation rates
are unusually high. Accordingly, strong effects of mutation bias
have been historically associated with neutral evolution (69).
However, more recent theoretical work has shown that this
classic way of thinking depends on the assumption that evolution
begins with abundant standing genetic variation, so that mutation
acts only as a frequency-shifting force and not as a source of
genetic novelty (33). When the dynamics of an evolutionary
process depend on events that introduce novel variants, biases
in the introduction process, such as toward particular nucleotide
changes, systematically influence which types of genetic changes
are involved in adaptation (33, 70).

A variety of statistical frameworks assume a proportional in-
fluence of the mutation spectrum on the spectrum of adaptive
substitutions, including those for quantifying selection pressures
on proteins. For example, the ratio of nonsynonymous to syn-
onymous mutations (dN/dS)—a commonly used statistical test
to detect proteins undergoing adaptation—is often corrected to
account for the mutation spectrum (54, 71). Implicit in this ac-
counting is the assumption that the mutation spectrum influences
neutral and adaptive mutations in the same way. Our finding
that the mutation spectrum can be directly inferred from the
spectrum of adaptive substitutions provides empirical support
for this assumption, at least for the species and evolutionary
conditions considered here.

Some have responded to the theory of mutation-biased adapta-
tion by arguing that such an influence is unlikely, on the grounds
of requiring sign epistasis or unusually small population sizes
(72). However, modeling here and in other work shows that
mutation bias can influence adaptation across a range of condi-
tions, including in the absence of sign epistasis and when con-
ditions induce clonal interference among concurrent mutations
(35). More broadly, while theoretical arguments are surely help-
ful for sharpening our understanding, ultimately the prevalence
and magnitude of the mutational influence on adaptation is an
empirical question, and the impact of mutational biases on adap-
tation has now been shown for several different types of mu-
tations, in a range of systems from bacteriophage to birds to
somatic evolution in human cancers (5, 19–27).

This growing body of work on mutation-biased adaptation
provides a basis to reconsider certain long-standing claims about
how variational properties influence the evolutionary process.
For instance, evo-devo arguments about bias or constraint relate
evolutionary patterns to tendencies of developmental variation,
but the causal nature of this link, in terms of population-genetic
principles, is typically unspecified (73, 74). Likewise, a signif-
icant body of neostructuralist work on “findability” or “self-
organization,” going back at least to Kauffman (75), emphasizes
the tendency of evolution to prefer structures common in abstract
state spaces, e.g., in regard to RNA folds (76) or regulatory
circuit motifs (77). Recent work on mutation-biased adaptation
provides a rigorous body of theory and evidence establishing
how tendencies of variation may act as dispositional causes in
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evolution, suggesting a previously missing population-genetic
basis for these long-standing claims. Our results contribute to the
empirical case that mutational biases, which are more accessible
to study at the level of population genetics, have a strong and
measurable impact on adaptive evolution.

Methods
Data. Our modeling framework is built around three key quantities, which
are specific to each species: a spectrum of adaptive substitutions n, a table of
codon frequencies f, and a mutation spectrum μ. These are all constructed
using empirical data, as described below.
Spectrum of adaptive substitutions. We curated a list of missense muta-
tions associated with adaptation from the published literature for each of
three species: S. cerevisiae, E. coli, and M. tuberculosis. For each mutation,
these lists specify a genomic coordinate, nucleotide change, amino acid
substitution, and literature reference (Datasets S1–S3). We refer to each
unique combination of genomic coordinate and nucleotide change as a
mutational path and each instance of adaptive change along a mutational
path as an adaptive event. The number of adaptive events per mutational
path is also reported in Datasets S1–S3.

For S. cerevisiae, the adaptive events were reported in four studies, each
of which considered one or more environmental or genetic challenges,
including high salinity (28), low glucose (28), rich media (29), and gene
knockout (30). The list contains 713 adaptive events across 534 mutational
paths (Dataset S1).

For E. coli, the adaptive events were reported in a single study of 115
replicate populations adapting to temperature stress (8). The list contains
602 adaptive events across 492 mutational paths (Dataset S2).

For M. tuberculosis, the adaptive events were reported in a single study
of the influence of mutation bias on adaptation to antibiotic stress (5).
The underlying mutational paths were derived from two separate meta-
analyses of the literature on antibiotic resistance (one performed for the
study and another previously published) (4), with each mutational path
required to pass stringent tests for conferring antibiotic resistance. A total of
11 antibiotics or antibiotic classes were considered: rifampicin, ethambutol,
isoniazid, ethionamide, ofloxacin, pyrazinamide, streptomycin, kanamycin,
pyrazinamide, fluoroquinolones, and aminoglycosides. The adaptive events
were inferred from a phylogenetic reconstruction of public M. tuberculosis
genomes. We merged the adaptive events from the two meta-analyses. The
resulting list contains 4,413 adaptive events across 283 mutational paths
(Dataset S3). Analyzing the adaptive events from the two meta-analyses
separately (SI Appendix, Table S1) produced qualitatively similar results to
those reported in Table 1.

For each species, we constructed the spectrum of adaptive substitutions
n from the list of adaptive events described above, assigning each adaptive
event to its respective codon-to-amino-acid change. Each element n(c, a)
of the spectrum of adaptive substitutions therefore tallies the number of
adaptive events that changed codon c to amino acid a. Note the adaptive
events tallied for any codon-to-amino-acid change often reflect more than
one genomic coordinate and/or nucleotide change (i.e., different mutation
paths). These spectra are reported in Dataset S4.
Codon frequencies. We used the tables of codon frequencies reported in
the Codon Usage Database (78), found via query to an exact match to
S. cerevisiae, E. coli, and M. tuberculosis. These frequencies are reported in
Dataset S5 and shown in SI Appendix, Fig. S1 E–G.
Empirical mutation spectra. For S. cerevisiae and E. coli, we used mutation
rates derived from mutation-accumulation experiments, as reported in
figure 3 of ref. 15 and table 3 of ref. 14, respectively. For E. coli, we corrected
the mutation rates for GC content, following ref. 12. For S. cerevisiae, the
rates were already corrected (15). For M. tuberculosis, we used mutation
rates derived from single-nucleotide polymorphism data (5) (Dataset S6). We
restricted our analysis to synonymous mutations in the third codon position
and corrected the rates for GC content in that position. We also corrected
for the probability that each type of mutation causes a synonymous change.
For instance, of all the possible synonymous mutations in the third position
allowed by the standard genetic code, 23% are G/C→A/T transitions,
whereas only 12% are G/C→C/G transversions.

These spectra are reported in Dataset S7 and shown in SI Appendix,
Fig. S1A. We used these estimated mutation rates to define a total codon-
to-amino-acid mutation rate μ(c, a) for each of the 354 codon-to-amino-
acid changes allowed by the standard genetic code, summing the rates of
all point mutations in codon c that lead to amino acid a. For example, the
probability of the mutation from codon CAC to glutamine (Q) is the sum of
the probabilities of point mutations C→A and C→G, since both mutations
in the third position of CAC lead to codons for glutamine (Q).

Transition–Transversion Ratio vs. the Full Mutation Spectrum. The influence
of the mutation spectrum can be partitioned into an overall transition–
transversion bias and biases among different types of transitions and
transversions. The model that considers only the contribution of the species-
specific transition–transversion bias is given by

log E[n(c, a)] = β0 + log f(c) + βti/tv log μti/tv(c, a). [3]

As in Eq. 2, β0 is the logarithm of the constant of proportionality and f(c) is
the genomic frequency of codon c. The mutation term μti/tv(c, a) is defined
only by the species-specific transition–transversion ratio and thus assigns
one rate to all transitions and one (different) rate to all transversions. The
corresponding regression coefficient is βti/tv.

The complete model contains all of the terms of the model above (Eq. 3),
with an additional mutation term μrest(c, a) that accounts for the rest of the
mutation spectrum [such that μti/tv(c, a)μrest(c, a) = μ(c, a)], along with its
respective regression coefficient βrest. This complete model is given by

log E[n(c, a)] = β0 + log f(c) + βti/tv log μti/tv(c, a) + βrest log μrest(c, a).
[4]

As in our main analyses, we used negative binomial regression to esti-
mate the regression coefficients. Because the two models are nested, we
compared their performance using a likelihood-ratio test (SI Appendix,
Table S2).

Entropy of the Spectrum of Adaptive Substitutions. The spectrum of adaptive
substitutions n describes the number of adaptive events per codon-to-
amino-acid change. We calculate the entropy H of this spectrum as

H =
−

∑m
i=1 p(ni) log p(ni)

log(m)
, [5]

where p(ni) is the proportion of adaptive events that correspond to the
ith codon-to-amino-acid change, and m = 354 is the number of codon-to-
amino-acid changes allowed by the standard genetic code.

Evolutionary Simulations. We used SLiM v3.4 for the evolutionary simula-
tions (43). We ran each simulation until the first fixation event, repeating
this process 1,000 times and recording each beneficial mutation that went
to fixation. We performed 50 replicates per combination of the parameters
N, μ, and B. Each of the 1,000 simulations per replicate used the same
initial population, which comprised N copies of a nucleotide sequence of
length L = 1,500 (i.e., 500 codons), randomly generated using the codon
frequencies for S. cerevisiae.

All sequences in the initial population were assigned a fitness of one. The
fitness effects assigned to each of the possible codon-to-amino-acid changes
from each of the 500 codons were drawn at random from a distribution
of fitness effects and were held constant across the 1,000 simulations per
replicate.

A unique distribution of fitness effects was constructed for each replicate,
such that synonymous mutations were neutral, a fraction B of missense
codon-to-amino-acid changes were beneficial, and a fraction 1 − B of mis-
sense codon-to-amino-acid changes were deleterious. The fitness effects of
beneficial codon-to-amino-acid changes were drawn from an exponential
distribution with density

fb(x) = λe−λx , [6]

where λ = 33.33, so that the expected advantageous selection coefficient
was 0.03. The fitness effects of deleterious codon-to-amino-acid changes
were drawn from a gamma distribution with density

fd(x) =
x(a−1)e−(x/s)

sa Γ(a)
, [7]

where a = 0.4 and s = 0.15, so that the magnitude of the expected deleteri-
ous selection coefficient was twice the advantageous one (79). For sequences
with more than one mutation, we summed the effects of the individual
mutations. SI Appendix, Fig. S5 shows representative distributions of fitness
effects for different proportions of beneficial mutations B.

Each simulation proceeded until a single sequence went to fixation and
any beneficial mutations were recorded. Our simulations thus correspond
to single-step adaptive walks, extending prior theoretical work considering
just a few possible adaptive mutations (19, 33) into a codon-based model
of a whole gene with thousands of possible mutations. Single-step adaptive
walks are particularly germane to the M. tuberculosis data, in which antibi-
otic resistance is often strongly associated with single mutations. Multistep
walks are also relevant for long-term evolution, but they would require
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further assumptions about the structure of the fitness landscape. In each
generation t, N sequences were chosen from the population at generation
t − 1 with replacement and with a probability proportional to their fitness.
Mutations were introduced according to the product of the genome-wide
mutation rate μ and the per-nucleotide mutation rate defined by the
mutation spectrum for S. cerevisiae, with each mutation affecting fitness
as defined at the onset of the simulation.

Contamination Estimates. For each type of mutation, we calculated the
number of synonymous and nonsynonymous sites for each possible codon,
and we estimated the total number of synonymous and nonsynonymous
sites in the genome by taking into account the codon usage patterns of
S. cerevisiae and E. coli (SI Appendix, Fig. S1 E and F). We then calculated
dN/dS ratios among all substitutions in the adapted lines correcting for the
mutation rates of each type of mutation (SI Appendix, Fig. S1A). Following
ref. 8, we estimated the proportion of adaptive nonsynonymous mutations
from such ratios as y = (x − 1.0)/x, where x is the estimated dN/dS ratio

(4.24 and 7.76 for S. cerevisiae and E. coli, respectively). Finally, we estimated
the fraction of hitchhikers in our datasets as 1 − y.

Data Availability. All study data are included in this article and/or
SI Appendix. The scripts used to analyze these data and to run the
evolutionary simulations can be found at GitHub, https://github.com/
alejvcano/Mutbias2022.
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