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Abstract

The tech sector has been growing at a rapid speed, demanding a higher level

of expertise from its labor force. New skills and programming languages are

introduced and required by the industry every day, while the university courses

are not updated adequately. Finding the high-demand skills and relevant courses

to study has become essential to both students and faculty members at tech

universities, which leads to a growing research interest in building an intelligence

system to support decision making. Leveraging recent development in Natural

Language Processing, we built an NLP-based course recommendation system

specifically for the computer science (CS) and information technology (IT) fields.

In particular, we built (1) a Named Entity Recognition (CSIT-NER) model to

extract tech-related skills and entities, then used these skills to build (2) a

personalized multi-level course recommendation system using a hybrid model

(hybrid CSIT-CRS). Our CSIT-NER model, trained and fine-tuned on a large

corpus of text extracted from StackOverflow and GitHub, can accurately extract

the relevant skills and entities, outperforming state-of-the-art models across all

evaluation metrics. Our hybrid CSIT-CRS can provide recommendations on

multiple individualized levels of university courses, career paths with job listings,

and industry-required with suitable online courses. The whole system received

good ratings and feedback from users from our survey with 201 volunteers who

are students and faculty members of tech universities in Australia and Vietnam.
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This research is beneficial to students, faculty members, universities in CS/IT

higher education sector, and stakeholders in tech-related industries.

Keywords: Data science applications in education, Architectures for

educational technology system, Teaching/learning strategies, Adult learning

1. Introduction

In recent years, Computer Science (CS) and Information Technology (IT)

fields have been evolving rapidly. With new programming languages, frame-

works, tools, and systems coming out every month, the tech companies begin

to demand new skills and knowledge when recruiting for specific technical roles.

It becomes harder for universities to keep track of all the latest technologies

required by the industry. Besides, along with the booming of e-learning tech-

nology and services, there are countless Massive Open Online Courses (MOOCs)

available for free on different platforms, e.g. Coursera, EdX, etc. Some of these

MOOCs are taught by professionals working at big tech companies, so the mate-

rials are often updated and are closer to the industry standard. The movement

to online and remote learning with cost-effective micro degrees has made tradi-

tional and expensive CS/IT programs outdated [1]. As a result, the performance

gap between skills taught at universities and those required by the companies

is widened [2]. Many approaches are being investigated to close this gap [3, 4].

There has been a lack of intelligence systems to support student learning and

curriculum design at CS/IT programs offered at universities.

On the other hand, advanced text mining techniques have been applied to

solve Natural Language Processing (NLP) problems in other areas, especially

using the Named Entity Recognition (NER) task [5]. There is an increasing

interest in applying NER models for keyword extraction in CS/IT field [6, 7].

Initial studies on building an in-domain NLP system at tech universities have

also been investigated by Ma et al. [8], Pardos and Jiang [9]. However, the

current literature has either stopped at a theoretical model or a simple system

without any real-world benefits to the students nor the universities.
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Realizing this research gap, we conduct this research building an NLP-based

course recommendation system to address the below research questions:

Q1 What skills/knowledge are still missing in these university programs?

Q2 Which future career can a student take with the current learning path?

Q3 Which courses should a student take to prepare for a specific tech career?

The research focuses on building an intelligence system to improve the qual-

ity of CS/IT programs at tech universities based on advanced text mining and

NLP methods. It compares the knowledge and skills taught in the current

course offerings at these universities and the real-life job requirements. The

NLP system supports decision-making in the development of these programs

and the improvement of universities’ life-ready teaching curriculum. This re-

search project contributes to both theoretical and practical knowledge based on

both information systems and the education domain. The paper contributes

significantly to both the extension of the current literature and the solving of

real-world problems in two folds.

Theoretical contributions:

1. Developing a novel CS/IT domain-specific named entity recognition model

to extract keywords and analyse the CS/IT courses and jobs description.

2. Being one of the first systems, according to our knowledge, to leverage a

novel NLP model for a CS/IT course recommendation system based on

industry requirements in higher-education universities.

Societal contributions:

1. Building a hybrid recommendation system to suggest new skills/courses

for different CS/IT programs, which improves the program quality and

students’ satisfaction.

2. Constructing an intelligence system to assist students in choosing elective

courses suitable for their career aspirations, which increases their technical

capability and employability.
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3. Enhancing the learning experience and quality of students, which leads to

increasingly higher skilled graduates joining the workforce.

The research and the NLP course recommendation system aim to be benefi-

cial to various stakeholders, e.g. CS/IT students (choosing suitable courses for

their learning and career path), faculty members (updating curriculum design),

universities (having better student experience and satisfaction), employers, and

society (work-ready graduates with relevant skills).

2. Literature Review

2.1. NER models in CS/IT field

Named Entity Recognition (NER) has recently become a popular topic

among NLP researchers. However, most NLP systems consist of NER mod-

els with real-world entities only, such as organization names, location, event

date, etc. [10]. Multiple neural network architectures have been investigated

for this task, e.g. the Convolutional Neural Networks (CNN), the Bidirectional

Long Short-Term Memory Networks (BiLSTM) [11], the Gated Convolutional

Neural Networks [12]. Other investigated deep learning approaches researched

are adaptive co-attention network [13] and multi-task learning [14] in social

media data.

Domain-specific NER is an emerging research trend, particularly in the

CS/IT field. Little research has been carried on this specific topic, apart from

some tech-related keyword extraction tools [15]. Some previous models of NER

in CS/IT fields [6] are based on Conditional Random Field (CRF), a type of sta-

tistical modeling method for pattern recognition and structured prediction [16].

However, with the growth of artificial intelligence research, more deep learning

techniques have been applied to build more advance NER models [17]. Huang

et al. [18] have combined the BiLSTM with CRF to detect domain-specific en-

tities in scientific literature and enrich their NER model with Rapid Automatic

Keyword Extraction (RAKE). A Deep neural network for Bug-specific NER
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(DBNER), introduced by Zhou et al. [19], has combined BiLSTM and CRF to

build an enhanced NER model in the CS/IT field.

Regarding the embedding techniques, researchers have applied text mining

on datasets from tech-related social media sites, particularly the two popular

websites StackOverflow and GitHub. Using BERT [20] embedding methods as

the base, multiple embedding models have been released, which enables the

enhancement of NER models. Some of the state-of-the-art embedding methods

are SciBert [21] and BERTOverflow [7]. We use BERTOverflow to benchmark

our domain-specific model named CSIT-NER.

To conclude, these research projects resulted in a strong foundation for solv-

ing the NLP task with NER in CS/IT field. However, the literature has stopped

at the theoretical NLP models stage. Little work has been done to apply these

models to solve real-world problems. Realizing this research gap, we aspired to

build and apply a CS/IT domain-specific NER model for a course recommen-

dation system that can leverage advanced deep learning NLP techniques.

Moreover, transfer learning for the NER model has been recently investigated

by Lee et al. [22] and Tabassum et al. [7]. The initial studies have shown the

potential of this approach, which is the motivation of this paper. Our CSIT-

NER model aims to achieve good performance compared to other state-of-the-

art models and even better at transfer learning for accurately extracting the

CS/IT entities. We can then leverage the CSIT-NER model for our decision

support system for student learning and curriculum design.

2.2. Course Recommendation System for CS/IT students

While NER is an emerging NLP research topic, the Course Recommendation

System (CRS) has been extensively investigated in the past decades [23]. Re-

garding traditional approaches, Lin et al. [24] have applied sparse linear method

(SLIM) to query the top-N recommended courses in Information Management

programs at Chinese universities, and Bhumichitr et al. [25] have used both

Pearson Correlation Coefficient and Alternating Least Square (ALS) to suggest

courses based on the similarity of their descriptions. Some researchers have tried
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to solve the problem using ontology [26, 27], while Mondal et al. [28] have used

the k-means clustering algorithm to build a grade-based CRS.

Different recommendation system approaches such as collaborative filtering

have been studied by Hui et al. [29] to improve the CRS. Due to the popularity

and data availability, there are more research works on recommendation systems

for MOOCs than traditional university ones [30, 31]. However, most of these

CRS is not constructed specifically for any domain, especially CS/IT programs,

which is the research interest of this paper.

Regarding the application of NLP techniques to improve the CRS, some

initial studies have been carried out in recent years [32]. Simple Word2Vec

pipeline has been used for calculating semantic similarity between courses [8].

Pardos and Jiang [9] have also implemented a Course2Vec model (based on

the Word2Vec model) with Recurrent Neural Networks (RNN) in their CRS.

RNN has also been the chosen network for a goal-based CRS proposed by Jiang

et al. [33]. Other NLP methods such as topic and sentiment analysis have been

combined with survey data for a personalized CRS built by Ng and Linn [34].

While these NLP approaches have done a thorough job on the course de-

scription, none of them has incorporated the industry side by applying text

mining on the job description. Their systems also focus only on finding similar

courses, which is unrealistic as students would not want to learn the same topic

again. Realizing this research gap, we aim to build a CS/IT domain-specific

CRS (CSIT-CRS) that can recommend the courses with the new skills required

by the industry and tech they have not learned yet. The CRS is personalized

based on both their career interest and their learning history, combining both

the CSIT-NER model and collaborative filtering with other user preferences.

3. Datasets and Methods

3.1. Datasets

We used multiple datasets to build our whole NLP system. The named

entities of the StackOverflow and GitHub datasets were annotated manually.
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Table 1: Overview of all datasets

Dataset #docs #sentences #tokens #entities

StackOverflow train 1,638 9,263 78,329 6,422

StackOverflow val 536 2,936 24,937 2,268

StackOverflow test 564 3,108 26,324 2,272

GitHub 143 8,023 50,447 4,095

Job description 2,154 30,293 1,085,731 2,907

Course description 1,385 9,399 270,543 1,886

The entities of the job and course description datasets are referring to only

the skills extracted from the Emsi API. We combined these with the output

predictions from the CSIT-NER model before feeding it to the CSIT-CRS.

3.1.1. NER datasets

To benchmark our CSIT-NER model, we used two public NER datasets

in the CS/IT field, namely the annotated StackOverflow and GitHub NER

datasets. Tabassum et al. [7] defined 20 types of annotated entities, includ-

ing 8 coding language entities and 12 natural language entities. We focused

only on the 11 relevant entities in this research. The entities are LIBRARY,

APPLICATION, UI ELEMENT, LANGUAGE, DATA STRUCTURE, FILE

TYPE, FILE NAME, VERSION, DEVICE, OS, and WEBSITE (plus the tag

O for non-entity words).

3.1.2. Course description dataset

The dataset contains titles and descriptions of the available courses from

10 universities in Vietnam and Australia, namely University of Adelaide, Aus-

tralian National University, University of Melbourne, Monash University, Uni-

versity of New South Wales, University of Queensland, University of Sydney,

University of Western Australia, University of Technology Sydney and RMIT

University Vietnam. In total, we had scraped 1,385 courses (updated in June
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2021) from these schools. This dataset consists of 4 attributes: UNIVERSITY,

COURSE CODE, COURSE NAME, and COURSE DESCRIPTION.

3.1.3. Job description dataset

The dataset was scraped from Glassdoor, including 2,154 jobs (updated in

June 2021) from 12 different SE/IT career paths in Vietnam and Australia. We

filtered the job listings using the 12 search terms: Android Developer, Cyber

Security, Data Engineer, Data Scientist, DevOps, Full Stack Developer, iOS

Developer, Machine Learning, QA, Software Engineer, Software Developer, and

Web Developer. As we use the automatic scraping bots, the number of jobs

could vary by 15%, depending on the current vacancies. This dataset consists

of 4 attributes: JOB TITLE, JOB DESCRIPTION, COMPANY NAME, URL.

3.2. NLP System Overview

Figure 1: NLP System overview

Our NLP system used data from various sources. Firstly, we used Beauti-

fulSoup and Selenium to scrape data from multiple websites which contained

the job postings, course descriptions, and MOOCs online courses information

(see Section 3.3). Secondly, we built and fine-tuned the CSIT-NER model as in
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Section 3.4 by using the annotated corpus from StackOverflow and GitHub pro-

vided by Tabassum et al. [7]. The trained CSIT-NER was then applied to the

scraped job and course datasets to extract relevant entities. Next, the predicted

CS/IT skills were combined with output tokens from Emsi1 to further extend

our list of skills. The combined skill lists had been thoroughly checked and

updated frequently, which further enhanced our hybrid CSIT-CRS (see Section

3.5). Finally, we built a web application to provide user interaction with the

three distinctive use cases as described in Section 4.1.

3.3. Automatic Data Scraper

We build multiple scraping bots to automatically collect data from tech

university courses, job listings, and MOOCs. The real-time data we use is

susceptible to changes in the current vacancies and curriculum of universities.

To ensure our system maintains a good level of data integrity and can react

with the change of data sources, we take two aspects into considerations: (1)

Framework for scraping bots to optimize resources and achieve high efficiency,

and (2) Update frequency for each data source to ensure the database is up to

date.

3.3.1. Framework

We use the Selenium and Beautiful Soup frameworks for our automatic scrap-

ing bots due to their efficiency and resource optimization [35]. The framework

applied to each data source is as below:

1. Course Descriptions: The Selenium technique is used to simulate the login

process and user behavior as some university websites require login to

access their course guides.

2. Job Descriptions: Beautiful Soup technique is selected as the jobs are

public on Glassdoor2 with no restriction.

1Emsi is an open-source library with over 30,000 skills gathered from hundreds of millions

of job postings, profiles, and resumes. See https://api.emsidata.com/
2https://www.glassdoor.com/
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3. MOOCs: The Beautiful Soup technique is selected as The MOOCs are

public on Class Central3 with no restriction.

3.3.2. Update Frequency

All data sources are likely to change after a certain amount of time. We

need to identify the sweet spot of the period to update our data to maintain

data integrity while still optimizing resources.

The university course information is usually updated before the academic

semester begins if there are any changes in the teaching materials. Universities

often have the semester time of 18-22 weeks and 6-8 weeks of semester break. To

keep up with the latest update, we update the scraping bots every two months.

The available job postings in Glassdoor change at a much faster pace as the

industry grows quickly and tech companies are all looking out for talents. Each

job posting often lasts for 1-3 months, depending on the company recruitment

campaign. The scraping bot automatically updates weekly.

The online courses from MOOCs data help for both personal learning and

getting hands-on experiences. Many courses last for years and receive feedback

for over five years. Even good quality online courses come out every few months,

but find difficulty competing with the reputable ones introduced in the past.

Therefore, the bot for this data source automatically updates monthly.

3.4. CS/IT Named Entity Recognition model (CSIT-NER)

Figure 2 summarizes an end-to-end data pipeline for our CSIT-NER model.

First of all, we obtained datasets from StackOverflow/GitHub and scraped data

for jobs and courses from multiple websites. We split the StackOverflow dataset

into a train, a validation, and a test set for our model training and evaluation.

Secondly, we pre-processed the raw texts by removing English stop words using

the NLTK Python package [36] and tokenized them with a pre-trained Stack-

Overflow tokenizer. We then passed the tokenized corpus through embedding

3https://www.classcentral.com/
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layers using in-domain fine-tuned BertOverflow and Fasttext models. After the

sets were embedded, we used the train and validation sets to build and fine-tune

our NER model. The embedding vectors were fed into a stacked BiLSTM and

Fully Connected Layers as in Figure 3.

Figure 2: CSIT-NER Model Pipeline

Our CSIT-NER model containing 6,757,136 parameters was trained using

Adamax optimizer with a learning rate of 0.001 and a batch size of 128 for 50

epochs (see Section 6.3.2 for parameter tuning). All datasets were imbalanced

as more than 90% of words were not entities, so we used the bias initializer

based on the class weight in the last layer to help improve the model accuracy.

We also looked into the comparison of models with and without class weight in

Section 6.3.1

We then evaluated the model on the StackOverflow test set. We further

tested our model capability of transfer learning by assessing its performance

on the GitHub dataset. Finally, we used the final CSIT-NER model to extract

entities on the course and job datasets and integrated them into our CSIT-CRS.
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Figure 3: CSIT-NER neural network layers (units and activation in the brackets)

3.5. CS/IT Course Recommendation System (CSIT-CRS)

3.5.1. Use cases

Our CSIT-CRS is designed to support students and academic faculty mem-

bers at universities in multiple situations.

For students, there are two different scenarios. The first scenario is when

the students want to know which specific skills or courses they need to pursue a

career path. They can enter the career options into the system and receive a list

of most-demanded skills and tools required by the industry for that particular

career path, together with a list of current courses at their university offering

the previous skills and tools (Use case 1 on the Web Application). Alternatively,

they can add their study history, including all the past courses, to receive a list

of additional skills which they still need to improve on and the links to available

MOOCs to help them acquire those skills (Use case 3 on the Web Application).

The second scenario is when the students are uncertain of which career

options to follow, our system can recommend the most potential career paths

based on their strengths and past performance. More specifically, they are

interested in finding a job posted by companies that can match their skills and

levels of expertise. The students can enter the courses they have taken and

receive the following: a list of potential career paths together with a link to

related job listings online so they can conveniently apply for those positions

(Use case 2 on the Web Application).

For academic faculty members, our system can help them to keep track of

new technologies/skills from the market to keep their courses up to date. The
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lecturers or professors can enter a course or a list of their teaching courses

together with a chosen field in the market. The system returns the following

items: a list of skills/technologies from the chosen field which are still missing

from their courses and the links to available online resources that can help them

update or redesign their courses (Use case 3 on the Web Application).

3.5.2. Hybrid CSIT-CRS model

At the early stage, our system faced a cold start problem due to the lack

of user interactions. Therefore, we implemented a context-aware RecSys using

the extracted skills from the CSIT-NER models and Emsi API. The NLP-based

model was further enhanced by a supervised ranking fusion method.

First of all, we denote τi as the list of extracted entities for course i and τj

as those for job j, i ∈ {1, 2, ..., I} and j ∈ {1, 2, ..., J}. We also have the context

notions of the user’s chosen career path cpu and study history shu for user u,

u ∈ {1, 2, ..., U}. We initially compute a map-reduce function by counting the

entities, ranking the order of entity aggregations in τi and τj then getting the

top ε most popular entities for each list. We denote these T εi and T εi .

After that, we can use Ti and Tj to calculate the context-aware similarity

score between course i and job j as:

ω(T εi ⊂ T εj ) =
T εi ∪ T εj
T εi ⊕ T εj

(1)

On the other hand, the context-aware dissimilarity score is given by:

ω(T εi 6⊂ T εj ) =
T εi ∩ T εj
T εi ⊕ T εj

(2)

We then can get the φ ranked top k courses by:

ρεij(k) = φ(ω(T εi ⊂ T εj ), k) (3)

Similarly, we have τs as the list of all the courses taken by student s, s ∈

{1, 2, ..., S}. Let T εs be the top ε skills that student s has obtained from those

courses, we can calculate the context-aware similarity score ω and get the φ

ranked top k career paths and jobs by:

ρεjs(k) = φ(ω(T εj ⊂ T εs ), k) (4)
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Lastly, the supervised ranking fusion approach combines pair-wise similarity

and dissimilarity ranked lists to compile the final top k recommendations for

each use case in our CSIT-CRS. We can calculate the dissimilarity score ∆ to

get the top l missing skills of the students, then compute the context-aware

similarity score ω and get the φ ranked top k MOOCs by:

∆js
ε(l) = φ(ω(T εj 6⊂ T εs ), l) (5)

ρεmjs(k) = φ(ω(T εm ⊂ ∆js
ε(l)), k) (6)

where τm is the list of extracted entities for MOOC m, m ∈ {1, 2, ...,M}; and

τ εm be the top ε extracted entities of MOOC m.

Table 2: CSIT-CRS use case 1 results

Model MRR@k MRP@k MAP@k

k=5 Baseline 1 0.7271 0.7271 0.7236

Baseline 2 0.7281 0.6049 0.6656

CSIT-CRS 0.9012 0.7992 0.8501

k=10 Baseline 1 0.7306 0.7015 0.7190

Baseline 2 0.7364 0.5508 0.6177

CSIT-CRS 0.9042 0.7334 0.8081

k=15 Baseline 1 0.7305 0.6401 0.6976

Baseline 2 0.7379 0.5197 0.5843

CSIT-CRS 0.9042 0.6999 0.7867

Volunteers had rated the courses in the ranked order for the top 15 recom-

mendations. We quantified the context-aware CSIT-CRS performance by the

three ranking evaluation metrics measured at the top k (k=5,10,15), namely the

Mean Reciprocal Rank (MRR) [37], the Mean R-Precision (MRP) [38], and the

Mean Average Precision (MAP) [39]. We benchmarked our model in Table 2

against two common approaches in content-based RecSys: (1) similarity ranking

with extracted skill and (2) similarity ranking with TF-IDF word vectors [40].
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Our NLP-based RecSys received good feedback from the users and signif-

icantly outperformed the two baselines by 8% to 20%. This proved that our

supervised ranking fusion approach was better than the traditional similarity

ranking method. The CSIT-NER model also helped improve the performance

significantly compared to the other common NLP approach using TF-IDF. The

volunteers also rated our model on use cases 2 and 3 as in Table 3.

Table 3: CSIT-CRS rating use case 2 and 3 results

k MRR@k MRP@k MAP@k

Use case 2 - level 1 5 0.8896 0.8170 0.8479

Use case 2 - level 2 5 0.7828 0.7332 0.7550

Use case 3 - level 1 5 0.8442 0.7910 0.8083

Use case 3 - level 2 5 0.6808 0.6390 0.6559

All the rated courses and user interaction of the content-based model will be

one of the inputs to build our hybrid CSIT-CRS. Figure 4 illustrates the whole

framework of our hybrid CSIT-CRS model, where we combine both context-

aware CSIT-CRS and collaborative filtering module with a Restricted Boltz-

mann Machine model. The hybridization layer is calculated as a weighted aver-

age dynamically adjusted based on the weight α regarding the context (cpu, shu)

of each individual user u.

r = α(cpu,shu)
u r1 + (1− α(cpu,shu)

u )r2 (7)

where r1, r2, and r are the recommendation 1 (context-aware), recommendation

2 (collaborative filtering), and the final recommendations of our hybrid CSIT-

CRS model accordingly.

3.6. Baselines and Evaluation Metrics

We benchmarked our CSIT-NER model against other baselines and state-

of-the-art models as described by Tabassum et al. [7], namely the Feature-based

Linear CRF and SoftNER. We also included two baseline model variations using
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Figure 4: Hybrid CSIT-CRS framework

BiLSTM with in-domain BERT (BERTOverflow) or Fasttext embeddings. To

test the transfer learning performance, we benchmarked our CSIT-NER model

against a BiLSTM-CRF neural network trained on the GitHub dataset and the

transfer learning from other mentioned approaches.

We used three different evaluation metrics to evaluate our CSIT-NER model,

namely the precision, recall, and F1 score. The calculation for these metrics is

as follows, where TP means True Positive and FP means False Positive:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(10)

To benchmark our hybrid CSIT-CRS method, we built two baselines with

popular collaborative filtering models, namely the Bayesian Personalized Rank-

ing Matrix Factorization (BPRMF) [41] and the Restricted Boltzmann Machine

(RBM) [42]. For BPRMF, we set the number of factors to 200, the learning rate

to 0.01, lambda regularization to 0.001, and train for 100 iterations. For RBM,
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we set the hidden units to 600 and batch size to 60, then train for 100 epochs.

We reported the performances evaluated using a 5-fold cross-validation strategy

with three ranking metrics Recall@k, NDCG@k, and MAP@k with k=5,10,15

[43].

4. Web Application and User Analysis

4.1. Web Application

We created a web application to implement the work result. The front-end of

the web app used ReactJS [44] where the Material Design principle was applied

as it is the current Google standard in web design4. For the back-end of the

application, we chose Flask [45] as it is often preferred for deploying machine

learning models thanks to its easy learning curve and flexibility.

Figure 5: Web Application Architecture

Finally, the team used PostgreSQL [46] as the main database framework

for the web application. PostgreSQL is well known for supporting machine

learning related projects by integrating extensions, hence using PostgreSQL

would provide easy implementation and scalability for our web application. To

deploy the web application to the cloud service, the team used Amazon Web

Services (AWS)5, one of the most popular cloud platforms which are scalable

4https://material.io/design
5https://aws.amazon.com/
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and reasonable in price. The AWS Relational Database Service (RDS) coming

from the same package would be used to implement PostgreSQL instance on

the AWS cloud services and Elastic Compute Cloud (AWS EC2) would be used

to implement the front-end and the back-end of the web application.

The web application has two defined routes for users: Common User and

Administrator. The normal user is only able to access the User Web Page. The

User Web Page provides an interface to the 3 use cases as mentioned in Section

3.5. The Admin Web Page can be accessed using a pre-registered Adminis-

trator account with a hashed password. The Admin Web Page is secured by

using JSON Web Token (JWT Token) [47] method to reduce the number of

authenticating username and password for each request.

5. User Analysis

The user survey is divided into 3 sections: CSIT-CRS rating, UI/UX, and

demographic questions. In the first and most important section of the survey,

the CSIT-CRS rating is used to evaluate the participant regarding the relevancy

and accuracy of the recommendation system regarding the three use cases.

The second section of the survey is the user rating for the UI/UX aspects of

the web application. The questions consist of six questions in 5-level Likert-type

scale to measure the satisfaction of the web application to the user:

Q1 How easy is it to navigate through the system?

Q2 How fast were the responses?

Q3 How easy to use do you think of the system?

Q4 What do you think of the system’s design?

Q5 How likely will you use the system to help with study plan/course design?

Q6 How likely are you going to recommend the system to your peers?

The last section of the survey collects user demographics to group partici-

pants accordingly. The first question asks whether the participant is a student

or faculty member. If they are a student, the second question asks for their
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school year in university. Otherwise, it asks for their current position in the

university. The final question is optional, asking for their general opinion about

the system in form of short written feedback.

We collected 201 responses in total, of which 171 volunteers are students.

There are 31 people in Year 1, 43 in Year 2, 57 in Year 3, 32 in Year 4, and

8 in Year 5 or above. The rest are 30 responses from faculty members from

five different roles in their universities. We are interested in the preferences of

our survey respondents based on either their chosen career paths or their demo-

graphic groups. As illustrated in Figure 6, the career aspirations distribution

is relatively equal among all the volunteers for the twelve options, with a slight

surge of interest in some trending careers such as Data Scientist and Machine

Learning. This further validates the CSIT-CRS ratings Table 2 and Table 3,

showing that the volunteers got a varied range of personalized recommendations.

Figure 6: Career choices distribution

The results in Table 4 show that respondents are satisfied with our system

in general. The scores range from 3.3860 (Year 3 - Q4) to 4.4333 (Staff - Q3).

Questions 2 and 4, which measure our system response time and design, receive

slightly lower scores than other questions. We will focus on improving these two

aspects when we fully integrate our NLP system into the university network.
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Table 4: Average UI/UX scores by group

Group Q1 Q2 Q3 Q4 Q5 Q6

Year 1 4.3226 3.5484 4.1935 3.7097 4.1290 4.1290

Year 2 4.1628 3.4419 3.8605 3.4186 4.0465 4.0930

Year 3 4.2281 3.5263 3.8772 3.3860 4.0000 3.7895

Year 4 4.2500 3.5625 4.2188 3.4063 4.2188 4.1563

Year 5 or above 3.5000 3.5000 3.8750 3.3750 4.0000 4.2500

Staff 4.3000 4.0333 4.4333 3.7333 4.2333 4.0667

6. Empirical Results

6.1. CSIT-NER model results

Table 5 shows the experimental results of previous works and different pro-

posed architectures of the CSIT-NER model on the StackOverflow validation

and test sets. The CSIT-NER with character-sentence embedding achieved a

significant improvement of 8% to 10% in all metrics compared to the state-of-

the-art SoftNER model for the validation set. For the test set, it outperformed

other models by at least 2% to 4%. More importantly, the model with character-

sentence embedding had a trade-off balance between precision and recall and

the highest F1 scores for both datasets, not suffering from high precision and

low recall as in model BiLSTM with only BERTOverflow or Fasttext.

Table 6 demonstrates the model transfer learning performance on GitHub

NER datasets in comparison with other baselines. Our CSIT-NER with char-

acter and sentence embedding can outperform the BiLSTM-CRF model which

was trained specifically on the GitHub dataset. Moreover, our final CSIT-NER

performed better than the model with only character embedding by 4% in the re-

call score. To conclude, our CSIT-NER model achieved great performance with

both the StackOverflow and GitHub datasets. Especially with the significant

results in the GitHub dataset, we could prove the transfer learning capability of

our CSIT-NER model, which is deemed suitable for application to the job and
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Table 5: CSIT-NER model performance on StackOverflow NER dataset

Dataset Model Precision Recall F1

Val set Feature-based CRF 0.6945 0.4713 0.5674

SoftNER 0.7058 0.6462 0.6683

BiLSTM (BERTOverflow) 0.7373 0.5935 0.6293

BiLSTM (Fasttext) 0.7340 0.6378 0.6739

CSIT-NER (char-emb) 0.7302 0.6706 0.6915

CSIT-NER (char-sent-emb) 0.8054 0.7270 0.7618

Test set Feature-based CRF 0.7287 0.3996 0.5462

SoftNER 0.7646 0.6873 0.7183

BiLSTM (BERTOverflow) 0.7630 0.6059 0.6345

BiLSTM (Fasttext) 0.7700 0.6389 0.6903

CSIT-NER (char-emb) 0.7833 0.6934 0.7302

CSIT-NER (char-sent-emb) 0.7708 0.7288 0.7442

Table 6: CSIT-NER model transfer learning performance on GitHub NER dataset

Model Precision Recall F1

BiLSTM-CRF (trained on GitHub) 0.6453 0.6096 0.6269

Feature-based CRF 0.4513 0.3761 0.3978

SoftNER 0.6132 0.6066 0.6055

BiLSTM (BERTOverflow) 0.6330 0.5868 0.5883

BiLSTM (Fasttext) 0.6180 0.5870 0.5945

CSIT-NER (char-emb) 0.6386 0.6451 0.6326

CSIT-NER (char-sent-emb) 0.6491 0.6954 0.6447
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course descriptions datasets in our CSIT-CRS.

6.2. Hybrid CSIT-CRS results

Table 7: Hybrid CSIT-CRS results

Model Recall@k NDCG@k MAP@k

k=5 BPRMF 0.4765 0.3870 0.3103

RBM 0.9821 0.8323 0.7604

Hybrid CSIT-CRS 0.9752 0.8605 0.8112

k=10 BPRMF 0.6407 0.4490 0.3454

RBM 0.9820 0.8323 0.7604

Hybrid CSIT-CRS 0.9872 0.8655 0.8149

k=15 BPRMF 0.7719 0.4907 0.3627

RBM 0.9782 0.8390 0.7694

Hybrid CSIT-CRS 0.9872 0.8655 0.8149

From Table 7, we can see that our hybrid CSIT-CRS outperforms both

baselines on almost all the metrics for k=5,10,15. Particularly, we believe our

context-aware model with CSIT-NER and supervised ranking fusion method

has pushed the preferred courses higher in the recommended list, leading to an

increase of 3% to 5% in NDCG@k and MAP@k. The BPRMF performance is

significantly bad but slightly improved with k=15. This might be mainly due

to the small number of users in our case. We can conclude that our hybrid

CSIT-CRS is suitable for solving our cold-start problem.

6.3. Robustness Analysis

6.3.1. Imbalance Learning Test

High imbalance occurred on our dataset as the tag O for non-entity words

took up more than 90% of our dataset. Besides the bias initializer mentioned

in Section 3.4, we could further adjust our model by using the class weights
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calculated for each tag in the dataset. To investigate the effect of this method,

we compared our CSIT-NER model with and without class weight adjustment

in Table 8.

Table 8: Imbalance learning test

Dataset Model Precision Recall F1

Val set CSIT-NER 0.8054 0.7270 0.7618

CSIT-NER (class weight) 0.7636 0.7513 0.7539

Test set CSIT-NER 0.7708 0.7288 0.7442

CSIT-NER (class weight) 0.7415 0.7504 0.7420

GitHub set CSIT-NER 0.6491 0.6664 0.6539

CSIT-NER (class weight) 0.6115 0.6954 0.6447

From the imbalance learning test, it can be observed that adding class weight

did not affect the F1 score by any significant margin. It increased the recall met-

rics by trading off with lower precision scores. Our CSIT-NER model without

class weight had high precision and low recall. This happens when the model

returns only a few tags and most of them are correct, but the model misses many

tags for programming fields. Meanwhile, the model using only bias initializer

still achieved the maximized F1 score, which proved that it is robust against

changes in imbalance learning methods. Therefore, we keep the CSIT-NER

model without class weight as our final model.

6.3.2. Hyper-parameters Tuning

Training batch size and optimizer learning rate are two hyperparameters

that can affect the overall performance of the model. Therefore, we want to test

the robustness of our model against variations of these two hyperparameters.

Figure 7 reports the CSIT-NER test performance when changing different

values of batch size, e.g. 32, 64, 128, and 256, measured by the F1 score on

the validation set. For the first 3 models with batch size values of 32, 64, and

128, the F1 scores on the validation set were almost identical after 46 epochs.
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Figure 7: Parameter tuning with batch size

There was a slight decrease in the validation F1 score when the batch size was

increased to 256. The differences were less than 0.5% at 50 epochs.

Figure 8: Parameter tuning with learning rate

Figure 8 provides the same experiences for our CSIT-NER model with the

learning rate in the range from 0.05 to 0.0005. The first model with a 0.05

learning rate could reach 71% on validation f1 score. When the learning rate

was decreased to 0.01, the F1 score reflected a small improvement, which was

approximately 1%. The pattern continued as the learning rate was reduced

further to 0.001 when the F1 score was slowly improved and reached 74%.

However, further decreasing the learning rate to 0.0005 and 0.0001 reversed
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the process of model performance improvement. The f1 score of this model is

the same as the first model with a 0.05 learning rate. Therefore, changing the

learning rate from 0.05 to 0.0005 for the model reflects minor change, which

made the f1 score vary in the range of 3-4%.

Overall, variations of batch size and learning rate hyperparameters did alter

the model results, but the changes were insignificant. Our CSIT-NER model

still achieved a sufficient level of accuracy. Therefore, we can conclude that our

model is robust against the parameter tuning effect.

6.3.3. Statistical Hypothesis Test

To validate our CSIT-CRS ratings and the survey data, we performed three

different sets of statistical hypothesis tests. First of all, we conducted a quick

Normality test using the Shapiro-Wilk [48]. Our data did not follow Gaussian

distribution at 99% confidence level (p-value<0.01). Therefore, we decided to

use non-parametric tests in the next step.

Table 9: Kruskal-Wallis H Test and Friedman Test results

Kruskal-Wallis H Test Friedman Test

Group split t-value p-value t-value p-value

Combined A 66.0756 < 0.0001** 113.4913 < 0.0001**

B 154.9135 < 0.0001** 216.1930 < 0.0001**

CSIT-CRS A 83.1440 < 0.0001** 122.7711 < 0.0001**

B 195.9316 < 0.0001** 249.0673 < 0.0001**

UI/UX A 6.5875 0.2531 15.9569 0.0069**

B 14.4019 0.2115 32.1921 0.0007**

** denotes statistical significant at both 95% and 99% confidence levels.

In the second set, we used the Kruskal-Wallis H Test [49] and Friedman Test

[50] to compare the data between different groups of survey volunteers. We split

the groups in two ways: (A) by expert level (6 groups: students in year 1, year

2, year 3, year 4, year 5 or above, and faculty members), and (B) by career
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path (12 groups for 12 chosen career paths). We performed the tests for the

combined CSIT-CRS ratings and UI/UX questions first and separated the two

sections later. H0 is that the different groups have similar ratings and answers,

while H1 is the opposite. The result in Table 9 shows that we can reject H0 and

accept H1 for most tests at a 99% confidence level.

Table 10: Turkey’s HSD Test results

UI/UX Question meandiff p-value lower upper reject

Q1 −0.1012 0.5814 −0.4550 0.2527 False

Q2 −0.5187 0.0103* −0.9136 −0.1238 True

Q3 −0.4392 0.0137* −0.7874 −0.0910 True

Q4 −0.2772 0.1406 −0.6467 0.0923 False

Q5 −0.1573 0.3569 −0.4932 0.1786 False

Q6 −0.0491 0.7869 −0.3934 0.2952 False

* denotes statistical significant at 95% confidence level.

Finally, as we could not reject H0 in the Kruskal-Wallis H Test for UI/UX,

we conducted a pair-wise Turkey’s HSD test [51] at 95% confidence level to

compare between students and faculty members for all 6 UI/UX questions. The

H0 and H1 are similar as before. The results in Table 10 further confirm the

reported values in Table 4. There are statistical differences in the answers of

Q2 and Q3 among the 2 groups, but not for the other questions.

To conclude, all of the statistical hypothesis tests prove that different groups

of survey respondents have different opinions and our reported results in Section

4 and Section 6.2 are statistically significant.

7. Discussion

From the empirical results, we can confirm that our NLP approach has

a significant enhancement and contribution to personalized recommendation

systems in CS/IT field. The CSIT-NER model achieves great results, which
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lays a strong foundation for potential breakthroughs in this research direction,

combining domain expertise and advanced neural network architectures. The

hybrid CSIT-CRS, on the other hand, has answered the answers to all three

research questions we set out when building this NLP system. Research question

1 has been answered by use case 3 where all the missing skills are listed and

used for MOOCs recommendation. Use case 2 provides the answer for research

question 2 with an extension of links to jobs for students to apply to. The most

important research question 3 has been answered by both use case 1 and use

case 3 where university courses and MOOCs are suggested based on individual

preferences. The survey results and exhaustive tests have further confirmed the

contribution of this paper to both current literature and society.

The whole system shows the social impact sides of these theoretical methods

by providing effective and efficient methods that can serve multiple stakeholders.

The NLP system benefits people in not only higher education sectors but also

the tech industry in general. Students can find missing skills and courses to

support the pursuit of their chosen career path. The academic faculty members

can expand their knowledge based on the industry-required skills and update

the courses using suggested online materials. Universities can leverage this

to improve the student experience and attract more enrollments with better

curriculum design. Companies and the industry are indirectly benefiting from

this by recruiting graduates with more relevant skills.

As the transfer learning capability of our model has been proven, we can

efficiently generalize the CSIT-NER model and scale the hybrid CSIT-CRS to

support universities from different countries, not only Australia and Vietnam.

Furthermore, cross-domain applications can be investigated in the future where

we apply the same approach to the higher education sector in other fields, such

as finance or marketing. Last but not least, our approaches can be expanded to

various systems and applications outside of universities, e.g. using our CSIT-

NER model for tech recruitment or implementing our personalized hybrid CSIT-

CRS for internal training and up-skill programs at tech companies.
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8. Conclusion

In this research, we have investigated the named entity recognition task

specifically for CS and IT fields. We developed an in-domain CSIT-NER model

based on a corpus of 15,372 sentences from StackOverflow and 6,510 sentences

from GitHub. The model is one of the very first to investigate NER tasks

for tech-related fields, outperforms state-of-the-art models, and is shown to be

a promising benchmark for related future works. In addition, we developed

an NLP-based hybrid CSIT-CRS for universities by applying the CSIT-NER

model on datasets scraped from online course descriptions, job postings, and

MOOCs platforms. The evaluation metrics and statistical results show that the

system receives relatively high satisfaction among volunteers. Our system, with

a strong societal benefit to the higher-tech education sector, is also a prospective

candidate to implement in multiple universities and transfer learning to other

majors of studies or different applications in the future.

Appendix A. Web Application User Interface

This appendix presents the User Interface of our Web Application, including

the three use cases and three visualisation dashboards on the Admin portal.
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