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Abstract—Super-resolution of satellite imagery poses unique
challenges. We propose a hybrid method comprising two exist-
ing deep network super-resolution approaches, namely a feed-
forward network called DeepSUM, and ESRGAN, a GAN-based
approach, to super-resolve multiple low-resolution images by a
factor of four to obtain a single high-resolution image. We also
introduce a novel loss function, called variation loss, to better
define edges and textures to create a sharper, perceptually better
output. Using our hybrid, we inherit some of the advantages of
both deep learning approaches, resulting in super-resolved images
that better show boundaries, textures, and details.

Index Terms—Super-Resolution, Computer Vision, Remote
Sensing, Deep Neural Network

Super-resolution (SR) is the process of obtaining a higher-
resolution image from a single or multiple lower-resolution
images. It has a wide variety of applications including medical
imaging, security imaging, and satellite remote sensing [Yang
et al.,, 2019]. However, super-resolution is an inherently ill-
posed problem as a multiplicity of solutions exist for the
low-resolution image [Dong et al., 2015]. To overcome this
issue, sophisticated super-resolution methodologies attempt
to exploit contextual information to infer the missing high-
resolution components. While most super-resolution studies
focus on generic photo imagery, there is a substantial body of
work focusing on super-resolving satellite imagery, the topic
of this paper, which presents its own unique challenges.

Many studies address super-resolution as part of the wider
context of image processing using techniques such as de-
noising, compressing and imprinting imagery. Before the ad-
vent of modern machine learning, interpolation-based methods
such as bicubic interpolation and Lanczos resampling were
used for super-resolution [Yang et al., 2019], where the value
of each pixel is estimated based on the surrounding pixels.
Although these methods are fast and do not require other data
to work from, they suffer from low accuracy and blur high-
resolution details due to a lack of information about how to
resolve the pixel values.

With the advent of deep convolutional neural networks
(CNN) came the ability to learn pixel values from very high-
level feature maps. These super-resolution methods can be
divided into single-image SR (SISR) and multi-image SR
(MISR). As the names suggest, SISR infers higher resolution
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data from a single image, whereas MISR takes advantage of
the information gain presented by multiple complementary
images of the same scene to better infer pixel values [Molini
et al., 2019]. One of the first SISR methods using deep
CNNs [Dong et al., 2015] learnt features via hidden layers,
rather than explicitly learning a dictionary of image features.
In the model, called Super-Resolution Convolutional Neural
Network (SRCNN), the low-resolution image is first upscaled
to the desired size using bicubic interpolation. The image is
then flattened and passed through the CNN to generate an
output. This method was found to be better than any of the
previous SR methods available at the time.

Several recent studies have looked at using Generative
Adversarial Networks (GANs) to enhance the product of
super-resolved data. These include [Hoque et al., 2019], [Jiang
et al., 2019], [Ledig et al., 2017], and [Wang et al., 2018].
GANSs utilise adversarial networks consisting of a generator
network and a discriminator network. The generator network
produces a high-resolution image similar to the original high-
resolution image, whereas the discriminator acts as a judge
and determines whether the output image is plausibly fake.
In this way, the discriminator guides the generator to produce
steadily more realistic images, until the discriminator is unable
to distinguish the output of the generator and the ground
truth image. In the context of super-resolution, this will likely
produce an image that is not the same as the ground truth
but has perceptual qualities that appear to be identical to the
human visual system. GANs offer the possibility of photo-
realistic images at large up-scaling factors [Ledig et al.,
2017]. However, while GANs can successfully generate photo-
realistic images, they have a tendency to “hallucinate” details.

I. REMOTE SENSING AND SATELLITE IMAGERY

Remote sensing is the use of electromagnetic energy to
measure the physical properties of distant objects. The history
of remote sensing can be traced back to World War I and
World War II when millions of aerial photographs had to be
manually analysed for military purposes [Moore, 1979]. The
development of remote sensing platforms progressed rapidly
through the twentieth century. A key moment was the launch
of the first Landsat satellites in 1972, which were the first
dedicated earth landcover imaging satellites. For the first time,



repetitive images of the earth were easily available for analysis.
The first Landsat satellites (1 and 2) carried a green and red
sensor and two NIR sensors. More recent Landsat satellites
(Landsat 8 and 9) can acquire data from 11 spectral bands at
between 15 and 30m resolution, vastly increasing the amount
of information that can be acquired [Wulder et al., 2019]. A
parallel effort by the European Space Agency (ESA) created
the SPOT satellites with a relatively high resolution of 2.5
RGB bands, and more recently the Sentinel series of satellites,
whose imagery we use in this study. In the last decade, cube
satellites, such as those launched by Planet provide a higher
return rate with images available up to two times daily [Planet
Labs Inc, 2021].

Satellite data is comparatively cheap compared to aerial
photography, so it is used for tasks that require large area
coverage or regular coverage over time. However, it does
suffer from the issue that commercial satellite images generally
have a lower resolution than aerial or drone imagery, so it
cannot always resolve features to a sufficiently high level. In
2020, the highest-resolution commercially available satellite
data was from satellite WorldView-3 with a 30cm ground
sample distance (GSD). Other satellites had submeter imagery
products of GSD 50cm including WorldView-2, GeoEye-1,
Pleiades. This resolution is still not sufficient for tasks such
as traffic monitoring and animal tracking [Zhu et al., 2020].

One unique issue with satellite imagery is cloud cover. In
12 years of observations by the Moderate Resolution Imaging
Spectroradiometer (MODIS), it was found that 67% of the
Earth’s surface is covered by clouds on average. (Note that
this is lower overland with only 55% of the area covered in
cloud, and cloud cover is much lower on average during late
summer and early autumn [Meraner et al., 2020].) Addition-
ally, satellite data also suffer from noise, caused partially by
inaccuracies in the point spread function (PSF) of the imaging
system and motion blur caused by satellite movement sensor
scanning. Moreover, the imagery is likely to be processed
and resampled, which causes further blur [Zhu et al., 2020]
especially when compensating for atmospheric distortion.

These issues are typically not taken into consideration
in general super-resolution methods, which often use down-
sampled higher-resolution data to generate low-resolution
training data [Hoque et al., 2019], [Johnson et al., 2016],
[Wang et al., 2018]. This model assumes that either the
degradation model can be characterised in some way or has
a limitation in that the degradation model might not match
reality [Molini et al., 2019]. In this paper, we propose a
fusion method combining both a convolutional neural network
method (namely DeepSUM) and a GAN approach (namely
ESRGAN), with the goal to perform perceptually consistent
and accurate super-resolution of satellite imagery. !

'For more detail on the work presented in this paper, see the first
author’s MSc thesis, which is available at the University of Waikato research
repository [Bull, 2021].

II. METHODOLOGY

DeepSUM [Molini et al., 2019] is a CNN developed by
a team at Politecnico di Torino for super-resolving multiple
unregistered temporal images to a single higher-resolution
image by a factor of three. In the original algorithm, the
low-resolution images with 128 x 128-pixels were up-sampled
to 384 x 384-pixels. DeepSUM employs a supervised deep
learning approach, where the CNN learns the residual between
a bicubic interpolation and the ground truth. Using multiple
images, DeepSUM aims to explore the extra information
provided by the temporal depth.

The method was the winner of the PROBA-V super-
resolution challenge issued by the European Space Agency
(ESA) [Mirtens et al., 2019]. In the PROBA-V challenge,
the teams were given multiple images from each of 78
Earth locations that needed to be super-resolved and checked
against a high-resolution image taken from the same satellite.
The satellite data used by PROBA-V consisted of top-of-
atmosphere reflectances for the red and NIR spectral bands
at 300m (LR) and 100m (HR) resolution. Each image came
with a quality map indicating pixels affected by cloud, shadow,
ice, water etc. Each data point contained one HR image and
several LR A recorded within 30 days of each other. This set
of images was referred to as an image set. At each location,
there were up to 19 different LR images and at least 9 HR
images of the area. A unique feature of this data was that
the HR and LR images were separately acquired by the same
satellite, as opposed to using artificial data, i.e., data that
had been previously downsampled from an HR image [Molini
et al., 2019]. The competition expected LR images to be super-
resolved from 128 x 128-pixels to a 384 x 384-pixel image.

Unlike DeepSUM, the ESRGAN is a GAN-based super-
resolution algorithm that is designed to generate perceptually
consistent super-resolution images [Wang et al., 2018]. As
we will observe in the next section, the output of DeepSUM
lacks the pixel-by-pixel variation of the ground truth images,
and some of the sharpness and detail is not recreated by the
network, particularly when a mean-squared error (MSE) loss
is used. Hence, we use ESRGAN to infer additional details in
the super-resolution image. We should note here that ESRGAN
is not designed for imprinting clouds, and as such, would not
be suitable as a drop-in replacement for DeepSUM.

A. DeepSUM Algorithm Changes

We adapted the DeepSUM algorithm to super-resolve
Sentinel-2 data by a factor of 4 (rather than 3 as in the
original algorithm), using aerial imagery as ground truth. This
change was made to better match the data, as 10m pixels from
Sentinel-2 resolve well to 4 x 2.5m pixels with no rounding
required. This change also means the up-sampling factor is
the same as used in ESRGAN, which makes the methods
consistent when used jointly. Several changes were made to
the algorithm to facilitate using these datasets with a different
up-scaling factor.

Tweaks were also required for the DeepSUM algorithm to
work with the different number of images in each image set in



our problem (8 vs. 9). In the Fusion Net subnetwork, feature
maps from each of the individual images are combined to
create a single image. The original algorithm used the best
9 images in a set, and these were reduced down to a single
image using four 3 x 3 x 3 3D convolutional layers. A reduced
image set size necessitated a minor architectural change. In
place of the four 3 x 3 x 3 3D convolutions, three 2 x 3 X 3
3D convolutions were used, followed by a single 3 x 3 x 3 3D
convolution. This is illustrated in Figure 1.

L. Modified for 6 Modified for 8
Original . .
imagesper set imagesper set
3D Conv size 3x3 3D Conv size 2x3 3D Conv size 2x3
Instance norm Instance norm Instance norm
Leaky Relu Leaky Relu Leaky Relu
3D Conv size 3x3 3D Conv size 2x3 3D Conv size 3x3
Instance norm Instance norm Instance norm
Leaky Relu Leaky Relu Leaky Relu
3D Conv size 3x3 3D Conv size 2x3 3D Conv size 3x3
Instance norm Instance norm Instance norm
Leaky Relu Leaky Relu Leaky Relu
3D Conv size 3x3 3D Conv size 3x3 3D Conv size 3x3
Instance norm Instance norm Instance norm
Leaky Relu Leaky Relu Leaky Relu
2D Conv 2D Conv 2D Conv
Instance norm Instance norm Instance norm
Leaky Relu Leaky Relu Leaky Relu
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Fig. 1: Fusion block modifications for different image set sizes.

Another notable change in our implementation is the cre-
ation of different loss functions, and the use of additional
metrics, namely SSIM, perceptual loss, and variation loss.

B. Loss Functions

Mean squared error (MSE or /5) and mean absolute error
(MAE or /) are dominant loss functions used across machine
learning that are applied in a wide range of applications includ-
ing super-resolution. The reason these losses are so popular
is that they are convex and often available pre-packaged in
software libraries that make them easy to use [Zhao et al.,
2016]. In addition, MSE is simple and easy to understand, and
relatively computationally cheap [Wang and Bovik, 2009]. In
the context of image processing, MSE and MAE are the error
signal between the original image and the distorted image.
In super-resolution, this is the error between the HR and
upsampled LR images.

Unfortunately, pixel-wise loss functions such as MSE strug-
gle to handle the uncertainty inherent in recovering lost high-
frequency details. As discussed in detail by [Ledig et al.,

2017], pixel loss functions can appear overly smooth due to
the pixel-wise average of possible solutions in the pixel space.
By favouring an average over the plausible HR solutions, a sig-
nificant reduction of high-frequency details occurs [Lugmayr
et al., 2020]. This leads to the issue that although using an
MSE loss may have a high peak signal-to-noise ratio (PSNR),
it correlates poorly with image quality as perceived by a
human observer. To address this shortcoming, the structural
similarity index measure (SSIM) and the multi-scale structural
similarity index measure (MS-SSIM) are often proposed as an
alternative to MSE for image processing tasks. SSIM attempts
to mimic aspects of the human visual system in focusing on
the structural similarity between the images rather than the
luminance and the contrast [Wang et al., 2004]. Intriguingly,
although SSIM and MS-SSIM are commonly-cited functions
to measure image distortion, they are not commonly used as
loss functions when training super-resolution models. This is
even though differentiable versions exist and exhibit obvious
advantages over MSE in the context of image quality [Zhao
et al., 2016].

However, SSIM is also pixel based and does not capture
stylistic differences between the output and ground-truth im-
age. Ideally, in super-resolution, fine details are inferred from
visually ambiguous low-resolution imagery [Johnson et al.,
2016]. Both MSE and SSIM have been found to correlate
poorly with human assessment of visual quality, as both
capture low-level differences between pixels.

Our preliminary studies showed that the super-resolved
images obtained from DeepSUM often produced a smooth
output as pixel values trended towards the mean. Highly
textured objects appeared largely monochrome and lacked the
texture of a true image. To rectify this, and to better replicate
the variation and the perceptual qualities of the ground truth,
we introduce a new loss function to encourage pixel-by-pixel
variance, which we dub “variation loss”. We calculate the
variation loss using the following steps. For each mini-batch of
output imagery and ground truth encountered during training
of the network, we produce 9 copies of the minibatch, and each
of those 9 copies is obtained by moving the original image
by each of —1,0,1 in the X and Y dimension respectively.
Following this, the off-centre copies of the original mini-
batch (and the images which were not moved i.e., moved by
(0,0)) are stacked together and variance matrices are created
using only the stack dimension as illustrated in Figure 2.
This effectively creates a mini-batch of image variances. The
output imagery and the prediction imagery are compared,
and the difference is calculated using mean squared error (or
alternatively, absolute error). In our experiments, the variation
loss is combined with other loss functions using a variance
factor hyper-parameter to increase or decrease its effect on
the overall loss. Mathematically, assume N is the number of
samples, z = (x;|i = 1,2,~~~ ,N) is the predicted output,
and y = (y;]i = 1,2,--- ,N) is the ground truth. Then, V,
is the variance of the output and V), is the variance of the
ground-truth HR image. Variation loss can be defined by the



Variance calculation
made per pixel

Fig. 2: Variation is captured by stacking copies of an image
on top of each other, where copies are obtained by moving
each image by O or 1 pixels in an X and Y direction, and
calculating the variation through the z axis.

equation:
L N
Lyar(z,y) = N ;Zl(Vm Vyi) (1)

In our experiments, results from using a variation loss
component in the loss function showed an improvement in
output quality in two ways. Land cover texture appeared more
realistic and similar to the ground-truth HR image. A second,
more surprising effect, was that the features were crisper and
less undefined. This effect can be explained by the variation
loss working to preserve high variance in boundary areas by
forcing the high pixel intensities higher and the low pixels
intensities lower, and so enhancing the edge effect, which is
blurred by a pixel-based loss.

We also consider the perceptual loss function measured by
the learned perceptual image patch similarity metric (LPIPS),
which aims to capture differences based on high-level feature
representations rather than pixel-based differences. It does
so by employing style transfer. In this paradigm, content is
defined as the larger spatial structure in the image, whereas
style refers to the colours and local structures of the image.
The insight that allows this transfer is that higher layers (or
the layers closer to the output) in a deep neural network
capture the high-level content in terms of objects and their
arrangement in the input image, but do not contain information
about detailed pixel values. The key finding here is that style
and content representations are separable. When CNNs are
trained for object recognition, they develop a representation
of an image that is increasingly explicit, i.e., further along the
network, feature maps are increasingly about content rather
than style [Gatys et al., 2015].

To apply style from one image to the content of another
image, loss functions must be devised that allow this transfer.
The method used by [Johnson et al., 2016] to aid super-
resolution is to create a network with two components: an

image transfer network and a loss network. As existing image
classification networks that are publicly available have already
learnt to encode perceptual and semantic information, such a
pre-trained network is used as a fixed loss network. The net-
works most used are VGG networks pre-trained on ImageNet
or the MS-COCO dataset [Johnson et al., 2016].

III. RESULTS AND DISCUSSION

In our experiments, low-resolution satellite data of the North
Island of New Zealand and corresponding high-resolution
aerial photography is used to train DeepSum [Molini et al.,
2019] as well as ESRGAN and our hybrid. When interpreting
the results we present, note that large PSNR and SSIM values,
and a small LPIPS value, are usually preferable.

Figure 3 illustrates some results obtained in our experi-
ments. Row 1 shows up-sampled satellite images obtained
using basic bicubic upsampling. Row 2 is the output of super-
resolution using ESRGAN. Observe that there are significant
artefacts in the regions with clouds. Row 3 is the output of
super-resolution using DeepSum. Row 4 is generated using
our fusion method, combining the output of DeepSum and
ESRGAN using variation loss as a component in the loss
function. Row 5 is the high-resolution ground truth from the
aerial photography.

Table I shows a comparison of the peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and learned per-
ceptual image patch similarity (LPIPS) of the four approaches
to super-resolution, namely bicubic upsampling, DeepSum,
ESRGAN, and the hybrid of DeepSum and ESRGAN. Note
here that we are reporting the values for the network trained
using MSE loss. Also note here that the ESRGAN-only
approach is not suited for satellite image super-resolution and
is provided only for reference.

Table II compares the different metrics when trained using
different loss functions. Here, we see that for the DeepSUM-
only network, the variation loss (combined with MSE using
0.4xMSE+0.6 x Variation loss) gives us the best LPIPS score.
Interestingly, the DeepSUM network trained using perceptual
loss results in a poorer LPIPS score compared to the network
trained using variation loss. We would like to note also that as
one can see in Figure 4, the output with variation loss tends to
create output with stronger edges and boundaries, and arguably
better textures, which unfortunately is not captured by the three
metrics used.

IV. CONCLUSION AND FUTURE WORK

Our results show the trade-off between optimising a re-
sult against pixel-based metrics such as SSIM and PSNR
and optimising for more perceptually-based metrics. Different
loss functions run in our experiments show that the original
CNN algorithm DeepSUM can be improved. The addition
of ESRGAN to the process shows how the data can be
made to appear more photo realistic. In particular, the GAN
creates more realistic textures and fine detail; however, this
comes at some uncertainty as to the veracity of minor detail.
Using the novel variation loss function introduced in this



Fig. 3: Result of the super-resolution of the satellite images. Row 1 shows up-sampled satellite images obtained using bicubic
upsampling (baseline). Row 2 is the output of super-resolution using ESRGAN. Row 3 is the output of super-resolution using
DeepSum. Row 4 is generated using our fusion method, combining the output of DeepSum and ESRGAN using variational
loss as the loss function. Row 5 is the high-resolution ground truth from the aerial photography.

bicubic DeepSUM ESRGAN DeepSUM

upsample only only then ESRGAN
land use class PSNR SSIM  LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
overall result 19.1 0.30 0.34 20.1 0.31 0.35 19.5 0.22 0.21 19.7 0.25 0.20

farmland 18.1 0.44 0.25 20.1 0.46 0.25 19.3 0.30 0.16 19.7 0.40 0.15
bush 19.8 0.23 0.38 20.1 0.24 0.40 19.6 0.18 0.24 19.6 0.19 0.22
mixed 18.1 0.38 0.30 20.2 0.38 0.30 19.8 0.27 0.17 19.8 0.30 0.16

TABLE I: The performance of the different approaches on the accuracy and perceptual metrics.



bicubic DeepSUM DeepSUM

upsample only then ESRGAN
DeepSUM loss func PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
MSE loss 19.1 0.30 0.34 20.1 0.31 0.35 19.7 0.25 0.20
MSE + Variation loss 19.0 0.23 0.23 19.0 0.21 0.21
SSIM loss 20.3 0.33 0.33 18.1 0.19 0.26
Perceptual loss 17.6 0.32 0.33 19.4 0.21 0.19

TABLE II: The effect of loss function on DeepSUM output and ESRGAN output.

Fig. 4: Images showing the effect of the variation loss on image quality. Zoomed-in samples taken from the top right of our
test image-52. Top-left to bottom-right: HR/ground-truth image, LR image bicubically upsampled, output using MSE loss only
without variation loss, and output using MSE loss including variation loss.

paper with DeepSUM produces a crisper final output with
stronger edges and boundaries, and arguably better textures.
However, this result is not reflected in measurement metrics.
Note that, as each output image is an amalgamation of several
temporarily different inputs, the result cannot possibly be a
true representation of any real image. In this sense, using a
GAN to make the DeepSUM output appear more realistic-
looking to a human is appropriate, as the output will never
correspond exactly to reality anyway.
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