Effect of Single vs Accumulated Bouts of Exercise on Body Composition, Fitness, and Resting Metabolic Rate

KATHERINE JANKEVICIUS, ALEX ALVARA, AND JAMES R. ROWE
Human Performance Lab; Kinesiology \& Health Science; Stephen F. Austin State
University; Nacogdoches, TX

PURPOSE: To examine how the effects of accumulated exercise compare to continuous exercise on body composition, VO_{2} max, and metabolic rate. METHODS: Mildly active males ($\mathrm{n}=4$) and females ($\mathrm{n}=5$) were randomly selected to perform either 1) continuous exercise consisting of one 30 -minute bout of Tabata (1-bout), 2) accumulated exercise consisting of two 15 -minute bouts of Tabata (2-bout), or 3) no exercise (control). Both exercise groups performed Tabata three times per week for 4 weeks. Each group had three participants (2 males and 1 female) with the exception of the 2 -bout group which had 3 female participants. Changes in body composition (i.e., body mass (kg) and percent body fat (BF\%)) were assessed using Dual-Energy X-Ray Absorptiometry (DXA) measurements taken at baseline and after 4 weeks of training. $\mathrm{VO}_{\max }(\mathrm{ml} / \mathrm{kg} / \mathrm{min})$ and resting metabolic rate ($\mathrm{kcal} /$ day) were assessed at baseline and after 4 weeks of training using open spirometry on a ParvoMedics True Max 2400 Oxygen Uptake system. For the female participants, both the baseline and 4 -week measurements were assessed in the mid-follicular phase of the menstrual cycle. Participants maintained their normal diet throughout the study. Participants were provided with Fitbit watches to keep track of their activity (avg. heart rate \& steps per day) during the study. Significant differences ($\mathrm{p}<.05$) within each of the 3 groups were determined using a paired samples t-test based on the pre- and post-intervention values. Significant differences between the 3 groups were determined using a one-way ANOVA and Bonferroni post-hoc test. RESULTS: No significant changes in body mass were detected within the groups ($p>.05$) or between the groups ($p=.72$). No significant changes in fat mass were detected within the groups ($p>, 05$) or between the groups ($p=.22$). With that being said, there was a trend towards a decrease in fat mass within the 2-bout group $(1.2 \pm .45 \mathrm{~kg} ; \mathrm{p}=.061$; $\mathrm{ES}=-.22$). No significant changes in $\mathrm{BF} \%$ ($\mathrm{p}>.05$) were detected within the control or 1-bout group. There was a significant reduction in $\mathrm{BF} \%$ within the 2-bout group ($1.43 \pm 0.38 \% ; \mathrm{p}=.03 ; \mathrm{ES}=-.63$) and there was a significant difference in the change in $\mathrm{BF} \%$ between the 3 groups ($\mathrm{p}=.048 ; \mathrm{ES}=-1.2$ and -1.8). No significant changes in muscle mass muscle (kg) were detected within the groups ($\mathrm{p}>.05$) or between the groups ($\mathrm{p}=$.17). With that being said, there was a trend towards an increase in muscle mass within the 2-bout group $\left(.77 \pm .27 \mathrm{~kg} ; \mathrm{p}=.059 ; \mathrm{ES}=-.14\right.$). No significant changes ($\mathrm{p}>.05$) in resting metabolic rate or $\mathrm{VO} 2_{\text {max }}$ were reported within the groups or between the groups. CONCLUSION: Four weeks of accumulated exercise reduced $\mathrm{BF} \%$ when compared to no exercise and continuous exercise. Despite the absence of improvement in $\mathrm{VO}_{2} \max$ and metabolic rate, accumulated exercise throughout the day may still be a valuable exercise mode as it could help people with busy schedules achieve minimum exercise recommendations. Future studies should include 1) a larger sample size, 2) a greater volume of exercise, or 3) a longer period of observation. These modifications may lead to a more valid evaluation of how metabolic health and fitness are influenced by accumulated and continuous exercise.

