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Abstract:  

 

Shot-peening is a surface mechanical treatment widely employed to enhance the fatigue life of 

metallic components by introducing compressive surface residual stress fields. These fields are 

mainly impacted by the selection of the process parameters. The aim of this work is to propose 

a hybrid approach to conduct two predictive models: second-order model and feed-forward 

artificial neural network model. For this purpose, a 3D multiple-impacts finite element model 

coupled to a central composite design of experiments was employed. A parametric analysis was 

also conducted to investigate the effect of the shot diameter, the shot velocity, the coverage, 

and the impact angle on the induced residual stress profile within a TRIP780 steel. It was found 

that both predictive models predict with good agreement, the residual stress profile as a function 

of the process parameters and can be used in shot-peening optimization due to their 

responsiveness. 

 

Keywords: Shot-peening; Residual stresses; Finite element modeling; Second-order response 

surface model; Artificial neural network model 

 

Nomenclature 

 

a   Impact radius (mm) 

𝑏   Stabilization rate for isotropic hardening 

C  Coverage (%) 

𝐶𝑙  Initial modulus for kinematical hardening (MPa) 

D  Shot size (diameter) (mm) 

E  Young modulus of the target and the shot (MPa) 
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𝐸̅   Equivalent Young modulus of the target and the shot (MPa) 

e   Distance between the center of adjacent impacts (mm) 

V  Shot velocity (mm/sec) 

α  Impact angle between the shot trajectory and the surface (°) 

K  Impact efficiency ratio 

𝑘  Number of independent variables 

n   Number of ranges 

Q  Saturated stress for isotropic hardening (MPa) 

𝑅  Isotropic hardening parameter (MPa) 

𝑅̇  Rate of isotropic hardening parameter (MPa/sec) 

𝑅2  Coefficient of determination  

𝑅𝑎𝑑𝑗
2   Adjusted coefficient of determination  

r  Strain ratio for cyclic loading 

𝑆  Deviatoric stress tensor (MPa) 

𝑋𝑑𝑒𝑣   Deviatoric back stress tensor (MPa) 

𝑋  Overall back stress tensor (kinematic hardening) (MPa) 

𝑋 𝑙  Kinematic hardening component tensor (MPa) 

𝑋̇𝑙  Rate of kinematic hardening component tensor (MPa/s) 

𝑥𝑖, 𝑥𝑗  Shot-peening process parameters 

𝑌   Yield function (MPa) 

y   Response surface 

𝑍𝑎𝑓𝑓  Affected depth (µm) 

𝛽𝑖, 𝛽𝑖𝑖, 𝛽𝑖𝑗 Regression coefficients 

𝜖  Second-order model error 

𝜎   Stress tensor (MPa) 

𝜎𝑒𝑞   Equivalent Von Mises stress (MPa) 

𝜎𝑚𝑎𝑥  Maximum compressive residual stress (MPa) 

𝜎𝑠  Residual stress at the surface (MPa) 

𝜎𝑦  Initial yield strength (MPa) 

𝜎0  Yield stress (MPa) 

𝛿  Kronecker delta 

𝛾𝑙   Nonlinear recovery parameter for kinematical hardening 
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𝑝̇   Accumulated plastic strain rate (𝑠−1) 

𝛥𝜀1, 𝛥𝜀2, 𝛥𝜀3  Different applied strain range 

𝜌𝑠   Shot density (kg/m3) 

ν  Poisson’s ratio  

𝑎   Activation function of the neural network 

𝑏𝑁   Bias of neuron N of the neural network 

𝜔𝑖
𝑁  Weights of neuron N of the neural network  

R²-score  Score of the ANN model  

𝑌̂𝑖 and 𝑌𝑖 Predicted data of the ANN model and real data 

1. Introduction 

Shot-peening is one of the most effective cold working surface treatment processes which is 

widely employed to enhance the fatigue behavior of many critically loaded mechanical parts in 

aerospace and automotive industries. During the process, the surface of the mechanical part is 

impacted by a large number of small particles, called shots made of steel, ceramic, or glass, at 

a relatively high velocity (up to 100 m/s). As a result, a plastic deformation is induced in the 

superficial layer. Subsequently, a compressive residual stress field is produced and enhances 

fatigue life of engineering components [1]. In fact, the presence of compressive residual stresses 

will impart crack closure stresses, effectively delaying fatigue crack initiation time and reducing 

the driving force of the crack propagation [2]. Besides, this beneficial effect is generally 

accompanied by micro cracks, surface roughness, and sometimes microstructural changes. In 

fact, the use of appropriate shot-peening parameters is highly important. This is because 

underpeening results in poor induced residual stresses, while overpeening results in serious 

alteration in surface integrity causing a significant degradation in fatigue strength [3] [4]. 

Accordingly, the control of the shot-peening parameters has been the subject of many 

investigations.  

 

A large number of experimental investigations were carried out to study this surface treatment 

process. These investigations focused on adjusting its influential parameters in order to control 

its detrimental effects and simultaneously to enhance the beneficial effects arising from the 

induced compressive residual stresses in a shot peened component [5] [6] [7] [8] [9] [10] [11] 

[12]. Moreover, this approach was also used to develop empirical models of induced residual 

stress in terms of process parameters [13] [14]. However, experimental approach is not only 



4 

 

time consuming but requires significant experimental tests for a restricted validation range. This 

made way for analytical investigations of the process [15] [16] [17] [18]. Analytical models 

include complex mathematical analyses which are less expensive but they are based on 

simplifications and assumptions which affect their accuracies when applied to complex 

geometries. More mechanical methods to predict residual stress profiles from shot-peening 

parameters are based on the simplified elastoplastic analysis initially proposed by Zarka [19] 

and applied to conventional shot-peening by Inglebert [20]. It uses the elastoplastic cyclic 

behavior of the impacted material coupled with the Hertz contact theory. More promising 

approach for prediction and optimization of shot-peening process is provided by numerical 

techniques such as the finite element modeling (FEM). It has proven to be highly efficient for 

better understanding of the peening mechanisms [21]. Consequently, a significant number of 

research works focused on the use of FEM to analyse the distribution of residual stresses under 

the effect of shot size [22] [23] [24] [25], shot velocity [22] [23] [25], coverage [26] [27] [28], 

impact angle [24] [25] [29] [30], and material behavior of the target component [25] [31]. Based 

on these works, it was shown that the increase in the shot size and the shot velocity results in 

an increase in the depth of the maximum compressive residual stress as well as the affected 

depth while the surface and the maximum sub-surface compressive residual stresses are almost 

not sensitive to these two shot-peening parameters but are mainly related to the mechanical 

characteristics of the target component material. Increasing the coverage until a certain level 

shows beneficial effects in terms of all quantities defining the residual stress profile. Finally, a 

normal impact angle or close to normal impact experiences the most beneficial features of the 

residual stress field.  

 

TRIP steels have a volume fraction of retained austenite that transforms to martensite during 

thermomechanical loading. Many experimental studies focused on the deformation-induced 

martensitic transformation and on the induced work hardening under monotonic loading. As 

mentioned by [32], the cyclic mechanical response of TRIP steels has barely been investigated 

by modeling approaches coupling phase transformation and strain cyclic hardening. On a fully 

metastable austenitic steel, Burgold et al. [32] proposed a cyclic phenomenological model 

advanced from the approaches developed by [33] or [34] where the phase transformation is 

triggered after a certain number of cycles induced by the accumulated transformation strain. 

For different cyclic strain amplitude, the model predicts the stress amplitude directly linked to 

the strain induced martensitic phase transformation. 
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Concerning TRIP steels treated by shot-peening, only few studies have investigated the effect 

of shot-peening including phase transformation in different steel grades. Experimental studies 

analysed the residual stresses in the different phases such as austenite, ferrite if present, and 

created martensite, along with their evolving volume fractions [35] [36] [37] [38] [39]. For the 

modeling of shot-peening with phase transformation, Halilovič et al. [40] developed a finite 

element model for laser shock peening on AISI 304 steel by using a material model developed 

by [34] and implemented in ABAQUS. Guiheux et al. [38] applied the elastoplastic and phase 

transformation model developed by Kubler et al. [41] to predict the residual stress fields and 

phase transformation under a single impact on AISI 301 LN fully austenitic steel. They also 

considered the model to reproduce the dent microgeometry after impact. The same type of 

model was applied to the simulation of multiple-impacts on TRIP780 with only 16% of retained 

austenite that exhibits a martensitic phase transformation during impact. The authors showed 

that the martensitic transformation has a little beneficial impact on the overall residual stress in 

the first 50 µm. Martensitic transformation generated more compressive residual stresses 

(Δσ  = 50 MPa). Chen et al. [42] modeled a single impact during surface mechanical attrition 

treatment on a TWIP/TRIP steels. Based on a dislocation density model, they modeled the 

twinning and transformation kinetics and the resulting mechanical fields under a single impact. 

Similar to shot-peening, Afzal et al. [43] modeled the residual stress distribution in metastable 

AISI 301 stainless steel submitted to incremental sheet forming (ISF). Using an Olson and 

Cohen martensitic transformation kinetics induced by plastic strain with an elastoplastic 

behavior implemented in ABAQUS, they modeled the radial and tangential stress components 

and the volume fraction of martensite in a disc after ISF. Despite the different mechanical and 

microstructural fields are predicted, 3D finite element analysis experiences a high 

computational cost because of using multiple-impacts model [44].  

 

Machine learning and deep learning techniques can be a good tool to understand features and 

extrapolate/interpolate data obtained from experimental measurements or from FEM. Artificial 

neural networks (ANNs) emerged as a new branch of the computation useful for simulations of 

complex correlation that is difficult to describe with physical models. They are flexible non-

linear models used to approximate the outputs of various different processes based on its inputs. 

ANNs are part of the machine learning branch of artificial intelligence, where one or multiple 

hidden layers of neural networks are considered. The different steps for building a network are: 

dataset splitting, architecture, and algorithm. ANN models were used in material processing for 

machining [45], metal forming and forging [46] [47], additive manufacturing [48], and volume 
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or surface treatments [49] [50]. Maleki and Farrahi [49] modelled conventional shot-peening of 

AISI steel via ANNs. They studied the effect of the process parameters (coverage from 100% 

to 2000% and Almen intensity from 17A to 25A) based on experimental data with 8 

configurations. The microhardness, residual stress, and grain size profiles versus depth are 

analyzed and part of the data from the 8 different profiles were used for training and some of 

them for testing. They managed to train the ANN to reproduce the missing data with a R²-score 

greater than 0.999. However, no new data with different process parameters were predicted in 

this study. In another study from [50] on shot-peening of 18CrNiMo-6 steel exhibiting an 

austenite to martensite phase transformation, an ANN algorithm was used to predict the residual 

stress profiles in austenite and martensite, the volume fraction of retained austenite, 

microhardness, and domain size obtained from Cauchy breadth of diffraction peaks. Only 3 

different profiles obtained from 3 different sets of process parameters were used. In a same 

manner, 50% of the data from the profiles were used to train the ANN model and the rest to test 

the model.  

 

In the field of process optimization, Unal and Maleki [51] proposed a multi-criteria decision 

making (MCDM) numerical approach applied to shot-peening of Almen strips made of 

AISI 1070 steel to select the most effective process parameters having an impact on surface 

roughness and surface hardness. They were able to choose the most effective MCDM technique 

that eliminates hazardous roughness impact. Li-xing et al. [52] proposed a fuzzy neural network 

approach (FNN) to model microhardness profiles of TC17 titanium alloy as function of 

shot- peening parameters. FNN couples ANN with fuzzy set that is suitable to handle noisy and 

scattered data, which was the case of microhardness in TC17 alloy. The authors were able to 

reproduce experimental microhardness profiles with a maximum error of 8.5% just below the 

shot peened surface.  

 

As pointed out, the above-mentioned investigations suffer from some of drawbacks such as 

time consuming, restricted validation range, simplifications, and high computational cost. 

Moreover, there have been little approaches dealing simultaneously with several shot-peening 

parameters potentially influence the residual stresses pattern within the TRIP780 steel. In the 

present work, a hybrid approach based on response surface methodology (RSM) and ANNs 

associated with FEM of a shot peened component was developed to build more predictive fast 

running models. To conduct such a study, a 3D multiple-impacts finite element model was 

employed to perform several finite element (FE) simulations using central composite design 
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(CCD) of experiments. Two types of models were then developed: second-order model and 

feed-forward ANN model using Minitab and Scikit Learn, respectively. The effects of many 

key parameters on the induced residual stress profile within TRIP780 steel, including the shot 

diameter, the shot velocity, the coverage, and the impact angle were investigated.  

2. Methodology for predictive models 

2.1. Response surface methodology (RSM) 

In the present work, several shot-peening simulations are conducted using central composite 

design (CCD) in order to minimize the simulation work and to build second-order response 

surface models which provide acceptable accuracy in the resolution of nonlinear responses [53]. 

The shot-peening-independent parameters used in this study consisted of shot size (D), shot 

velocity (V), coverage (C), and impact angle (α). Each of these parameters were varied over 

five levels as shown in Table 1 . According to the CCD, a total of 25 simulations were generated 

including 2𝑘 (24=16) factor points, 2×k (2×4=8) star points, and one center point. To maintain 

rotatability, the upper limit of each variable was coded as +2 ( √16
4

) and the lower limit as -2; 

these values were used to calculate the shot penning parameters. Table 2 shows the results of 

25 simulation parameters forming a central composite design. The shot size (diameter) lies 

between 0.225 and 0.725 mm, the shot velocity between 2.5×103 and 92.5×103 mm/s, the 

coverage between 25 and 325%, and the impact angle between 22.5 and 90°. It is worth 

mentioning that the impact angle of 112.5 ° (which is greater than 90 °) is the same as α = 67.5° 

and it was used to complete the central composite design matrix.  

 

Table 1 Shot-peening parameters used in the finite element simulation and their levels. 

Level 
Shot size 

D (mm)  

Shot velocity  

V (×103 mm/s) 

Coverage 

C (%) 

Impact angle 

α (°) 

-2 0.225 2.5 25 22.5 

-1 0.35 25 100 45 

0 0.475 47.5 175 67.5 

1 0.6 70 250 90 

2 0.725 92.5 325 112.5 
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Table 2 Central composite design matrix for shot-peening simulations. 

Run # 

Coded variables Actual variables 

Shot size 
D (mm)  

Shot velocity  
V (mm/s) 

Coverage 
C (%) 

Impact angle 
α (°) 

Shot size 
D (mm)  

Shot velocity  
V (×103 mm/s) 

Coverage 
C (%) 

Impact angle 
α (°) 

1 1 1 1 1 0.6 70 250 90 

2 1 1 1 -1 0.6 70 250 45 

3 1 1 -1 1 0.6 70 100 90 

4 1 1 -1 -1 0.6 70 100 45 

5 1 -1 1 1 0.6 25 250 90 

6 1 -1 1 -1 0.6 25 250 45 

7 1 -1 -1 1 0.6 25 100 90 

8 1 -1 -1 -1 0.6 25 100 45 

9 -1 1 1 1 0.35 70 250 90 

10 -1 1 1 -1 0.35 70 250 45 

11 -1 1 -1 1 0.35 70 100 90 

12 -1 1 -1 -1 0.35 70 100 45 

13 -1 -1 1 1 0.35 25 250 90 

14 -1 -1 1 -1 0.35 25 250 45 

15 -1 -1 -1 1 0.35 25 100 90 

16 -1 -1 -1 -1 0.35 25 100 45 

17 -2 0 0 0 0.225 47.5 175 67.5 

18 2 0 0 0 0.725 47.5 175 67.5 

19 0 -2 0 0 0.475 2.5 175 67.5 

20 0 2 0 0 0.475 92.5 175 67.5 

21 0 0 -2 0 0.475 47.5 25 67.5 

22 0 0 2 0 0.475 47.5 325 67.5 

23 0 0 0 -2 0.475 47.5 175 22.5 

24 0 0 0 2 0.475 47.5 175 112.5 

25 0 0 0 0 0.475 47.5 175 67.5 

 

By using RSM and CCD, a second-order model (Equation (1)) has been developed with 95% 

confidence level.  

 

𝑦 = 𝛽0 + ∑ 𝛽𝑖 𝑥𝑖 +

𝑘

𝑖=1

 ∑ 𝛽𝑖𝑖 𝑥𝑖
2 +  ∑ 𝛽𝑖𝑗 𝑥𝑖 × 𝑥𝑗 +  𝜖

𝑘

𝑖<𝑗

𝑘

𝑖=1

 
(1) 

 

where 𝑦 is the corresponding response and 𝑥𝑖, 𝑥𝑗 are the ith and jth variables related to the 

shot- peening process parameters. The terms 𝛽𝑖, 𝛽𝑖𝑖, 𝛽𝑖𝑗 are the regression coefficients, 𝑘 is the 

number of independent variables, and 𝜖 is the model error. Accordingly, by using the shot-

peening parameters (𝐷, 𝑉, 𝐶, 𝛼), Equation (1) could be formulated as follows:  
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𝑦 = 𝛽0 + 𝛽1𝐷 + 𝛽2𝑉 + 𝛽3𝐶 + 𝛽4𝛼 + 𝛽11𝐷2 + 𝛽22𝑉2 + 𝛽33𝐶2 + 𝛽44𝛼2

+ 𝛽12𝐷 × 𝑉 + 𝛽13𝐷 × 𝐶 +  𝛽14𝐷 × 𝛼 + 𝛽23𝑉 × 𝐶 + 𝛽24𝑉

× 𝛼 + 𝛽34𝐶 × 𝛼 

(2) 

 

It is worth mentioning that the 𝛽 terms have to be identified using an optimization procedure. 

2.2. Artificial neural networks (ANNs) 

ANNs are arrays of processing based on computational logical structures linked by 

interconnections. ANNs could be employed to fit any complex and ill-defined database, as 

mentioned above, and they might be adopted for prediction and optimization purposes [54]. 

The architecture of a neural network can be described as a directed graph whose nodes 

correspond to neurons and edges correspond to links between them. As shown in Figure 1, each 

neuron receives as input a weighted sum of the output neurons which are connected to its 

incoming edge 𝑥𝑖
𝑁, such that the output neuron 𝑌𝑁+1 can be formulated as follows:  

 

𝑌𝑁+1 = 𝑎(𝑏𝑁 + ∑ 𝜔𝑖
𝑁 . 𝑥𝑖

𝑁

𝑛−1

0

) (3) 

 

where 𝑎 is an activation function, 𝑏𝑁 is the bias and 𝜔𝑖
𝑁𝑥𝑖

𝑁 is the weighted sum of the upstream 

neurons connected to this one. The bias 𝑏𝑁 and the weights 𝜔𝑖
𝑁of each neuron are determined 

by the training of the ANN algorithm on part of the data (training data). The choice of the 

activation function is also critical to optimize the data processing. After training, the coefficient 

of determination computes the R²-score to measure how well the data are likely to be predicted 

by the model, comparing the predicted data 𝑌̂𝑖 from the ANN to the real test data 𝑌𝑖, for 𝑛 

samples.  

 

𝑅2 − 𝑠𝑐𝑜𝑟𝑒 = 1 −
∑ (𝑌𝑖 −  𝑌̂𝑖)

2𝑛−1
0

∑ (𝑌𝑖 − 𝑌̅ )2𝑛−1
0

 (4) 

 

where 𝑌̅ =
1

𝑛
∑ 𝑌𝑖

𝑛−1
0 . A R²-score close to 1 is aimed for, in the validation step.  
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Figure 1 Artificial neural network with two hidden layers. Parameters of the ANN: activation 

function a, bias b. 

3. Finite element model for multi-impacts shot-peening 

3.1. Material constitutive law for TRIP780 steel 

Shot-peening can be seen as repetitive impacts of shots on the target material. The Chaboche 

nonlinear combined isotropic/kinematic hardening model was adopted in this study to represent 

the cyclic behavior of the target TRIP780 steel [55]. This constitutive law, available in many 

finite element codes, has been successfully used to predict the flow stress under cyclic loading 

[56]. In fact, under the effect of multi- impacts, the superficial layer material encounters 

repeated impacts and hence cyclic loading occurs [57] [58]. In this model, the yield function 𝑌, 

defining the yield surface, is expressed as follows:  

 

𝑌 = 𝜎𝑒𝑞 − 𝜎𝑦 − 𝑅 (5) 

 

where 𝜎𝑦 is the initial yield strength, 𝑅 is the isotropic hardening parameter defined in 

Equation (10), and 𝜎𝑒𝑞 is the equivalent Von Mises stress defined as:  

 

𝜎𝑒𝑞 = √
3

2
(𝑆 − 𝑋𝑑𝑒𝑣): (𝑆 − 𝑋𝑑𝑒𝑣)  (6) 

 

where 𝑆 is the deviatoric stress tensor and 𝑋𝑑𝑒𝑣 is the deviatoric back stress tensor and can be 

expressed as follows:  
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𝑋𝑑𝑒𝑣 = 𝑋 −
1

3
𝑡𝑟(𝑋)𝛿 (7) 

 

where 𝛿 is Kronecker delta and 𝑋 is the overall back stress (kinematic hardening) which is a 

combination of several kinematic hardening components 𝑋 𝑙, additively decomposed such as:  

 

𝑋 = ∑ 𝑋 𝑙 

𝑙=1

 
(8) 

 

where the rate of 𝑋 𝑙 is expressed by the nonlinear Ziegler-Prager model implemented in 

ABAQUS [59] [60]: 

 

𝑋̇𝑙 = 𝐶𝑙  
(𝜎 − 𝑋 )

𝜎0
𝑝̇ − 𝛾𝑙 𝑋 𝑙 𝑝̇ (9) 

 

where 𝐶𝑙 is the initial hardening modulus, 𝜎0 the yield stress depending on the isotropic 

hardening, 𝛾𝑙 is the nonlinear recovery parameter, and 𝑝̇ is the accumulated plastic strain rate.  

 

The isotropic hardening parameter 𝑅 is defined in its rate form by: 

 

𝑅̇ = 𝑏 (𝑄 − 𝑅) 𝑝̇ (10) 

 

where 𝑏  and 𝑄 are the stabilization rate and the saturated stress of 𝑅, respectively.  

 

In this work two sets of kinematic hardening parameters (𝐶1, 𝛾1, 𝐶2, 𝛾2) and one set of isotropic 

hardening parameters (𝑏, 𝑄) are considered as material constants and they are determined based 

on experimental approach. In this approach, tensile and cyclic uniaxial tests were used to 

characterize and assess the performance of the proposed constitutive law model. All tests were 

performed at room temperature under total strain-controlled loading and in quasi-static strain-

rate conditions (𝜀̇ =1×10-3 s-1). Three different tests are used for material constants 

characterization: one tensile test and two different incremental cyclic tests performed at strains 

ratio of -1 and 0, respectively. The specimens used in the testing were extracted from nominal 
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2 mm thick metal sheets, oriented along the sheet transverse direction (90° to rolling direction). 

The characterization procedure is divided into three steps using the Z-set object oriented finite 

element software [61]. Firstly, the initial yield stress (𝜎𝑦) and the first set of kinematic 

hardening parameters (𝐶1, 𝛾1) were identified based on the tensile stress-strain curve. Secondly, 

the isotropic hardening parameters (b, Q) and the second set of kinematic hardening parameters 

(𝐶2, 𝛾2) were identified based on the tensile test and the incremental cyclic test (r = -1) and by 

using the value of (𝜎𝑦, 𝐶1, 𝛾1) obtained from the first step. Finally, the last characterization was 

conducted on all material constants using the tensile test and the two cyclic tests. Table 3 shows 

the identified material constants for TRIP780 steel grade.  

 

Table 3 Material parameters of the constitutive behavior with Chaboche nonlinear combined 

isotropic/kinematic hardening model for TRIP780 steel grade 

Kinematic hardening parameters: 

𝐶1= 4495 (MPa), 𝛾1= 9 (-), 𝐶2= 15× 104 (MPa), 𝛾2= 500 (-) 

Isotropic hardening parameters: 

𝑏= 500 (-), 𝑄= -200 (MPa), 𝜎𝑦=475 (MPa) 

 

An additional experimental test was carried out to validate the model prediction capability for 

loading conditions that are close to those encountered in the superficial layer material under the 

effect of multi-impacts. This test consists of an initial monotonic loading until a total strain of 

2.5% followed by an incremental cyclic loading up to 50 cycles at different strain ranges 

(𝛥𝜀1=0.7%, 𝛥𝜀2= 1.5%, and 𝛥𝜀3= 2.4%). This test is simulated through a 2D finite element 

simulation using ABAQUS software [62]. In this simulation the sample, modeled as an elasto-

plastic body (1 mm long ×1 mm high), was meshed by means of 1 continuum, plane stress, 

CPS4R element. Referring to the boundary conditions, the loading conditions are the same as 

those used in the experimental test. The normal translations were restrained on the left and the 

bottom faces in X and Y directions, respectively. Figure 2 shows the comparison between 

experimental and the predicted cyclic behavior for TRIP780 steel. Though the predicted true 

stress-strain hysteresis loops do not match exactly with the measured ones, it appears that an 

overall good prediction is obtained.  
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Figure 2 Incremental cyclic strain-controlled tensile tests (mean strain = 2.5%): comparison between 

experimental (EXP.) and predicted (FE model). 

 

3.2. Finite element model and parameters  

A 3D finite element model was used to simulate the shot-peening process of TRIP780 steel, 

using the commercial finite element software ABAQUS [62]. An explicit integration method 

was employed to take into account the shot-peening dynamic effects. In this simulation, a 

Python script was developed to automate the model generation with particular inputs related to 

shot-peening conditions, numerical aspects, boundary conditions, and contact properties.  

 

The simulations of multi-impacts in the current work were carried out using a model consisting 

of 37 shots impacting the target component, considered as a semi-infinite medium (i.e., it is 

sufficiently massive to limit its global deformation), with a predetermined way (hexagonal 

pattern) where the distance between the center of adjacent impacts of radius “a” is equal to “e”, 

as given schematically in Figure 3 (a). It is worth mentioning that the model has one symmetry 

plane (X-Z plane) for enhancing the computational efficiency; therefore, a total of 22 shots 

arranged in four ranges (n=4) were only modeled including 7 half-shots and 15 whole shots 

situated in the plane of symmetry and behind it, respectively (see Figure 3 (a)). It is worth 

mentioning that for a given simulation from Table 2, the size of all the shots is constant. The 

velocity magnitude of the shots is also constant and is set just before the impact so that the shots 

have a free flight and the interaction between the shots and the surface is then calculated. The 

angle α, that changes the velocity vector direction, is set in planes parallel to the X-Z plane and 

corresponds to the angle between the surface and the shot trajectory before the impact. A 90° 

impact angle is an impact of shots normal to the surface. In fact, previous work [63] showed 

that a variability of shot diameters does not affect the residual stress profile. A variability of 
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impact velocities does not affect the surface stress nor the maximal compressive stress. It only 

has a slight effect on the affected depth. 

 

The target component was modeled as having different regions in order to provide a dense mesh 

in the zone of interest (impact zone); two rectangular regions in the X-Y plane and two layers 

stacked in the depth direction (Z-direction). The dimensions of each region are parameterized 

based on the impact radius “a”, the distance between the center of adjacent impacts “e”, and the 

number of ranges “n” as depicted in Figure 3 (b). These dimensions are determined from 

convergence study such that the predicted results are not sensitive to the applied boundary 

conditions far from the impact zone.  

 

The impact radius 𝑎 of a single shot is estimated based on Hertz theory as follows [64] [65]: 

 

𝑎 = 𝐷 (
𝐾 𝜋 𝜌𝑠 𝑉2

4 √2 𝐸̅
)

1 5⁄

 (11) 

 

where 𝐷 is the shot size; K is the impact efficiency ratio; 𝜌𝑠 is the shot density; V is the shot 

velocity; and 𝐸̅ is the equivalent Young modulus of the target and the shot. 

 

The impact efficiency ratio K is characterized by the ratio between the elasto-plastic energy and 

the total kinetic energy. A value of 0.8 was used in this work according to [66].  

 

The distance between the center of adjacent impacts “e” can be given with respect to the impact 

radius 𝑎 and the coverage rate “C” by [67]:  

 

𝑒 = 10 𝑎 √
2 𝜋

√3 𝐶
 (12) 

 

Overlaps between shot impacts are implicitly taken into account when the impact radius “a” is 

greater than the distance between the impacts “e”, therefore increasing the coverage “C”. 

 

The shot was considered as an elastic body meshed using C3D8R elements. The target 

component, modeled as an elasto-plastic body, consists of two element types: C3D8R elements 
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in the impact zone and C3D4 elements for the rest of target. In order to carry out different shot-

peening conditions, it was chosen to use an element size as a function of the distance between 

the center of adjacent impacts “e”. Thereby, the element size is found to be within [0.01-

0.09 mm] and [0.003-0.025 mm] for the shots and target top surface in the impact zone, 

respectively. Additionally, a biased meshing scheme was adopted along the impact zone depth 

in order to keep a dense mesh underneath the impacted surface and a coarse one at the bottom. 

This appropriate meshing size is determined from convergence mesh simulations such that the 

predicted results are not sensitive to these inputs. Figure 3 (c) shows the adopted mesh. As 

mentioned before (section 3.1.), the Chaboche constitutive law was utilized to represent the 

elasto-plastic behavior of the target material. The elastic material properties for both shot and 

target component are: Young’s modulus E = 210 (GPa), the Poisson’s ratio ν = 0.3, and the 

density 𝜌𝑠 = 7800 (kg/m3). It is worth mentioning that the strain sensitivity effect is moderate 

for TRIP780 steels [68], thus the strain-rate effect was not considered in the model.  

 

 

 

 

(b) 

(a) 
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Figure 3 FE model: (a) hexagonal impact pattern and the impact sequence for n ranges. Impact 

radius a, distance between impacts e, (b) geometry of the target part with the impact zone, (c) mesh 

of the shots (C3D8R) and the target (C3D8R in the impact zone and C3D4 elements in the 

surrounding). 

 

Symmetry boundary conditions were applied on the shots located in the plane of symmetry and 

one lateral surface of the target. The translations of the faces of the target were restrained along 

their normal directions, except the top face. The shots were initially kept very near to the target 

body, at a distance of 0.1 mm, to reduce the time of bringing them into contact and hence 

enhancing the computational efficiency, and then propelled towards the stationary target at a 

velocity magnitude V exerted on all nodes of shots and in the X-Z plane. Penalty algorithms 

coupled to normal and tangential behaviors with isotropic Coulomb friction coefficient of 0.4 

were employed between shots (master surface) and the target surface (slave surface).  

 

A damping time was added to the model with time duration sufficient to allow the damping of 

the target component and consequently to avoid the residual stress oscillations.  

4. Results and discussion 

4.1. Finite element modeling 

4.1.1. Validation of the shot-peening model for TRIP780 steel 

The first step in the current investigation was to prove the validity of the proposed finite element 

shot-peening model. This was carried out by comparing the predicted residual stress profiles 

(𝜎11 − 𝜎33) in one direction (X in-plane direction according to Figure 3 (c)) within TRIP780 

steel to its corresponding experimental profiles [39] obtained by XRD technique and under 

similar shot-peening (SP) conditions: (1) D= 0.4 (mm), V= 60×103 (mm/s), C= 230 (%), α= 90 

(c) 
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(°) and (2)  D= 0.6 (mm), V= 60×103 (mm/s), C= 270 (%), α= 90 (°). All the presented FE 

results were extracted using a post-processing script based on taking the average at nodes, at 

each depth with respect to the undeformed mesh, situated in an hexagonal zone corresponding 

to the 4th range of the target component (hexagon of radius of 3×e) as depicted in Figure 4. This 

was done in order to avoid the impact sequence effects. Figure 5 shows the predicted and 

experimental results. It is clear that the predicted and measured residual stress profiles are well 

correlated. The maximal residual stress is only slightly affected by the diameter increase. The 

affected depth increases with the diameter from 300 µm to 500 µm. This affected depth is 

slightly overestimated by the FE model for SP conditions no. 1 being closer to 270 µm. A 

comparison of the present material model response can be made with another model that 

includes phase transformation. The affected depth with this model is similar to the model with 

phase transformation presented in [39] (300 µm for SP conditions no. 1 and close to 500 µm 

for SP conditions no. 2). Kubler et al. [39] also showed that only the first 100 µm (resp. 200 

µm) is affected by martensitic phase transformation for SP conditions no. 1 (resp. SP conditions 

no. 2). They predicted that 4 to 6% of the retained austenite (initially 13%) is still present in the 

first 50-100 µm. It appears that the predicted profiles give the same trends and the same type of 

residual stress level at surface as the measured ones. It is also important to bear in mind that a 

good correlation between the predicted and experimental results is difficult to obtain. The 

differences can be correlated to different sources. The experimental measurement of the 

residual stresses, the thickness of the etched layer, and the material homogeneity are to name a 

few. Additionally, the material behavior modeling, friction conditions, numerical integration, 

and discretization are error sources attributed to FEM. Based on the above comparisons, the 

developed shot-peening model can be used to conduct several simulations based on CCD (Table 

2) to develop second-order and ANN models for residual stresses as pointed out in next sections. 
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Figure 4 FE results: residual stress (Sxx in MPa) after impact at the target surface. The initial 

positions of the shots and the averaging zone of size 3×e are shown: (a) front view (b) top view. 

 

  

Figure 5 Residual stress profiles (Sxx) for TRIP780 steel after shot-peening with two conditions: 

comparison between experimental data (EXP.) and simulations (FE model). The error bars 

represent the error in measuring the residual stresses for the experimental profile, while they 

represent the standard deviation in the averaged nodes situated in the hexagonal zone for the FE 

profile. 

 

4.1.2. Residual stress profiles  

The different averaged profiles of stresses are output along the depth (Z) from the different FE 

simulations. Figure 6 shows the residual stress profiles of several FE simulations carried out 

based on the CCD (Table 2) and their standard deviation profiles. For the sake of clarity, these 

results are presented in 3 charts in Figure 6. Figure 6 (a) and Figure 6 (b) show respectively the 

residual stress profiles for coverage rates of 250% and 100%. The effect on residual stress 

profiles of coverage rates of 25%, 175% and 325% are presented in Figure 6 (c). It is clear that 

the process parameters have an effect on the quantities defining the residual stress profile 

(reduced parameters) such as the residual stress at the surface (𝜎𝑠), the maximum compressive 
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residual stress (𝜎𝑚𝑎𝑥), and the affected depth (𝑍𝑎𝑓𝑓) where the residual stress comes back to a 

positive value. With increasing the shot size, the shot velocity, and the impact angle, the residual 

stress at the surface also increased. Results show that the increase in the shot size, the shot 

velocity, and the coverage results in an increase in the affected depth. Increasing the shot 

velocity and the coverage shows an increase in the maximum compressive residual stress. While 

this latter is only slightly affected when increasing shot size. Changing the impact angle from 

22.5° to 90° (normal impact = 90°) results in an increase in the affected depth as well as the 

maximum compressive residual stress. Moreover, an impact angle α of 90° leads to a maximum 

stress at the surface, and for angles less than 90°, the maximal compressive residual stress is 

shifted from the surface to a depth of 20-80 µm. These results are in good agreement with the 

previous works [25] [26] [29] and could be explained by the fact that more energy is transferred 

to deform the deeper layer due to Hertzian loads [5]. As can be seen in Figure 6, larger standard 

deviations (up to 200 MPa for a residual stress of – 400 MPa) were obtained at the shot peened 

surface and decrease along the depth. This is because the severe boundary conditions (shots-

impact zone contact) are more pronounced at surface and sub-surface which result in 

inhomogeneous mechanical fields. 



20 

 

  

(a) Profiles with a coverage rate of 250% 

  

(b) Profiles with a coverage rate of 100% 

  

(c) Profiles with other coverage rates (25%, 175% and 325%) 

Figure 6 FE simulation: residual stress profiles (Sxx) and their standard deviation profiles for the 

different runs defined by the central composite design matrix (Table 2). 

 

 

4.2. Prediction with second-order models 

In this section, second-order models for in-depth residual stresses as well as their reduced 

parameters were developed based on FEM results shown in Figure 6. These models are given 
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in terms of the shot-peening-independent parameters: shot size (D), shot velocity (V), 

coverage (C), and impact angle (α). A stepwise regression procedure was adopted to identify 

significant terms of the response (i.e., when P value < 5%), [53]. The final regression 

coefficients determined by Minitab software to build the mathematical models for TRIP780 

steel are given in Table 4 and Table 5. The coefficient of determination 𝑅2, the adjusted 

coefficient of determination 𝑅𝑎𝑑𝑗
2 , and the P value are also presented in these tables. Referring 

to in-depth residual stresses, the coefficient of determination 𝑅2 and the adjusted coefficient of 

determination 𝑅𝑎𝑑𝑗
2 , for the response values at depth ranging from 0 to 320µm, are found to be 

within [79.81-95.81%] and [74.5-93.71%], respectively, while these coefficients decrease for 

the rest of depth. As far as the reduced parameters, the coefficient of determination 𝑅2, for all 

quantities, is found to be within [80.45-95.61%] while the adjusted coefficient of determination 

𝑅𝑎𝑑𝑗
2 , is found to be within [77.66-94.14%]. These results indicate that the second-order 

polynomial model gives an overall good prediction of the induced residual stresses. In order to 

validate the developed models, four extra shot-peening simulations were performed as listed in 

Table 6. Figure 7 shows that the predicted in-depth residual stresses using mathematical models 

and FEM are well correlated. Regarding the reduced parameters, it can be seen from Figure 8 

that the predicted values using the mathematical models are within 23%, 4.3%, and 15.4% of 

numerical predicted values for the residual stress at the surface (𝜎𝑠), the maximum compressive 

residual stress (𝜎𝑚𝑎𝑥), and the affected depth (𝑍𝑎𝑓𝑓), respectively. Based on the above analysis, 

the developed mathematical models can be used to investigate different shot- peening 

conditions within fixed ranges of shot-peening-independent parameters. 
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Table 4 Model parameters for the second-order model (Equation (2)) predicting in-depth residual stress profiles.  

Residual stress (𝜎11 − 𝜎33) (MPa) 

Depth 

(µm) 

Regression coefficients 
P value  𝑅2 𝑅𝑎𝑑𝑗

2  
𝐶𝑜𝑛𝑠𝑡. 𝐷 𝑉 𝐶 𝛼 𝐷 × 𝐷 𝑉 × 𝑉 𝐶 × 𝐶 𝛼 × 𝛼 𝐷 × 𝑉 𝑉 × 𝛼 

0 -372.7 - -  -38.3 -87.2 -23.8 - - - - - 0.002 ; 0 ; 0.032 80.45 77.66 

5 -373.8 - - -39.16 -86.65 -23.09 - - - - - 0.001 ;0 ; 0.026 82.65 80.17 

10 -374.2 - - -39.36 -81.66 -22.94 - - - - - 0 ; 0 ; 0.019 83.22 80.82 

20 -373.5 - -19.87 -33.55 -65.9 -18.51 - - - - - 
0.03 ; 0.001 ; 0 ; 

0.038 
81.21 77.45 

30 -419.4 - -33.29 -21.6 -53.19 - 25.01 - 17.54 - - 
0.001 ; 0.015 ; 0 ; 

0.007 ; 0.047 
80.44 75.29 

40 -394.1 - -50.05 - -45.76 - 35.01 - -  - - 0 ; 0 ; 0.002 74.25 70.57 

50 -387.9 - -61.7 - -42.2 - 46.9 - -  - - 0 ; 0.001 ; 0 75.25 71.72 

75 -379.6 - -61.13 - -41.39 - 47.09 - 22.04 - - 0 ; 0 ; 0 ; 0.021 83.76 80.51 

100 -371.2 -31.82 -66.14 - -49.88 16.16 48.37 - 26.85 17.6 26.62 
0; 0; 0; 0.015; 0; 

0; 0.016; 0.001 
95.81 93.71 

130 -209.1 -64 -82.4 - -59.1 - - -27.7 - 37.3 - 
0 ; 0 ; 0 ; 0.018 ; 

0.011 
87.75 84.53 

170 -180.2 -85 -90.1 - -54.5 - - - -  - 0 ; 0 ; 0.001 82.76 80.29 

200 -144.4 -80.5 -85 -25,3 -55.1 - - - -  - 0 ; 0 ; 0.047 ;0 85.87 83.05 

240 -99 -68.4 -73.6 -31,4 -40.6 - - - - -43.6 - 
0 ; 0 ; 0.007 ; 

0.001 ; 0.003 
87.15 83.77 

280 -62.2 -57.3 -60 -26,9 - - - - - -60.3 - 0 ; 0 ; 0.024 ; 0 80.6 76.72 

320 20.4 -46.4 -43.9 - - -32.9 -26.7 - - -57.3 - 
0 ; 0 ; 0.005 ; 

0.018 ; 0 
79.81 74.5 

380 -16.3 -27.3 - - - - - - - -34.9 - 0.035 ; 0.028 32.48 26.34 

520 -5.18 - - - - - - - - - 14.2 0.01 25.69 22.46 

600 -9.54 - - - - - - - - - 19.61 0 47.81 45.54 

800 -19.85 -11.51 - - - - - - - - 17.02 0 ; 0.001 52.2 47.85 

1000 -22.42 -14.65 - - - - - - - - 15.1 0.002 ; 0.007 49.29 44.68 
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Table 5 Model parameters for the second-order model (Equation (2)) predicting reduced parameters 

of the residual stress profile (𝜎𝑠, 𝜎𝑚𝑎𝑥, 𝑍𝑎𝑓𝑓). 

Source 
𝜎𝑠 (MPa) 𝜎𝑚𝑎𝑥 (MPa) 𝑍𝑎𝑓𝑓 (mm) 

Regression 

coefficients 
P Value 

Regression 

coefficients 
P Value 

Regression 

coefficients 
P Value 

Constant -372.7 - -473.6 - 0.26444 - 

𝐷 - - 11.18 0.017 0.08169 0 

𝑉 - - -13.43 0.005 0.09378 0 

𝐶 -38.3 0.002 -28.32 0 0.023 0.003 

𝛼 -87.2 0 -70.48 0 0.03375 0 

𝐷 × 𝐷 -23.8 0.032 - - 0.01865 0.011 

𝑉 × 𝑉 - - 25.36 0 - - 

𝐶 × 𝐶 - - 11.48 0.025 - - 

𝛼 × 𝛼 - - 21.83 0 - - 

𝐷 × 𝑉 - - - - 0.02144 0.018 

𝐶 × 𝛼 - - -13.94 0.015   

𝑅2 80.45% - 96.08% - 95.61% - 

𝑅𝑎𝑑𝑗
2  77.66% - 94.11% - 94.14% - 

 

Table 6 Additional shot-peening parameters used in FE simulation for validation purpose. 

Run # 

Actual variables 

Shot size 

D (mm)  

Shot velocity  

V (×103mm/sec) 

Coverage 

C (%) 

Impact angle 

α (deg.) 

26 0.3 80 210 55 

27 0.4 15 290 80 

28 0.55 35 60 100 

29 0.65 60 150 40 

 

  

(a) Run #26 (D=0.3mm, V=80×10³mm/s, C=210%, α=55°) (b) Run #27 (D=0.4mm, V=15×10³mm/s, C=290%, α=80°) 

  

(c) Run #28 (D=0.55mm, V=35×10³mm/s, C=60%, α=100°) (d) Run #29 (D=0.65mm, V=60×10³mm/s, C=150%, α=40°) 

Figure 7 Comparison between the second-order model prediction (S-O model) and the finite 

element one (FE model) of residual stress profiles (Sxx). 
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Figure 8 Comparison between the second-order model prediction (S-O model) and the finite 

element one (FE model) of: (a) residual stress at the surface 𝜎𝑠, (b) maximum compressive residual 

stress 𝜎𝑚𝑎𝑥, and (c) affected depth 𝑍𝑎𝑓𝑓. 

 

4.3. Prediction with the ANN model 

4.3.1. Neural network and sensitivity analysis 

In this work, the SciKit learn software for Python [69] was used with the Multi-Layer 

Perceptron technique (MLP). MLP is a class of feedforward artificial neural network that is 

suitable for tabular data analysis, despite there are no recurrent connections, no parameter 

sharing, no spatial relationship compared to recurrent neural network (RNN) or convolutional 

neural network (CNN). 

(a) 

(b)

cv 

(c) 
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The tabular dataset obtained by FE analysis (Figure 6) for different process parameters is 

provided to the MLP. A total of 591 data sets were used. Those data sets consist of the residual 

stress data points at a given depth (Z) for a set of process parameters (C, V, D, α). The inputs 

of the ANN model are the process parameters and the depth (Z), and the output is the residual 

stress (𝜎11 − 𝜎33). A regression is performed based on the optimization of the loss function 

(square error). The gradients of the loss function with respect to each weight were calculated 

using the “Adam” solver [70]. “Adam” solver refers to a stochastic gradient-based optimizer 

which is advised for relatively large datasets and works well in terms of training and validation 

score. A single hidden layer is used. The effect of the number of neurons was investigated by 

varying the training from 20 to 50 neurons. For nonlinear problems, the tanh activation function 

gave better preliminary results in terms of validation score. The other parameters are L2 penalty 

parameter for regularization: 0.0001 and the tolerance for optimization which was set to 10-6 

for 1000 epochs. 

 

The ANN model was trained 3 times with 85% of the data randomly extracted from the FE 

simulations and 15% of the data were used to calculate the score obtained by the ANN model. 

The best R²-score out of the three attempts was kept as the prediction model. Before training, 

input data were normalized so that the shot size lies between 0.1 and 1 mm, the shot velocity 

between 1 and 100×103 mm/s, the coverage between 10 and 500 %, and the impact angle 

between 0° and 90°. The depth at which the residual stress was obtained, is also an input of the 

ANN model. Depths were normalized between 0 and 2 mm. This scaling step prevents one 

input variable to dominate all others by having much larger values and variances. 

 

Figure 9 shows the results of the trained ANN model on the training FE data set for different 

number of neurons. Results show that 20 neurons are not enough to reproduce the residual stress 

profiles. Besides, a high number of neurons could lead to overfitting of the data. Preliminary 

simulations showed that from 20 neurons the R²-score is close to 0.99. Those are the reasons 

why a model with 25 neurons was selected.  
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(a) Run #1 (D=0.6mm, V=70×10³mm/s, C=250%, α=90°)  (b) Run #2 (D=0.6mm, V=70×10³mm/s, C=250%, α=45°) 

    

(c) Run #15 (D=0.35mm, V=25×10³mm/s, C=100%, α=90°) (d) Run #20 (D=0.475mm, V=92.5×10³mm/s, C=175%, α=67.5°) 

Figure 9 Residual stress profiles obtained with the ANN model after training – effect of the number 

of neurons for different sets of process parameters. Comparison with FE model. 

 

4.3.2. ANN model  

The residual stresses predicted by ANN model were first compared to those obtained by FEM 

based on the shot-peening conditions listed in Table 6. The ANN model was then used to 

analyze the effect of each shot-peening parameter on the output response.  

 

Figure 10 shows the prediction of the ANN model with 25 neurons and 1 hidden layer. It 

appears that the ANN model with 25 neurons comparatively predicts well the shape of the 

residual stress profile as well as the maximal compressive stress and its location beneath the 

surface. The evolution of the affected depth is also well reproduced except for Run #29 (Figure 

10 (d)). This is because the impact angle of 40° was used for this run which is slightly out the 

training range of 45°-90°.  
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(a) Run #26 (D=0.3mm, V=80×10³mm/s, C=210%, α=55°) (b) Run #27 (D=0.4mm, V=15×10³mm/s, C=290%, α=80°) 

  

(c) Run #28 (D=0.55mm, V=35×10³mm/s, C=60%, α=100°) (d) Run #29 (D=0.65mm, V=60×10³mm/s, C=150%, α=40°) 

Figure 10 Comparison between the ANN model and the finite element one (FE model) for the 

additional shot-peening parameters (Table 6) not used in the training. 

 

Figure 11 shows the change in the reduced parameters (𝜎𝑚𝑎𝑥 and 𝑧𝑎𝑓𝑓 ) when the shot-peening 

parameters change their level for the reference shot-peening conditions: D= 0.6mm, 

V= 70×103mm/s, C= 100%, α= 90°. The finite element results are also presented in the Figure 

(squares) and it can be seen that the ANN predictions are in good agreement with the finite 

element ones. For the selected reference shot-peening conditions, the shot diameter, the shot 

velocity, and the impact angle have a significant effect on the affected depth 𝑧𝑎𝑓𝑓 as observed 

in the literature [26]. The increase of coverage increases slightly the affected depth 𝑧𝑎𝑓𝑓. The 

shot diameter has almost no effect on the maximal compressive residual stress. The ANN model 

shows that the compressive stress is moderately affected by the impact velocity, which is also 

the case for the FE analysis in the present condition. Increasing the coverage and the impact 

angle close to normal shots (90°) results in an increase of the compressive stress. 
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(a) effect of the shot size  (b) effect of the shot velocity 

  

(c) effect of the coverage  (d) effect of the impact angle 

Figure 11 ANN model (25 neurons) – Effect of the process parameters on the reduced parameters 

of the residual stress profile: Affected depth 𝑧𝑎𝑓𝑓  (plain), maximal compressive stress 

𝜎𝑚𝑎𝑥  (dashed), finite element results (Squares). Reference shot-peening condition: D=0.6mm, 

V=70×103mm/s, C=100%, α=90°. 

 

5. Conclusions 

In this work, two predictive models were developed to evaluate the effects of shot peening 

parameters on the predicted residual stress profile within the shot peened surface of TRIP780 

steel. The capability of these models to get a representative shot-peening was evaluated and 

discussed. The main conclusions are as follows: 

 Two predictive models, based on response surface methodology and artificial neural 

networks, were developed. The former is a second-order model and the latter is a feed-

forward artificial neural network model. 

 Several finite element simulations were conducted using a 3D multiple-impacts model 

coupled to central composite design of experiments. With the nonlinear combined 

isotropic/kinematic hardening law, adopted in the 3D multiple-impacts model to represent 

the macroscopic cyclic behavior of the target TRIP780 steel grade, it comparatively gives a 

good prediction of the residual stress profiles. 
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 A parametric analysis was conducted to underline the effect of the shot diameter, the shot 

velocity, the coverage, and the impact angle on the residual stress profiles. 

 The high value of the regression coefficients found indicate that the second-order models 

can adequately predict the residual stress profiles. 

 Results showed that the ANN predictions with 25 neurons and one single layer are in good 

agreement with the finite element ones. 

It is worth outlining that the ANN model has the advantage to be applied to larger set of data, 

that would include the complete residual stress tensor, the plastic strain tensor, and the 

microgeometry obtained from the FE analysis. The developed predictive models have the 

advantages of a shorter time response that is highly suitable for active control of the process 

parameters. In the light of the obtained results, the proposed hybrid approach can be used in 

shot-peening optimization and extended to predict other mechanical multiaxial fields. 
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