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ABSTRACT: Energy systems, on which our modern society rely, are in constant 
transformation. Technological evolution, climate change or the finitude of fossil fuels are 
some reasons to rethink the centralized, carbon-based energy networks. This way, the design 
of future energy systems have to take into account multiple concerns, such as local resi lience, 
in addition to technical and economic ones. 

This paper presents a decision-support tool for the conception of energy systems focusing 
on the electric vector. The tool was designed using an energy system model implemented in 
an optimisation algorithm. It takes into account several constraints simultaneously – 
equilibrium between production and consumption as well as resources availability – and 
assess the influence of technical parameters on the global performances of the system. An 
energy system is considered as a combination of production, storage and transport 
technologies with their operating strategies. The tool’s modularity allows to choose the 
models adapted to a quick optimisation of energy systems or to an analysis of technical 
parameters.   
The second part of the paper presents the optimisation of a local energy system. Search 
space is composed of production and storage technologies’ number and their operating 
strategies. Main goals are to find trade-offs between different economic and technical 
objective-functions – such as levelized cost of energy or local autonomy. Therefore, a genetic 
algorithm method was used to perform a multi-objective optimisation based on the model. 
The impact of the operating strategy adopted is underlined. 
  
KEYWORDS: decision support, energy systems modelling, multi-objectives optimisation  

 
 

INTRODUCTION 

Energy consumption has increased for more than a century  to sustain our changing way of life. Among energy 
vectors, electricity presents the biggest development of the past fifty years and may highlights advantages in 
terms of environmental concerns. Huge networks were built around main power plants, nuclear and 
hydroelectric ones in France. Economic challenges of the twentieth century have evolved and society’s 
concerns are more related to social and environmental impacts. Same set of technologies cannot be designed 
to balance the increase in consumption and the end-of-life of current power plants. Therefore, new energy 
systems (ES) – i.e. sets of production, storage and transport technologies – need to be created. The 
development of distributed energy sources may represent an alternative to the current technologies. However, 
as they are dependent on intermittent resources, they can be supplemented by storage technologies. These 
configurations allow a local design for energy systems, microgrids, partially autonomous from the main grid if 
necessary. Economic, technical and environmental indicators have to be taken into account to assess the 
relevance of these new systems.  

This paper focuses on the conception of ES. The purpose of the work described below is to create a decision-
support tool able to find, for a local context, various optimal energy systems that are compromises between 
economic and technical objectives. The tool uses a physical modelling that simulates the operation of an 
energy system. Then it runs this model into an optimisation algorithm to find optimal energy systems.  

Energy system modelling can be performed following two main methods according to the purpose. Prospective 
studies that assess huge networks and determine the best choice to make between a range of technologies 
will use a simplified modelling. Some of them use bottom-up “technological” methods [1] with some physical 
background but others prefer top-down “economical” modelling with aggregated variables [2]. The time step 
of their simulation can range from hours to years [1]. On the other hand, studies analyse precisely the operation 
of one specific energy system [3]. Their models are very detailed according to the technical parameters they 
want to assess and the time step used is small enough to capture the physical phenomena analysed, influence 
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of temperature on the production of PV panels [4]. Whereas prospective studies consider often only a few 
variables like the technologies’ number and use a long time step, detailed studies take also into account 
management parameters and short time steps. The study of local technological parameters requires detailed 
models. On the other hand, a model designed to minimise the computation-time (CPU-time) of the optimisation 
needs to be simplified. This conflict can be solved by finding compromises between accuracy and CPU-time. 
The present work tries to solve the conflict by using a systemic approach, i.e. several models with different 
levels of detail. 

Once the energy system modelled and its operation simulated, an optimisation process can be performed to 
find the best solutions. Although systems need to be compared following many various indicators, optimums 
are often found using single-objective (SO) optimisation with an economic indicator [5]. Optimisation is 
sometimes performed with both economic and environmental objectives but using a prior weighting to be 
adapted to SO algorithm [6]. More rarely, multi-objectives (MO) optimisations without prior weighting are 
performed [7]. To tackle such complex problems in the most exhaustive manner, it seems important to take 
into account several impacts of energy systems, especially as they can be antagonists. Moreover, finding 
compromises does not overly restrict the tool user’s choice and allows the analysis of interesting systems that 
would not have been considered initially. The latter can apply further discrimininating criteria to selected the 
best solution for its situation.  

In the case of energy systems modelling and sequential simulation, indicators cannot be formulated explicitely, 
hence classical Lagrangian optimisation methods cannot be used. The use of metaheuristic optimisation 
algorithms allowing studying non-explicit and non-weighted objective-functions is required. Numerous methods 
exist such as gradient-method, Particle Swarm Optimization or MO Evolutionary Algorithms (MOEA). The 
advantage of evolutionary, also called genetic, algorithms is their ability to deal with 0-order objective functions 
and to explore the entire design space. In the literature, several methods have been used like Strength Pareto 
Evolutionary Algorithms (SPEA [8] and SPEA-II [9]), Non-dominated Sorting Genetic Algorithms (NSGA and 
NSGA-II [10]), Pareto Archived Evolution Strategy (PAES [11]) or Adaptive Pareto Algorithm (APA [12]). They 
allow finding Pareto-optimal solutions between the different objectives, i.e. ES that dominate the others on at 
least one objective, but they are time-consuming due to the repetition of the criteria’s evaluation for each 
individual. The ES modeling choices and performance-to-CPU-time ratio of the simulation is all the more 
important.  

The paper is structured as follow. Section 1 describes the modelling and the simulation of energy systems. 
Optimisation method, objectives and parameters are detailed in Section 2. Section 3 presents and discusses 
the results of the casy study. Eventually a conclusion underlines the main results and presents some 
perspectives. 

 

1. MODELLING AND SIMULATION 

The challenge of energy system modelling is to represent accurately the behaviour of the system with a 
computation-time (CPU-time) adapted to the use of a genetic optimisation algorithm.   

 

1.1 Models 

In order to find efficient and innovative energy mixes, this work aims at analyzing the influence of local 
technological parameters on the global performances of the system. Therefore, detailed models need to be 
developped. However, to remain compatible with the optimisation needs, several layers of modelisation have 
been implemented, from global pattern to very detailed models, all represented by interconnected blocs. 
Simulation and optimisation may then be able to use a layer or another according to the precision-to-CPU-
time ratio. The advantage of this approach is its modularity and its ability to analyse both the global behaviour 
and the physical and technological frontiers of energy systems.  

So far, only low level models have been implemented, allowing access to the main parameters of each 
technology, surface and efficiency of photovoltaic (PV) panel or power curve of the wind turbine for example. 
Uncontrollable renewable energy sources are modeled thanks to basic proven models [13]. For storage 
technologies, a common model is used with different parameters according to the technology [14]. All 
technologies are defined by their capacity, their charging and discharging rates, their loss coefficient during 
charge and discharge and their coefficient and reference period for auto-discharge. The evolution of their 
energy level is measured with a common criterion, the State of Energy defined as the ratio between the 
contained energy in the storage at a time over the installed capacity [14]. Controllable technologies, such as 
gas power plants, are characterised by their installed power and the ramp to increase the output electrical 
power.  
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1.2. Management parameters  

Models briefly presented above concern the design of technologies, not the way they work together. The set 
of rules describing the operation of an energy sub-system is called here a management strategy. Studies on 
microgrids focusing on conception choices usually consider fixed strategies [15]. When consumption needs to 
be balanced, the developed behaviour model considers that technologies have to deliver the correct amount 
of electricity in a sequential manner, one after the other. It relies on the production priority order defined 
between technologies, usually considered fixed in prospective models [1]. 

Many performances indicators used in this study are based on the actual production of each technology, like 
the greenhouse gases emissions or economic indicators. The energy production depends on the management 
parameters described above, strategy and production priority order. Thus, it seems important to take into 
account these parameters among other technological ones. Depending on the technology’s categories 
(controllable / uncontrollable / storage technologies), strategies may be applicable or not (see Table 1).  

Table 1: Description of the management strategies and their potential application to production controllable (CTRL), 
uncontrollable (UNCTRL) and storage technologies (STOR) 

Strategy 
number 

Strategy description 
CTRL UNCTRL STOR 

1 Only balance consumption in the limit of 𝑃𝑛𝑜𝑚* X  X 

2 Balance consumption and store in the limit of 𝑃𝑛𝑜𝑚 X X  

3 Balance consumption in the limit of the 𝑃𝑛𝑜𝑚 and store in the limit of 𝑃𝑜𝑝𝑡𝑖* X   

4 Only balance consumption in the limit of 𝑃𝑜𝑝𝑡𝑖 X  X 

5 Balance consumption and store in the limit of 𝑃𝑜𝑝𝑡𝑖 X   

6 Produce at 𝑃𝑜𝑝𝑡𝑖 in the limit of the consumption and storage capacities X   

7 Store only in the limit of 𝑃𝑜𝑝𝑡𝑖 X   

*𝑃𝑛𝑜𝑚 is the nominal power of the technology and 𝑃𝑜𝑝𝑡𝑖 its optimal power, for which efficiency is the best 

 

1.3. Simulation  

A sequential simulation is performed using the two management parameters: strategy for each technology and 
a general priority order. The time step may be chosen in a range from minutes up to hours, depending on the 
phenomena we want to take into account (management, wind speed, river water flow), the accuracy needed 
and the computation-time requirements. According to the management strategy and the power balance at 
each time step, energy system model allocates sequentially the power of each power plant to balance 
consumption and even store electricity in some cases. Simulation’s output are the powers produced, stored or 
lost by each technology for each time step, along with the state of energy of the storage devices and various 
performance indicators detailed below. An example of output power and state of energy is shown on Figure 1.  

 

Figure 1: One day sequential simulation of an energy system – (a) Cumulated power (kW) produced/stored along with 
the power demand of 6000 typical homes ; (b) State of energy (kWh) of the storage devices for each time step 
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2. OPTIMISATION 

2.1. Multi-objectives optimisation method  

Among the possible metaheuristic optimisation methods able to consider non-explicit and non-weighted 
objective-functions evolutionary algorithms have been chosen for their ability to explore the entire design 
space. Among the different evolutionary algorithms, choice has been made to implement the developed model 
in the NSGA-II algorithm which is efficient, freely available and already mastered in the laboratory [10]. 

Genetic algorithms work like the evolution of species: an initial population with individuals characterized by 
their genes evolves over generations and the most adapted ones are more likely to survive. Here, the initial 
population is composed of energy systems characterized by the decision variables of the optimisation (number 
of each technology). Adaptation to the environment is measured through objective-functions and a generation 
is an iteration of the systems’ selection and evolution processes. The final population presents different 
combinations of genes than the original one due to the need to adapt to its environment. The process followed 
by such an algorithm is detailed in Figure 2. 

The evolution of genes – combinations of technologies with their management strategies – over generation 
happens thanks to two processes, crossover and mutations. The first method consists in the random 
combination of two individuals’ genes to create a new individual, i.e. the number of wind turbines of a system 
applied to another. Mutation is the random mutation of an individual’s genes. It allows exploring the entire 
conception space and avoiding local optimums. NSGA-II algorithm is usually used in the literature performing 
one of the two processes with a crossover probability of 90% and thus a mutation probability of 10%. Same 
configuration was used in this study. The best energy systems, i.e. the best compromises between the different 
optimisation’s objectives, between the initial generation and the new systems created are selected to form a 
new generation the same size as the initial one. The last generation is composed of Pareto-optimal solutions. 

 

Figure 2: Process to create a new generation with the genetic algorithm NSGA-II 

 

2.2. Objective-functions  

The purpose of the multi-objectives optimisation is to find energy systems that are trade-offs between various 
objectives. According to the situation comparison criteria can change but the three main categories of criteria 
taken into account in this work are economic and technical ones. In order to underline the interest of the multi-
objectives approach without prior weighting, one objective of each category has been chosen for this study.  

2.2.1. Economic objective 

The main objective used to compare energy systems is the cost of the system. It can be the investment cost, 
the operation and maintenance (O&M) cost, the lifecycle cost or the payback period for example. An indicator 
often used in the energy industry is the levelized cost of energy (LCOE, in €/kWh produced) which represents 
the total amount of money spent over the lifetime of a power plant divided by the energy produced during the 
same period, as described by Equation 1 [16]. Its popularity can be explained by the ease to understand it and 
the fact that it covers the overall lifetime costs and takes into account currency discount over time. LCOE can 
only compare technologies for a same situation (location and time). Unfortunately, its does not take into 
account the provided services like the frequency regulation or the reliability of the production. In a multi-
objectives approach, other technical indicators can balance this lack. 

Another major issue with LCOE is that elements considered to compute the lifecycle cost – land lease, 
insurance costs, taxes or carbon emissions for example – vary according to the source. Therefore, it is 
important to ensure a consistency between data for all technologies. In this work, LCOE formulas were taken 
from the Fifth report of the IPCC [17, p. 1333]. Nevertheless, storage technologies are not evaluated in this 
report and their LCOE values were taken from another study [18]. In a future work, a unique methodology to 
compute LCOE could increase the accuracy.  

𝐿𝐶𝑂𝐸 =  
𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝑠𝑢𝑚 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑜𝑣𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
=

∑
(𝐼𝑛+𝑂𝑛+𝑀𝑛+𝐷𝑛)

(1+𝑑)𝑛
𝑁
𝑛=0

∑
𝐸𝑛

(1+𝑑)𝑛
𝑁
𝑛=0

                    (1) 

With 𝑛 the year, 𝑁 the expected lifetime, 𝐼𝑛 the investment costs during year 𝑛, 𝑂𝑛 the operation costs during 

year 𝑛, 𝑀𝑛 the maintenance costs during year 𝑛, 𝐷𝑛 the residual value and 𝑑 the discount rate.  
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In order to discriminate more efficiently energy systems, the economic objective used is the ratio of the lifecycle 
cost (LCCost, in €) of the system correspondig to the simulated period, deduced from Equation 2.  

 𝐿𝐶𝐶𝑜𝑠𝑡𝑠𝑦𝑠𝑡𝑒𝑚 =  ∑ 𝐿𝐶𝑂𝐸𝑡𝑒𝑐ℎ𝑛𝑜 ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡𝑒𝑐ℎ𝑛𝑜𝑡𝑒𝑐ℎ𝑛𝑜       (2) 

 

2.2.2. Technical objective 

The main purpose of an energy system is to provide enough electricity to the consumers at the right time. 
Technical indicators measure the reliability of power supply. Among existing indicators in the literature, we can 
encounter the energy not supplied [19], loss of load expectation (LOLE) [19], loss of load probability (LOLP) 
[20], wasted renewable energy [21] or autonomy level [22]. This work focuses on local energy systems, so the 
designed system can still rely on the main grid if needed and does not require a full autonomy. Therefore, the 
autonomy level (LA) for the main grid seems to be adapted to measure the reliability of local supply.  

Two kind of autonomies can be analysed. Autonomy in terms of time measures the percentage of time when 
the energy demand is balanced by enough production. Energy autonomy, as defined here, measures the total 
energy produced to balance consumption and losses but also to store additional energy in the storage devices. 
Energy indicator ranges from zero, when there is no production, to the sum of the energy demand plus the 
additional energy that can be stored over the energy demand. When the energy autonomy is above one, it 
means that the total energy added to the system during the operation period represent more than the 
consumption and could have been used some other time before.  

𝐿𝐴𝑒𝑛𝑒𝑟𝑔𝑦 =
𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝐸𝑑𝑒𝑚𝑎𝑛𝑑+𝐸𝑙𝑜𝑠𝑠𝑒𝑠
                                                                                      (3) 

With 𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 the total energy produced during the period, 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 the cumulated energy consumed during 

the period and 𝐸𝑙𝑜𝑠𝑠𝑒𝑠 the total losses during the period (transport and storage losses). 

 

3. CASE STUDY 

The following case study aims at underlining the ability of the designed tool to find optimal energy systems 
and the interest of the multi-objectives optimisation without prior weighting to explore the entire conception 
space in the case of energy systems.  

 

3.1. Parameters 

A local electric consumption curve for 6000 typical homes over 24h along with meteorological data (wind speed 
and solar irradiation) are considered as inputs with a 90 minutes time-step. Decision variables of the 
optimisation are detailed in Table 2. Maximum value and tolerance of each variable has been defined 
according to the maximum power consumed during the period, which is 3.2 MW.  

Initial energy systems population’s size has been set to 1000 inidividuals in order to represent sufficient variety 
and ensure that the algorithm will converge toward global optimums and not local ones. Following convergence 
considerations, a maximum of 300 generations was taken into account.  

As described before, the two objectives considered are LCOE and energy autonomy from the main grid in 
order to represent the different, antagonist, categories of impact of energy systems.  

Table 2: List of the decision variables with the range of their values and the tolerance associated 

Decision variables  Range Tolerance 

Number of wind turbines (Vestas V90 – 2MW) 0 – 3  1 turbine 

Surface of PV panels 0 – 64,000 m² 3000 m² 

Installed power of biomass power plant 0 – 3.2 MW 160 kW 

Installed power of gas power plant 0 – 3.2 MW 160 kW 

Battery capacity 0 – 35 MWh 1.7 MWh 

Pumped hydroelectric energy storage (PHES) capacity 0 – 35 MWh 1.7 MWh 

Management strategy  14 combinations 1 

Priority order  6 combinations 1 

 

3.2. Results   

First, an optimisation with two objectives is performed. Figure 3 shows the values of the energy autonomy and 
the lifecycle costs of several energy sysems. The blue dots represent the Pareto front of the multi-objective 
optimisation. These results are compared to solutions of multi-objectives optimisations with prior weighting.  



 

 
WORLD RENEWABLE ENERGY CONFERENCE, Lisbon 2020 

6 

 

Figure 3: Pareto front of the optimisation's solutions 

Single-objective optimisations present as expected a very good performance following their optimised 
objective but a bad one following the others, as underlined by the result of the energy autonomy optimisation. 
Lifecycle cost optimisation’ autonomy is not too bad due to the added constraint. Weighted objectives show 
relatively good performances compared to the multi-objective Pareto front, with the solution of the equally 
weighted objectives on the front. However, it gives only one set of performances and parameters and the 
weights have to be chosen carefully a priori otherwise the performances of the solution varies a lot. The issue 
having only one solution is the risk to miss another energy system with potentially close performances but 
different parameters. 

Some interesting energy systems were selected whose variables’ values are represented on Figure 4. In the 
first graph, the installed power of each technology is represented, on the second the storage capacities and 
on the third the chosen priority order and control strategy. Two solutions of the multi-objectives optimisation, 
here “Multi-obj 1” and “Multi-obj 2”, have been represented because they have the same performances has 
the weighted solution with equal priority between objectives, here ‘Weighted 1’. Although they have the same 
power of gas installed, the capacity of the storage technologies differs along with the priority order and control 
strategy. Whereas the weighted solution’s priority order puts first the storage devices, then the renewable 
energies and finally the controllable technologies, the other solutions place the controllable producers first in 
the priority order. Analysing technical parameters like control strategies and priority order inside a multi-
objectives optimisation allows to distinguish energy systems with very close performances and thus to explore 
the conception space, what is impossible with a single-objective optimisation.  

 

Figure 4: Content of selected energy systems solutions of various optimisations 
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The difference between the three weighted solutions underlines the influence of the weigthing choice. The 
solution giving more importance to the autonomy objective shows a greater variety of sources whereas the 
one with a bigger weight for the cost minimize the power installed, leading to a very low autonomy (selection 
has been made to avoid 0% autonomy). Nature of the optimal energy system depends on the weights chosen 
a priori. The multi-objectives optimisation applied here allows finding more diverse energy systems.  

 

CONCLUSION 

Power plants aging and new society’s concerns are pushing for a rethink of the energy systems design. 
Distributed technologies with additional storage to balance their intermittency allow building local strategies in 
order to increase the autonomy from the main grid. However, these new options have to be compared to the 
existing network with economic, technical and environmental indicators. The work presented above aims at 
creating a decision-support tool to model, simulate and optimise energy systems. It focuses on technological 
parameters to model accurately power exchanges and to suggest innovative systems. In particular, 
management strategy is taken into account as a decision variable. To represent the complexity of energy 
systems design and the antagonism between some objectives, a multi-objectives optimisation algorithm 
without prior weighting, NSGA-II, has been performed to find different energy systems providing partial 
autonomy.  

Non weighted multi-objectives optimisation allows finding more interesting energy systems than with a prior 
weighting. The exploration of the entire conception space leads to more diverse solutions. By exploring the 
design space without prior weighting, the developed tool offers a greater choice to the user and reveals energy 
systems compromises which the user would not have thought of. Especially, energy systems with very close 
performances but different characteristics have been found. Discriminating criteria can be applied afterward.  

Robustness of the proposed mix to the variation of meteorological conditions or production capacities will be 
investigated in a future work to ensure a bigger reliability and more detailed models will be implemented in the 
tool in order to analyse the influence of local parameters. 
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