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Abstract
Image-based biomarker discovery typically requires accurate segmentation of histologic structures (e.g. cell
nuclei, tubules, and epithelial regions) in digital pathology whole slide images (WSIs). Unfortunately, annotating
each structure of interest is laborious and often intractable even in moderately sized cohorts. Here, we present an
open-source tool, Quick Annotator (QA), designed to improve annotation efficiency of histologic structures by
orders of magnitude. While the user annotates regions of interest (ROIs) via an intuitive web interface, a deep
learning (DL) model is concurrently optimized using these annotations and applied to the ROI. The user iteratively
reviews DL results to either (1) accept accurately annotated regions or (2) correct erroneously segmented struc-
tures to improve subsequent model suggestions, before transitioning to other ROIs. We demonstrate the effec-
tiveness of QA over comparable manual efforts via three use cases. These include annotating (1) 337,386 nuclei
in 5 pancreatic WSIs, (2) 5,692 tubules in 10 colorectal WSIs, and (3) 14,187 regions of epithelium in 10 breast
WSIs. Efficiency gains in terms of annotations per second of 102��, 9��, and 39�� were, respectively, witnessed
while retaining f-scores >0.95, suggesting that QA may be a valuable tool for efficiently fully annotating WSIs
employed in downstream biomarker studies.
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Introduction

The discovery of biomarkers associated with diagnosis,
prognosis, and therapy response from digital pathology
whole slide images (WSIs) often requires extracting
features from precise segmentations of the histologic
structures contained within them (e.g. cell nuclei
boundaries, tubule shapes, and regions of epithelium)
[1–4]. Manually annotating each instance of these his-
tologic structures rapidly becomes intractable, even in
small cohorts. For example, the number of nuclei in a

single WSI can order into the hundreds of thousands,
making accurately individually annotating each cell
unfeasible. While a number of image analysis based
algorithms have been proposed to help reduce annota-
tion effort, they are not yet integrated into tools with
user interfaces enabling their employment [5–8]. Other
efforts have resulted in proprietary closed-source tools
[9,10] which can be too costly to purchase in academic
settings, or do not provide an open environment for
facile testing and integration of new algorithms. Other
approaches provide command line scripts [11] which
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are not readily employable by lay users, while addition-
ally requiring the colocation of the user, data, and
compute-infrastructure. It is thus clear that an all-
inclusive computational tool designed for remote
access by pathologists to aid in this annotation process
at scale is needed.
Recognizing the need for a modular, user-friendly,

annotation tool which significantly accelerates annota-
tion tasks, we present here an open-source image
annotation application, Quick Annotator (QA). QA is
able to provide significant improvements in annotation
efficiency by intelligent usage of deep learning (DL), a
form of supervised machine learning which involves
multiple neural network layers. QA involves integrat-
ing DL [12] with active learning [13], an interactive
supervised approach for training machine learning
approaches based off selective user feedback. As the
user annotates structures in the web-browser based
frontend, a popular DL model (u-net [14]) is trained in
the backend. This DL model then makes predictions
highlighting the structure, allowing the user to either
accept or refine pixel-level boundaries in a rapid fash-
ion. This approach allows the DL model to provide
feedback to the user, accentuating regions in the image
which require additional user input to maximally
improve the performance of the next iteration of the
supervised classifier. Through this iterative active
learning-based process, QA empowers the end user to
spend more time efficiently verifying, as opposed
to painstakingly annotating histologic structures.
To aid in the annotation process, a number of com-

mon image annotation tools are provided, such as
brushes and erasers of various sizes, along with poly-
gon style annotation tools. More interestingly, QA also
provides the option of highlighting image regions via
the selection of DL-derived superpixels [15], which
are incrementally improved as the DL model
improves, facilitating high-fidelity pixel-level bound-
ary selection (see supplementary material, Figure S1
and Section SM1). Importantly, QA is designed in an
especially modular way such that, as improvements in

both DL technology and architectures are discovered,
they can rapidly be integrated into QA with minimal
modifications to the base application. The main output
from QA consists of the binary masks produced by the
user in concert with QA. These masks can immedi-
ately be used for the computation of statistics or in
downstream applications such as feature extraction or
training a larger more sophisticated DL segmentation
model. Image-level and project-level statistics related
to the number of annotated objects and regions are
also available for review and download. In this work,
we demonstrate the utility of QA for segmentation at
three scale lengths typical in computational pathology
(Table 1 and supplementary material, Figure S2). At
the lowest length scale, from five WSIs corresponding
to pancreatic cancer, 337,386 nuclei were segmented.
For the intermediate scale, from 10 WSIs containing
colorectal cancer, 5,692 tubules were segmented.
Lastly, for the largest scale, 14,187 regions of epithe-
lium, totaling an area of 35,844,637 pixels, were seg-
mented in 10 WSIs.

Materials and methods

In accordance with the QA workflow (see supplemen-
tary material, Section SM2), each WSI was broken
into tiles and processed individually. To begin, tiles
originating from the same WSI were uploaded into
QA, which divided these tiles into smaller 256 � 256
patches. A u-net consisting of a block depth of five
layers and 113,306 parameters was trained on these
image patches in an autoencoding fashion to produce a
baseline model, a process shown to learn features asso-
ciated with tissue presentation [16]. This base model is
subsequently fine-tuned in a supervised fashion to seg-
ment the structure of interest, a common approach to
help reduce annotated data requirements [17]. Next,
the user viewed all patches processed by this model in
a uniform manifold approximation and projection

Table 1. Description of the datasets used for validation of QA along with the demonstrated speedup.
Tissue
scale

Histologic
structure

Number of
slides

Number of
ROIs

Number of histologic
structures

QA total
time (min)

QA human
time (QAt, min)

Manual time
(Mt, min)

Speed
up (θt) f-score

Small Cell nuclei 5 400 337,386 473 391 40,165 102� 0.97
Medium Tubules 10 100 5,692 121 101 923 9� 0.95
Large Epithelium 10 100 14,187 167 113 4,433 39� 0.89

As mentioned above, the difference between QA total time and QA human time is that human time removes DL training time, as the human annotator was dis-
missed to perform other non-related annotation tasks. On the other hand, QA total time includes model training time under the assumption that the user kept
annotating during backend training. Manual time is derived by extrapolating the measured annotations per minute from a subset of the annotations.
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(UMAP [18]) plot (Figure 1A). This plot maps the
high-dimensional space learned by the DL model into
a two-dimensional representation such that patches
perceived to be similar by the model are plotted proxi-
mally. The user selects dispersed patches for annota-
tion (see supplementary material, Figure S3) to
improve training set diversity. As the user annotates
these patches (Figure 1B), the DL model begins to

make suggestions which can be accepted or modified
(Figure 1C).
The time to annotate the tiles is recorded to estimate

a metric of structures per second, which is reported in
both total time and human time. The difference
between these metrics is that human time removes the
DL model training time, as the human annotator can
be dismissed to perform other unrelated tasks.

Figure 1. The user interface consists of (A) an embedding plot page, and (B & C) an annotation page. The embedding page is a two-
dimensional representation of all patches in the system, where patches perceived to be similar by the model are plotted closely together,
and updates as the model trains. By actively annotating patches across the space, the user provides more diverse training exemplars to
the DL model, thus facilitating the creation of a more robust model sooner. When hovering over a dot, a preview of the patch is shown
(red arrow), and subsequently clicking on the dot takes the user to the (B) annotation page centered around that patch. There, the user
selects (yellow arrow) a square region which is then loaded into the high-magnification annotation window (green arrow). The user
annotates positive regions in turquoise and nontarget areas in fuchsia using common image markup tools. After annotating at least
three patches, the user can train a DL classifier to generate annotation suggestions in (C) white overlay. The user may then import the
classifier’s suggestions into an annotation window (blue arrow) and edit, if needed, before accepting.
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To form a manual baseline for comparison, an open-
source digital pathology tool, QuPath [19], was
employed. QuPath is one of the most widely used
open-source image analysis toolkits used by researchers
and pathologists, owing to its highly polished and intu-
itive interface, cross platform support, and ease of exe-
cution of common analytical workflows. In each use
case, QuPath was used to annotate a subset of the data,
forming the ground truth for comparison. In addition,
the manual time needed to annotate this subset was
recorded and used to compute an approximate total
annotation time (Mt) needed for completion of the
entire task. Quantitatively, efficiency improvement was
defined as the ratio (θt) between Mt and QA time
(QAt). Pixel-level f-scores were reported comparing the
masks created in the manually annotated subset of data
with that of QA-aided annotations to ensure compara-
ble annotations were produced.

Results and discussion

Our results (Table 1) indicate that (1) the speed effi-
ciency improvement afforded by QA is significant and
(2) QA annotations remained highly concordant with
those produced manually. It is important to note that
the user is the final arbiter of what is an acceptable
annotation, and always has the ability to manually
adjust any pixel that they are in disagreement with.
Interestingly, differences still remain in the reported
f-scores between manual and QA produced masks.
This can be attributed to the higher level of precision
afforded by computational tools (Figure 2 and

supplementary material, Figure S4), a phenomenon
that others have reported [12,20], and which further
represents an interesting opportunity for such tools to
significantly improve the quality of annotated datasets.
Although QA has been validated here using H&E
images, given the DL-based back end, QA is agnostic
to stain type and can thus be used with any stain or
type of image. The small modifications needed are laid
out in the supporting documentation.
Usage of QA appears to proceed in two distinct

workflows. At the beginning, the user is required to
provide individual manual annotations, as the model
itself is not sufficiently exposed to a representative set
of training exemplars. In this workflow, QA and man-
ual annotation efficiency are comparable. This
workflow quickly transitions (Figure 3) to one wherein
the user effort is more focused on reviewing and
accepting predictions from the DL model. Here, the
efficiency gains appear to greatly improve, as with a
singular click the user can accept large regions con-
taining many structures, as opposed to manually inter-
acting with each of them. This behavior is seen in all
use cases, and interestingly creates a point of discus-
sion on the suitability of tasks for QA. In those cases
where very few structures of interest are present, such
as delineating a single large tumoral region, there is
likely minimal value in employing QA, and instead
the slides should be annotated manually. On the other
hand, when the number of individual annotations
required rises, it becomes evident that employing QA
may result in significant efficiency gains (see supple-
mentary material, Section SM3).
Worth noting is that, post-installation of QA, no

internet connection is required, thus making it suitable

Figure 2. The (A) original 1,000 � 1,000 epithelium ROI with associated (B) manual and (C) QA annotation overlaid in fuchsia, with an
f-score of 0.68. In intricate epithelial regions (e.g. areas indicated with arrows), the QA classifier appears to be able to provide annota-
tion suggestions at a level of precision that would not be tractable for a user to perform manually.
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for non-anonymized clinical data. In fact, given the
modestly sized DL networks employed, and its operat-
ing system agnostic design, recently purchased laptops
are sufficiently powerful to use QA. In spite of this,
one can easily host QA on a server with a powerful
graphics processing unit (GPU), thus enabling remote
access for, e.g., clinical pathologists to collect annota-
tions (i.e. bringing the expert to the data) without the
need for the local download and manipulation of large
amounts of data (i.e. bringing the data to the expert),
an often burdensome paradigm. A helpful consequence
of this approach is that no software needs to be
installed locally, which is often heavily restricted in
clinical environments.
In conclusion, QA is a high-throughput image annota-

tion tool being publicly released for community review,
comment, and usage. QA has demonstrated significant
improvements in annotation efficiency, without sacrific-
ing annotation fidelity, and in fact often improves upon
what may be possible for humans to complete without
computer-aided tools. Future versions of QA are aimed
at incorporating support for directly annotating WSI, as
well as further hiding the latency of DL training from
the user perspective. The source code of QA is freely
available for use, modification, and contribution (https://
github.com/choosehappy/QuickAnnotator).
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Figure S1. The original 256 � 256 tubules, epithelium, and nuclei ROIs with intensity-based superpixels and DL-derived superpixels

Figure S2. Original ROIs of pancreatic nuclei, colon tubule, and breast cancer with associated manual annotations and QA annotation

Figure S3. Flowchart illustrating the general workflow of QA

Figure S4. Demonstration of marked differences in the levels of complexity between less complex and more complex epithelial regions

Table S1. Hyperparameters set to different values for different structures (referred to in supplementary material, Section SM1)

547Quick Annotator: an open-source digital pathology tool for rapid annotation

© 2021 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland & John Wiley & Sons, Ltd.

J Pathol Clin Res 2021; 7: 542–547


	 Quick Annotator: an open-source digital pathology based rapid image annotation tool
	Introduction
	Materials and methods
	Results and discussion
	Acknowledgements
	References


