
A&A 656, L11 (2021)
https://doi.org/10.1051/0004-6361/202141009
c© ESO 2021

Astronomy
&Astrophysics

Solar Orbiter First Results (Cruise Phase) Special issue

LETTER TO THE EDITOR

The long period of 3He-rich solar energetic particles measured by
Solar Orbiter 2020 November 17–23
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ABSTRACT

We report observations of a relatively long period of 3He-rich solar energetic particles (SEPs) measured by Solar Orbiter. The pe-
riod consists of several well-resolved ion injections. The high-resolution STEREO-A imaging observations reveal that the injections
coincide with extreme ultraviolet jets and brightenings near the east limb, not far from the nominal magnetic connection of Solar
Orbiter. The jets originated in two adjacent, large, and complex active regions, as observed by the Solar Dynamics Observatory when
the regions rotated into the Earth’s view. It appears that the sustained ion injections were related to the complex configuration of the
sunspot group and the long period of 3He-rich SEPs to the longitudinal extent covered by the group during the analyzed time period.

Key words. acceleration of particles – Sun: abundances – Sun: flares – Sun: particle emission

1. Introduction
3He-rich solar energetic particle (SEP) events show enormous
enhancements of rare species, such as the nuclide 3He and ultra-
heavy elements, by factors of up to ∼104 above the nominal coro-
nal abundances (e.g., Mason 2007; Reames 2021). The events
are highly associated (>95%) with type III radio bursts (e.g.,
Reames & Stone 1986; Nitta et al. 2006), the emission generated
by ∼10–100 keV outward streaming electrons. Solar sources of
3He-rich SEPs have been associated with extreme ultraviolet
(EUV) jets (Bučík 2020, and references therein), suggesting
acceleration via magnetic reconnection involving field lines open
to interplanetary space (Reames 2002). Progress in understand-
ing 3He-rich SEPs has been hampered by the low intensities and
short durations of these events. Solar Orbiter (Müller et al. 2020)
will enable unprecedented studies of small-size 3He-rich SEP
events, combining in situ and remote-sensing observations close
to the Sun.

The first Solar Orbiter 3He-rich SEP events were mea-
sured during the spacecraft’s first perihelion pass from 0.52 to
0.96 au (Mason et al. 2021) in June–September 2020. Three out
of the five discrete events reported by Mason et al. (2021) have
a 0.2–2 MeV nucleon−1 3He/4He above 10%, with a maximum
3He/4He of 0.61. In this paper we report a relatively long period
of 3He-rich SEPs, spanning almost 7 days in November 2020,
observed by Solar Orbiter near 0.9 au. Such a long period may
indicate a nearly continuous 3He-rich SEP injection into the
interplanetary space (Mason 2007).

2. Observations

The 3He-rich SEPs reported in this paper were measured by
the Suprathermal Ion Spectrograph (SIS) of the Energetic Parti-
cle Detector (EPD) suite (Rodríguez-Pacheco et al. 2020) aboard
Solar Orbiter. The SIS is a time-of-flight mass spectrometer that
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Fig. 1. Ecliptic plane projection of the Solar Orbiter (SO), STEREO-
A (A), and the Earth November 17–23, 2020. Two overlapping rings
mark Solar Orbiter at the beginning and end of the examined period.
The arrows indicate the longitude of the solar source associated with
the ion injections. The Parker spiral for the 340 km s−1 solar wind speed
connecting to Solar Orbiter is shown. The dashed line corresponds to a
1 au orbit.

measures elemental composition from H through ultra-heavy
nuclei in the kinetic energy range of ∼0.1–10 MeV nucleon−1.
The SIS has two telescopes, one pointing 30◦ (sunward) and
the other 160◦ (anti-sunward) to the west of the spacecraft-Sun
line. We also used energetic electron measurements made by the
Electron Proton Telescope (EPT) of the EPD, which covers the
energy range 20–400 keV, the range in between two other instru-
ments of the EPD suite, STEP and HET. The first year of oper-
ations and details of the data products provided by EPD can be
found in Wimmer-Schweingruber et al. (2021).

Solar sources of 3He-rich SEPs were examined using high-
resolution EUV images from the SECCHI/EUVI instrument
(Howard et al. 2008) on STEREO-A. The EUVI provides full-
disk images of the Sun with 3′′ spatial and 5-minute nominal
temporal resolution in four wavelength channels (304, 171, 195,
and 284 Å). We used the 195 Å images that have the highest tem-
poral resolution (5.0 and 2.5 minutes) in the examined period.
The Extreme-Ultraviolet Imager (EUI; Rochus et al. 2020) on
Solar Orbiter provides images with limited spatial and tempo-
ral resolution during the aforementioned period. Until Novem-
ber 2021, Solar Orbiter will be in the cruise phase, during which
time remote-sensing instruments are only occasionally switched
on for calibration. Further, we inspected radio spectrograms
for the presence of the associated type III radio bursts. The
radio data are provided by the Solar Orbiter Radio and Plasma
Waves (RPW; Maksimovic et al. 2020) and the STEREO-A
Waves (Bougeret et al. 2008) instruments with a frequency range
(<16 MHz) that covers emission generated from about ∼2 R� to
1 au. We also made use of full-disk line-of-sight magnetograms
obtained from the Helioseismic and Magnetic Imager (HMI;
Scherrer et al. 2012) on board the Solar Dynamics Observatory
(SDO).

The location of Solar Orbiter and STEREO-A during the
investigated period is shown in Fig. 1. Solar Orbiter traveled
from 0.93 to 0.91 au; STEREO-A remained at 0.96 au. Both
spacecraft were near the ecliptic plane, Solar Orbiter at −6◦ and
STEREO-A at 7◦ of heliographic latitude. The angular separa-
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Fig. 2. Solar Orbiter energetic electron and ion measurements during the
3He-rich SEP period. Panel a: EPT (41.8–105.7 keV) 30 min electron
intensities from the sunward pointing sensor. Dashed vertical lines mark
the type III radio bursts listed in Table 1. Panel b: SIS 1.0 h H, 3He, 4He,
O, and Fe intensities at 0.23–0.32 MeV nucleon−1. Panel c: SIS mass
spectrogram at 0.4–10 MeV nucleon−1. Panel d: SIS 1/speed vs. arrival
times of 2–70 AMU ions. Sloped dashed lines approximately mark the
ion injections. SIS measurements are from both telescopes and averaged
together. The gap around noon on November 19 was caused by EPD
being shut down for software maintenance.

Fig. 3. Fluence spectra for selected species in injection #3.

tion between Solar Orbiter and STEREO-A was 180◦. The SDO
is in orbit around the Earth.

Figure 2 displays Solar Orbiter EPT and SIS measure-
ments from November 17–23, 2020. Figure 2a presents 30 min
electron intensities at different energy bins between 41.8 and
105.7 keV. Figure 2b shows hourly averages of the 0.23–
0.32 MeV nucleon−1 H, 3He, 4He, O, and Fe intensities as

L11, page 2 of 7
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Table 1. Characteristics of the 3He-rich period.

Ion injection Type III STEREO-A EUVI event Separation Elec. injection 3He/4He (c) Fe/O (c)

time (UT) start (UT) Type (a) Location angle (b)(◦) time (UT)

1 322.42 Nov-17 10:05 09:49 [41] B E90S22 20 09:20 0.61± 0.08 2.00± 0.37
2 322.62 Nov-17 14:53 15:28 [20] B E90S18 20 . . . 0.22± 0.03 0.63± 0.06
3 322.74 Nov-17 17:46 18:20 [12] J E90S18 20 18:20 0.90± 0.03 0.91± 0.01

18:24 [16] . . . E90S18 20 . . . . . . . . .
4 323.54 Nov-18 12:58 13:08 [00] B E85S23 25 13:10 0.56± 0.01 1.35± 0.01

14:09 [01] B E85S23 25 14:07 . . . . . .
5 325.87 Nov-20 20:53 19:34 [26] B E48S19 62 19:30 0.32± 0.03 0.76± 0.03

20:33 [25] J E52S17 58 . . . . . . . . .
21:00 [52] B E48S19 62 . . . . . . . . .

Notes. See text for more details. (a)B: brightening; J: jet. (b)Between the Solar Orbiter magnetic footpoint longitude on the Sun and the longitude
of the EUVI event. (c)0.2–2.0 MeV nucleon−1.

measured by both telescopes of the SIS. Three major increases
are seen in the intensity time profiles that start near the end of
November 17, near the end of November 18, and around mid-
day on November 21. It is clear that the first two increases
are 3He- and Fe-rich. The mass spectrogram in Fig. 2c shows
almost continuous 3He presence from the middle of Novem-
ber 17 through the end of November 23 that is ∼6.5 days.
The inverse ion-velocity time spectrogram in Fig. 2d shows at
least three ion injections contributing to the first increase during
the period November 17–18, one injection contributing to the
increase November 18–20, and one to the increase on November
21. These injections can be identified based on their characteris-
tic triangular pattern in the inverse speed plots. Figure 3 shows
the fluence energy spectra for selected ion species in injection
#3, where enhancements in all ion species were observed without
the inconvenient data gaps that are present in the case of injection
#4. The 3He, O, and Fe show rollovers toward low energies, as
has been previously reported in many 3He-rich SEP events (e.g.,
Mason et al. 2000). The ion fluences for injections #1, #2, and #3
are integrated in swoosh boxes bounded by slanted lines 1 & 2,
2 & 3, and 3 & 4, respectively. For injection #4, the swoosh box
is between the slanted line 4 and November 20 19:26 UT and for
injection #5 between slanted line 5 and November 22 08:24 UT.

Table 1 lists the characteristics of the 3He-rich period. Col-
umn 1 indicates the injection number, and Col. 2 indicates the
ion injection time at the Sun (as a day of year and time), esti-
mated via the extrapolation of the dispersive signature of indi-
vidual ions in the inverted velocity-time spectrogram indicated
by the inclined dashed red lines in Fig. 2d. The uncertainty in the
injection time estimated by this method is ±45 min (Mason et al.
2000; Wang et al. 2016). Column 3 gives the associated type
III radio burst start times as observed by STEREO-A Waves at
16 MHz. The RPW showed an enhanced level of interference
at higher frequencies. Multiple type III bursts appear to con-
tribute to injections #3, #4, and #5 (see Fig. 4). To compare with
the estimated ion injection times, the square brackets show the
minute of the type III burst start times after subtraction of the
light travel time (∼8 min). It is unclear if the type III burst at
19:34 UT is associated with injection #5; it occurs too early to be
within the ±45 min error of the ion estimated release time. We
note that injection #5 is the weakest of all the injections and that
the magnetic connection to the site was interrupted early in the
event, around 08:00 on November 21 (Fig. 2d), as indicated by
the abrupt drop in ion counts at all energies. Therefore, the esti-
mated injection time is only tentative, and the association with

the type III burst at 19:34 UT could not be ruled out. Columns
4 and 5 provide the type and location of the associated parent
solar eruption, respectively, as seen in the EUVI on STEREO-A,
where J indicates a clear EUV jet moving away from the parent
active region (AR) and B indicates just a brightening seen in the
EUV images without apparent outward movement. We cannot
identify the type of EUVI event in 5-minute resolution images
for the second type III burst, corresponding to injection #3, that
occurred only 4 minutes after the first type III burst. Column 6
indicates a separation angle between the Solar Orbiter magnetic
footpoint longitude on the Sun and the longitude of the EUVI
event. The magnetic footpoint of Solar Orbiter, based on a sim-
ple Parker spiral approximation and assuming a solar wind speed
of 340 km s−1, was ∼W70, which corresponds to E110 from the
STEREO-A view. The value of 340 km s−1 is the median solar
wind speed measured by SWEPAM (McComas et al. 1998) on
ACE nine days earlier (November 8–12), which corresponds to
the solar rotation between the L1 and Solar Orbiter separated by
122◦. The Solar Orbiter Solar Wind Analyser (SWA; Owen et al.
2020) data were not available for the examined period. Column
7 shows the electron injection time, estimated from the inverted
velocity-time spectrogram (not shown) of 1 min averaged EPD
electron data. Columns 8 and 9 provide 3He/4He and Fe/O at
0.2–2.0 MeV nucleon−1.

Figure 4 shows Solar Orbiter and STEREO-A radio spec-
trograms; we have indicated the type III radio bursts associ-
ated with the ion injections. The presence of high frequencies
at STEREO-A Waves in all the bursts suggests that the source
was not behind the east limb as seen from STEREO-A. The sec-
ond type III bursts in injections #4 and #5 were weak at Solar
Orbiter. During ion injection #3, two small dispersive electron
events were detected by EPD with solar injections on Novem-
ber 18 at 10:25 and at 11:45 UT. The later one appears as a
small peak in the EPT intensity-time profile at ∼12:00 UT on
November 18 (Fig. 2a). Figure 4d shows a type III burst associ-
ated with the electron injection at 11:45 UT. The type III burst
associated with the electron injection at 10:25 UT is only clearly
observed by Solar Orbiter (see Fig. 4d for the low-frequency
part, ∼0.05 MHz, between 11:30 and ∼13:00 UT). During ion
injection #4, another small dispersive electron event was mea-
sured with solar injection on November 19 at 06:00 UT (see
Fig. 2a for the peak at ∼07:00 UT on November 19). Figure 4e
shows the associated type III radio burst. The type III bursts
related to these electron events were accompanied by EUV jets
(see Fig. A.3).
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Fig. 4. Solar Orbiter/RPW and STEREO-A Waves radio spectrograms: panels a–d and f correspond to ion injections #1 – #4 and #5, respectively,
and panel e corresponds to an electron event. The vertical dashed lines mark the start times of the type III radio bursts associated with the ion
injections.
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Fig. 5. STEREO-A 195 Å EUV running difference images correspond-
ing to injection #1 (top row), #2 (middle row), and #3 (bottom row). The
arrow marks the solar source. The heliographic longitude-latitude grid
has a 15◦ spacing.

To identify solar sources, we inspected full-disk solar images
for EUV brightenings as seen by STEREO-A that temporally
coincide with the type III radio burst associated with the ion

injection. Figure 5 shows the EUV activity around the times of
the type III radio burst for injection #1 (top row), #2 (middle
row), and #3 (bottom row). We do not see clear jets for injec-
tions #1 or #2 in the EUVI images. The EUV images of the
solar source for injections #4 and #5 are shown in Appendix A.
We note that the SDO was not located at a good position to
observe EUV activity related to the origin of these ion injec-
tions (Fig. 1). However, for injection #5 the SDO Atmospheric
Imaging Assembly (AIA; Lemen et al. 2012) observed the EUV
jets, from the region ∼16◦ behind the east limb, that temporally
match all three type III bursts.

On November 17 and 18, the EUI on Solar Orbiter only pro-
vided images with 1 hr cadence. On November 19 and 20, there
were also higher cadence data, but they either cover only short
periods or have a low spatial resolution. The jets and brighten-
ings on November 19 and 20 were missed by EUI.

Figure 6 shows SDO HMI magnetograms on November 24
00:00 UT (left) and November 28 00:00 UT (right). The EUV
activity observed by STEREO-A November 17–20 likely origi-
nated in two adjacent large ARs, 12785 and 12786, that appeared
near the east limb, as viewed from Earth early on November
23. The latitude of the jets and brightenings as indicated in
Table 1 and as seen in Figs. 5 and A.1–A.3 matches well with
the latitudes of these two ARs. It is particularly well seen in
Fig. A.2, where the constellations of bright areas are similar
to the positions of these two ARs. Thus, the brightenings in
injection #5 can clearly be associated with AR 12785, while
the jet occurred between these ARs. AR 12786 shows a com-
plex βγ magnetic class1 and sunspot area of 1000 millionths of
the solar hemisphere (MH) November 25–26. AR 12785 has a
1 βγ denotes a bipolar sunspot group with no clearly marked line sep-
arating spots of opposite polarity; β indicates a bipolar sunspot group.
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Fig. 6. SDO HMI line-of-sight magnetograms (scaled to ±100 G). The numbers mark the NOAA ARs of interest. The heliographic longitude-
latitude grid has a 15◦ spacing.

simple β magnetic class and sunspot area of 140 MH (November
23–24). This information is provided by the Solar Region Sum-
mary (ftp.swpc.noaa.gov/pub/warehouse/2020/SRS). The mag-
netic complexity of the ARs decreased after they crossed the
central meridian (as observed by SDO) on November 29–30.
These ARs were seen by STEREO-A in EUV for the first time
on November 19 (they were not reported in the previous rota-
tion), and therefore we do not know what their properties were
on November 17. As STEREO-A does not have a magnetograph,
the magnetic class and area of the ARs were unknown when
the examined activity was occurring. Also marked are two small
ARs, 12787 and 12789 (Fig. 6 right), that could be located close
to the Solar Orbiter nominal magnetic footpoint longitude. If
these regions were in the hidden hemisphere, we cannot confirm
or rule out that there was some simultaneous activity occurring
in them as well. However, it is improbable that these regions
dominated the observed long period of 3He-rich SEPs as all type
III radio bursts temporally coincide with jets or brightenings in
AR 12786 and AR 12785.

3. Discussion and conclusion

The relatively long period of 3He-rich SEPs observed by Solar
Orbiter is related to the recurrent activity (brightening and jets)
in a large and complex group of sunspots in two adjacent
ARs. Recurrent 3He-rich SEP events have been found to orig-
inate from ARs at the boundary of low-latitude coronal holes
(e.g., Wang et al. 2006; Bučík et al. 2014). There are only a few
reports of 3He-rich SEPs associated with sunspot jets (Nitta et al.
2008; Bučík et al. 2018), and none of them report recurrent ion
injection. The configuration with two large and complex nearby
ARs may be favorable for the recurrent particle injections in the
sense that there may be a long-lived interaction between the neg-
ative polarity of one AR and the positive polarity of the neigh-
boring AR, leading to the magnetic reconnection. Furthermore,
these two ARs produce a longitudinally extended source (∼40◦)
in which spacecraft may be magnetically connected for a long
period as the Sun rotates. We note that this extended region is

rotating away from Solar Orbiter, and as such the magnetic con-
nection is presumably weakening with time.

Kocharov et al. (2008) studied extended periods of 3He-rich
SEPs, and most showed no dispersive onset. The authors sug-
gested that the temporal confinement of ions in the solar wind
structures is an essential factor in the occurrence of such periods.
Chen et al. (2015) reported two relatively long, 4-day, periods
of 3He-rich SEPs that were produced by recurring injections
originating from dispersed sunspots in plage regions. While
Chen et al. (2015) identified two injections per period, we report
at least five ion injections responsible for a long period. There
might have been other unresolved ion injections during the decay
phase of the first and second ion intensity increases.

The recurrent production of 3He-rich SEPs appears to occur
in different magnetic environments that include plages, coronal
holes, and sunspots and may be the result of a common process.
Further studies may confirm whether complex and longitudinally
extended sunspot groups are responsible for longer 3He-rich SEP
periods compared to simple and small-size sources.
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Appendix A: EUV images of the solar sources

The solar sources associated with injections #4 and #5 and the
electron events that occurred during the decay phase of the first
and second ion intensity increases are shown in Figs. A.1–A.3,
respectively.
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Fig. A.1. Same as Fig. 5 but for injection #4. Top and bottom rows:
correspond, respectively, to the first and second type III bursts.
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Fig. A.2. Same as Fig. 5 but for injection #5. Top, middle, and bottom
rows: correspond, respectively, to the first, second, and third type III
bursts.
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Fig. A.3. Same as Fig. 5 but for the electron events that occurred during
the decay phase of the first (top and middle panels) and second ion
intensity increases (bottom panel).
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