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Abstract

We propose a coarse-graining procedure for describing the superhorizon dynamics of inflationary

tensor modes. Our aim is to formulate a stochastic description for the statistics of spin-2 modes

which seed the background of gravitational waves from inflation. Using basic principles of quantum

mechanics, we determine a probability density for coarse-grained tensor fields, which satisfies a

stochastic Fokker-Planck equation at superhorizon scales. The corresponding noise and drift are

computable, and depend on the cosmological system under consideration. Our general formulas

are applied to a variety of cosmological scenarios, also considering cases seldom considered in the

context of stochastic inflation, and which are important for their observational consequences. We

start obtaining the expected expressions for noise and drift in pure de Sitter and power-law inflation,

also including a discussion of effects of non-attractor phases. We then apply our methods to describe

scenarios with a transition from inflation to standard cosmological eras of radiation and matter

domination. We show how the interference between modes flowing through the cosmological horizon,

and modes spontaneously produced at superhorizon scales, can affect the stochastic evolution of

coarse-grained tensor quantities. In appropriate limits, we find that the corresponding spectrum of

tensor modes at horizon crossing matches with the results of quantum field theory calculations, but

we also highlight where differences can arise.
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1 Introduction

Cosmological inflation is the most successful mechanism at our disposal for generating the initial

conditions for our universe [1–7]. During cosmological inflation, space-time fluctuations produced

by quantum effects at microscopic distances are stretched to superhorizon scales, where they freeze.

Subsequently, after inflation ends, such large-scale fluctuations reenter the horizon, they become

dynamical, and seed the evolving cosmic structures we observe today in the sky.

This picture of early universe cosmology is appealing and physically well motivated. Nevertheless,

potentially large infrared effects require specific care when applying pertubative quantum field

theory techniques to cosmology. For example, it is well known [8–10] that perturbative computations

of correlation functions of light quantum fields in de Sitter space can be affected by infrared

contributions, making subtle a proper physical interpretation of the calculations: see e.g. [11–16]. A

promising proposal to deal with these issues is the stochastic approach to cosmological inflation first

proposed by Starobinsky [17], which provides a consistent framework for resumming large infrared

effects in de Sitter space: see e.g. [18–31]. The starting point of stochastic inflation is the observation

that after crossing the cosmological horizon, quantum fluctuations classicalize [32–40], and their

description is more conveniently formulated in terms of a classical, stochastic Fokker-Planck evolution

equation. In this perspective, long wavelength modes at superhorizon scales receive impulses from

small-scale fluctuations as the latter cross the horizon, a process that intuitively corresponds to a

cosmological version of Brownian motion. The resulting stochastic cosmological equations can be

handled consistently, and provide information on the global dynamics of the system at the largest

cosmological scales, which is difficult to gain otherwise.

In this work we study the stochastic distribution of cosmological fluctuations at superhorizon

scales, focusing on the dynamics of primordial tensor modes predicted by inflation [41–44]. Spin-2

inflationary tensor modes are light fields in quasi-de Sitter space: their superhorizon distribution is

likely to be amenable of a classical description as in the stochastic approach to scalar fluctuations

during cosmological inflation. Specifically, we aim to address two questions:

• Question 1: Is there a way to define coarse-grained tensor modes at superhorizon scales, and

study their corresponding dynamics using a stochastic approach?

A reliable stochastic formalism applied to inflationary spin-2 fields would allow us to discuss

the dynamics of superhorizon tensor modes using statistical methods, without having to make

specific assumptions on the behavior of the individual modes after they cross the horizon

during inflation.

• Question 2: Is there a consistent stochastic description for superhorizon inflationary tensor

modes after the end of inflation?

This issue has important implications for cosmology, since after inflation ends tensor modes

reenter the horizon forming the stochastic background of primordial gravitational waves

currently searched by dedicated experiments. Their properties depend on the amplitude and

properties of the spectrum at horizon crossing, which depend on the stochastic distribution of

tensor modes at the largest, superhorizon scales.
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The answer to Question 1 requires a definition of tensor ‘zero-modes’ which can be subtle since

superhorizon spin-2 fields do not preserve the isotropy of the underlying Friedmann-Robertson-

Walker (FRW) space-time. Starting from basic principles of quantum mechanics, in section 2

we propose a coarse-grained description of primordial tensor modes, based on the method of the

functional Schrödinger picture [45] used in [27,29] for a stochastic analysis of the scalar sector of

fluctuations. The coarse-grained tensor quantity we define is representative of the dynamics of long

wavelength tensor modes once they leave the cosmological horizon. Its definition does not interfere

with the symmetries of the background space-time. In fact, we focus on a free theory described

by a quadratic tensor action, with the specific purpose of understanding how the properties of the

coarse-grained quantities depend on the curved cosmological space-time where they are embedded.

We obtain a probability density for the coarse-grained superhorizon tensor modes, and we derive

its corresponding classical Fokker-Planck evolution equation. It is built in terms of noise and drift,

which are explicitly calculable from combinations of mode functions evaluated at superhorizon scales.

The definitions of noise and drift are free from large infrared effects. The noise is induced by a flow

of modes as they cross the cosmological horizon from small to large scales (or vice versa) – as in the

aforementioned cosmological analog of Brownian motion. But it can also be affected by phenomena

occurring beyond horizon crossing scales, as for example interference among the flow of modes with

particles produced at superhorizon scales by sizable space-time gradients.

The evolution of the coarse-grained probability density is Markovian, up to contributions

associated with modes that rapidly decay at superhorizon scales. Such effects make the structure

of evolution equations dependent on initial conditions, but they are negligible in scenarios where

cosmological evolution is an attractor. However, they can provide a sizable contribution to the drift

term in scenarios that include phases of non-attractor evolution, and our general formulas can be

applied to those set ups as well.

We also derive formulas for the spectrum of tensor fluctuations evaluated at horizon crossing,

which is useful for comparing with results from QFT computations. Moreover, since we are dealing

with coarse-grained quantities, we can define a Gibbs entropy for the system at superhorizon scales.

We find that it increases with the universe expansion, and we quantitatively characterize its growth.

As far as we are aware, we are the first in attempting to answer Question 2 in the context

of a stochastic description of superhorizon tensor modes. We start in section 3.1 with the case of

inflation: we recover the expected results for the stochastic distribution of coarse-grained tensor fields

during de Sitter and power-law cosmological expansion. We also consider the case for non-attractor

cosmological evolution, showing explicitly how it affects the drift contributing to the Fokker-Planck

equation. In section 3.2 we apply our stochastic formulas to the case of radiation and matter

dominated eras occurring after inflation ends. These stochastic equations describe the coarse-grained

evolution of superhorizon tensor modes that eventually reenter the horizon as cosmic evolution

proceeds. The computation of the stochastic noise makes manifest interference effects among the

flow of modes reentering the horizon after inflation ends, and the superhorizon modes semiclassically

produced at large scales by large space-time gradients, see e.g. [41, 42,46,47]. The formula for the

noise depends on the number of e-folds of cosmic expansion, and it rapidly approaches a constant

value after a few e-folds. Also, we prove that our final results do not depend on the choice of

infrared cutoff, the latter providing contributions that are exponentially suppressed by the number
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of e-folds of expansion. Our stochastic formalism can then be used to compute the spectrum of

tensor fluctuations at horizon exit, that in appropriate limits coincide with the results of QFT

calculations.

Our work aims to put in a firmer footing the intuitive idea that the stochastic distribution of

tensor fields at superhorizon scales is due to the flow of modes between subhorizon and superhorizon

scales. A general lesson of our approach is that a classical, stochastic approach to primordial tensor

fluctuations from inflation is feasible and provides new physical insight in cosmological situations not

usually considered in a stochastic context. Our results are consistent expectations from a traditional

QFT approach to cosmological fluctuations from inflation. It can be used for better clarifying the

classical dynamics of tensor modes at large superhorizon scales, and for dealing with large infrared

effects from long wavelength modes. We summarize and further discuss physical implications of

our results in section 4, which is followed by a technical appendix A. Throughout this work we set

~ = c = 1.

2 A Fokker-Planck equation for tensor modes from inflation

After crossing the cosmological horizon, single-field inflationary scalar and tensor fluctuations

become time independent, and their spatial configurations can be described in terms of classical,

but stochastically distributed superhorizon modes.

Our aim in this section is to discuss a systematic method for obtaining the classical evolution

equation describing stochastic, coarse-grained superhorizon modes, starting from basic principles

of quantum mechanics. We discuss free theories in arbitrary cosmological backgrounds equipped

with a cosmological horizon, with the specific aim of extracting the effects of curved space on the

derivation of the stochastic equation. We concentrate on tensor fluctuations, being the stochastic

approach for scalar fluctuations already well developed (including the effects of self-interactions).

For determining the desired stochastic equation, we make use of the approach of [27,29] based on

the Schrödinger functional picture, first applied to inflationary cosmology in [45]. (See instead [48–50]

for derivations of inflationary stochastic equations using a Schwinger-Keldish approach.) We start

in subsection 2.1 setting the stage for the system we consider, and reviewing how the Schrödinger

formalism leads to an evolution equation for probability densities associated with quantum Fourier

modes of inflationary fluctuations. In subsection 2.2 we define the coarse-grained superhorizon

quantities we consider, and we derive the classical stochastic evolution equation for the distribution

of the coarse-grained quantities. The result is a Fokker-Planck evolution equation, for which we

provide the expressions for noise and drift. In subsection 2.3 we discuss how to use these results for

computing the spectrum of tensor fluctuations evaluated at horizon crossing, as well as the Gibbs

entropy associated with superhorizon coarse-grained tensor modes.

2.1 The system we consider

We consider a space-time described by a conformally flat FRW metric perturbed by spin-2 tensor

perturbations:

ds2 = a2(τ)
[
−dτ2 + [δij + hij(τ, ~x)] dxidxj

]
, (2.1)
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where a(τ) is the scale factor, while hij denotes the linearized, transverse-traceless tensor fluctuation,

gauge invariant at first order in perturbations. We do not need to specify the explicit time

dependence of the scale factor for developing our arguments, which can then be applied to a variety

of cosmological setups (see section 3). The effective quadratic action controlling the tensor modes

in eq (2.1) is

S
(2)
h =

M2
Pl

8

∫
dτ d3x a2(τ)

[
h′2ij − (~∇hij)2

]
, (2.2)

where prime denotes derivative along conformal time.

We express tensor fluctuations in Fourier space, defined within a box of comoving size L (in due

time we will consider the limit of infinitely large box size):

hij(τ, ~x) =
2

MPl L3

∑
λ

∑
~k

h
(λ)
k (τ) e

(λ)
ij (k̂) ei

~k~x , (2.3)

with ~k = k k̂ the tensor 3-momentum, and λ its polarization. e
(±)
ij (k̂) are (real) helicity tensors

normalized as (we sum over repeated spatial indexes)

e
(λ)
ij (k̂) e

(λ′)
ij (k̂) = 2 δλλ

′
. (2.4)

To ensure that hij(τ, ~x) is real, we demand
(
h

(λ)
k (τ)

)∗
= h

(λ)
−k(τ), and in writing eq (2.3) we sum

over positive as well as negative values of k. Plugging eq (2.3) in (2.2), we find the quadratic action

for mode of momentum k:

Sk =
∑
λ

∫
dτ a2(τ)

[
h
′(λ)
k h

′(λ)
−k − k

2h
(λ)
k h

(λ)
−k

]
. (2.5)

The associated Lagrangian density Lk is the argument of the previous integral, and allows us to

define the momentum

π
(λ)
k ≡ δLk

δ h
′(λ)
k

= a2(τ)h
′(λ)
−k . (2.6)

This information can be used to obtain the Hamiltonian density

H(λ)
k =

1

a2(τ)
π

(λ)
k π

(λ)
−k + a2(τ) k2 h

(λ)
k h

(λ)
−k , (2.7)

which is a basic ingredient for our next discussion.

The functional Schrödinger picture

We make use of the functional Schrödinger picture to derive the evolution equation for probability

densities for the system under consideration. We apply the approach previously developed in [27] to

the case of spin-2 tensor modes. In this subsection we make use of basic rules of quantum mechanics;

in the next subsection 2.2 we show how an appropriate coarse-grained procedure leads to a classical,

stochastic evolution equation for the superhorizon quantities we are interested in.

In the functional Schrödinger formalism, the quantities h
(λ)
k and π

(λ)
k are promoted to operators
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ĥ
(λ)
k and π̂

(λ)
k . An abstract quantum mechanical state in Fourier space is realized by Ψ

(λ)
k

(
h

(λ)
k , τ

)
which is a wave functional of the c-number quantity h

(λ)
k , and it is evaluated at a time τ . The action

of the operator ĥ
(λ)
k on the quantum state is realized by multiplying Ψ

(λ)
k by h

(λ)
k , while the action

of the canonical momentum π̂
(λ)
k is realized by functional differentiation:

ĥ
(λ)
k |Ψ

(λ)
k 〉 → h

(λ)
k Ψ

(λ)
k , (2.8)

π̂
(λ)
k |Ψ(λ)

k 〉 →
1

i

∂Ψ
(λ)
k

∂h
(λ)
k

. (2.9)

The Schrödinger formalism dictates that for each mode k and polarization λ the evolution of the

quantum state is controlled by the Schrödinger equation

i
∂Ψ

(λ)
k (τ)

∂ τ
= H(λ)

k Ψ
(λ)
k (τ) , (2.10)

with Hamiltonian

H(λ)
k = − 1

a2(τ)

δ2

δh
(λ)
k δh

(λ)
−k

+ a2(τ) k2 h
(λ)
k h

(λ)
−k . (2.11)

Ours is a free theory, and we can use a Gaussian Ansatz for parametrizing the wave function. We

assume no parity violation, hence the explicitly time-dependent functions appearing in our Ansatz

are assumed not to depend on the polarization index λ:

Ψ
(λ)
k

[
h

(λ)
k , τ

]
= Ωk(τ) exp

{
−a2(τ)

[
αk(τ)h

(λ)
k h

(λ)
−k − β0(τ) δk0 h

(λ)
k

]}
. (2.12)

The zero-mode contribution proportional to β0 is not forbidden hence we need to include it – as we

will see it is relevant when discussing the effects of the zero mode of infinitely large wavelength.

Plugging Ansatz (2.12) in (2.10), the system of equations to solve is (all quantities a part from k

depend on time τ)

0 = Ω′k + i αk Ωk , (2.13)

0 = α′k + i α2
k +

2a′

a
αk − ik2 , (2.14)

0 = β′0 + i α0 β0 +
2a′

a
β0 . (2.15)

Combining the last two equations, we find the relation β0(τ) = Cβ α0(τ), with Cβ arbitrary constant

(that will not enter in our final results). To deal with eq (2.14), it is convenient to define [45]

αk(τ) =
1

i
∂τ ln

[
γ?k(τ)

a(τ)

]
. (2.16)

Plugging in eq (2.14) we get a second order, linear equation for γk

γ′′k +

(
k2 − a′′

a

)
γk = 0 . (2.17)
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Since the definition (2.16) involves derivatives of a logarithm, we can choose the preferred normal-

ization for the mode γk. We impose the Wronskian condition

γ′k γ
?
k − γ′?k γk = i . (2.18)

Given these conditions, the following relations hold

αk + α?k = − 1

|γk|2
, (2.19)

αk − α?k =
1

i
∂τ ln

[
|γk|2

a2(τ)

]
. (2.20)

For any k 6= 0, we can impose the Bunch-Davies initial conditions at early times τ → −∞, since

at very small scales the effect of space-time curvature can be neglected. As shown in [45], this is

equivalent to ensure that the wave function at early times is the one of a harmonic oscillator. These

conditions completely fix the solution for each mode k 6= 0.

We need special care in dealing with the zero mode. In this case the Bunch-Davies condition

does not apply, since k = 0 can never acquire a small-scale limit for any given time τ . The Fourier

mode k = 0 is a linear combination of the two independent solutions

γ0(τ) ∝ a(τ) , γ0(τ) ∝ a(τ)I(τ) , (2.21)

which solve eq (2.17). The quantity I(τ) is defined as

I(τ) =

∫ τ

τ?

dτ̃

a2(τ̃)
, (2.22)

with τ? an arbitrary fiducial time. We find convenient to express the zero mode as

γ0(τ)

a(τ)
=

√
1

2µ sin (∆θ)
+

√
µ e2 i∆θ

2 sin (∆θ)
I(τ) , (2.23)

with ∆θ, and µ two arbitrary real quantities. Their values can be associated with the initial

conditions on the zero mode at fiducial time τ∗. We will study in what comes next how the

dependence on initial conditions affects the structure of the evolution equations for the quantities

we are interested in.

The expression (2.23) automatically satisfies the Wronskian condition. An overall phase can be

included in the zero-mode solution, but it has no physical consequences. The solution for α0, as

defined in (2.16), reads

α0(τ) =
µ e−i(∆θ+π/2)

a2(τ)

1

1 + µ e−i∆θ I(τ)
. (2.24)

It depends on µ and ∆θ, determined by the initial conditions at time τ∗. But notice that the value

of α0(τ) depends also on the integral I(τ) which depends on the entire cosmological history from

the fiducial initial time τ? to τ .

Once we have control on the quantities entering in the wave functional, we define a probability
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density associated with the quantum state of momentum k. As usual in quantum mechanics, this

quantity is proportional to the square of the wave functional 1:

P
(λ)
k = |Ψ(λ)

k |
2 . (2.25)

Using the relation (2.12), the normalized probability reads

P
(λ)
k =

fk
π

exp

{
−fk

(
h

(λ)
k − g

?
0

δk0

fk

)(
h

(λ)
−k − g0

δk0

fk

)}
, (2.26)

with

fk = a2(τ) (αk(τ) + α−k(τ)) , (2.27)

g0 = a2(τ)β0(τ) = Cβ a2(τ)α0(τ) . (2.28)

The probability density P
(λ)
k is an important building block for the arguments we develop next. In

fact, we will work only in terms of probabilities for determining our stochastic evolution equation. By

differentiating along time, and by making use of the evolution equation (2.14), it is straightforward

to prove that it satisfies a Fokker-Planck-like equation:

∂P
(λ)
k

∂τ
= ωk

∂2 P
(λ)
k

∂h
(λ)
k ∂h

(λ)
−k

+ ω0

[
∂

∂h
(λ)
k

(
h

(λ)
k P

(λ)
k

)
+

∂

∂h
(λ)
−k

(
h

(λ)
−k P

(λ)
−k

)]
, (2.29)

with

ωk =
i

a2(τ)

αk − α0 − α?k + α?0
αk + α?k

, (2.30)

ω0 = −i(α0 − α∗0) . (2.31)

Using equations (2.16) we can also reexpress the previous formula as

ωk = −|γ0(τ)|2

a2(τ)
∂τ

(
|γk(τ)|2

|γ0(τ)|2

)
, (2.32)

ω0 = −∂τ ln

(
|γ0(τ)|2

a2(τ)

)
. (2.33)

This is our starting point for developing a coarse-graining procedure to describe the dynamics of

superhorizon modes.

2.2 Coarse-graining superhorizon tensor modes

We now apply the previous formulas to the development of a convenient coarse-grained tensor field

at superhorizon scales, and its corresponding stochastic evolution equation.

We start defining long-wavelength (time-independent) superhorizon fields as a sum over Fourier

1We are focusing on the diagonal elements of the density matrix; we do not consider off-diagonal elements, which can
be relevant for example to investigate decoherence processes and quantum-to-classical transition. See e.g. [32–37,39,40].
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modes, with a cutoff controlled by the comoving horizon scale kh:

hij(~x) =
2

MPl L3

∑
λ

∑
~k, |k|<kh

h
(λ)
k e

(λ)
ij (k̂) ei

~k~x , (2.34)

where the cutoff scale is (we call H = a′/a2)

kh ≡ σ a(τ)H(τ) , (2.35)

and 0 ≤ σ ≤ 1 is a constant that quantifies what fraction of long wavelength modes we include in the

coarse-graining procedure. We express the sum in (2.34) in terms of the time independent c-numbers

h
(λ)
k we used in the previous subsection for expressing the waveform Ψ. The coarse-grained quantity

hij in eq (2.34) is time-independent and we expect it to be stochastically distributed at superhorizon

scales. Being built in terms of the abstract c-numbers h
(λ)
k , it does not spoil the isotropy of the

underlying space-time geometry.

In fact, the coarse-grained quantity hij of eq (2.34) is a natural definition of coarse-grained

superhorizon tensor mode, and we use it in what follows. Being constituted by a combination of

h
(λ)
k modes at large scales k < kh, we define the probability density related with the coarse-grained

quantity hij as the product of the independent probabilities associated with each of the Fourier

modes entering in eq (2.34):

P (τ, hij(~x)) ≡ Πλ Π|k|<kh P
(λ)
k . (2.36)

Notice that the product depends only on the size of the momenta, and not on their directions.

Starting from the P
(λ)
k evolution equation (2.29) for any given mode k, it is straightforward to

obtain an evolution equation for P (τ, hij). Selecting any given k, we first multiply both sides of

(2.29) for all the remaining probability densities . . . P
(λ)
k−2 P

(λ)
k−1 P

(λ)
k+1 . . . . Then, using eq (2.36) and

the Leibniz rule, we can reconstruct an equation for P (τ, hij(~x)).

As shown in the technical appendix A, the final result is a Fokker-Planck equation controlling

the probability density P (τ, hij)

1

a(τ)H(τ)

∂P (τ, hij)

∂τ
= N (τ)

∂2P (τ, hij)

∂h2
ij

+D(τ)
∂

∂hij
[hij P (τ, hij)] . (2.37)

The time derivative in the left-hand side is assembled for convenience in the combination

aH dτ = H dt = dn , (2.38)

with n the e-fold number

n = log (a/a∗) , (2.39)

a quantity that physically makes manifest the universe rate of expansion, and that represents the

physically correct time variable in the context of stochastic inflation [28].

8



The noise and drift in eq (2.37) are given by 2

N =
2 |γ0(τ)|2

M2
Pl π

2H(τ) a3(τ)

∫ ks

kh

k2 dk ∂τ

(
|γk(τ)|2

|γ0(τ)|2

)
, (2.40)

D = − 2

H(τ) a(τ)
∂τ ln

(
|γ0(τ)|2

a2(τ)

)
. (2.41)

Notice that while the drift depends on the zero mode only, the noise involves an integration over

all the super-horizon modes, with an horizon-size lower cutoff given by kh = σ aH as in eq (2.35),

and an upper cutoff ks which controls the total size of the superhorizon region experienced by the

long modes. As we will see, the final results do not depend on ks, at least for physically relevant

scenarios, hence there are no large infrared effects depending on the total size of the superhorizon

region. In fact, we can continuously reduce the size of ks in the final results, making it as small as

we please.

Up to an irrelevant constant overall factor, we can write

|γ0(τ)|2 ∝ a2(τ) {1 + σ I(τ) [2 cos ∆θ + σ I(τ)]} , (2.42)

= a2(τ) {1 + σΠ(τ)} , (2.43)

where I(τ) =
∫ τ
τ?
dτ̃/a2(τ̃) as given in eq (2.22). We introduce

Π(τ) ≡ 2 I(τ) cos ∆θ + µ I2(τ) , (2.44)

with µ the constant parameter appearing in the solution for the zero mode, see eq (2.24). Substituting

these expressions in formulas (2.40) and (2.41) we get

N =
2 (1 + µΠ(τ))

M2
Pl π

2H(τ) a(τ)

∫ ks

kh

k2 dk ∂τ

(
|γk(τ)|2

a2(τ) (1 + µΠ(τ))

)
, (2.45)

D =
2

H(τ) a(τ)
∂τ ln

(
1

1 + µΠ(τ)

)
. (2.46)

It is also interesting to explicitly consider cases where the decaying mode contribution is set to zero,

by selecting µ = 0. Then the drift vanishes, D = 0, since eq. (2.46) is proportional to µ. The noise

instead simplifies to

N =
2

π2M2
PlH(τ) a(τ)

∫ ks

kh

k2 dk ∂τ

(
|γk(τ)|2

a2(τ)

)
(2.47)

a formula that plays an important role for our applications. The following physically relevant

properties are worth emphasizing:

• Expressions (2.37), (2.45) and (2.46) are general and valid for any cosmological space-time a(τ).

Once we have control on the expressions for γk(τ) for each k, we can compute – analytically or

2We pass to the continuous limit taking a large size L, and expressing the sum as an integral: (1/L3)
∑
k =

1/(2π)3
∫
d3k.
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numerically – the expressions for noise and drift (2.45), (2.46) in a broad variety of physically

interesting situations.

• The noise N in eq (2.45) is controlled by a sum of time derivatives of superhorizon modes,

and depends on the time dependence of all the superhorizon modes ks ≤ k ≤ kh.

As we will see in the next section, such time dependence is a feature of rapidly expanding

space-times, and the integral (2.45) is associated with the rate of change of the comoving

horizon. This phenomenon controls the flow of modes crossing the horizon, and fits well with

the heuristic picture that a source for the stochastic noise N is due to modes continuously

crossing the cosmological horizon separating large and small scales. Effectively, we are dealing

with an open system [27], and the flow of modes produces an analog of Brownian motion at

cosmological scales.

Importantly, the order of integration in eq (2.45) is from kh to ks, and physically assumes that

the noise is due to the flow of modes crossing the horizon from subhorizon to superhorizon

scales. In a case where the situation is reversed, as what happens during standard cosmological

epochs after inflation ends, the order of integration should be reversed for obtaining a noise

with positive sign (see examples in section 3).

Also, eq (2.45) can include additional sources of noise in the superhorizon regime, due to

correlations among positive and negative frequency modes with the same momentum k. As

an example, noise can be generated by particle production at superhorizon scales after the

transition between distinct cosmological space-times, as what happens between inflation and

radiation domination. As far as we are aware, this is the first time these phenomena are

explored in the context of a stochastic approach to tensor fluctuations. We will discuss explicit

examples of these possibilities in section 3.

• The drift term (2.46) depends on the physics of the zero mode γ0: the decaying mode appearing

in γ0 introduces a dependence on initial conditions at early times, through the coefficients

of the integral I(τ). On the other hand, if the cosmological evolution corresponds to an

attractor, I and Π become rapidly a constant: all the effects of the decaying mode drop out

from expressions (2.45) and (2.46), and the dynamics is well described by Markovian evolution,

independent from initial conditions. In this limit (or alternatively switching off the effects of

the decaying mode by selecting µ = 0) the drift vanishes, and the noise reduces to eq (2.47).

2.3 The spectrum and entropy of inflationary tensor modes

The spectrum

In many cosmological situations it is important to compute the spectrum of tensor modes at horizon

crossing. It is straightforward to obtain its expression starting from the Fokker-Planck equation we

derived. For simplicity we consider an attractor cosmological evolution, where the decaying mode

becomes rapidly negligible, and the drift vanishes. The Fokker-Planck equation (2.37) corresponds

to Einstein formulation of the theory of Brownian motion, and reads (we express it in terms of the

10



e-fold number, dn = aH dτ)
∂ P

∂ n
= N (n)

∂2 P

∂h2
ij

. (2.48)

This equation can be easily integrated providing the Gaussian probability density, when assuming a

positive N

P (n, hij) =
1√

2π B(n)
e
−

h2ij
2B(n) , with B′(n) = 2N (n) . (2.49)

Such probability density leads to the two-point function for superhorizon tensor modes as

〈h2
ij(τ, x)〉 =

∫
dhij h

2
ij P = B(n) . (2.50)

The two-point function depends on the e-fold number, and it is independent from the spatial

position. The same quantity 〈h2
ij〉 can also be expressed in Fourier space, as an integral over the

long wavelength tensor spectrum up to the cutoff scale:

〈h2
ij(τ, x)〉 =

∫ ln kh

ln ks

PT d ln k . (2.51)

To compute the value of the tensor spectrum at horizon scales we can use equations (2.50) and

(2.51) together, as discussed in [51], and use d ln kh = d ln(aH).

We obtain

PT =
d 〈h2

ij(τ, x)〉
d ln kh

,

=

(
dn

d ln(aH)

)
d 〈h2

ij(τ, x)〉
dn

=

(
dn

d ln(aH)

)
dB(n)

dn
,

=
2 a2H2

|a2H2 + aH′|
N . (2.52)

Hence 3, knowing the profile of N as a function of the e-fold number n, equation (2.52) provides

the tensor spectrum at horizon crossing. For the three cases of pure de Sitter, radiation domination,

and matter domination that we study next we find

2 a2H2

|a2H2 + aH′|
=


2 for de Sitter ,

2 for radiation domination ,

4 for matter domination .

(2.53)

It is interesting to compare it with the tensor spectrum deep at superhorizon scales, computed with

3In cosmological phases following the end of inflation the denominator of the overall coefficient in eq (2.52) would
be negative, in absence of the absolute value. However, in these cases the flow of modes is from superhorizon to
subhorizon scales (see comment in the second bullet point after eq (2.47)). This fact changes our arguments here by
an overall sign, leading to expression in eq (2.52) (with the absolute value).

11



standard QFT methods (see e.g. [52]). One gets

PT = lim
k→0

4 k3

π2

|γk|2

a2
, (2.54)

where the modes γk are solutions of eq (2.17). Notice that while eq (2.54) depends only on very

large-scale modes with k → 0, the stochastic prediction (2.52) depends on the noise N which involves

a combination over all the superhorizon modes.

The Gibbs entropy

It is also interesting to compute the classical Gibbs entropy associated with our coarse-grained

definition of superhorizon tensor fluctuations, see eq (2.34). (See also [53] for a discussion on

the entropy of tensor fluctuations from inflation.) From the expression (2.49) (we set to one the

Boltzmann constant), we get

S(n) = −
∫
dhij P (n, hij) ln [P (n, hij)] , (2.55)

=
1

2
ln [B(n)] + constant . (2.56)

We learn that the entropy increases with the universe expansion, as long as the noise is positive:

dS

dn
=

B′(n)

2B(n)
=

1

2

N (n)∫ nN (n′) dn′
. (2.57)

If the noise N is constant (or if it rapidly approaches a constant), then B ∝ 2n, and we find that

the rate of variation of the entropy is inversely proportional to the e-fold number: dS/dn = 1/(2n).

In our set up the Gibbs entropy grows logarithmically with the number of e-folds n: S ∝ (log n)/2.

Let us briefly discuss the conceptually important case of de Sitter space, and compare our

coarse grained entropy with the Gibbons-Hawking entropy SdS = πM2
Pl/H

2
0 (with H0 the constant

Hubble parameter). As we are going to learn in section 3, the noise is constant in de Sitter, hence

the coarse grained entropy associated with superhorizon tensor modes grows logarithmically as

Scg = log
√
n/n?, with n? a reference e-fold number. Scg contributes to the energy budget, and

keeps smaller than SdS as long as n ≤ e2SdS , a limit on the e-fold number imposed by the entropy

bound. We point out however that here we only considered the coarse-grained Gibbs entropy, while

we do not include entanglement effects that have been argued to contribute to the entropy budget

by a function linearly growing with the number of e-folds: see [37].

3 Applications

The general formulas we obtained in the previous section will now be applied to physically interesting

cases, also in contexts that are seldom considered in stochastic approaches to cosmological inflation.

In section 3.1 we use our stochastic approach to reproduce in this context well-known QFT results

for the spectrum of superhorizon tensor modes during inflation. We also go beyond the standard

case, including in our stochastic approach a scenario with a phase of non-attractor evolution.

12



In section 3.2 we consider the case of power-law inflation controlled by a parameter ε controlling

the departure from a pure de Sitter expansion. We show that our formalism is sufficiently flexible to

provide an exact, analytic expression for the noise that reduces to the de Sitter one in the limit ε→ 0.

We also show that the tilt nT of the tensor spectrum obtained by our stochastic method satisfies the

expected consistency relation nT = −2ε. We derive an expression for the tensor spectrum using

the stochastic formulation that does not require ε to be small.

In section 3.3 we then consider cosmological scenarios where epochs of radiation and matter

domination follow the phase of inflation. In this situation, we are interested to derive a stochastic

formulation able to describe superhorizon tensor modes in the process of reentering the horizon after

inflation ends. We find that this flow of modes from large towards small scales can be influenced by

those genuinely superhorizon modes created by space-time curvature during radiation and matter

dominated eras. We derive the corresponding expressions for the tensor spectrum at horizon exit,

and compute the associated coarse-grained Gibbs entropy.

3.1 Pure de Sitter expansion (plus an extension to non-attractor evolution)

We start discussing the simplest case of a de Sitter universe, described by the conformal scale factor

a = − 1

H0τ
, (3.1)

with τ < 0, and H0 a constant of dimensions of inverse time, corresponding to the Hubble parameter

H(τ) = a′/a2. For this choice of the scale factor, one has

a′′

a
=

2

τ2
. (3.2)

The mode function solving eq (2.17), satisfying the Bunch-Davies conditions, results

γk =
1√
2k

e−ikτ ×
(

1− i

kτ

)
, (3.3)

up to an overall phase that does not enter into the final results. The integral I(τ) of eq (2.22)

controlling the effect of the decaying mode is (τ? ≤ τ ≤ 0)

I(τ) =

∫ τ

τ?

dτ ′H2
0 τ
′2 =

H2
0

2

(
τ3 − τ3

?

)
, (3.4)

= −H
2
0τ

3
?

2

(
1− e−3n

)
, (3.5)

where the number n of e-folds is defined as n = ln [a(τ)/a(τ?)]. This implies that the quantity

I rapidly approaches a constant during inflation, and its contributions to noise and drift are

exponentially suppressed: we can safely assume that contributions proportional to σ vanish in all

our expressions. Hence the drift contribution to the Fokker-Planck equation is zero in this limit.

13



For computing the noise we need the combination

|γk|2

a2
=

H2
0

2 k3

(
1 + k2τ2

)
=

H2
0

2 k3

(
1 +

k2

H2
0 a

2

)
,

=
H2

0

2 k3

(
1 +

k2

H2
0 a

2
?

e−2n

)
. (3.6)

Its time (or e-fold) dependence – which controls the noise, see eq (2.47) – is limited to the second

term inside the parentheses, characterizing the rate of change of the comoving horizon.

Substituting eq (3.6) in the expression (2.47) for the noise, we can easily perform the integral.

We get the expression

N =
H2

0

M2
Plπ

2

(
σ2 − k2

s τ
2
? e
−2n

)
. (3.7)

The result depends on the choice of the cutoff kh = σ aH, and the infrared cutoff ks. For the

cutoff kh we choose σ = 1: we include all the super-horizon modes starting from horizon crossing,

assuming all of them contribute in forming the noise. The choice of the infrared cutoff ks is instead

not important, since its contribution is exponentially suppressed as the e-fold number increases.

After a few e-folds we then get the following expression:

N =
H2

0

M2
Plπ

2
. (3.8)

This is the expected result for the noise coefficient. Indeed, using the fact that dn = d ln aH for a

pure de Sitter evolution, eq (2.52) provides

PT =
2H2

0

π2M2
Pl

, (3.9)

which is the well-known spectrum of tensor modes at very large scales in the limit of pure de

Sitter expansion, obtained using QFT methods and formula (2.54). The statistics of the stochastic

spectrum of coarse-grained modes maintains its properties from horizon exit up to very large scales,

as expected given that the influence of decaying modes is negligible.

We now briefly discuss how these classic results can change, modifying one of the assumptions

made so far for the case of pure de Sitter expansion. During inflation, transitory phases of non-

attractor can enhance the spectrum of fluctuations – this mechanism is particularly interesting

in view of producing primordial black holes (see e.g. [54, 55] for reviews). While this possibility

has been mostly explored in the scalar sector, it might occur in the tensor sector as well [56, 57].

During non-attractor, the would-be decaying mode proportional to the quantity
∫ τ

dτ̃/a2(τ̃) does

not decay but grows. Possible effects of this phenomenon for what respects quantum contributions

to stochastic quantities have been explored in recent literature, see e.g. [58–62].

Here we focus our analysis on understanding how a non-attractor regime influences the classical

drift in the stochastic Fokker-Planck equation, using the formalism we developed.

The simplest possibility to consider is a model of non-attractor corresponding to a contracting

universe, with a(τ) = a0 τ
2 (a0 is a normalization factor, and −∞ < τ < 0) so that a′′/a = 2/τ2,
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as for the case of de Sitter (see eq (3.2)). This implies that the solution for the mode function γk is

the same as in de Sitter expansion. The number n of e-folds of contraction is connected to the time

variable by τ = τ∗ e
−2n, for τ∗ < τ < 0.

We find that the integral I is

I = − 1

3a2
0 τ

3
?

(
e3n/2 − 1

)
, (3.10)

so it exponentially grows with the number n of e-folds of contraction (instead of approaching a

constant as in de Sitter, see eq (3.5)). Calculating the drift as in eq (2.46), in the limit of large

e-fold number we find the expression

D = −6− 6 e−3n/2

(
1 +

3 a2
0 τ

3
? cos ∆

µ

)
+O(e−3n) . (3.11)

So the drift approaches an order-one constant as contraction proceeds, and can influence considerably

the stochastic evolution. It would be interesting to study more generally stochastic features of

non-attractor inflation using our method: we postpone this investigation to future analysis.

3.2 Power-law expansion

We now apply our formalism to power-law expansion, described by the scale factor

a(τ) = − 1

H0 τ1/(1−ε) , (3.12)

for constant ε, with de Sitter space corresponding to ε = 0. The parameter ε is associated with

derivatives of the Hubble parameter H = (da)/(a2 dτ) through the definition

ε = − 1

H2

dH
a dτ

. (3.13)

We are interested here in cosmological space-times with 0 ≤ ε < 1. We can then express the

Hubble parameter and second time derivative of the scale factor as

aH = − 1

(1− ε) τ
, (3.14)

a′′

a
=

1− ε/2
(1− ε)2

2

τ2
. (3.15)

It is a textbook exercise to obtain the solution for the mode functions that approaches a Bunch-

Davies vacuum at early times – see e.g. [52]. From such a solution one gets (H
(1)
ν (y) as the Hankel

function of the first kind)

|γk|2

a2(τ)
=

π (−kτ)

2k a2(τ)
|H(1)

ν (−kτ)|2 , (3.16)

=
πH2

0

2

(−kτ)(3−ε)/(1−ε)

k(3−ε)/(1−ε) |H(1)
ν (−kτ)|2 , (3.17)
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where we denote

ν =
3

2

1− ε/3
1− ε

. (3.18)

For calculating the noise, we assume that the UV cutoff is kh = aH, selecting σ = 1 in eq (2.35): in

other words, as in section 3.1 we include all super-horizon modes in our definition of coarse-grained

tensor quantity. The value of ks is not important, since its contributions to the integral exponentially

decay to zero as a function of the e-fold number: in what follows for simplicity we set ks = 0. The

noise is, always assuming ε < 1,

N =
2

M2
Pl π

2H(τ) a(τ)

∫ 0

aH
k2 dk ∂τ

(
|γk(τ)|2

a2(τ)

)
, (3.19)

=
H2

0

2πM2
Pl

(1− ε) (−τ)
2ε
1−ε

∫ 1−ε

0
d(−kτ) (−kτ)

−2ε
1−ε

d

d(−kτ)

(
(−kτ)

3−ε
1−ε |H(1)

ν (−kτ)|2
)
,

=
2H2

0 G(ε)

π2M2
Pl

(−τ)
2ε
1−ε , (3.20)

where the overall coefficient G(ε) is given by

G(ε) = π(1− ε)
∫ 1/(1−ε)

0
x3 dx

[
J 1+ε

2−ε
(x)J 3−ε

2−ε
(x) + Y 1+ε

2−ε
(x)Y 3−ε

2−ε
(x)
]
, (3.21)

with Jν(x), Yν(x) denoting respectively Bessel functions of the first and second kind. The function

G(ε) tends to 1 for ε small:

G(ε) ' 1 + 2.94 ε+O(ε2) , (3.22)

and is represented in Fig 1.
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Figure 1: Plot of the function G(ε) given in eq (3.21) as a function of ε.

Since in this cosmological era the number of e-folds is connected to time by (τ∗ being a fiducial

time τ? ≤ τ ≤ 0)

τ = τ? e
−n (1−ε) (3.23)
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We can then write the expression for the noise (choosing for definiteness τ? = −1)

N =
H2

0 G(ε)

4π2
e−2ε n (3.24)

The corresponding tensor spectrum is given by formula (2.52). Its tilt satisfies the well-known

relation

nT =
d lnPT
d ln k

=
d lnN
dn

= −2ε , (3.25)

in agreement with standard QFT methods.

3.3 From inflation to radiation and to matter domination

After inflation ends, the standard picture of big bang cosmology starts, and the universe enters in

a phase of radiation followed by matter domination. Inflationary superhorizon modes reenter the

horizon during these phases, and begin evolving and propagating through cosmological distances.

During radiation or matter domination, the stochastic distribution of superhorizon modes can be

described in terms of the physical arguments we developed in the previous sections. The time-varying

size of the cosmological horizon leads to a flow of modes back from superhorizon to subhorizon scales

– a process contributing to the stochastic noise in the Fokker-Planck equation for our coarse-grained

quantity. In fact, we have an open system where the Brownian motionlike phenomenon is induced

by the ‘holes’ left by the modes that leave the superhorizon regime. Moreover, the transition

from inflation to radiation domination leads to particle production at super-horizon scales, see

e.g. [41, 42, 46, 47], and [52] for a textbook discussion. We might suspect that the superhorizon

stochastic distribution gets affected by such phenomena.

In order to describe an universe where inflation (approximated as de Sitter space) is followed by

radiation domination, we parametrize the scale factor as

a(τ) = − 1

H0(τ − τ0)
τ < 0 , (3.26)

a(τ) =
τ + τ0

H0τ2
0

τ > 0 , (3.27)

for a continuous transition among the two regimes at τ = 0 (τ0 > 0 is a fiducial time). During

radiation domination, the solution for mode function γk is a linear combination of plane waves

γk = c1(k) eikτ + c2(k) e−ikτ τ > 0 , (3.28)

whose scale-dependent coefficients are determined by the Israel conditions with inflationary modes

in Bunch-Davies vacuum at τ < 0

c1 =
ei kτ0√
8 k5 τ2

0

, (3.29)

c2 = − ei kτ0√
8 k5 τ2

0

(
1− 2ikτ0 − 2k2τ2

0

)
(3.30)
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We call negative frequency modes (in analogy with their Minkowski counterparts) the terms

weighted by c2(k) in eq (3.28). Their contribution leads to particle production and amplification

of of particle number at superhorizon scales. We can compute the quantity entering in the noise

integrand in eq (2.47). We get for τ > 0

|γk|2

a2(τ)
=

H2
0

4 k5 (τ + τ0)2

[
1 + 2 k4 τ4

0 + 2 kτ0 sin (2 kτ)−
(
1− 2k2τ2

)
cos (2 kτ)

]
. (3.31)

The oscillatory contributions within the parentheses are due to interferences between positive and

negative frequency modes with the same k. Starting from expression (3.31), using the definition

in eq (2.54), it is straightforward to compute the spectrum of tensor fluctuations at late times

τ/τ0 � 1. We obtain [46]

PT =
2H2

0

π2M2
Pl

(
sin kτ

kτ

)2

, (3.32)

at very large scales, kτ � 1, we find PT = 2H2
0/(π

2M2
Pl).

We now analyze the problem from the perspective of the stochastic formalism developed in the

previous sections. The number of e-folds from the onset of radiation domination is

τ

τ0
= en − 1 . (3.33)

The integral I of eq (2.22) results

I(n) =

∫ τ

τ0

dτ̃

a2(τ̃)
, (3.34)

= τ3
0H

2
0

(
1− e−n

)
, (3.35)

hence for increasing n it approaches a constant, although more slowly than in de Sitter space: the

drift and the effects of the zero mode nevertheless are suppressed after a few e-folds, and we neglect

them. Starting from eq (3.31), it is straightforward to perform the analytic integrations 4 associated

with the noise of eq (2.47). A mixing between positive and negative frequency modes of momentum

k is induced by the square of the mode function |γk|2/a2(τ), and leads to interesting effects.

The noise N controlling superhorizon modes during radiation domination is computed by the

integral in eq (2.47), choosing kh = σaH, and leaving an arbitrary small ks as infrared cut-off. The

quantity N (n) written as a function of the e-fold number results

N (n) =
H2

0

π2M2
Pl

sin2 σ

σ2

×
{

1− H2
0 σ

2 e−2n

2 k2
s sin2 σ

[
1− 2k4

sτ
4
0 −

(
1− 2k2

sτ
2
0

)
cos

(
2ksτ0

(
1− en

H0τ0

))
−2ksτ0 sin

(
2ksτ0

(
1− en

H0τ0

))]}
+O(e−3n) , (3.36)

4Recall that we are in a situation where the flow of modes is from superhorizon to subhorizon scales, hence we
should place an overall minus sign in eq (2.47), as explained in the second point after that formula.
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Figure 2: Plot of the coarse-grained entropy of superhorizon tensor modes as a function of the e-fold
number. We apply eq (2.56) to epochs of radiation and matter domination. The integration constant
of eq (2.56) has been chosen in such a way that the entropy vanishes at n = 0. We choose H0 τ0 = 4,
and ksτ0 = 0.1, σ = 0.02. In both cases the entropy scales as ln (n1/2) for large n.

where the quantity O(e−3n) decays at least as fast as e−3n with the number of e-folds of evolution.

We checked that the complete expression for the noise is continuous when sending ks → 0. Notice

that the explicit dependence on ks of eq (3.36) is exponentially suppressed with the e-fold number:

after a few e-folds, the noise approaches a constant given by

N (n� 1) =
H2

0

π2M2
Pl

sin2 σ

σ2
. (3.37)

Using eqs (2.52), (2.53), we find for the tensor spectrum at horizon crossing, evaluated after few

e-folds of expansion, results

PT (n� 1) =
2H2

0

π2M2
Pl

sin2 σ

σ2
. (3.38)

When σ � 1, the quantity in eq (3.38) coincides with the QFT tensor spectrum of eq (3.32) when

evaluated deep at superhorizon scales kτ → 0. Physically, this choice for σ implies that we include

in the coarse-graining procedure only modes at very large scales, well beyond the horizon size – see

our definition of UV cut-off in eq (2.35). This result is intuitively clear since the QFT approach

focuses precisely on modes at very large scales, hence there is no surprise that in this limit the two

approaches agree. Spanning the value of σ within the interval 0 ≤ σ ≤ 1, the size of the spectrum

reduces of around 70% with respect to its σ = 0 value. We interpret this suppression as due to

interference effects among modes spontaneously created by space-time gradients at superhorizon

scales, and modes flowing from super to subhorizon scales. Such interference is reduced when coarse

graining only over modes deep in the superhorizon regime, σ → 0.

We can also consider the case where a phase of matter domination follows the radiation-dominated

era considered above. The scale factors in the three epochs read (τ0 > 0 and τb > 0)

a(τ) =


− 1
H0(τ−τ0) for τ ≤ −τb ,
τ+τ0+2τb
H0(τb+τ0)2

for −τb ≤ τ ≤ 0 ,
(τ+2τ0+4τb)

2

4H0(τb+τ0)2(τ0+2τb)
for τ ≥ 0 ,

(3.39)
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and are continuous with their first derivative continuous at the transition epochs. In the limit of very

short radiation-dominated era, τb/τ0 � 1, the solution for the mode function in matter domination

for τ ≥ 0 reads

γk =
3

8
√

2

e−ik(τ+τ0)

τ3
0 k

9/2

(i+ kτ0)(−i+ kτ + 2kτ0)

τ + 2τ0
. (3.40)

Proceeding as above in the radiation-dominated case, we find the following expression for the noise

as function of e-folds in the matter-dominated era, n ≥ 0

N (n) =
9H2

0

128π2M2
Pl

(sin (2σ)− 2σ cos (2σ))2

σ6

+
9H2

0

512σ4 π2M2
Pl

e−n
[
3 + 16σ2 + (8σ2 − 3) cos (4σ)− 12σ sin (4σ)

]
+O(e−2n) . (3.41)

After few e-folds of matted-dominated expansion, the noise approaches a constant. In this limit,

using eqs (2.52) and (2.53), we find the tensor spectrum at horizon crossing

PT =
18H2

0

π2M2
Pl

(sin (2σ)− 2σ cos (2σ))2

(2σ)6
, (3.42)

which approaches the standard large-scale value PT = 2H2
0/(π

2M2
Pl) in the limit σ � 1. As for the

case of radiation domination, the limit of small-σ implies the inclusion only of very large-scale modes

in the coarse-graining procedure. In spanning through the interval 0 < σ < 1, PT monotonically

decreases, reducing to a size of 43 % with respect to the σ = 0 value.

We conclude with few words about the behaviour of the coarse-grained Gibbs entropy, as derived

in eq (2.56). Both for the cases of radiation and matter domination the noise approaches a constant

as the cosmological evolution proceeds, and the number of e-folds increases. In the transition

between inflation and matter domination the noise has a richer profile: we use it for plotting the

expression of the entropy in Fig 2. We notice that in both cases the entropy increases as function of

the e-fold number, with a steep slope for n between 2 and 6. Then, for large n, the entropy scales

as ln (n1/2), as expected.

4 Conclusions

We discussed a coarse-grained prescription for describing the stochastic superhorizon dynamics of

inflationary tensor modes, which seed the spectrum of primordial gravitational waves from inflation.

We made precise the intuitive idea that the stochastic distribution of tensor fields at superhorizon

scales is due to the flow of tensor modes between subhorizon and superhorizon scales. Our aim was

to put in a firm footing a consistent description of inflationary tensor modes which allows one to

deal with large infrared effects that characterize the dynamics of light fields in inflation.

Using basic principles of quantum mechanics, we showed how the probability density for the

coarse-grained tensor modes satisfies a stochastic Fokker-Planck equation, whose noise and drift

are computable and depend on the cosmological system under consideration. The evolution is well
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described by a standard Markovian process if the cosmological expansion follows an attractor, and

we also considered how the dynamics is affected by the presence of non-attractor eras. Our stochastic

formulas are applied to a variety of cosmological frameworks, also cases not often considered in the

context of stochastic inflation. We obtained the expected results for noise and drift in pure de Sitter

and power-law inflation. But we also explored consequences of non-attractor phases as for example

a contracting universe. Most notably, we considered a cosmological space-time with transition from

de Sitter (inflationary) phase to radiation and to matter domination. This is the first time this topic

is discussed in the context of a stochastic approach to superhorizon tensor modes. The computation

of the stochastic noise made manifest interference effects among the flow of modes reentering the

horizon after inflation ends, and the superhorizon modes semiclassically produced at large scales by

large space-time gradients. The formula for the noise depends on the number of e-folds of cosmic

evolution, and it rapidly approaches a constant value after few e-folds of expansion. We proved that

our final results do not depend on the choice of infrared cutoff. Our stochastic results are then

compared with the standard predictions of QFT applied to cosmology. The two approaches give the

same results for the power spectrum of tensor fluctuations if the coarse-graining procedure includes

only modes deep in the superhorizon regime. This fact is intuitively clear since the QFT approach

focusses precisely on modes at very large scales. We also quantitatively computed the effect of

including a larger portion of superhorizon modes in the coarse-graining prescription, showing that

it can change the amplitude of the tensor spectrum at horizon crossing by an overall numerical

coefficient of order one. Hence, depending on the prescription adopted, the predictions for the

amplitude of the spectrum can change. It would be interesting to further consolidate our physical

understanding of this fact, and its phenomenological consequences.

This work contains various novel results both for developing a stochastic approach to tensor

fields from inflation, and for applying it to a variety of cosmological settings. It would be interesting

to further develop this approach to better understand how much our quantitative results for noise

and drift depend on the detailed features of cosmological space-times, and on the transitions among

different cosmological eras. It would also be interesting to include self-interactions (cubic or higher)

among tensor fluctuations, and then also include the effects of scalar perturbations in the analysis.
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A Fokker-Planck equation and coarse graining

In this appendix we show how to make use of our coarse-graining procedure to pass from the

evolution equation (2.29) for a single-mode k to the coarse-grained Fokker-Planck equation eq (2.37).

The idea is to multiply both sides of (2.29) – defined for a certain fiducial mode k – for all the

remaining probability densities . . . P
(λ)
k−2 P

(λ)
k−1 P

(λ)
k+1 . . . of the remaining modes. Then, using the

definition of eq (2.36), we reconstruct an evolution equation for P (τ, hij(~x)). To do so, we we also
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need the fact that

∂hij(~x)

∂h
(λ)
k

=
2 ei

~k~x e
(λ)
ij (k̂)

MPl L3/2
;

∂hij(~x)

∂h
(λ)
−k

=
2 e−i

~k~x e
(λ)
ij (k̂)

MPl L3/2
. (A.1)

We proceed to discuss this procedure analyzing its consequences for each term of eq (2.29).

i) The time derivative in the left-hand-side (LHS). We multiply the LHS of eq (2.29) by all

the the P
(λ)
k′ with k′ 6= k. We sum over momenta (positive and negative) and polarizations,

obtaining ∑
λ

∑
k

. . . P
(−λ)
k−1 P

(λ)
k−1 P

(−λ)
k

∂P
(λ)
k

∂τ
P

(λ)
k+1 P

(−λ)
k+1 . . . =

∂P

∂τ
. (A.2)

ii) The first derivatives in the right-hand-side (RHS). We multiply the RHS of eq (2.29) by all the

P
(λ)
k′ with k′ 6= k. We sum over momenta (positive and negative) and polarizations, obtaining

∑
λ

∑
k

. . . P
(−λ)
k−1 P

(λ)
k−1 ω0

[
h

(λ)
k

∂

∂h
(λ)
k

(
P

(λ)
k

)]
P

(−λ)
k P

(λ)
k+1 P

(−λ)
k+1 . . . =

= ω0

∑
λ

∑
k

[
h

(λ)
k

∂P

∂h
(λ)
k

]
,

= ω0

∑
λ

∑
k

[
h

(λ)
k

∂hij

∂h
(λ)
k

]
∂P

∂hij
,

= ω0 hij
∂ P

∂hij
, (A.3)

since we recall ω0 is independent from k. In the previous expression, we sum over indexes ij.

iii) The second derivatives in the RHS. We proceed as before, and we express it as

∑
λ

∑
k

. . . P
(−λ)
k−1 P

(λ)
k−1 ωk

[
∂2P

(λ)
k

∂h
(λ)
k ∂h

(λ)
−k

]
P

(−λ)
k P

(λ)
k+1 P

(−λ)
k+1 . . . =

=
∑
λ

∑
k

ωk
∂2P

∂h
(λ)
k ∂h

(λ)
−k

,

=
∑
λ

∑
k

ωk
∂hij

∂h
(λ)
k

∂hij

∂h
(λ)
−k

∂2 P

∂h2
ij

,

=

(∑
k

ωk

) (∑
λ

e
(λ)
ij e

(λ)
ij

)
∂2P

∂h2
ij

,

= 2

(∑
k

ωk

)
∂2P

∂h2
ij

. (A.4)
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Collecting the results we just obtained, we can write a stochastic Fokker-Planck evolution equation

for the coarse-grained probability P , which reads

1

aH
∂P

∂τ
= N ∂2 P

∂h2
ij

+D ∂

∂hij
(hij P ) , (A.5)

and noise and drift given in the main text: see eqs (2.45) and (2.46).
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