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A B S T R A C T

Recent achievements of sequence prediction models in numerous domains, including compression, provide
great potential for novel learning-based codecs. In such models, the input sequence’s shape and size play a
crucial role in learning the mapping function of the data distribution to the target output. This work examines
numerous input configurations and sampling schemes for a many-to-one sequence prediction model, specifically
for compressing 3D medical images (16-bit depth) losslessly. The main objective is to determine the optimal
practice for enabling the proposed Long Short-Term Memory (LSTM) model to achieve high compression ratio
and fast encoding–decoding performance.

Our LSTM models are trained with 4-fold cross-validation on 12 high-resolution CT dataset while measuring
model’s compression ratios and execution time. Several configurations of sequences have been evaluated, and
our results demonstrate that pyramid-shaped sampling represents the best trade-off between performance and
compression ratio (up to 3×). We solve a problem of non-deterministic environments that allow our models
to run in parallel without much compression performance drop.

Experimental evaluation was carried out on datasets acquired by different hospitals, representing different
body segments, and distinct scanning modalities (CT and MRI). Our new methodology allows straightforward
parallelisation that speeds-up the decoder by up to 37× compared to previous methods. Overall, the trained
models demonstrate efficiency and generalisability for compressing 3D medical images losslessly while still
outperforming well-known lossless methods by approximately 17% and 12%. To the best of our knowledge, this
is the first study that focuses on voxel-wise predictions of volumetric medical imaging for lossless compression.
. Introduction

Millions of medical scans are produced in the UK alone each year
rom various modalities, including Computed Tomography (CT) and
agnetic Resonance Imaging (MRI) (Dixon, 2019). High-resolution

mages are vital for patient-evaluation and clinical applications, in-
luding preoperative planning (Anagnostakos, et al., 2019), but can
resent a technical challenge from large storage requirements (e.g. a
D volumetric CT or MRI image can use a Gigabyte). Besides, these
assive volumes influence not only available storage space but also

aise the difficulty of data streaming and communication. This problem
an be addressed by employing efficient compression methods. Due to
ata reliability and accuracy, lossy reduction methods are generally not
dvised for medical image applications since it can affect diagnostic
erformance (Koff & Shulman, 2006; Patidar, Kumar, & Kumar, 2020).
e therefore focus on lossless compression and deep learning, which

chieves remarkable gains over the classical state-of-the-art for both
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lossy and lossless compression methods. For predictive compression
schemes, various local sampling grids can be applied. For deep learning
predictor-based models, the input sequence shape and size play a
crucial role in learning a mapping function from the input data of
known causal neighbours to the target output of the next unknown
value. Generally, there is a trade-off between the sequence size and the
computational cost of a model. For 3D data, various block coverage
around the target voxel can be applied (Nagoor, Whittle, Deng, Mora,
& Jones, 2020a, 2020b). This work examines further options for the
causal neighbouring sequence and determines the compression trade-
offs between size and speed. LSTMs are widely employed for solving
sequence and time series prediction problems due to their effective-
ness and training stability in addressing vanishing gradient problems
compared to other recurrent unit alternatives. LSTM was chosen as
it practically balances architecture compactness while capturing long-
term dependencies and correlations within spatial neighbourhood voxel
sequences. The primary intention is to comprehensively investigate
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the best sequence pattern that would lead to optimal compression
quality and performance. Therefore, all the remaining experimental
settings were fixed to keep the comparisons and benchmarks consistent
and equitable, including the model selection, model architecture, and
training hyperparameters. To the best of our knowledge, this is the first
extensive research that focuses on the voxel-wise prediction for a high
resolution volumetric medical imaging lossless compression.

This paper investigates various strategies for generating neighbour-
hood sequences to find the best pattern, which would lead to optimal
compression quality and performance for volumetric medical scans.
Briefly, the main contributions of this work are as follows:

1. We present recurrent neural network (LSTM) learning-based
models for compressing 16 bit medical data and offer parallelisa-
tion of the decoder resulting in a speed-up of up to 37× compared
to previous methods.

2. We demonstrate a comprehensive study on sampling strategies
and how they influence compression performance (compression
time and compression ratio). The strategies include compet-
ing neighbourhood sampling sequences and the extraction of
training sample batches from the 3D scans.

3. We demonstrate a comprehensive comparison study of the vari-
ous strategies, including against state-of-the-art lossless compres-
sion methods. We outperform other methods for compression
ratio and speed.

The remainder of this paper is organised as follows: Section 2
utlines the current state-of-the-art approaches for lossless compression
nd deep learning predictive models. Section 3, describes the proposed
ethodology and strategies. The experimental results are introduced

nd discussed in Section 4 with compression results of our proposed
odels compared to the state-of-the-art lossless compression methods.

inally, Section 5 concludes the main findings of this paper.

. Related work

Compression is commonly described as a reduction in the bit rate
equired to represent data. Entropy is a unit used to measure the
inimum number of bits required on average to represent a symbol

elonging to a stream according to Shannon (Bishop, 2007; Goodfellow,
engio, & Courville, 2016; Shannon, 1948). The level of compression
hat can be achieved depends on the type of patterns and assump-
ion that can be made about the target data such as spatial, coding
nd spectral (psycho-visual) redundancy (Sridhar, 2014). According
o current compression research trends, reduction methodologies can
e classified into four main types: prediction-based (Lucas, Rodrigues,
a Silva Cruz, & de Faria, 2017; Magli, Olmo, & Quacchio, 2004;
atsuda, Mori, & Itoh, 2000; Nagoor et al., 2020a, 2020b; Rhee,

ang, Kim, & Cho, 2020; Schiopu, Huang, & Munteanu, 2020; Schiopu
Munteanu, 2020a, 2020b; Sullivan, Ohm, Han, & Wiegand, 2012;
einberger, Seroussi, & Sapiro, 2000; Wu & Memon, 1996, 2000),

ransform-based (Schelkens, Munteanu, Tzannes, & Brislawn, 2006;
aubman & Marcellin, 2002), quantisation-based (Kingma, Abbeel, &
o, 2019; Townsend, Bird, & Barber, 2019), and end-to-end com-
ression frameworks (Hu, Yang, Ma, & Liu, 2020). This paper will
ighlight the current research trends of the prediction-based paradigm,
ncluding classical (non-learned) lossless compression literature and
eep learning compression literature.

Prediction-based compression is applied to reduce redundancy,
herein a decorrelation of the causal neighbouring values is applied to
redict a target value. When compression is applied over a 2D varying
ignal, the method is known as image-codec. 3D data can be considered
ither a stack of 2D frames over time (video-codec) or a 3D varying
ignal (volume-codec). After iteratively applying a compression model
o create a map of predicted values, a residual error is usually computed
o measure the difference between predictions and the ground truth
alues. This prediction error will be further compressed losslessly using
2

n entropy coder to reduce the coding redundancy, such as arithmetic
oding, context adaptive binary arithmetic coding, Asymmetric Nu-
eral Systems (ANS), or Huffman coding. Various linear or non-linear

ombinations of causal neighbourhood values along with the number
f neighbours and the shape of their sampling patterns are applied
ithin the predictive-based lossless compression literature, spanning
oth classical and learning-based predictive approaches.

.1. Classical prediction based methods

Among the classical predictor-based methods, and within the image-
odec category, the Joint Photographic Experts Group-Lossless (JPEG-
S) utilises the immediate three pixels neighbourhood to predict a
arget pixel applying a mode-selection scheme with the LOCO-I algo-
ithm (Weinberger et al., 2000). A more complicated technique for
mage compression, which employs six pixels of the causal neighbour-
ng into context-based Gradient Adjusted Predictor (GAP) known as
ontext Based Adaptive Lossless Image Codec (CALIC) (Wu & Memon,
996). Minimum-Rate Predictor (MRP) has a wider causal neighbour-
ood and is an adaptive predictive-based method that applies 2D-block
lassification (Matsuda et al., 2000). To compress higher dimensional
olumetric data, including videos and 3D medical images, several clas-
ical image coders extended their functionality to 3D space. Both (3D-
ALIC) (Wu & Memon, 2000) and (M-CALIC) (Magli et al., 2004) are
xtended versions of the image coder CALIC. 3D-CALIC is an enhanced
ersion supporting context decorrelation for both inter-band and intra-
and modelling. On the other hand, the M-CALIC algorithm outper-
orms 3D–CALIC in decorrelating hyperspectral data with multiband
ossless and near-lossless compression. 3D-MRP similarly extended the
RP algorithm to utilise 3D causal neighbourhood pixels and provides

n enhanced error estimation, and context estimator for both 8 and
6 bit depth contents (Lucas et al., 2017).

A well-known 3D codec for video compression is High Efficiency
ideo Coding (HEVC) (Sullivan et al., 2012), which combines numerous
oding tools and provides compression for both lossy and lossless
ptions. The lossless mode is a predictive-based scheme that applies
oth inter and intra-prediction to reduce data redundancies within and
etween frames. HEVC lossless mode applications include 3D medical
magery using Range Extension (Bossen, Flynn, Sharman, & Sühring,
019) with 4:0:0 chroma format for one channel component 16-bit
ata. In summary, most of the classical lossless compression approaches
ely on hand-crafted or linear combinations with a few causal neigh-
ouring pixels coverage for their predictions. Moreover, such methods
re designed to perform well only on specific data domain for which
hey were intended, most commonly natural images or video sequences.
hese main limitations demand novel approaches with more flexibility

n estimating non-linearity. The deep learning approaches form a great
otential and promising research direction that provides both efficacy
nd flexibility to represent non-linear data distribution.

.2. Learning based prediction methods

Compared to classical state-of-the-art compression methods, the
urrent deep learning methods are gaining remarkable compression
esults for both lossy and lossless compression (Hussain, Al-Fayadh, &
adi, 2018; Liu, Li, Lin, Li, & Wu, 2020; Yi, Walia, & Babyn, 2019).
his shift towards the learning-based methods is consequent to its
utstanding results performance in many domains, exceptional ability
n representing nonlinearity, and GPU utilisation. Numerous learning-
ased approaches are proposed for lossy compression for applications
ncluding image-super resolution (Lai, Huang, Ahuja, & Yang, 2017),
imensionality reduction (autoencoders) (Toderici, et al., 2017), gener-
tive compression (Santurkar, Budden, & Shavit, 2018), and end-to-end
ompression frameworks (Hu et al., 2020). An autoregressive model
s one of the state-of-the-art models in estimating data distribution
nd pixels likelihood. In PixelRNN (van den Oord, Kalchbrenner, &
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Kavukcuoglu, 2016), the probability of each pixel conditionally de-
pends on the probability distributions of all the previous pixels for
each channel, which results in the pixel generating process to be
relatively slow due to the sequential implementation. However, the
PixelCNN (van den Oord et al., 2016) provides a parallelised version,
employing a smaller receptive field but not fully utilising the available
context. PixelCNN++ (Salimans, Karpathy, Chen, & Kingma, 2017)
and Multiscale-PixelCNN (Reed, et al., 2017) are further enhanced
versions utilising both parallelisation and context employment with
some regularisations.

Sequence models are a particular type of supervised learning algo-
rithm, which employ a predictive scheme. This neural network offers
outstanding flexibility for various sequential input and output of ar-
bitrary lengths that a model can maintain. Based on the length of
the processed sequences, this model can be categorised into numerous
types, including one-to-one, many-to-one, one-to-many, and many-to-
many sequence prediction models. The domains for such models are
numerous for sequential and higher-dimensional data, including se-
quence prediction, sequence generation, sequence classification, and
sequence-to-sequence prediction. A few examples of applications are
weather forecasting, product recommendation, stock market predic-
tion, sentiment analysis, text translation, image caption, and text gen-
eration (Brownlee, 2017). Some state-of-the-art sequence prediction
models contain an internal state or memory unit, which helps to
learn the long-term temporal contextual information. Generally, when
solving a sequence prediction problem, a model learns a mapping
function 𝑓 (𝑥𝑡), which maps an input series 𝑥𝑡 to an output sequence
𝑦𝑡. Examples of the state-of-the-art deep learning sequence predic-
tion models are Recurrent Neural Network (RNN) (Mikolov, Karafiát,
Burget, Cernocký, & Khudanpur, 2010), Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997), Gated Recurrent Units
(GRU) (Chung, Gülçehre, Cho, & Bengio, 2014), and Transformers (De-
vlin, Chang, Lee, & Toutanova, 2019; Parmar, et al., 2018; Radford,
et al., 2019).

Although only a few contributions have been made to address loss-
less compression within the deep learning literature, this area is gaining
more attention recently. Schiopu and Munteanu proposed a novel
hybrid lossless image codec with a predictive paradigm that utilises
large causal neighbouring pixels to predict a target output (Schiopu &
Munteanu, 2020a). Their method also includes a residual error block
to further exploit the pixel’s inter-prediction and a novel context-
based bit entropy coder that outperforms the traditional state-of-the-art
lossless codecs. The same authors proposed an enhanced version with
a different NN architecture, resulting in better efficiency and better
predictions (Schiopu & Munteanu, 2020b). Another image codec that
manipulates neighbouring pixels known as a channel-wise progressive
prediction was presented in Rhee et al. (2020). Their proposed net-
work is a Multilayer Perceptron (MLP), whereas a progressive training
scheme is applied on both residual and channel-wise. Additionally, an
Adaptive Arithmetic Coder (AAC) is used to encode the error based
on the coding context. Compared to engineered codecs, the results of
this MLP-based approach outperform standard image codecs in all test
datasets by a significant margin. A more recent lossless compression
method that employs a CNN as a predictor for video coding was pro-
duced by Schiopu et al. (2020). This block-wise compression approach
replaced all intra-prediction modes of the HEVC with deep learning
CNNs and gained an average bit reduction of 5% compared to the
standard HEVC. Another deep learning lossless compressors that apply
predictive scheme but for sequential data are DeepZip (Goyal, Tat-
wawadi, Chandak, & Ochoa, 2019), LSTM-Compress (Knoll, 2020), and
Dzip (Goyal, Tatwawadi, Chandak, & Ochoa, 2020). In these compres-
sion frameworks, a combination of neural network-based compressor
and arithmetic coding is utilised. Both DeepZip and LSTM-Compress
involve RNN-based models (e.g. GRU or LSTM models) as probability
estimators along with an arithmetic coding unit and specifically em-
ployed for losslessly compressing text and Genomic datasets. DZip is
3

a more general-purpose NN-based model for reducing various dataset
types using a hybrid training approach. Compared to these methods,
our proposed models have a noticeably faster encoding/decoding com-
putation time and achieve a better bit reduction compared to Knoll
(2020) (see Section 4 for more details).

Nagoor et al. (2020a, 2020b) recently propose learning-based pre-
dictive methods, which supports lossless compression for 3D medical
imaging (16 bit depths). Two unique 3D shapes of the surrounding
neighbouring voxels (e.g. 3D cube and 3D pyramid) were applied to
train MLP and LSTM models, respectively. These two approaches differ
from the aforementioned learning-based codec as they offer a voxel-
wise prediction model with a 3D contextual neighbouring voxels to
predict a single target voxel. This paper builds on these prior many-
to-one sequence models by comprehensively studying the effect of
numerous causal neighbouring voxels over different dimensions and
coverage (shapes) on compression performance (bpp) and compression
time. Compared to most deep learning approaches, the prior and cur-
rent network model architectures are relatively small (i.e. only 810
Kilobytes (KB)), but have sufficient capacity and achieve the best bit
reduction compared to other classical compression approaches.

Additionally, one of the main contributions in this work is a signifi-
cant improvement of the decoder procedure compared to other lossless
options in terms of compression quality and performance. Evaluation
results are compared to state-of-the-art lossless compression methods
over various 3D datasets.

3. Methodology

3.1. Problem description

Given a data distribution defined over 𝑉 ⊂ 𝑅𝑁 , we extract several
ausal neighbouring sequences 𝑋𝑛 for training, where 𝑋𝑛 ∈ 𝑉 . Each
equence 𝑋𝑖 has a set of observations of surrounding neighbouring
oxels’ intensities 𝑋𝑖 = {𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑙−1} with a fixed sequences’
ength 𝑙 as illustrated in Fig. 1. The LSTM model is expected to learn a
ifferentiable mapping function 𝑦̂𝑖 = 𝑓 (𝑋𝑖) that maps the sequence of
ntensity values 𝑋𝑖 to a prediction of the next single target voxel value
𝑦̂𝑖. While training, the LSTM predictor model learns to minimise the
ifference between the prediction value 𝑦̂𝑖 and the ground truth value
𝑖 through backpropagation. When evaluating the model, the residual
r prediction error 𝐸 = 𝑦𝑖 − 𝑦̂𝑖 is computed. This volumetric prediction
rror is then compressed losslessly to lower bit rate using an arithmetic
oder. To recover the original volume within the receiver side, an
rithmetic decoding is applied to decompress the volumetric error 𝐸.
he LSTM model will then auto-regressively generate the prediction
alues 𝑦̂𝑖 that are summed to the residuals 𝐸 (see Fig. 4 for more
etails).

.2. Causal neighbouring sequence

In a predictive-based model, the input sequence plays an essential
ole in learning the mapping function to the target output. Naturally,
here is a trade-off between the amount of information a sequence
roduces to the LSTM model and the computational cost. Commonly,
he longer the length of a sequences is, the slower the model gets, and
he less stable the training becomes with a higher chance of facing
radient problems. This study examines and proposes various options of
urrounding neighbouring sequence extracted from 3D high-resolution
edical volumes. Two different block shapes were introduced: the

ube and the pyramid shapes, as illustrated in Fig. 2. For each shape,
everal sizes (various distances to the target voxel) were applied. Voxel
equences with 1D, 2D and 3D coverage were tested.
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Fig. 1. Illustration of the supervised learning LSTM model with an explicit overview of the method for extracting the causal neighbouring sequence from 3D medical images (16
bit-depth).
Fig. 2. A demonstration of the proposed causal neighbouring sequences that can have different shapes, dimensions, block sizes, and sequence lengths. The two main shapes are (𝑎)
ube and (𝑏) Pyramid. The red voxel refers to the target voxel to be predicted while the green voxels form the model’s input sequence and the white voxels are masked (excluded).
= 0 is the current slice which is also the only active slice when extracting a 2D sequence. The left (yellow) pixels were included in the training for experiment 3.4.1, but omitted

rom the input sequences of experiment 3.4.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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.3. Model

We formulate the lossless compression problem as a supervised
achine learning task. This proposed solution is also known as a
any-to-one prediction model, whereas a mapping from the input

equence to the target output is learned by the LSTM model through the
ackpropagation process. The intention of choosing the LSTM model
s that it is explicitly designed for sequence prediction problems and
ts ability to handle gradient problems (e.g. exploding or vanishing
radients) better than the RNN by utilising the gating mechanism.
hese features allow LSTM to learn long time dependency with more
table training. For a sequence prediction model, the input list forms
n essential part in learning the mapping to the objective output.
undamentally, a sequence is defined as an ordered set of observations
hat pass sequentially through the hidden cells of LSTM.

.3.1. Training hyper parameters
Architecture: The proposed model is composed of a single LSTM

ayer containing 128 units followed by a linear output layer used as
he main architecture with the same weights for both encoder and
ecoder. The storage size required for the model’s weights is only 276
iloBytes (KB), while the complete model’s size (weights and training
4

yper parameters) is 810 Kilobytes (KB). Optimiser: We use Adam
ptimiser (Kingma & Ba, 2015), with parameters 𝛽1 = 0.9, 𝛽2 = 0.98,
learning rate of 1𝑒 − 4, and a batch size of 128 for all the proposed
odels. Loss Function: a joint loss 𝐿𝑗𝑜𝑖𝑛𝑡

𝐽𝑜𝑖𝑛𝑡 = 𝑀𝐴𝐸 + 𝜆(1 − |𝑃𝐶𝐶|) (1)

hich is the weighted sum of the Mean Absolute Error (MAE)

𝐴𝐸 =
∑𝑛

𝑖=1 |𝑦𝑖 − 𝑦̂𝑖|
𝑛

(2)

with the Pearson Correlation Coefficient (PCC)

𝑃𝐶𝐶 =
𝑐𝑜𝑣(𝑦𝑖, 𝑦̂𝑖)
𝜎𝑦𝑖𝜎𝑦̂𝑖

(3)

where 𝑦𝑖 is the ground truth voxel value, 𝑦̂𝑖 is the model’s prediction,
𝑛 is the total number of data samples, 𝑐𝑜𝑣 is the covariance, 𝜎𝑦𝑖 and
𝜎𝑦̂𝑖 are the standard deviation of 𝑦𝑖 and 𝑦̂𝑖. Since PCC measures the
statistical relationship between two continuous variables, we found
that integrating it with MAE has a great impact on both accuracy and
stability for solving our regression problem.
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Fig. 3. The order at which the decoder will decode voxels based on the defined causal neighbourhood specifications. (𝑎) The order of decoding voxels (sequentially) restricted
by neighbourhood dependencies applied in 3.4.1. (𝑏) The order of decoding voxels (in parallel) by decoding an entire batch applied in 3.4.2. (𝑐) a possible parallel approach to
ecoding voxels, which does not allow full GPU occupancy.
Fig. 4. Overview of the optimised version of our lossless compression framework using LSTM. This version leverages parallelism by employing a novel input sequence, which adds
more flexibility and allows the decoder to process several batches of sequences in parallel.
3.4. Benchmarks

This section presents each of the benchmarks we investigate, in-
cluding motivation, rationale, experimental settings, and evaluation
metrics. This extensive study aims to establish the local sampling grid
and sampling scheme that allow the RNN model to achieve high com-
pression ratio and fast encoding–decoding performance for 3D medical
images. All models used in this paper are standard Long Short Term
Memory Networks (LSTM) with a single hidden layer with 128 units
and a linear output layer. An evaluation procedure of 4-fold cross-
validation on 12 high-resolution CT volumes of patients’ Torso from
Dataset1 was applied. Each of the proposed models was trained using
one of the sampling patterns with the same training parameters, and an
equal number of training-steps (60 epochs). The results are reported
using bits-per-pixel/voxel storage for each model. Also, we further
tested the proposed pre-trained models on completely unseen public
MRI volumes from Dataset2.

3.4.1. Benchmark 1: Optimal input sequence (shape and size)
Sequence prediction using the described approach produces a com-

petitive compression ratio. In this experiment, we evaluate many al-
ternative strategies for selecting the local sampling grid to produce
optimal sequence prediction. Within this benchmark, we examine 15
local sampling grid options around the target voxel, including causal
voxels values from different dimensions. In the 1D case, only the
previous five left voxels (voxels from only the x-axis) are used. The
2D case has four options: two with a cube shape and another two
for the pyramid shape each with (13 × 13) and (11 × 11) block sizes.
In the 2D cases, only local neighbourhood voxels from the same slice
are included. For the 3D case, numerous options have been provided,
including five samples for each shape to find the optimal input vector.
In the 3D cube block, voxels with the following block sizes: (33), (53),
(73), (93), and (113) were extracted. For the pyramid shape, various
distances to the target voxel were utilised including (5 × 5, 3 × 3, 1),
(7 × 7, 5 × 5, 3 × 3, 1), (9 × 9, 5 × 5, 3 × 3, 1), (9 × 9, 7 × 7, 5 × 5, 3 × 3, 1), and
(13×13, 9×9, 5×5, 3×3, 1). A demonstration of the proposed neighbouring
equences that have different shapes (𝑎) cube and (𝑏) pyramid are
shown in Fig. 2, where the red voxel refers to the target voxel to be

5

predicted, the green voxels form the model input sequence, and the
white voxels are masked (i.e. excluded). 𝑧 = 0 is the current slice which
is also the only active slice when extracting a 2D sequence. In the novel
input sequences, the yellow voxels will be removed. Sequence values
are normalised to the range [−1, 1] before applying the LSTM model.

3.4.2. Benchmark 2: Optimising decoder performance
Additionally, we propose a novel input sequence with 14 local

sampling grid options to optimise the decoding time by leveraging par-
allelism. Other learning-based lossless compression approaches (Goyal
et al., 2019, 2020) need to run in a deterministic environment during
compression and decompression to produce the correct lossless results.
Due to hardware or framework limitations, these methods perform en-
coding and decoding on a single CPU thread to guarantee deterministic
computation. In Nagoor et al. (2020a, 2020b) only the decoder needs
to run in a deterministic environment due to the sequential nature
of voxels’ dependencies (generating the neighbouring voxels before
processing the next target) as shown in Fig. 3(a). A benefit of our
new proposed approach is that we leverage parallelism and take full
advantage of GPU acceleration while ensuring that both encoder and
decoder are running in a deterministic fashion.

We adjust the input sequence to allow parallelism and retain
favourable compression performance. We introduce a reduced version
of all the neighbourhood sequences proposed in the previous Sec-
tion 3.4.1. In these sequences, the left 𝑥-axis voxels (yellow voxels in
Fig. 2) are removed from the input sequence. This allows the decoder to
process batches of sequences in parallel, as illustrated in Fig. 3(b). Re-
moving the left voxels forms a simple but effective strategy to leverage
parallelism compared to decoding voxels diagonally Fig. 3(c). Parallel
implementation using diagonal voxels does not lead to optimal GPU
occupancy compared to our approach and complicates implementation.

3.4.3. Benchmark 3: Encoding-decoding performance
This benchmark demonstrates the computation time in seconds (s)

to compress and decompress the same file with each model trained on
a unique causal sequence. All experiments have been conducted on one
machine with NVIDIA GeForce GTX 1080 GPU and Intel(R) Core(TM)

𝑖7 − 4770𝐾 CPU.
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Fig. 5. A visualisation of some (16-bits) sample volumes from the two datasets used in this paper, namely, Dataset1 and Dataset2 is shown. Fig. 5(a) and (b) illustrates 3D
olume visualisation of patient’s entire Torso with three orthogonal slice views (axial, sagittal and coronal) of two sample volumes from Dataset1. While Fig. 5(c) presents three
rthogonal slice views (axial, sagittal and coronal) of a single sample MRI volume from Dataset2 illustrating the patient’s head and neck.
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.4.4. Benchmark 4: Sampling strategy
Approximately one billion voxels are available in the dataset, mak-

ng training on all of the samples costly. This benchmark examines
arious sampling strategies for selecting training voxels from volumet-
ic CT scans. Three main strategies were investigated, namely, random
ampling, Gaussian sampling, and slice-based sampling. The intention is
o find whether there is any preference for generating training samples
s a representative subset of the available voxels in a way that benefits
he compression performance. For all these sampling schemes, the same
umber of training samples were used, with a total of approx 4.7M
nique training samples and the same causal neighbouring sequence
3D pyramid, (13×13, 9×9, 5×5, 1), 𝑁 = 175) was applied as the sequence
hape for each strategy.

A uniform selection across multiple volumes is applied in random
ampling, where each voxel has the same probability of being selected.
n contrast, Gaussian sampling performs a biasing scheme towards the
entre of the volume, so voxels in mid-slices will have higher proba-
ilities than the edge voxels. The slice-based scheme extracts multiple
omplete 2D slices across the volume 𝑧-axis with a fixed stride (fixed
nterval), where the aim is to fully sample individual cross-sections and
assively reduce the number of samples taken.

.4.5. Benchmark 5: Compression improvement during training
Evaluation of compression ratio in bpp for the trained models is pro-

ided in this examination. To clarify, we want to measure the improve-
ent of compression quality during training time for five different mod-

ls by compressing the same volume. The evaluation was conducted
t specific epochs during training namely, 10, 20, 30, 40, 50, and
0 epochs. Each model was trained on a unique causal neighbouring
equence.
 i

6

.4.6. Benchmark 6: Comparing with state-of-the-art lossless compression
ethods

In this benchmark, the trained models with the best compression
esults from benchmarks 3.4.1 and 3.4.2 are compared to existing
tate-of-the-art approaches for lossless compression of volumetric med-
cal data. Compression ratios for all of the compared approaches are
eported using bits per pixel over the two available datasets.

. Experimental results

.1. Dataset

The first dataset used in this study contains 12 high-resolution CT
rivate volumes of human Torso generated by a local hospital known as
ataset1. Each volume in this set is stored as 16-bit greyscale Digital

maging and Communications in Medicine (DICOM) images. All scans
ave 512 × 512 resolution, [.488, .488] pixel spacing, and .625 mm slice
hickness. The number of images per volume varies 𝑧 ∈ [728, 1008]. The
inimum intensity value is −1024 in all volumes, and the maximum is
071. An illustration of orthogonal slice views and 3D volume rendering
f two sample volumes from Dataset1 are presented in Fig. 5(a) and
b).

Another dataset, which was involved only for conducting experi-
ental evaluation, is a public dataset denoted as Dataset2. Dataset2

ontains DICOM files that form a total of 12 MRI volumes of patients’
ead and neck scans (Cardenas, et al., 2019, 2020; Clark, et al., 2013).
ach image has 512 × 512 resolution with [.5, .5] pixel spacing, and
mm slice thickness. The total number of frames per volume is 120
ith a minimum intensity value of 0 and a maximum of 689. An illus-

ration of orthogonal slice views of one sample volume from Dataset2
s shown in Fig. 5(c).
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Fig. 6. Benchmark 1 result that illustrates the compression ratio in Bits-per-pixel (bpp) for compressing Dataset1 using models trained on different neighbouring sequences applied
in 4.3. The top labels specify the input sequences’ specifications, including dimensions, shape, block size, and sequence length, respectively. Cells are coloured from maximum
compression 3.913 bpp (Green) to the lowest compression 5.506 bpp (Red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 7. Compression performance in (bpp) for evaluating the trained models with different neighbouring sequences from Benchmark 1 validated over Dataset2. Models pre-trained
on distinct neighbouring sequences from Dataset1 are evaluated over this unseen set while estimating the bpp mean pre fold. The overall average bpp achievements across all
folds’ means for each model is proposed in the last row. The top labels specify the input sequences’ specifications, including dimensions, shape, block size, and sequence length,
respectively. Cells are coloured from maximum compression 3.0795 bpp (Green) to the lowest compression 4.0220 bpp (Red). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
4.2. Performance metrics

4-fold cross-validation has been applied to evaluate the accuracy
and performance of our LSTM predictive models for each of the differ-
ent neighbouring sequence types over Dataset1. Each fold consists of
nine volumes belonging to the training set and three for the testing.
Generally, such a validation technique aims to measure a trained
model’s effectiveness and generalisation on unseen data. Moreover,
7

additional experimental tests have been conducted over an out of do-
main public data Dataset2 to further evaluate the generalisability and
robustness of the trained models across other unseen and distinctive
medical modalities (e.g. MRI).

The bits-per-pixel (bpp) (4) has been chosen to be the evaluation
metric of the compression ratio obtained by all our LSTM models.

bpp =
Compressed Image Size (Bits)

(4)
Number of Voxels
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Fig. 8. Benchmark 2 result that illustrates the compression ratio in (bpp) for compressing Dataset1 using models trained on reduced neighbourhood sequences applied in
Section 4.4. The top labels specify the input sequences’ specifications, including dimensions, shape, block size, and sequence length, respectively. Cells are coloured from maximum
compression 4.051 bpp (Green) to the lowest compression 5.412 bpp (Red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 9. Compression performance in (bpp) for evaluating the trained models with different neighbouring sequences from Benchmark 2 validated over Dataset2. Models pre-trained
on the reduced input configurations from Dataset1 are now evaluated over this unseen set Dataset2 while estimating the bpp mean pre fold. The overall average bpp achievements
cross all folds’ means for each model is proposed in the last row. The top labels specify the input sequences’ specifications, including dimensions, shape, block size, and sequence
ength, respectively. Cells are coloured from maximum compression 3.1757 bpp (Green) to the lowest compression 3.6762 bpp (Red). (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)
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ompression time (in seconds) is measured per model for both the
ncoding and the decoding operations.

.3. Result for Benchmark 1: Optimal input sequence (shape and size)

This experiment determines the best input sequence (shape and
ize) that would lead to optimal compression for 3D medical images.
ig. 6 illustrates the compression ratio in bpp for each model trained
n the neighbouring sequence options. Volumes are grouped into their
espective cross-validation fold, wherein each row represents a volume
nd each fold contains validation over three volumes — separated with
horizontal black line. The last row reports the average bpp of models

hrough all volumes. Each column represents a model trained on a
pecific neighbouring sequence case with the shape, size and sequence
ength indicated. Cells are coloured from maximum compression 3.913
 p

8

pp (Green) to the lowest compression 5.506 bpp (Red). The best
ompression result is in bold. The model trained on a 1D sequence
roduces the worst compression ratio because only five previous voxels
rom only the 𝑥-axis were utilised. The models trained on sequences
xtracted from a 2D slice gain better compression performance for
oth cube and triangle shapes. The 2D triangle sequences are more
romising since they use fewer neighbouring voxels but still gain com-
arable compression results to the 2D block cases. For 3D sequences
ith cubic shape, as the block size increases, those models’ compression
erformance improves apart for block size (113), which may need
onger training or a larger model. Within the 3D cube models, the
odel trained on input vector with (33) block size produces the least

ompression ratio while the model trained on a block size of (93) gains
he best compression. LSTM models trained on sequences with a 3D
yramid shape achieve an excellent compression performance, starting
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Fig. 10. A summary overview of the average (bpp) over Dataset1’s volumes using all models trained with left voxels (in Green) and without (in Red) applied in Benchmark 1,
and Benchmark 2, respectively. Overall, models pre-trained on reduced inputs result in a negligible performance drop of ≈ 0.2 bpp, but with a significant positive impact on the
compression times (see Section 4.5 for further details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Benchmark 4 results, which empirically demonstrates the bits-per-pixel (bpp)
or each sampling strategy whereby training batches are uniquely extracted from the
D CT scans in Dataset1. Cells are highlighted from maximum compression 3.9039
pp (Green) to minimum compression 4.5767 bpp (Red). (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of
his article.)

ith the smallest block size with just 22 voxels. This input vector allows
ts LSTM model to gain comparable compression result to the one
rained on the 3D cube with 𝑁 = 62 voxels. The following block size

with an input length of 𝑁 = 55, obtains a compression reduction similar
to the cubic input with N=171 voxels. The next three models with
surrounding neighbouring sequences gain the best compression among
all the other options. Interestingly, it appears that models trained on the
3D pyramid with (9 × 9, 5 × 5, 1) and (13 × 13, 9 × 9, 5 × 5, 1) accomplish
his result due to involving more voxels from 𝑥 and 𝑦-axis while still
aintaining information form the depth slice 𝑧-axis (pyramid with
ider base). Overall, the pyramid neighbouring sequence forms a good
alance between utilising the contextual information around the target
9

voxel while keeping the sequence length compact, thus allowing faster
training.

Fig. 7 presents a validation of all trained models over Dataset2
wherein models pre-trained on distinct input configurations from
Dataset1 are evaluated on this unseen set. Each row represents the
average compression ratio of different models over a single fold, while
each column illustrates the reduction ratios of four models trained on
the same input pattern across different volumes. The last row estimates
the overall average bpp achievements across all folds’ means. Cells
are coloured from maximum compression 3.0795 bpp (Green) to the
lowest compression 4.0220 bpp (Red) —(The full validation results
are proposed in Appendix B). Although our proposed models were
not trained on this dataset, they still generalise well to all volumes
belonging to this data. As expected, the model trained on the shortest
input sequence (i.e. 1D) has the worst compression ratio with a bpp
ratio of 3.971 on average. Across this particular dataset, it appears
that the models trained on 2D patterns for both cube and triangle
shapes gain comparable compression performance to some 3D input
configurations. The performance gain in 2D cases is expected when
recognising the similarity in pixel spacing quality to what the models
were trained on (i.e. trained on [.488, .488] and evaluated on [.5, .5]).

hile in the case of 3D quality, there is a significant variation in the
lice thickness between what the models learned from (i.e. .625 mm)
nd validated on (i.e. 2 mm slice thickness). Models trained on input
ith 3D cube shapes gradually gain better compression ratios as their
lock size expand, starting from least performer with an average of
.488 bpp to their highest compression result of 3.147 bpp on average.
ompared to the 3D cube configurations, the 3D pyramid offers a
ore condensed inputs’ length yet better compression results, achieving
mean of 3.123 bpp by the best compressor. Overall, the proposed
odels with 2D triangle (11 × 11), 3D Cube (93) and 3D pyramid

13 × 13, 9 × 9, 5 × 5, 1) input sequences obtain the best bpp reductions
over Dataset2 compared to other competitors gaining 3.081 bpp, 3.079
bpp, and 3.11 bpp, respectively.

4.4. Result for Benchmark 2: Optimising decoder performance

Parallel decoding is enabled by introducing new sequences that drop
the left neighbouring voxels. Fig. 8 presents the compression ratio in
bpp for each of the new neighbouring sequence options. 4-fold cross-
validation was applied over Dataset1. Each column represents model
performance trained on a specific sequence. The last row presents the
average bpp per model across all volumes. Cells are coloured from
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Fig. 12. Benchmark 5 result, which illustrates (bpp) variations during models’ training steps. To clarify, this plot does not demonstrate the model’s training loss function, but it
valuates trained models’ compression qualities after different epochs. Models with pyramid input vectors (including left voxels from Benchmark 1) are evaluated after 10, 20, 30,
0, 50 and 60 epochs.
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Fig. 13. Benchmark 6 result that illustrates the compression ratio in bpp for two of
the proposed models compared the state-of-the-art lossless compression methods over
Dataset1 (16-bits volumes). Cells are highlighted from maximum compression 3.913
bpp (Green) to minimum compression 6.144 bpp (red). Our two proposed models have
3D pyramid shapes with (13 × 13, 9 × 9, 5 × 5, 1) while 𝑁 = 170 forms sequence without
ncluding left voxels, and 𝑁 = 176 is sequence including left voxels. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

aximum compression 4.051 bpp (Green) to least 5.412 bpp (Red).
he best compression result is in bold. In this benchmark, the 1D

nput sequence is not applicable. Models trained on 2D neighbour-
ood sequences all produced similar results, with the triangle-shaped
equences having lower costs since fewer voxels are used. Notably,
raining on cubic-shaped input demonstrates better compression as
lock size increases. For instance, the model trained on (33) has the
10
least compression of 5.114 bpp, while the (113) block size demonstrates
a reduction of 4.566 bpp. However, when practically compared to
models trained on sequences based on a 3D pyramid, higher reduction
achievements are gained regardless of block size. In particular, the
sequences with 𝑁 = 61 and 𝑁 = 169 voxels produce the best bit
reduction among all the models over Dataset1. Overall, this novel
input strategy’s performance has a negligible drop of ≈ 0.2 bpp in
ompression ratio compared to the non-parallel version (Fig. 6), which
s expected when removing some of the contextual information from
he sequences. However, this comes with a significant positive impact
n the compression times (see next Section 4.5). A summary overview
f the average storage impact of the method bpp over all 12 volumes
or the two experiments is presented in Fig. 10.

In Fig. 9, models trained on the reduced input configurations from
ifferent folds of Dataset1 are evaluated in bpp over this out of domain
ublic set (i.e. Dataset2). The overall average bpp achievements across
ll folds’ means are proposed in the last row. Cells are coloured from
aximum compression 3.1757 bpp (Green) to the lowest compres-

ion 3.6762 bpp (Red) —(The full validation results are proposed in
ppendix B). Models pre-trained on 2D sequence formats all provide
elatively similar compression results around 3.202 bpp that matched
ther 3D configurations across this specific dataset. The performance
ifference in the 3D models’ cases is expected due to the variations
n scanning quality, precisely the slice thickness between the training
ata (i.e. Dataset1 .625 mm) and the testing data (i.e. Dataset2 2 mm).
owever, it is noticeable that many of the 3D input sequences still
chieve a significant compression performance, for instance, 3.176 bpp
eduction by the best performer. Within the models trained on 3D cube
equences, both 𝑁 = 359 and 𝑁 = 659 voxels options yield the best bit
eductions with 3.187 bpp and 3.176 bpp. However, when recognising
he compression time affected by their sequence lengths, the balance of
ompactness and speed of models with 3D pyramid inputs 𝑁 = 61 and
= 169 is more desirable, obtaining comparable reductions with 3.216

pp and 3.223 bpp. For Dataset2, the performance drop affected by the
ovel version of input formats is negligible, only ≈ .11 bpp. Moreover,
his comes at the significant achievement of the encoding–decoding
peed-up enabled by parallel operation.

.5. Result for Benchmark 3: Encoding-decoding performance

Table 1, presents the time in seconds (s) required to compress and
ecompress a single slice belong to Dataset1 with all the different
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Fig. 14. Illustrating the compression ratio in bpp for evaluating some of our pre-trained models compared to the state-of-the-art lossless compression methods over Dataset2
(16-bits volumes). Cells are highlighted from maximum compression 2.943 bpp (Green) to minimum compression 4.520 bpp (red). The proposed models are selections of best
performers from different folds (emphasised by ‘‘F’’) and include models evaluated on distinctive 2D and 3D sequences with and without including the left voxels (emphasised by
sequence’s length ‘‘N’’).
Fig. 15. A summary overview of the compression performance over different 3D medical datasets (16-bits) (Dataset1 and Dataset2) using the proposed input sequences of LSTM
redictor models compared to the state-of-the-art lossless compression methods (Less value indicates better performance).
eighbourhood models. The input length naturally influences the com-
utation cost. The table compares the compression time using models
rained with left voxels and the novel (reduced version) without left
-axis voxels. The model with the best bpp on average, is in bold.
lthough the compression ratio of models that include left voxels gain
better bpp reduction, the decoding time is significantly slower than

ncoding time regardless of the sequence specification. However, when
omparing the models that remove the left voxels, the impact of lever-
ging parallelism is more noticeable with the same computation time
or both encoding and decoding. By observing the results of Table 1,
ne concludes that the 3D pyramids with (13×13, 9×9, 5×5, 1), 𝑁 = 169,
nd (9×9, 5×5, 1), 𝑁 = 61 present the best balance of compression time
nd ratio (5.95s, 4.511 bpp), and (3.6s, 4.538 bpp), respectively.
Comparison to existing method: We also evaluated against a com-

arative existing and available deep learning method (LSTM-Compress
Knoll, 2020)) for compressing the same slice. LSTM-Compress per-
ormed compression time and rate of (133.22s, 4.891 bpp), and
132.32s) for decompression time. Our two proposed models have no-
iceable compression reductions of (0.38 bpp, or 8.4%), and (0.353 bpp,
11
or 7.8%), respectively, when comparing them against LSTM-Compress.
Moreover, our proposed predictive models outperform LSTM-Compress
producing speedup gains about 22× and 37× faster encoding–decoding
performance.

4.6. Result for Benchmark 4: Sampling strategy

Fig. 11 shows the bpp of models trained on samples extracted
by each sampling scheme from Dataset1. 4-fold cross-validation was
applied to each method. The last row is the average bpp overall. Based
on the experiment, all three strategies produce similar compression
results on average. Overall, both random sampling and the slice-based
scheme achieved the best reduction on average. It appears that training
the model on whole slices with every voxel within the selected slices
being available leads to improvement in the compression results and

yields comparable results to the uniform sampling.
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Table 1
Benchmark 3: encoding–decoding performance measured by (bits-per-pixel bpp, and time in seconds) for compressing and decompressing a single slice belongs to Dataset1. The
comparison includes all models trained on different casual neighbouring sequences (with and without the left voxels) from Benchmark 1 and Benchmark 2. The best compression
result (bpp) on average, is in bold.

Neighbouring Sequence (Shape & Size) Models trained with including sequence’s left voxels Models trained without including sequence’s left voxels

Sequence
Length (l)

Average
(BPP)

Compression
Time (s)

Decompression
Time (s)

Sequence
Length (l)

Average
(BPP)

Compression
Time (s)

Decompression
Time (s)

1D (5) 5 5.287 1.93 606.18 – – – –

2D Block (11 × 11) 60 4.427 3.19 1127.65 54 4.651 3.12 3.21
2D Block (13 × 13) 84 4.416 3.73 1408.7 77 4.643 3.71 3.66
2D Triangle (11 × 11) 54 4.424 2.96 1066.61 48 4.644 2.89 3.07
2D Triangle (13 × 13) 64 4.426 3.17 1158.08 58 4.644 3.05 3.11

3D Cube (3 × 3 × 3) 13 4.853 2.33 627.91 11 5.114 2.09 2.16
3D Cube (5 × 5 × 5) 62 4.575 3.25 1167.93 59 4.824 3.22 3.56
3D Cube (7 × 7 × 7) 171 4.432 5.76 2445.81 167 4.642 5.72 5.86
3D Cube (9 × 9 × 9) 364 4.383 10.46 4776.11 359 4.59 10.24 10.44
3D Cube (11 × 11 × 11) 665 4.466 17.6 8384.63 659 4.566 17.61 17.67
3D Pyramid (5 × 5,3 × 3,1) 22 4.588 2.48 718.38 19 4.738 2.41 2.47
3D Pyramid (7 × 7,5 × 5,3 × 3,1) 55 4.441 3.39 1049.63 51 4.64 3.29 3.34
3D Pyramid (9 × 9,5 × 5,1) 68 4.332 3.5 1200.53 61 4.538 3.36 3.5
3D Pyramid (9 × 9,7 × 7,5 × 5,3 × 3,1) 118 4.333 4.9 1815.33 112 4.566 4.61 4.69
3D Pyramid (13 × 13,9 × 9,5 × 5,1) 175 4.3 6.14 2512.65 169 4.511 5.94 5.85

Average – 4.512 4.986 2004.409 – 4.665 5.09 5.185
Fig. A.1. Comparing the residual slices plot among the different sampling schemes for a middle slice extracted from volume 1.
12
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Fig. A.2. Comparing the residual slices plot among the different sampling schemes for a middle slice extracted from volume 7.
.7. Result for Benchmark 5: Compression improvement during training

Fig. 12 illustrates the change in (bpp) over-training epochs when
ompressing the same volume. This experiment shows the increase
n the compression ratio when training models with different neigh-
ourhood sequences, namely, the pyramid input vectors (including left
oxels). To clarify, this plot does not illustrate each model’s training
oss function, but it evaluates trained models’ compression bpp after
ifferent epochs. Among these cases, the pyramid with (13×13, 9×9, 5×

5, 1) block size obtains the best reduction followed by (9×9, 7×7, 5×5, 1),
and (9 × 9, 5 × 5, 1)

4.8. Result for Benchmark 6: Comparing with state-of-the-art lossless com-
pression methods

The experiment in Figs. 13 and 14 evaluate the compression perfor-
mance in bpp for compressing Dataset1 and Dataset2 using the pro-
posed models and some state-of-the-art lossless compression methods,
including well-known image and video coders, namely, PPMd (Pavlov,
2019), JPEG-LS (e.V. OFFIS, 2020), JPEG2000 (OpenJPEG, 2019),
HEVC (Bossen et al., 2019; Flynn, et al., 2016), JP3D (OpenJPEG,
2019), and the deep learning method LSTM-Compress (Knoll, 2020).

Among the standard codecs (Fig. 13), JP3D gains the best reduction
over Dataset1 with 5.184 bpp on average, followed by JPEG2000 with
5.316 bpp. Compared to the LSTM-Compress model, our two LSTM
predictive-based models obtain 0.38 bpp and 0.591 bpp (or 8.84% and

13%) better reductions, respectively.

13
In Fig. 14, the compression performance over Dataset2 is presented
for each of the lossless compressors, including some well-known clas-
sical codecs, a deep learning alternative codec (i.e. LSTM-Compress),
and our best model performers. Among the standard codecs, JPEG2000
outperforms other classical codecs with a compression performance of
3.548 bpp. Our two state-of-the-art models trained on input sequences
with 3D pyramid-shapes save 10% and 7% compared to the competing
LSTM-Compress codec. The same figure demonstrates the trade-offs
between our individual proposed models in terms of compression per-
formance and speed affected by choice of input sequences’ shape and
length options.

Overall, our one-step-ahead prediction models achieve state-of-the-
art compression for all datasets with 17%, and 13% space saving
over Dataset1, and 12%, and 9% storage improvement over Dataset2
compared to the best performers among classical methods JP3D, and
JPEG2000, respectively as illustrated in Fig. 15.

5. Conclusion

We present a thorough study of a supervised LSTM prediction-based
model for compressing 3D medical images (12-bits data stored as 16-
bits depth volumes) losslessly. Six main benchmarks were conducted
to determine the optimal input sequence for medical domain com-
pression. We evaluated all experiments by choosing the compression
performance (bpp and time in seconds) as primary evaluation metrics.
Moreover, many sequences of the causal neighbourhood were empir-

ically investigated and analysed to highlight trade-offs. Furthermore,
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Fig. A.3. Comparing the residual slices plot among the different sampling schemes for a middle slice extracted from volume 10.
a novel and efficient type of input sequence was introduced (without
immediate left voxels), which allows simple parallelism of the decoder
and still provides a favourable compression. From the experimental re-
sults; we conclude that the pyramid-shaped input sequences accomplish
state-of-the-art compression results compared to the other options and
with a compression gain of ≈ 17% and ≈ 12% compared to the classical
lossless compression alternatives over Dataset1, and Dataset2, respec-
ively. Its effectiveness is driven by its balance between compactness
nd representativity, reflecting the local correlation around a target
oxel. Moreover, the proposed reduced sequences reach almost a 3×
ossless compression ratio of the original volumes in the best case,
nd up to 500× decoding speed-up can be achieved with little effect
n the compression performance. Furthermore, the proposed trained
odels outperform other state-of-the-art lossless codecs in compressing

ll 3D medical volumes and for various modality types, including CT
nd MRI. In the future, we plan to extend this work to include different
ypes of deep learning NN models for a predictive-based compression
omain. Another promising research direction is investigating deep
earning models’ generalisation across other high-dimensional domain
pplications such as video.
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Appendix A. Residual plots

In this section, we illustrate a number of residual comparisons plots
from three random volumes. Each figure illustrates a plot of a mid-
slice residual from one volume. It is only this residual slice that needs
to be compressed using arithmetic coding (or similar technique) in
order to provide lossless compression of the complete slice/dataset. All
figures contain comparisons among the different casual neighbouring
sequences categorised based on the sampling grid dimensions (e.g. 1D,
2D, and 3D). The odd rows of each plot are models trained on the
sequence’s including left voxels while the even rows are models trained
excluding the sequence’s left voxels. The first column illustrates the
ground truth slice while the rest are plotting of the residual slices. Each
sub-figure is titled with the input sequence’s specifications including
the sampling grid dimension and the sequence length. The compression
ratio in (bpp) for each residual slice is included under each sub-figure.
All residual slices are colourmaped with diverging colourmap, wherein
the zero values are coloured with White, values less than zero are
coloured with Blue, and values larger than zero are coloured with Red.
Fig. A.1, A.2, and A.3 illustrates plots of middle residual slices selected
randomly from volume one, seven, and ten, respectively.

Appendix B. Validation on Dataset2

In this section, the full validation results of all models in Benchmark
1 and Benchmark 2 are illustrated in Fig. B.1 and Fig. B.2, respectively.

In both figures, models pre-trained on distinct input configurations
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Fig. B.1. Compression performance in (bpp) for evaluating the trained models with different neighbouring sequences from Benchmark 1 Section 4.3 validated over Dataset2.
odels pre-trained on distinct neighbouring sequences from Dataset1 are evaluated over this unseen set and grouped into corresponding folds separated by horizontal lines. The

op labels specify the input sequences’ specifications, including dimensions, shape, block size, and sequence length, respectively. Cells are coloured from maximum compression
.9432 bpp (Green) to the lowest compression 4.247 bpp (Red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
his article.)
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rom Dataset1 are evaluated on this out of domain public set Dataset2
nd grouped into corresponding folds separated by horizontal lines.
ach row represents the compression ratio of different models over a
ingle volume, while each column illustrates the reduction ratios of four
odels trained on the same input pattern across different volumes. The

ast row estimates the average bpp achievements overall folds’ means.
verall, although our proposed models were not trained on this dataset,

hey still generalise well to all volumes belonging to this data. Fig. B.1
resents a validation of all trained models from Benchmark 1 over
ataset2. Cells are coloured from maximum compression 2.9432 bpp

Green) to the lowest compression 4.247 bpp (Red). On the other hand,
 b
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ig. B.2 shows models trained on the reduced input configurations
rom different folds of Dataset1 when evaluating them in bpp over
his unseen set represented of Benchmark 2. Cells are coloured from
aximum compression 3.025 bpp (Green) to the lowest compression
.915 bpp (Red). From observing the evaluation results over all folds,
ne may interestingly recognise that all pre-trained models, regardless
f their input formats, accomplish the worst compression results on
olume 5 while best compression reductions were gained on volume 6.
he compression performance on these two volumes has similar results
y the state-of-the-art compression methods.
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he input sequences’ specifications, including dimensions, shape, block size, and sequence length, respectively. Cells are coloured from maximum compression 3.025 bpp (Green)
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