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Abstract: Malicious botnet applications have become a serious threat and are increasingly incor-
porating sophisticated detection avoidance techniques. Hence, there is a need for more effective
mitigation approaches to combat the rise of Android botnets. Although the use of Machine Learning
to detect botnets has been a focus of recent research efforts, several challenges remain. To overcome
the limitations of using hand-crafted features for Machine-Learning-based detection, in this paper,
we propose a novel mobile botnet detection system based on features extracted from images and a
manifest file. The scheme employs a Histogram of Oriented Gradients and byte histograms obtained
from images representing the app executable and combines these with features derived from the
manifest files. Feature selection is then applied to utilize the best features for classification with
Machine-Learning algorithms. The proposed system was evaluated using the ISCX botnet dataset,
and the experimental results demonstrate its effectiveness with F1 scores ranging from 0.923 to 0.96
using popular Machine-Learning algorithms. Furthermore, with the Extra Trees model, up to 97.5%
overall accuracy was obtained using an 80:20 train–test split, and 96% overall accuracy was obtained
using 10-fold cross validation.

Keywords: botnet detection; Histogram of Oriented Gradients; image processing; android botnets;
machine learning

1. Introduction

The prevalence of mobile malware globally is a well-known phenomenon as increasing
malware of different types continue to target mobile platforms and particularly Android.
The McAfee Threat report of June 2021 stated that around 7.73 million new mobile malware
samples were seen in 2020 alone [1]. The report further revealed that 2.34 million new
mobile malwares had already been discovered in the wild during the first quarter of 2021.

Android, being an open source mobile and IoT platform that also permits users to
install apps from diverse sources is the prime target for mobile malware. Unverified and/or
re-packaged apps can be downloaded and installed on an Android device from virtually
any online third-party source other than the official Google play store. Even though the
Google play store benefits from screening services to prevent the distribution of malicious
apps, cleverly crafted malware, such as the Chamois botnet [2–4], were still able to bypass
protection mechanisms and infect millions of users worldwide.

Chamois was distributed through Google play and third-party app stores and infected
over 20.8 million Android devices between November 2017 and March 2018. The first
generation of the Chamois botnet was primarily distributed through fake apps, and initial
eradication efforts by anti-malware professionals almost completely eliminated the threat.
The creators of the botnet responded by adopting a more sophisticated distribution model
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that bundled Chamois into a fake payment solution for device manufacturers and a fake
advertising SDK for developers.

As mobile devices—especially smartphones—tend to be online for long periods, they
provide a suitable platform for operating botnets when they have been compromised.
Mobile botnets are controlled using SMS or web-based commands and control channels
and are used for various attacks, such as Distributed Denial of Service (DDoS), phishing
attacks, spam distribution, click fraud, credential stuffing etc. A study by Imperva on
mobile botnet activity revealed that 5.8 million bot-infected mobile devices were used to
launch credential stuffing attacks on websites and apps over a 45-day period on six major
cellular networks [5].

DDoS attacks are high volume and high frequency and are thus easily detected by
traditional network intrusion detection systems. By contrast, credential stuffing attacks
from botnets are characterized by low frequency and low volume network traffic and are
therefore more challenging to detect. Thus, complementary approaches to network-based
detection are needed to strengthen defense against mobile botnet infection and attacks.

As mobile malware continues to increase and become more sophisticated, research
efforts directed at detecting and mitigating Android malware has intensified in recent years.
Several Machine-Learning-based detection systems have been proposed in the current
literature to combat the rising incident of Android malware, including botnets [6–8]. Such
systems rely on statically or dynamically extracted features for training the Machine-
Learning models. In many cases, these features are either hand-crafted and/or depend
heavily on domain expertise to effectively extract them. As the Android OS evolves, many
of these hand-crafted features may become deprecated or obsolete and the entire feature
extraction process will need to be re-engineered.

The utilization of image processing techniques to extract features from image-based
representation of the application has the distinct advantage of eliminating the need to rely
on hand-crafted features to build Machine-Learning models. Moreover, with image-based
approach, little or no modification will be required to adapt to platform/OS evolution, and
this leads to long-term efficiency compared to systems based on hand-crafted features.

Hence, in this paper, we propose a system that utilizes an image processing technique
called Histogram of Oriented Gradients, to extract features for training Machine-Learning
models to detect Android botnets. Our proposed system is a novel scheme that detects
Android botnets based on Histogram of Oriented Gradients (HOG). In the scheme, the
HOG features are combined with byte histograms and features from the app manifest file to
improve prediction accuracy. Furthermore, we demonstrate the feasibility of our approach
using a dataset of Android botnets and benign samples.

The rest of the paper is organized as follows: In Section 2, we provide an overview of
related work. Section 3 describes our proposed system, while in Section 4, we outline the
study undertaken to evaluate the system. Section 5 presents and discusses the results of the
evaluation. Finally, in Section 6, we conclude the paper and give an outline of future work.

2. Related Work

There is extensive literature regarding the Machine-Learning-based detection of mobile
malware, and [9,10], provide recent surveys on the topic. Here, we provide an overview of
related works in Android botnet detection as well as image-based detection of malicious
applications.

2.1. Image-Based Analysis of Malicious Applications

In [11], a method for image-based malware classification using an ensemble of CNN
architectures was proposed. This was based on the malimg dataset where the raw images
were used as input to the CNN-based classification system. Additionally, a malware dataset
of 96 packed executables was also used and converted into images to evaluate the proposed
system. The images were divided into training and validation sets based on a 70:30 split.
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The method consisted of using transfer learning with fine-tuned ResNet-50 and VGG16
models that were pre-trained on ImageNet data. The output of these models obtained
through SoftMax classifiers were fused with a version of the output that had been reduced
using PCA and fed to a one-vs-all multiclass SVM classifier. In their experiments, they
obtained a classification accuracy of up to 99.50% with unpacked samples and 98.11% and
97.59% for packed and salted samples, respectively.

In [12], the authors presented a method to recognize malware by capturing the memory
dump of suspicious processes and representing them as RGB images. The study was based
on 4294 malware samples consisting of 10 families and benign executables and several
Machine-Learning classifiers, including J48, SMO with RBF kernel, Random Forest, Linear
SVM and XGBoost. Dimensionality reduction was achieved using UMAP based manifold
learning strategy. A combination of GIST and HOG features were used to extract features
from the RGB images. The method yielded the highest prediction accuracy of up to 96.39%
using the SMO classifier.

In [13], Bozkir et al. evaluated several CNN architectures for PE malware classification
using coloured images. They used the Malevis Dataset containing 12,394 malware files
and split this into 8750 training and 3644 testing samples. From their experiments, they
obtained an accuracy of 97.48% using the DenseNet architecture.

Nataraj et al. [14] used grayscale images to visualize malware binaries to distinguish
between different families. GIST was used to extract features from the images, and using
KNN as a classifier they achieved 97.18% classification accuracy on experiments with a
dataset consisting of 9458 malware samples from 25 families. In another paper [15] by
the same authors, similar results were obtained when they applied image processing with
dynamic analysis, in order to address both packed and unpacked malware.

Kumar et al. [16] proposed a method that uses an autoencoder enhanced deep convolu-
tional neural network (AE-DCNN) to classify malware images into their respective families.
A novel training mechanism is proposed where a DCNN classifier is trained with the help
of an encoder. The encoder is used to provide extra information to the CNN classifier that
may be lost during the forward propagation thus resulting in better performance. On the
standard malimg dataset, 99.38% accuracy and F1-score of 99.38% were reported.

In [17], Fine Tuning and Transfer Learning approaches were used for multi-class
classification of malware images. Eight different fine-tuned CNN-based transfer learning
models were developed for vision-based malware multi-classification applications. These
included VGG16, AlexNet, DarkNet-53, DenseNet-201, Inception-V3, Places365-GoogleNet,
REsNet-50 and MobileNet-V2. Experiments based on the malimg dataset showed high
performance with 99.97% accuracy.

Similarly, in [18], the IMCFN system i.e., image-based malware classification using
fine-tuned convolutional neural network architecture, was presented. IMCFN converts raw
malware binary into color images that are used by fine-tuned CNN architecture to classify
malware. It fine-tunes a previously trained model based on ImageNet dataset and uses
data augmentation to address class imbalance. The method was evaluated using malimg
and an IoT-android mobile dataset containing 14,733 malware and 2486 benign samples.
With the malimg dataset, an accuracy of 98.82% was obtained, while 97.35% accuracy was
obtained for the IoT-android mobile dataset.

Xiao et al. [19] proposed a malware classification framework, MalFCS based on
malware visualization and automated feature extraction. Malware binaries are visualized
as entropy graphs based on structural entropy, while a deep convolutional neural network
is used as a feature extractor to automatically extract patterns shared by a family from
entropy graphs. An SVM classifier was used to classify malware based on the extracted
features. The method achieved 99.7% accuracy when evaluated on the malimg dataset and
100% accuracy when evaluated on the Microsoft dataset.

Awan et al. also proposed an image-based malware classification system, which was
investigated using malimg data [20]. The VGG19 model was used with transfer learning as
a feature extractor, while a CNN model enhanced by a spatial attention mechanism was
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used to enhance the system. The attention-based model achieved an accuracy of 97.68% in
the classification of the 25 families using a 70:30 training and testing split.

In [21], DenseNet was used with the final classification layer adopting a reweighted
class-balanced loss function in the final classification layer to address data imbalance issues
and improve performance. Experiments performed on malimg dataset yielded 98.23%
accuracy while 98.46%, 98.21% and 89.48% accuracies were obtained with BIG 2015, MaleVis
and Malicia datasets, respectively.

In [22,23], local binary patterns (LBP) were used while [24] used Intensity, Wavelet and
Gabor to extract grayscale image features. Han et al. [25], used entropy graphs and similar-
ity measures between entropy images for malware family classification. They obtained an
accuracy of 97.9% by experimenting with 1000 malware samples from 50 families. In [26],
the authors first disassembled binary executables and then converted the opcode sequences
into RGB images. They evaluated their approach on 9168 malware and 8640 benign binaries
achieving 94.8% to 96.5% accuracy.

Dai et al. [27] proposed a method for identifying malware families aimed at addressing
the deficiencies of dynamic analysis approaches, by extracting a memory dump file and
converting it to a grayscale image. They used the Cuckoo sandbox and built the procdump
program into the sandbox, while using the ma command to extract the dump of the
monitored process. Histogram of Gradient (HOG) was used to extract features from
the image file and train KNN, Random Forest and MLP classifiers. Experiments were
performed on 1984 malware samples from the Open Malware Benchmark dataset, and
MLP performed best with an accuracy of 95.2% and F1-score of 94.1%.

Although these works highlight the success of employing image-based techniques in
malware related work, their focus has largely been on Windows (PE) malware and family
classification. By contrast, this paper uses image-based techniques for detection of botnets
on the Android platform based on a novel approach to utilize HOG with manifest file
features.

In a recent paper that focused on Android, Singh et al. [28] proposed a system called
SARVOTAM that converts malware non-intuitive features into fingerprint images to extract
quality information. Automatic extraction of rich features from visualized malware is
then enabled using CNN, ultimately eliminating feature engineering and domain expert
cost. They used 15 different combinations of Android malware image sections to identify
and classify malware and replaced the softmax layer of CNN with ML algorithms like
KNN, SVM and Random Forest to analyze grayscale malware images. It was observed
that CNN-SVM outperformed the original CNN as well as CNN-KNN and CNN-RF. The
experiments performed on the DREBIN dataset achieved 92.59% accuracy using Android
certificates and manifest malware images.

2.2. Botnet Detection on Android

In [29], the authors proposed a signature-based, real-time SMS botnet detection system
that applies pattern-matching for incoming and outgoing SMS messages. This is followed
by a second step that uses rule-based techniques to label SMS messages as suspicious or nor-
mal. They performed experiments to evaluate their system with more than 12,000 messages.
The system detected all 747 malicious SMS messages but also had a high false positive rate
with 349 normal SMS messages misclassified as malicious.

Jadhav et al. presented a cloud-based Android botnet detection system in [30], based
on strace, netflow, logcat, sysdump and tcpdump. Although this is a real-time dynamic
analysis system, one major drawback is the ability of sophisticated botnets to detect and
evade the cloud environment. Moreover, detecting Android botnets using a cloud-based dy-
namic analysis system based on several types of traces is more resource intensive compared
to an image-based static analysis system.

Moodi et al. [31], presented an approach to detect Android botnets based on traffic
features. Their method was based on SVM where a new approach called smart adaptive
particle swarm optimization support vector machine (SAPSO-SVM) is developed to adapt
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the parameters of the optimization algorithm. The proposed approach identified the top
20 traffic features of Android botnets from the 28-SABD Android botnet dataset.

Bernardeschia et al. [32], used model checking to identify Android botnets. Static
analysis is used to derive a set of finite state automata from the Java byte code that represents
approximate information about the run-time behaviour of an app. However, the authors
only evaluated their approach using 96 samples from the Rootsmart botnet family and
28 samples from the Tigerbot family in addition to 1000 clean samples.

Anwar et al. [33], proposed a static technique that consists of four layers of botnet
security filters. The four layers consist of MD5 signatures, permissions, broadcast receiver
and background services modules. Based on these, classification models were built using
SVM, KNN, J48, Bagging, Naive Bayes and Random Forest. Experiments were performed
on 1400 mobile botnet applications from the ISCX Android botnet dataset and 1400 benign
applications. They observed the best result of 95.1% accuracy from the results of their
experiments. In [34], the Android Botnet Identification System (ABIS) was proposed based
on static and dynamic features using API calls, network traffic and permissions. These
features were used to train several Machine-Learning classifiers, where Random Forest
showed the best performance by obtaining a precision score of 0.972 and a recall score
of 0.960.

Yusof et al. proposed a botnet classification system based on permission and API
calls in [35]. They used feature selection to select 16 permissions and 31 API calls that
were subsequently used to train Machine-Learning algorithms using the WEKA tool. The
experiments were performed on 6282 benign and malicious samples using Naive Bayes,
KNN, J48, Random Forest and SVM. Using both permission and API call features, Random
Forest obtained the best results with 99.4% TP rate, 16.1% FP rate, 93.2% precision and
99.4% recall. This work was extended in [36] to include system calls and this resulted in
improved performance with Random Forest achieving 99.4% TP rate, 12.5% FP rate, 98.2%
precision, 99.4% recall and 97.9% accuracy.

In [37], a system for Android botnet detection using permissions and their protection
levels were proposed. Random Forest, MLP, Naive Bayes and Decision Trees were used
as Machine-Learning classifiers, with the experiments conducted using 1635 benign and
1635 botnet applications from the ISCX botnet datasets. Random Forest achieved 97.3%
accuracy, 98.7% recall and 98.5% precision as the best result.

In [38], Android botnet classification (ABC) was proposed as a Machine-Learning-
based system using requested permissions as features with Information Gain feature
selection applied to select the most significant requested permissions. Naive Bayes, Random
Forest and J48 were used as classifiers and experiments showed that Random Forest had
the highest detection accuracy of 94.6%, lowest FP rate of 9.9%, with precision of 93.1%
and recall of 94.6%. The experiments were performed on 2355 Android applications
(1505 samples from the ISCX botnet dataset and 850 benign applications).

Karim et al. proposed DeDroid in [39], as a static analysis approach to extract critical
features specific to botnets that can be used in the detection of mobile botnets. They
achieved this by observing the code behaviour of known malware binaries that possess
command and control features. In [40], an Android botnet detection system based on deep
learning was proposed. The system is based on 342 static features including permissions,
API calls, extra files, commands and intents. The model was evaluated using 6802 samples
including 1929 ISCX botnet dataset samples and 4873 clean applications.

The performance of CNN was compared to Naive Bayes, Bayes Net, Random Forest,
Random Tree, Simple Logistic, ANN and SVM. The CNN-based model achieved the best
performance with 98.9% accuracy, 98.3% precision, 97.8% recall and 98.1% F1-score. In [8],
a comprehensive study of deep learning techniques for Android botnet detection was
presented using the same dataset and static features utilized in [40]. CNN, DNN, LSTM,
GRU, CNN-LSTM and CNN-GRU models were studied, and the overall best result from
DNN was 99.1% accuracy, 99% precision, 97.9% recall and 98.1% F1-score.
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This cross-section of Android botnet detection systems summarized above indicates
that in the current literature, most proposed solutions are based on hand-crafted (static or
dynamic features) or rely on in-depth (Android) domain knowledge, unlike the system
proposed in this paper. Furthermore, compared to image-based approaches, hand-crafted
features may not be sustainable in the long run because as the Android OS evolves, new fea-
tures are added while some old ones may become deprecated. This will require significant
re-engineering of hand-crafted based systems to cope with the OS/platform evolution.

Some recent papers have begun exploring image-based techniques for Android botnet
detection. In [41], the Bot-IMG framework was used to extract HOG descriptors and train
Machine-Learning-based classifiers to distinguish botnets from benign applications. An
enhanced HOG scheme was proposed, which enabled improved accuracy performance
with the use of autoencoders. The system was evaluated with experiments performed
using 1929 ISCX botnet applications and 2500 benign applications.

KNN, SVM, Random Forest, XGBoost and Extra Trees learning algorithms were
trained using the HOG-based schemes. With Extra Trees, the best result from 10-fold cross
validation was obtained using autoencoder and gave 93.1% accuracy with 93.1% F1-score.
In [42], the authors used permissions to generate images based on a co-occurrence matrix.
The images were used to train a CNN model to classify applications into benign or botnet.
The experiments were performed on 3650 benign applications and 1800 botnet applications
from the ISCX dataset. Their best result was 97.2% accuracy, 96% recall, 95.5% precision
and 95.7% F1-score.

Different from [41,42], the system presented and evaluated in this paper is a novel
botnet detection system based on image features (i.e., HOG, byte histograms) and manifest
features (i.e., permissions, intents). All of these features come from a single pre-processed
composite image derived from automated reverse engineering of the Android applications.
In this paper, we demonstrate the feasibility and performance of the proposed scheme by
using it to train and evaluate several popular Machine-Learning classifiers on a dataset of
1929 ISCX botnet applications and 2500 benign applications.

3. Proposed HOG-Based Android Botnet Detection System

Our proposed system is based on the Bot-IMG framework [41], which enables auto-
mated reverse engineering of the Android applications, image generation and subsequent
extraction of image-based and manifest features. Figure 1 shows an overview of the system
for HOG-based Android botnet detection. As shown in the figure, the first step involves
reverse engineering the apks to extract the various files contained in the application.

Out of all the files present in an apk, only the manifest file and the Dalvik executable
(dex) file are utilized in the proposed system. The manifest file is processed using AXML-
Printer2 tool, which converts it into a readable text file that is scanned to generate a set
of 187 features consisting of permissions and intents. These features extracted from the
manifest file are encoded for gray-scale representation.

Thus, the presence of a feature is denoted by 255 (or white), while a 0 (i.e., black) is
recorded if the feature is absent and these are stored in an array of manifest features. The
dex file is converted to a byte array consisting of integer encoded bytes ranging from 0 to
255. This byte array from the executable is combined with the array of manifest features.
The combined array is then used to generate a composite gray-scale image representing the
application.
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Figure 1. Overview of the different steps involved in building the image-based Android botnet
detection system.

The image files are processed by the feature extraction engine using the algorithm
described in Section 3.2 to generate feature vectors for each application used in the training
of the Machine-Learning models. During the training of a model, a feature selection
algorithm is applied to select the best features. The trained model is then used to detect
botnet apps by classifying an unknown application into ‘botnet’ or ‘benign’. The proposed
system is based on HOG, byte histograms and manifest features. We provide a brief
description of HOG in the following section.

3.1. Histogram of Oriented Gradients

HOG, first proposed for human detection by Dalal and Triggs [43] is a popular image
descriptor that has found wide application in computer vision and pattern recognition. For
example, it has been applied to handwriting recognition [44], recognition of facial expres-
sions [45], pedestrian detection system for autonomous vehicles [46]. HOG is considered
to be an appearance descriptor because it counts occurrences of gradient orientation in
localized portions of an image. Due to the simple computations involved, HOG is gener-
ally a fast descriptor compared to Local Binary Patterns (LBP) or Scale Invariant Feature
Transforms (SIFT).

HOG descriptors are computed on a dense grid of uniformly spaced cells and over-
lapping local contrast normalizations are used for improved performance. For each pixel,
magnitude and orientation can be computed using the following formulae:

g =
√

gx2 + gy2 (1)

θ = tan−1
(

gy

gx

)
(2)

where gx and gy are calculated from the neighboring pixels in the horizontal and vertical
directions respectively. Figure 2 illustrates how the histograms are generated for a cell, using
the highlighted pixel as an example. For the pixel represented by number 65, the change in
x direction gx is 69 − 54 = 15, and the change in y direction gy is 78 − 30 = 48. Using the
Equations (1) and (2), the total magnitude g = 50.3 while the orientation θ = 72.65◦. To
generate the histogram for the cell, using nine bins representing the orientations separated
20 degrees apart, each pixel’s contribution will be added to the bin according to orientation.
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For example, in Figure 2, the orientation is 72.65◦, which is between 60 degrees and
80 degrees. Thus, the magnitude is split between these two bins by using the following
weighting approach where the distances from the bin orientations are used. Hence, we
have (72.65− 60)/20 and (80− 72.65)/20 as the weights that will be used to split the
50.3 magnitude between the bins. This means that the split will result in 31.7 and 18.6 being
placed in the 4th and 5th bins respectively. The process is repeated for all the pixels in the
cell.

Figure 2. Building a Histogram of Oriented Gradients using nine bins representing positive orienta-
tions spaced 20 degrees apart.

The binning of the magnitudes by taking the orientations into consideration, produces
a histogram of gradient directions for the pixel magnitudes in a cell. If the number of bins
is taken as 9, then, each cell will be represented by a 9× 1 array. In order to make the
gradients less sensitive to scaling, the histogram array is normalized in blocks, where each
block is made up of b× b cells. Hence, taking b = 2 will result in 4 cells per block. This
means that each block will be represented by a 36× 1 vector or array (i.e., 4 cells × nine
bins). Block normalization is based on the L2-norm computed as in Equation (3), where ε
is a small constant:

v←
√
||v||22 + ε2 (3)

In the default situation, the HOG algorithm takes an input image whose size is
128 × 64. Therefore, in the 128 × 64 pixel image, it turns out that if we take 8 × 8 pixels in
each cell and 2 × 2 cells in each block, then this will result in 7 horizontal block positions
and 15 vertical block positions. Hence, we get a total HOG vector length of 3780 (which is
36 × 7 × 15). As such, to get a HOG descriptor vector of length 3780 for an image, we are
required to choose the following parameters: n = 9 (number of orientations); ppc = 8 × 8
(number of pixels per cell) and cpb = 2 × 2 (number of cells per block).

3.2. Characterizing Apps with Image and Manifest Features

The methodology for extracting the HOG descriptors and using them together with
byte histogram and manifest features to characterize the apps, is discussed in this sec-
tion. The steps involved in deriving the composite features for Machine-Learning-based
detection approach are shown in Algorithm 1.
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Algorithm 1 : Extracting image-based and manifest-based features.

Input: D = {(I1, y1), (I2, y2). . . (In, yn)} set of images with their class labels
Output: V = {(V1, y1), (V2, y2). . . (Vn, yn)} class labelled set of output vectors

01: Initialize X1, X2, X3, X4 and X5, the arrays of size K = 8192 with zeros
02: Initialize BH the byte histogram array of size 256 with zeros
03: Initialize HOG parameters: n = 9, dim = 128 × 64; ppc = 8 × 8; cpb = 2 × 2
04: for each image I do
05: Slice the image to separate the first 187 pixels
06: Copy first slice having 187 pixels into a manifest vector M
07: // Obtain the HOG vector for the image
08: Convert second slice into an array P of pixel decimal values
09: Copy the first K ∗ 5 bytes into arrays X1, X2, X3, X4, X5
10: Reshape X1, X2, X3, X4, X5 to 128 × 64 size arrays
11: Convert X1, X2, X3, X4, X5 into images
12: for each sub-image j do
13: Hj ← getHogVector(n, dim, pbc, cpb)
14: Hj ← subsample(Hj)
15: end
16: HV ← concatenate(H1, H2, H3, H4, H5)
17: // Obtain the byte histogram vector for the image
18: X ← concatenate(X1, X2, X3, X4, X5)
19: for index = 0, 1, 2 . . . 255 do
20: count = 0
21: for b = 0, 1, 2. . . Length(X)− 1 do
22: count = count +1
23: if count > max
24: count = max
25: end if
26: end

27: BH(index)← 255 ∗
(

log( count+1
max )−log( 1

max )
−log( 1

max )

)
28: end
29: // Obtain the overall output vector for the image
30: V ← concatenate(M, HV, BH)
31: end

The required input is the set of images from benign and botnet apps, while the output
will be a high dimensional vector V. The images generated from the apps are of different
sizes. Thus, in order to utilize the original HOG descriptors generation approach proposed
by Dalal and Triggs, the images must be reshaped to 128 × 64 pixels. However, it has been
found that resizing the images diminishes the performance of the trained Machine-Learning
models [41]. We therefore adopt a methodology that uses five patches or segments from
the image with each segment being 128 × 64 pixels in size. In line 1 of Algorithm 1, the five
arrays X1, X2, X3, X4 and X5 that will hold the pixels of the five segments are initialized
with zeros.

This approach utilizes only the first 40,960 pixels of the images (after extracting the
manifest features) making for a fast and efficient system. Once the five segments from the
image are copied into the arrays, they are reshaped into 128 × 64 arrays and converted
into 5 separate images. This is because the HOG descriptor function only takes images as
input and not arrays. From line 12 to line 15 of Algorithm 1, five different HOG vectors
are generated for each segment image, and in line 14, we sub-sample each of them to
retain 500 descriptors. The 500 descriptors from each batch are then concatenated into a
2500 descriptor vector HV in line 16.
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From line 17 to line 28 of Algorithm 1, a byte histogram is generated, but only for the
same combined area where the HOG descriptors were extracted, i.e., the first 40,960 pixels
of the application’s image. The byte histogram will consist of a vector of dimension 256
that will hold the occurrences of bytes (pixels) within that region. The occurrences are
clipped and log-scaled as depicted in lines 23, 24 and 27 respectively, to keep the values
between zero and 255. Finally, the overall feature vector V of dimension 2943 is generated
by concatenating the extracted manifest vector M (MV) with the final HOG vector (HV)
and the log-scaled byte histogram (BH).

3.3. Feature Selection Using CHI Square Algorithm

Since the image processing resulted in a high dimensional vector, we apply feature
selection for dimensionality reduction and to improve the performance of the Machine-
Learning classifiers. As we know, if there are more features resulting a high dimensional
vector as an input to the classifier during the training phase, they will contribute to algo-
rithmic complexity in terms of data storage and processing. As not all features contribute
to the model’s performance in the classification phase, it is suitable that they be removed
from the training phase as well. This process is termed as ‘Dimensionality Reduction’.

Dimensionality reduction can be achieved by “measuring” the contribution of each of
the features to the model’s prediction performance. Those features that have insignificant
contributions can be safely removed to enhance the training speed of the Machine-Learning
model. Dimensionality reduction chooses those features, which are good contributors to
the model performance, and hence this process is also called Feature Selection.

Various approaches for Feature Selection have been presented in the literature, such as
Information Gain, Mutual Information, Principal Component Analysis and the Chi-Square
test [47]. In our research, we chose to use the Chi-Square test, which results in a better
prediction performance for our ML classifiers. The Chi-Square test is represented by the
formula given in Equation (4):

χ2 = ∑
i
(Oi − Ei)

2/Ei (4)

where
χ2 = Chi-Squared value
Oi = Observed value
Ei = Expected value

In our case, the observed value could take one of the values of the input features
variable and the expected value would be another feature variable. If there is a strong
correlation between them (that is χ2 is too low) then it is enough to consider only one out
of them and hence reduce one feature. Similarly, all possible combinations of the feature
variables can be compared and sorted according to their Chi-Square values. Then, we can
choose those feature variables that have high Chi-Square values from the list.

4. Experiments and Evaluation of the System
4.1. Dataset Description

The ISCX botnet dataset obtained from [48] has been used to evaluate the proposed
system. The dataset consists of 1929 botnet apps of 14 different families. We complemented
this dataset with 2500 clean apps from different categories on the Google play store and used
VirusTotal for verification. Thus, our experiments were based on a total of 4429 applications
from, which the images were generated and processed using the Bot-IMG framework.The
clean applications can be made available to third parties on request.

4.2. Evaluation Metrics

The following metrics were used in measuring the performance of the models: accu-
racy, precision, recall and F1-score. All the results of the experiments are from 10-fold cross
validation where the dataset is divided into 10 equal parts with 10% of the dataset held out
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for testing, while the models are trained from the remaining 90%. This is repeated until
all of the 10 parts have been used for testing. The average of all 10 results is then taken
to produce the final result. We also employed the 80:20 split approach where 80% of the
samples were used for training and 20% for testing.

4.3. Machine-Learning Classifiers

In this section, a brief overview of the Machine-Learning classifiers is presented, which
were used to distinguish between botnet and clean apps. In general these are algorithms,
which are trained on the labelled data (input) and then the learned model is used for
estimating the target variable (output, in this case, malicious botnet or clean app).

1. K-Nearest Neighbor (KNN): KNN is a supervised classifier that classifies an input
data into a specific set of classes based on the distance metric among its nearest neigh-
bors [49]. Various distance metrics are possible candidates for the K-NN algorithm,
such as the Euclidean distance, Manhattan distance, City block distance and Ham-
ming distance. Due to its simplicity, Euclidean distance is the preferred choice among
these distance measures. The K-NN algorithm uses vectors in a multidimensional
feature space as training examples, each having a class label. During the training
phase the algorithm stores the feature vectors and their class labels for the purpose of
learning the model. During the classification phase, an unlabeled vector is classified
by assigning the label, which is most frequent among the k training samples. Here k
is a user defined constant whose choice depends on the type of data to be classified.

2. Support Vector Machines (SVM): SVM classifies the input data into different classes
by finding a hyperplane in a higher dimension space of the feature set to distinguish
among various classes [50]. This technique transforms the input data, which is divided
into separate classes non-linearly, by applying various types of kernel functions, such
as linear, polynomial, Gaussian and radial basis functions. SVM follows the concept of
minimizing the classification risk as opposed to optimizing the classification accuracy.
As a result, SVMs have a better generalization capability and hence can be used
in situations where the number of training samples are less and the data has large
number of features. SVMs have been popularly used in text and image classification
problems and also in voice recognition and anomaly detection (e.g., security, fraud
detection and healthcare).

3. Decision Trees (DT): A Decision Tree uses a tree-like structure that models a labelled
data [51]. Its structure consists of leaves and branches, which actually represent
the classifications and the combinations of features that lead to those classifications,
respectively. During the classification, an unlabeled input is classified by testing
its feature values against the nodes of the decision tree. Two popular algorithmic
implementations of Decision Trees are the ID3 and C4.5, which use the information
entropy measurements to learn the tree from the set of the training data. The procedure
followed when building the decision tree, is to choose the data attributes that most
efficiently splits its set of inputs into smaller subsets. Normalised information gain is
used as the criteria for performing the splitting process. Those attributes that have the
highest normalized information gain are used in making the splitting decision.

4. Random Forest (RF): Random Forest belong to the class of classifiers that are known
as the Ensemble Learning classifiers [52]. As the name suggests, RF is a collection
of several decision trees that are created first and are then combined in a random
manner to build a “forest of trees”. A random sample of data from the training set is
utilised for training the constituent trees of the RF. It is observed that due the presence
of mutiple DTs in the RF, it circumvents the over-fitting problem encountered in
DTs. This is due to the fact that RF performs a “bagging” step that uses bootstrap
aggregation to deal with the over-fitting problem. During the classification phase, the
RF takes the test features as an input and each DT within the RF is used to predict the
desired target variable. The final outcome of the algorithm is achieved by taking the
prediction with maximum votes among the constituent DTs.
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5. Extra Trees (ET): Extra Trees is also an ensemble Machine-Learning algorithm that
combines the predictions from many decision trees [53]. The concept is similar to the
Random Forests, however there are certain key differences between them. One of the
difference lies in how they take the input data to learn the models. RF uses bootstrap
replicas (sub-sampling of the data), where as the Extra Trees use the whole input
data as it is. Another difference lies in how the the cut points are selected in order to
split the nodes of the tree. RF chooses the split in an optimal manner, however the
Extra Trees do it randomly. That is why another name for Extra Trees is Extremely
Randomised Trees. As such, Extra Trees add randomisation to the training process,
but at the same time maintains the optimization. In other words, Extra Trees reduce
both the bias and variance and are a good choice for classification tasks as compared
to Random Forests.

6. XGBoost (XGB): XGBoost also belongs to the category of Ensemble Learning classi-
fiers similar to RF and ETs, mentioned above [54]. However, they are based on the
concept of Boosting, rather than Bagging (which is implemented in RF). Boosting is a
process of increasing the prediction capabilities of an ensemble of weak classifiers. It
is actually an iterative process where the weights of the each of the constituent weak
classifiers are adjusted based on their performance in making the predictions of the
target variable. Boosting is an iterative method that uses random sampling of the data
without replacement (as opposed to replacement used during the bagging process in
the RF). In boosting, errors that occur in the prediction of earlier models are reduced
by the predictions of future models. This step is very much different from the bagging
process used in Random Forest classifiers that use an ensemble of “independently”
trained classifiers.

5. Results and Discussions

In this section we present the results of the experiments performed to evaluate the
performance of the proposed scheme described in Section 3. The proposed scheme was
implemented with Python and the following libraries were utilized: OpenCV, PIL, Scikit-
learn, Scikit-image, Pandas, Keras, Numpy, Seaborn and Matplotlib. The experiments were
performed on an Ubuntu Linux 16.04 64-bit machine with 8 GB RAM.

Six popular Machine-Learning classifiers were used to evaluate the proposed scheme.
These include: K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machines
(SVM), Decision Trees (DT), Extra Trees (ET) and XGBoost (XGB). We implemented two
other schemes for baseline comparison of the Machine-Learning classifier performance.
The first baseline scheme was the original HOG scheme where all the images in the training
and test sets were resized to the standard 128 × 64 pixels and resulting in vectors of size
3780 used in training the models. The second baseline scheme used five segments to extract
HOG descriptors in an identical way to our proposed scheme described by Algorithm 1
and used them to train the models without adding byte histograms or manifest features.
We call the second baseline scheme the ‘enhanced HOG’ method.

In Table 1, the results of our proposed scheme using 10-fold cross validation are
shown for the six Machine-Learning classifiers. We present the precision and recall for
both malicious botnet class (M) and the benign or clean class (C). Note that the F1-scores
presented in the table are weighted values, due to the difference in the numbers of samples
in each class. The table shows that all of the classifiers obtained an overall accuracy
performance of 92.3% or above, indicating that our proposed approach enables the training
of high performing machine learning classifiers. The Extra Tree classifier had the highest
weighted F1-score of 0.96, followed by Random Forest with 0.958 and XGBoost with 0.952.
The lowest weighted F1-score was for KNN with 0.923 while SVM obtained a weighted
F1-score of 0.926.

The Extra Trees classifier had the best precision and recall values except in the case of
malware recall, which was 94.2% compared to that of Random Forest, which had 94.4%.
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SVM had the lowest malware class recall of 92.1% while KNN had the lowest benign class
recall of 90.7%.

Table 1. Classifier performance with permissions, byte histograms and HOG descriptors (10-fold
cross validation results).

Precision (M) Recall (M) Accuracy Precision (C) Recall (C) F1-Score

Extra Trees 0.965 0.942 0.960 0.955 0.974 0.960

SVM 0.911 0.921 0.926 0.938 0.930 0.926

KNN 0.889 0.942 0.923 0.953 0.907 0.923

XGBoost 0.950 0.935 0.952 0.950 0.962 0.952

RF 0.962 0.944 0.958 0.955 0.970 0.958

DT 0.913 0.940 0.936 0.954 0.933 0.936

In Table 2, the results of the proposed scheme using a train–test split of 80:20 are
presented. The table shows that all of the classifiers resulted in an overall accuracy of
93.7% or higher, with the Extra Tree classifier yielding an accuracy of 97.5%. The Extra Tree
classifier had the highest weighted F1-score of 0.980 followed by XGBoost and Random
Forest with 0.970 and Decision Trees with 0.950. SVM and KNN had the lowest weighted
F1-score of 0.940. Extra Trees had the highest malware class recall of 97% while SVM had
the lowest recall of 92% for malware. Extra Tree, XGBoost and RF had the highest recall for
benign class with 98%, while SVM had the lowest one, with 92%. Based on these results
Extra Trees model will be the classifier of choice for our proposed Android botnet detection
system.

Table 2. Classifier performance with permissions, byte histograms and HOG descriptors (train–test
split results).

Precision (M) Recall (M) Accuracy Precision (C) Recall (C) F1-Score

Extra Trees 0.970 0.970 0.975 0.980 0.980 0.980

SVM 0.890 0.920 0.937 0.940 0.920 0.940

KNN 0.860 0.940 0.944 0.960 0.900 0.940

XGBoost 0.970 0.940 0.966 0.960 0.980 0.970

RF 0.970 0.960 0.973 0.970 0.980 0.970

DT 0.920 0.950 0.953 0.960 0.950 0.950

The results presented in Tables 1 and 2 demonstrates the effectiveness of our proposed
scheme. This is evident in the performance of the strongest and the weakest classifiers in
the group. SVM and KNN were the weakest classifiers but still managed to yield quite high
accuracies and F1-scores in both 10-fold cross validation and the split based evaluation. On
the other hand, the strongest classifiers Extra Tress, RF and XGBoost produced results that
were comparable to the state-of-the art in the literature.

It is possible that the few malicious botnets that were not detected by the system had
characteristics that made them resemble benign apps. For example, botnets with relatively
few permissions and intents, or those with HOG representation were very close to those of
benign training examples. This could be addressed in future work by extracting additional
types of features or complementing our proposed method with alternative methods, for
example through an ensemble or voting approach.

In Table 3 and Figure 3, we compare the performance of the proposed scheme with the
two baseline schemes (HOG original and HOG enhanced) using the overall classification
accuracy as the metric. The accuracies of each of the Machine-Learning classifiers for the
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compared schemes can be seen side by side in Figure 3. The proposed scheme outperforms
the baseline schemes in all of the Machine-Learning classifiers.

From Table 3, HOG original obtained the highest classification accuracy of 89.2% with
the XGBoost classifier. This suggests that the resizing of the images during pre-processing
has adverse effects on the performance of the models. The enhanced HOG scheme reached
a highest accuracy of 92.7% also with XGBoost classifier. The scheme proposed in this
paper, which additionally leverages byte histograms and encoded manifest features led to
significantly improved performance.

Table 3. Comparison of the baseline HOG schemes with the proposed method using the overall
accuracy (10-fold cross validation results).

HOG (Original) HOG (Enhanced) HOG + BH + MF

XGBoost 0.892 0.927 0.952

Extra Trees 0.863 0.925 0.960

RF 0.871 0.919 0.958

KNN 0.877 0.877 0.920

SVM 0.811 0.866 0.926

DT 0.773 0.835 0.935

Figure 3. Overall classification accuracy for the various classifiers using the three compared schemes.

In Figure 4, the average training times for the samples trained during the 10-fold cross
validation experiments are shown. Note that the training includes the feature selection
step. The XGBoost classifier needed about 14.49 s to train 3987 samples in the training set,
equivalent to an average of 3.6 milliseconds per sample. The rest of the classifiers were
much faster and required significantly lower average training times for the training sets as
shown in Figure 4.

The highest accuracy classifier, Extra Trees, needed an average of 1.72 s for the training
sets—equivalent to 0.43 milliseconds per sample. In the pre-processing stage, the average
amount of time taken to extract the features per application was approximately 1.37 s.
These relatively low pre-processing and training times required per application indicates
that the proposed approach is feasible in practice.The fact that we successfully utilized
off-the-shelf Python libraries to build and evaluate the proposed system also indicates that
commercial implementation is viable.
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Figure 4. Average training times for the training set samples in seconds for each of the ML classifiers
using our proposed scheme.

Although we demonstrated the effectiveness of our proposed method by experimen-
tal results showing high performance with several classifiers, our observed results also
compare favorably with existing works. Due to variations in environments, datasets, the
numbers of samples, reported metrics etc., direct comparison is not always possible. How-
ever, the set of results reported in this paper either exceeds or is similar to what has been
reported in recent related works.

For example, the work in [41] was based on the same dataset used in this paper but had
a lower performance with 93.1% as the highest accuracy. The papers [33,38] also reported
lower accuracies than our results. However, these works were based on a different dataset
and used hand-crafted features. As mentioned before, such features on Android have the
disadvantage of maintenance overhead in the long run. Moreover, it was shown in [55] that
the performance of hand-crafted features used to build machine learning models declined
over time.

6. Conclusions and Future Work

In this paper, we proposed a novel approach for the detection of Android botnets
based on image and manifest features. The proposed approach removes the need for
detection solutions to rely on extracting hand-crafted features from the executable file,
which ultimately requires domain expertise. The system is based on a Histogram of
Oriented Gradients (HOG) and additionally leverages a byte histogram and the manifest
features. We implemented the system in Python and evaluated its performance using six
popular Machine-Learning classifiers.

All of them exhibited good performance with Extra Trees, XGBoost and Random
Forest obtaining better performance as compared to the state-of-the-art results. These
results demonstrate the effectiveness of the proposed approach. An overall accuracy of
97.5% and F1-score of 0.980 were observed with Extra Trees when evaluated with the 80:20
split approach; while a 96% accuracy and 0.960 F1-score were observed when evaluated
using a 10-fold cross validation approach. In future work, we plan to explore other types
of image descriptors and investigate whether they could be leveraged to improve the
performance of the HOG-based scheme.
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Classification Using VGG19 Network and Spatial Convolutional Attention. Electronics 2021, 10, 2444. [CrossRef]

21. Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damaševičius, R. An Efficient DenseNet-Based Deep Learning Model for
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