
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcim20

International Journal of Computer Integrated
Manufacturing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcim20

Reinforcement learning based optimal decision
making towards product lifecycle sustainability

Yang Liu, Miying Yang & Zhengang Guo

To cite this article: Yang Liu, Miying Yang & Zhengang Guo (2022): Reinforcement learning based
optimal decision making towards product lifecycle sustainability, International Journal of Computer
Integrated Manufacturing, DOI: 10.1080/0951192X.2022.2025623

To link to this article:  https://doi.org/10.1080/0951192X.2022.2025623

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 31 Jan 2022.

Submit your article to this journal 

Article views: 206

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tcim20
https://www.tandfonline.com/loi/tcim20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0951192X.2022.2025623
https://doi.org/10.1080/0951192X.2022.2025623
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0951192X.2022.2025623
https://www.tandfonline.com/doi/mlt/10.1080/0951192X.2022.2025623
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2022.2025623&domain=pdf&date_stamp=2022-01-31
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2022.2025623&domain=pdf&date_stamp=2022-01-31


Reinforcement learning based optimal decision making towards product lifecycle 
sustainability
Yang Liu a,b, Miying Yang c and Zhengang Guo d

aDepartment of Management and Engineering, Linköping University, Linköping, Sweden; bDepartment of Production, University of Vaasa, 
Vaasa, Finland; cGroup of Sustainability, School of Management, Cranfield University, Cranfield, UK; dDepartment of Electrical and Electronic 
Engineering, Imperial College London, London, UK

ABSTRACT
Artificial intelligence (AI) has been widely used in robotics, automation, finance, healthcare, etc. 
However, using AI for decision-making in sustainable product lifecycle operations is still challen-
ging. One major challenge relates to the scarcity and uncertainties of data across the product 
lifecycle. This paper aims to develop a method that can adopt the most suitable AI techniques to 
support decision-making for sustainable operations based on the available lifecycle data. It 
identifies the key lifecycle stages in which AI, especially reinforcement learning (RL), can support 
decision-making. Then, a generalised procedure of using RL for decision support is proposed based 
on available lifecycle data, such as operation and maintenance data. The method has been 
validated in a case study of an international vehicle manufacturer, combined with modelling and 
simulation. The case study demonstrates the effectiveness of the method and identifies that RL is 
the current most appropriate method for maintenance scheduling based on limited available 
lifecycle data. This paper contributes to knowledge by demonstrating an empirically grounded 
industrial case using RL to optimise decision-making for improved product lifecycle sustainability 
by effectively prolonging the product lifetime and reducing environmental impact.
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1. Introduction

Manufacturing is facing a new, exciting era due to the 
emergence of new technologies, such as the Internet 
of Things (IoT) (Cai et al. 2014; Zhang et al. 2018), big 
data analytics (BDA) (Ren et al. 2019; Zhang et al. 
2017a), cloud computing (Talhi et al. 2019), artificial 
intelligence (AI) (Liu et al. 2020b) and digital twin 
(Tao et al. 2018). Many researchers and practitioners 
consider these technologies and powerful tools to 
make manufacturing more efficient, profitable and sus-
tainable (Guo et al. 2021b; Wang et al. 2020). There is 
an increasing interest from academia and industries 
using these technologies for a more sustainable opera-
tion and supply chain in manufacturing. This can be 
achieved by better planning, designing, and maintain-
ing the production system, product, and service. For 
instance, a large volume of data is generated in differ-
ent product lifecycle phases with various degrees of 
complexity (Lou et al. 2018) and has been used to 
improve the product/service design, enhance the pro-
duction performance of the shop floor and carry out 
predictive maintenance (Zhang et al. 2017b). This 

could vastly improve sustainable operations, especially 
in the economic and environmental dimensions, 
through better decision-making and planning.

Most of the existing studies are based on data- 
driven modelling and multi-objective optimisation for 
sustainable operations. For example, Hatim et al. (2020) 
presented a multi-criteria decision-making method for 
the globalised assessment of sustainability and pro-
ductivity in the integrated process and operation 
plans. In addition, Meng et al. (2020) reviewed the 
state-of-art of smart recovery decision-making for end- 
of-life products and highlighted the contribution of 
ubiquitous information and computational intelli-
gence. These emerging smart technologies not only 
reduce the information uncertainties but also provide 
powerful operational methodologies. Nevertheless, 
few studies utilise the power of advanced AI techni-
ques to extract valuable information and knowledge 
from limited available data and further process the 
data to support decision-making towards sustainability 
(Govindan, Jafarian, and Nourbakhsh 2019; Nishant, 
Kennedy, and Corbett 2020; Jarrahi 2018).
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The purpose of this paper is to examine how AI can 
improve the product lifecycle sustainability, such that 
failures are minimised, lifetime increased, and ulti-
mately that financial and environmental costs are 
reduced. AI techniques hold great promise in auto-
mating and improving several aspects of this process, 
e.g. predicting breakdowns and planning mainte-
nance schedules in advance. To utilise AI to support 
decision making throughout the lifecycle, the isolated 
lifecycle data that influence the system design, pro-
duct, and service need to be integrated and analysed 
to generate important insights. Besides, AI offers 
further opportunities to gain insight into data to per-
ceive and predict future trends for better planning 
accurately, accelerate market development, and 
design sustainable products and services. It can also 
help decision-makers identify the most important and 
valuable features based on concrete customer inputs 
and designs that minimise production costs and har-
ness consumer insights to reduce development costs. 
Furthermore, it can also help improve the product 
and service design for purposes, such as design for 
reliability, maintenance, remanufacturing, etc. The 
study was done through a 3-year Swedish state- 
funded project with three participating companies, 
which produce vehicles, aeroplanes, and integrated 
systems solutions.

This paper investigates the application of AI tech-
niques for decision-making towards sustainable 
operations in product lifecycle phases. Firstly, the 
key stages in which AI can support decision-making 
were identified. Then, the authors focused on typical 
cases and proposed a generalised method and pro-
cedure with AI for decision support using lifecycle 
data (such as data obtained from operations and 
maintenance) that can be useful to improve sustain-
ability. Specifically, reinforcement learning (RL) was 
applied to optimise decision-making based on limited 
available lifecycle data and validated through a real 
industrial case study. An illustrative case study, com-
bining with modelling and simulation, is conducted 
to demonstrate the feasibility and performance of the 
proposed method using AI to improve decision- 
making in the middle of life stage scenario. A similar 
method can be expanded to other lifecycle stages 
and cover the whole lifecycle if necessary.

The rest of the paper is organised as follows. 
Section 2 reviews the state-of-the-art literature. 
Section 3 develops the relevant theoretical reasoning. 

Section 4 presents an AI system for decision-making 
focusing on maintenance. Section 5 presents an illus-
trative case study based on RL for operations and 
maintenance. Section 6 concludes the paper.

2. Literature review

AI has existed for decades and has been widely used 
in different areas such as robotics, automation, 
finance and healthcare. The new technological revo-
lution and the new industrial revolution fusing new AI 
technologies are characterised by ubiquitous net-
works, data-drivenness, shared services, cross-border 
integration, automatic intelligence, and mass innova-
tion (Li et al. 2017). Duan, Edwards, and Dwivedi 
(2019) reviewed the history of AI and its decision- 
making issues regarding the interaction and integra-
tion of AI to support or replace human decision- 
makers. The relationship between AI and decision- 
making has been systematically discussed by 
Pomerol (1997), which includes diagnosis (expert sys-
tems, case-based reasoning, fuzzy set, and rough set 
theories) and look-ahead reasoning with uncertainty 
and preferences. Jarrahi (2018) highlighted the com-
plementarity of humans and AI in organisational deci-
sion-making processes with uncertainty, complexity, 
and equivocality. In large-scale decision-making 
(LSDM) scenarios, multiple and highly diverse stake-
holders/decision-makers and the timeliness of infor-
mation dissemination further increase the complexity 
of decision-making problems. The definition and 
characterisation of LSDM events have been proposed 
by Ding et al. (2020).

AI has also been used to facilitate capturing, struc-
turing and analysing big data for key insights (O’Leary 
2013), especially in the area of product lifecycle man-
agement (PLM). For example, smart embedded sys-
tems can gather data through a product lifecycle for 
decision-making, including adaptive production man-
agement for the beginning of life (BOL), predictive 
maintenance for the middle of life (MOL) and plan-
ning and management for the end of life (EOL) 
(Kiritsis, Bufardi, and Xirouchakis 2003). The various 
data involved in the three main phases of PLM, i.e. 
BOL, MOL, and EOL, are analysed by big data techni-
ques to enhance the intelligence and efficiency of 
design, production, and service processes (Li et al. 
2015). Methodologies and software architecture 
have been presented to integrate enterprise-wide 
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applications with new functionality to enable knowl-
edge-based contemporary design at the conceptual 
design phase (Gao et al. 2003). To meet the openness, 
interoperability, and decentralisation requirements, 
an industrial blockchain-based PLM framework has 
been proposed to facilitate data exchange and service 
sharing in the product lifecycle (Liu et al. 2020a).

As effective decision-making is vital for the man-
agement of product portfolios and related data across 
all phases of the product lifecycle, MacCarthy and 
Pasley (2021) proposed the concept of group decision 
support for the reuse of decision information to 
achieve effective PLM. In terms of performance and 
value indicators based on knowledge management 
integration, Bosch-Mauchand et al. (2013) presented 
a PLM approach to support knowledge capture for 
reuse purposes and to assess managerial and techni-
cal decisions. In engineering applications, Lee et al. 
(2008) discussed the evolution of PLM and reviewed 
the characteristics and benefits of PLM and its prac-
tices and potential applications in aviation mainte-
nance, repair and overhaul (MRO). From a PLM 
perspective, the benefits of digital twin (DT) have 
also been reviewed to reflect the physical status of 
systems or products in a virtual space (Lim, Zheng, 
and Chen 2020). Additionally, Matsokis and Kiritsis 
(2010) developed an ontology model of product 
data and knowledge management semantic object 
model for PLM to implement ontology advantages 
and features. Under incomplete information and con-
straints, Andriotis and Papakonstantinou (2020) pro-
posed a joint framework of constrained partially 
observable Markov decision processes and multi- 
agent deep reinforcement learning to solve inspec-
tion and maintenance planning problems.

Despite the significant progress, few existing meth-
ods leverage AI to support the decision-making for 
sustainable PLM due to the lack of data and various 
uncertainties. Using AI for decision-making in opera-
tions is still challenging and less popular due to three 
reasons: 1) the lack of sufficient ‘good’ data to be 
useful for AI algorithms to process and obtain mean-
ingful results; 2) cleaning of ‘bad’ data usually takes 
more efforts than the AI algorithms themselves, and 
so far there is no simple way to solve it automatically 
but rather manually instead, which greatly demoti-
vate and reduce the value of using AI; 3) using AI to 
process the qualitative information required by deci-
sion-making is challenging. Consequently, applying AI 

to optimise decision-making throughout lifecycle 
phases to achieve better sustainability is still in its 
infancy. Overall, an AI-based optimal decision- 
making method considering data scarcity and uncer-
tainties towards sustainable PLM needs to be further 
developed, which is a niche that this paper aims for 
and positions its contribution.

A comparison of the most relevant literature on the 
decision-making for sustainable PLM is given in 
Table 1. From the table, advanced techniques such 
as big data analytics, digital twin, reinforcement learn-
ing, and blockchain have been used to support the 
decision-making for sustainable PLM. The works 
searched were published in the recent five years 
(2017–2021) and received at least one citation from 
the Web of Science.

It can be seen that this paper clearly differs from 
other works as follows. 1) The data of this paper came 
from real industry, and the proposed method was 
empirically applied with action research. 2) The AI- 
based decision process in this paper covered a wider 
lifecycle stage. 3) This paper also contributed to sus-
tainability goals, particularly prolonging the product 
lifetime and reducing environmental impact.

3. Theoretical development

3.1 AI for decision making towards sustainability

The general goals of using AI to optimise sustainabil-
ity lie in the economic, environmental and social 
dimensions. The economic goal is to maximise the 
profit of the provider while minimising the cost to 
the consumer. The environmental goal is to provide 
resource-efficient and effective solutions to minimise 
environmental impact. The social goal is to minimise 
human efforts to reach near-optimal results and 
improve wellbeing.

AI has the potential to help improve decision- 
making towards sustainability in service-oriented 
business models, i.e. product-service systems (PSS), 
which are widely used in specific industries, e.g. vehi-
cles, aircraft engines, production machines. The rental 
business model, for example, currently still suffers 
from high cost and low sustainability compared to 
the traditional selling model, but the societal and 
political needs accelerate the transition from owner-
ship to access (Geissinger et al. 2019; Rifkin 2000), 
especially in the automobile sector (Ma et al. 2018; 
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Wingfield 2017). The business model is not optimised 
for sustainability because the product (i.e. the car) 
used is not designed and optimised throughout the 
lifecycle for such a business model but rather for the 
traditional ownership model. There is a need to rede-
sign and optimise the product to adapt to the new 
business model. AI is widely considered to have great 
potential in many kinds of optimisations. However, 
the lack of knowledge makes it extremely challen-
ging. AI experts do not believe so because AI relies 
heavily on existing data and domain knowledge, but 
they do not exist in this case. However, the authors of 
this paper propose a new approach to making this 
possible.

3.2 AI for PSS decision making

AI can be used to optimise decisions in the design of 
the optimal offerings, particularly in the PSS model, to 
maximise the profit of the providers and meanwhile 
also benefit the customers. Take the example of the 
product sharing business. The research question is how 
to design the product optimised for a rental business 
to maximise the profit from the whole fleet, with the 

optimal lifetime, service intervals to minimise the envir-
onmental impact and maximise resource efficiency. 
This can be achieved with the following steps:

(1) Since there are no real data available as such 
a product designed and optimised for the ren-
tal business model does not exist, the only way 
is to obtain a close estimation from an existing 
product with a traditional ownership model. 
Even though the product is not designed nor 
optimised for the rental model, the lifetime and 
failure characteristics can be learned from cur-
rent product models. Data needed are, e.g. fail-
ure and maintenance history and using AI to 
learn the failure pattern and forecast the typical 
lifetime and maintenance interval needed (can 
be as detailed as each major component) to 
achieve optimal cost/profit structure.

(2) Based on the information obtained in Step 1, 
create the model with multi-variable optimisa-
tion functions to maximise the profit of offering 
while maintaining or lowering the customer 
cost. Expert knowledge for optimal design para-
meters is collected by qualitative methods and 

Table 1. Summary of the literature on the decision-making for product lifecycle management.
Reference Area Decision process Key technique Data source

Zhang et al. (2017b) Manufacturing industry Maintenance service stage Big data analytics Onsite observations, interviews 
and reports

Ferreira et al. (2017) Automotive industry Planning, machining and 
evaluation stages

Knowledge-based collaborative 
processes

Original equipment manufacturers 
and suppliers

Rondini et al. (2017) Automotive industry Maintenance service stage Discrete event simulation with 
agent-based modelling

Truck maintenance company

Badurdeen, Aydin, and 
Brown (2018)

Manufacturing industry Product design stage Non-dominated sorting genetic 
algorithm II

Toner cartridge company

Kaewunruen and Lian 
(2019)

Infrastructure industry Planning and design, 
manufacturing, pre- 
assembly, logistic, 
reconstruction and 
installation, operation 
and maintenance, 
demolition and recycle/ 
renewal stages

Digital twin (building 
Information modelling)

Raw data from the field

Li, Zhong, and Lin (2019) Aero-engine maintenance Maintenance service stage Reinforcement learning Hypothetical data
Yao et al. (2020) Infrastructure industry Maintenance service stage Deep reinforcement learning Expressway data
Yousefi, Tsianikas, and 

Coit (2020)
Dynamic maintenance 

policy
Maintenance service stage Reinforcement learning Hypothetical data

Liu et al. (2020a) Manufacturing industry Co-creation, tracking and 
tracing, maintenance 
and recycling service 
stages

Industrial blockchain Smart gateway by IoT sensors and 
RFID

Andriotis and 
Papakonstantinou 
(2020)

Inspection and 
maintenance planning

Maintenance service stage Deep reinforcement learning Hypothetical data

This paper Manufacturing industry Middle of life stage 
(operation and 
maintenance) with 
environmental impacts

Reinforcement learning Empirical data of the case 
company with limited 
availability
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converted to quantitative information to feed 
into the model to set initial parameters, assump-
tions, optimisation objectives and priorities.

(3) Based on the optimisation model established in 
Step 2, derive optimal solutions by using suita-
ble AI algorithms. The optimisations include 
trade-offs among lifetime, production cost, 
maintenance plan, maintenance cost, etc. 
Typically, there is no single optimal solution, 
but a set of near-optimal solutions is obtained 
depending on the demands (e.g. the priorities 
given on the optimisation objectives).

(4) Compare the optimised solution obtained in 
Step 3 with the traditional solution (business 
as usual, in this example, traditional leasing 
service) from different aspects, e.g. profit for 
the provider, cost-saving for the customer, the 
resource used, environmental impacts, etc. to 
evaluate the performance.

3.3 AI for sustainable product lifecycle 
management

The product lifecycle starts with choices made 
before manufacturing, e.g. materials and compo-
nents chosen for a product. Without loss of general-
ity, a typical product such as a car, truck or plane is 
assumed for this paper. The manufacturer provides 
regular maintenance and emergency repair services 

through a maintenance technician during the pro-
duct lifecycle, usually based on an agreed-upon ser-
vice contract. This may also contain service level 
agreements, where acceptable interruptions to 
using a product are stipulated, and fines for devia-
tions detailed. In the following sections, it is assumed 
that the use of the product is sold as a service. This 
means that the manufacturer and customer’s inter-
ests align with reducing total lifecycle costs and that 
the manufacturer has a large degree of control over 
the product lifecycle. It is also assumed that there are 
no externalities, such that environmental costs and 
financial costs are aligned, and decision problems 
can be reduced to a single objective. Figure 1 
shows the product lifecycle. Most of the data come 
from the MOL stage, e.g. the use phase, which is 
usually the starting point for coupling with AI. The 
additional data coming from the BOL and EOL can, in 
turn, contribute to other lifecycle stages and, even-
tually, the whole lifecycle for optimal decision- 
making. This paper demonstrates using AI to opti-
mise decision-making and planning during the use 
phase of the product lifecycle, i.e. MOL, particularly 
in operations and maintenance. The idea of using AI 
in other product lifecycle phases BOL, EOL is all 
similar. They are all seen as different cases to be 
tailored with AI solutions. This paper particularly 
introduces a typical example using AI for mainte-
nance in detail.

Figure 1. AI for product lifecycle management.
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4. AI system for decision making and planning 
focusing on maintenance

This section explores how to apply a selection of 
general AI techniques for maintenance and sustain-
ability problems. The discussion and case studies are 
centred around the simplified product lifecycle dia-
gram shown in Figure 2, which arose from discussions 
with the participating case companies.

While in Figure 2, AI is illustrated as a central role, in 
practice, it is more likely that it serves in several 
separate systems for particular sub-problems. It is 
important to note that a prerequisite for integrating 
AI into a traditional product lifecycle requires an ade-
quate information technology infrastructure to col-
lect, store and process relevant data. Whether to 
situate AI functionality onboard a product or in 
a centralised location depends on the real-time 
requirements of the task, the available bandwidth, 
and the processing power onboard. Centralisation, 
in theory, can lead to better decision-making by con-
tinuously aggregating information across all products 
and all steps of the lifecycle. For example, knowing 
the current projected maintenance needs of the fleet 
aids individual maintenance technicians and the 
logistics of spare part, inventory management, and 
product design. Most tasks in maintenance do not 
have stringent real-time requirements, which sug-
gests a mostly centralised AI is technologically feasi-
ble. In this regard, other trends such as Internet-of- 
things (IoT), big data infrastructure, and cloud com-
puting can be key enablers of AI.

Typical AI techniques such as machine learning 
attempt to give machines some ability to learn from 
data instead of being explicitly told and programmed 
how to handle every situation (Bishop 2006). The 

discipline is traditionally divided into three types of 
learning: supervised learning, unsupervised learning 
and reinforcement learning (RL). Although the tech-
niques used to solve these problems share theoretical 
foundations with statistics and optimisation, they dif-
fer in learning being more focused on data-driven 
approaches. Data-driven approaches attempt to 
infer patterns and solve problems with little prior 
knowledge, viewing the problem more like a ‘black- 
box’, but this requires sufficient high-quality data to 
achieve reasonable performance. To be able to model 
an arbitrarily complex problem, some sufficiently 
powerful generic model is needed. A popular choice 
is artificial neural networks, which under mild condi-
tions is a universal approximator. In addition, multi- 
layer neural networks can learn multiple layers of 
abstraction under suitable conditions, so-called deep 
learning (Goodfellow, Bengio, and Courville 2016), 
which has recently allowed people to tackle larger 
problem domains than previously possible.

In the following section, the authors identified and 
developed a taxonomy of different types of problems 
in maintenance based on discussions with the case 
companies and how they fit with different AI techni-
ques. As data-driven AI techniques were found to be of 
most interest, that is where the authors chose to focus.

Based on the discussions with the participating 
companies and literature studies, the following tax-
onomy of promising AI applications was identified.

● Modelling failures
○ Diagnostics (what failed)
○ Anomaly detection (has something failed)
○ Prognostics (when will it fail)

● Automatic decision making
○ Planning preventative maintenance (when/ 

what to maintain)
○ Decision support and planning for repair (how 

to repair)
○ Spare part logistics (inventory costs vs down-

time costs)
○ Automatic tuning

4.1 Modelling failures

In many cases, modelling and making inferences from 
data-driven problems can be reduced to the combi-
nation of supervised learning and unsupervised 

Figure 2. The simplified product lifecycle from a maintenance 
perspective.
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learning. Some domain-specific considerations do 
apply when it comes to what models to learn and 
what learning algorithm to use. Black-box models 
typically require the least amount of work. In particu-
lar, deep neural network software tools such as 
TensorFlow (Abadi et al. 2016) are fairly mature. On 
the other hand, data on products can be costly to 
collect, and some prior knowledge may exist, for 
example, in the form of physics-based models of pro-
duct behaviour, or at least on the structure of the 
problem. This suggests using more tailored models, 
and perhaps even probabilistic inference methods are 
needed in case of a major data shortage. However, 
although mature tools also exist for probabilistic 
modelling (Carpenter et al. 2017), such domain- 
specific models typically require more work to imple-
ment. Determining which approach is the most suita-
ble has to be done on a case-by-case basis, but black- 
box models provide a good starting point.

The authors leave implementation details and 
instead focus on the types of problems that could 
be solved with these techniques. The terminologies 
of Jardine, Lin, and Banjevic (2006) were used to 
classify these problems into the broad categories 
below.

4.1.1 Diagnostics
Diagnostics aims to diagnose suspected or actual fail-
ures in a product, such as decision support for the 
maintenance technician onsite or directly to the cus-
tomer. Given sufficient examples of past problems 
and their solutions, bringing this into a machine learn-
ing framework as a supervised learning problem is 
straightforward. Input data x could consist of system 
measurements, product age, use, type, past service 
history, etc. The output is the cause of the problem 
found by the technician. It is then straightforward to 
learn a model y = f(x) to classify new observed inputs 
into likely causes.

This is the most straightforward application of 
machine learning techniques but also the narrowest in 
scope. By leveraging advances in deep learning, even 
high-dimensional and semi-structured data such as text, 
sound or images may be used as inputs. However, 
depending on the complexity of the model, these may 
require a large number of examples to learn a useful 
diagnostic model. Such deep learning is already com-
mon in medical diagnosis based on images (Kermany 
et al. 2018; Litjens et al. 2017), and there are reports of 

General Electrics using such AI to diagnose jet engine 
problems from the sound they make (Sina Tayarani- 
Bathaie, Sadough Vanini, and Khorasani 2014; Woyke 
2017).

4.1.2 Anomaly Detection and Monitoring
Anomaly detection attempts to detect anomalies, which 
can be used to trigger preventive maintenance before 
a suspected fault. A diagnostics model can also be used 
pre-emptively for anomaly detection, and it is some-
times sorted under diagnostics in the maintenance 
literature.

Anomaly detection can also benefit from a different 
machine learning approach than just relying on manu-
ally labelled examples of failures. Since the objective is 
to detect deviations from some normal system state 
that fluctuates over time, a self-supervised or unsuper-
vised approach is also applicable. A self-supervised 
model can be trained to predict a new state based 
on the preceding values. The prediction can then be 
compared with the outcome over time and flag large 
deviations for inspection. Such self-supervised learning 
has the advantage of not needing manual labelling of 
failures, so large quantities of data can be collected via 
other solutions such as IoT devices.

If one suspects there is an important unobserved 
state in the problem, one can also use unsupervised 
learning techniques to infer this and do outlier detection 
on such a ‘hidden’ state instead of directly on 
measurements.

Such self-supervised and unsupervised anomaly 
detection techniques cannot offer a diagnosis or even 
prove that something is wrong. They can, however, 
serve as a warning indicator that the system behaviour 
is unusual, which might warrant further inspection.

4.1.3 Prognostics
Prognostics attempts to build models of when 
a product, or component, will fail. That is, to predict 
its life span, sometimes called the remaining useful 
life (RUL) or time to failure (TTF). It, therefore, looks 
further ahead than the diagnostics models. While 
often used differently, a sufficiently advanced prog-
nostics model can subsume diagnostics in that one 
can compute the currently most likely failure from 
predicted failure times of each part.

While such prognostics models are more powerful 
than diagnosis models, they are also subtly more com-
plex than a typical supervised learning problem. 
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Typically, life span is only observed indirectly via fail-
ures. Such models need to reflect this type of ‘cen-
sored’ data unless the product life span is short 
concerning the data record. An elegant solution is to 
use a hierarchical probabilistic model, where the life 
spans can be treated as an internal state to be inferred 
from observations. This approach has also recently 
been combined with deep neural networks (Hwang 
et al. 2019; L. Wang et al. 2017; Guo et al. 2021a). 
A simpler approach is to split the life span into fixed 
discrete intervals. As the failures in each fixed-time 
interval are known, one can compute the failure prob-
ability. This sidesteps the problem at the price of some 
model fidelity. Deep learning for survival analysis was 
recently surveyed in (Nezhad et al. 2019), which also 
proposed a particular implementation for time-series 
event data, which seems promising for sensor data or 
maintenance history. Several open-source variations 
on this theme also exist, e.g. (Zhao et al. 2019; 
Längkvist, Karlsson, and Loutfi 2014; Spacagna 2018).

4.2 AI-assisted decision making

Decision-making is an important topic in mainte-
nance. For example, if a model over failure probabil-
ities exists or is learned using AI techniques, it can be 
used to optimise the maintenance process. These 
decision problems can be solved algorithmically and 
automated via either classical decision techniques or 
more general AI techniques such as RL. Here are some 
ideas for using AI to automate and improve decision- 
making in maintenance problems.

4.2.1 Planning for preventive maintenance
Learned models of time to failure, per part or product, 
can be used for several maintenance planning pro-
blems. Prognostics models that output a probability 
distribution over failures are ideal for planning main-
tenance and preventive replacements of parts. 
A model that can make informed predictions on a per- 
product basis would also adapt the maintenance on 
a per-product basis. A failure model over simple dis-
crete time intervals can be used to decide which parts 
to preventively replace in a maintenance window, 
while a continuous-time failure model would also 
allow adapting the maintenance intervals themselves.

There are considerable existing work on mainte-
nance scheduling, e.g. (Froger et al. 2016; Duan et al. 
2018; Gustavsson et al. 2014). However, most used 

simpler predictive models than the proposed one in 
this paper and fairly specialised solution techniques. In 
principle, such classical scheduling techniques also carry 
over to machine-learned models. RL can bring to this 
problem a general-purpose approach to find approxi-
mate solutions even for large decision problems.

As mentioned earlier, diagnostics and anomaly 
detection can also be used preventively as an indica-
tor of when to involve a maintenance technician. With 
the growth of IoT, this can also be automated to 
contact a maintenance technician for a closer look. 
When to trigger such an inspection or repair action is 
a decision problem, and an optimal decision policy 
can likewise be found via, e.g. RL. Since anomaly 
detection can typically leverage more data, it appears 
prudent to use a tiered approach with both anomaly 
detection for early warning and more granular time to 
failure models for preventive maintenance or replace-
ment of individual parts.

Finally, products or parts become costlier to main-
tain over time or fall behind new models in energy 
efficiency or other environmental costs. At some point, 
it may be optimal to simply recycle the product (or 
part) and replace it with a new model, illustrated as the 
final arrow in Figure 2. This is also a decision problem, 
and as the acquisition cost has to be weighed against 
discounted future maintenance costs, it is a sequential 
decision problem suitable for RL.

4.2.2 Decision support and planning for repair
A diagnostic model that directly predicts the problem 
cause can trivially be used as onsite decision support 
of which part to replace by a maintenance technician. 
More advanced use of decision support is if a tailored 
diagnostic model of the product exists as a Bayesian 
network, but the cause is unknown yet. Such Bayesian 
networks can be used to automate the troubleshoot-
ing process by automatically creating plans that yield 
the most information about the cause of the problem 
in the fewest steps (Cai, Huang, and Xie 2017).

4.2.3 Spare part logistics
Modern logistics is pushing down storage require-
ments, and when and where to stock parts is crucial 
for lean inventory management. One promising idea 
is to use the powerful learned time to failure models 
to improve predictions. It would even be possible to 
make per-product predictions to push such logistics 
to the limit. Decision theory and RL would give 

8 Y. LIU ET AL.



a principled way to factor in the risks imposed by 
downtimes and service level agreements and weigh 
this against the cost of potentially redundant 
inventory.

4.2.4 Automatic tuning
Finally, with the growth of IoT, it is easier than ever to 
collect diagnostic data from fleets, which can be used 
to learn diagnostic, time to failure and anomaly models 
collectively. This information can also be leveraged and 
flow back out to products again. The authors speculate 
that automatic tuning or self-improvement is 
a potential future application of AI. Some automakers 
are already routinely sending out over-the-air software 
updates. These can adapt parameters that control how 
a product operates, such as an engine or battery, 
potentially impacting lifetime, energy efficiency and 
environmental costs. By leveraging AI, product para-
meters could automatically be optimised based on 
their usage profile.

5. Case study based on RL techniques

Based on a broad review of classic AI techniques in 
connection with the real-world situation and espe-
cially the case companies, the authors consider RL 
most suitable for providing customised decision sup-
port for product lifecycle sustainability, considering 
the case company settings and constraints, including 
e.g. data availability, data processing capability, sta-
keholder preferences, etc. Essentially, RL provides an 
agent with a way to generate a utility function based 
on its experience executing actions in its environment 
and observing the results. Unlike the popular deep 
neural network learning-based approaches that rely 
on big data to obtain acceptable performance, suffi-
cient and high-quality data is typically absent 
throughout the lifecycle. This is due to the lack of 
proper data collection infrastructure, especially with 
long life-span products, e.g. produced decades ago. 
For RL, an implicit part of the observation is whether 
the outcome state is good or bad relative to the 
agent’s performance metric. The agent can then gen-
erate optimal plans that determine the proper action 
to take in any state. This perfectly suits the situation in 
which the scarcity and uncertainties of data across the 
product lifecycle typically exist for companies in real- 
world reality, including the studied case companies.

This section presents a case study of the applica-
tion of discrete, tabular, RL techniques in three differ-
ent maintenance scheduling problems in Company-X. 
See Appendix A and Appendix B for the detailed 
adoption of the RL and Markov decision process 
(MDP) model for this problem.

Company-X is a Swedish manufacturer producing 
industrial vehicles related products to other compa-
nies (Company-Yi), operators of warehouses, work-
shops, manufacturing facilities, etc. Company-X also 
provides maintenance services to its customers as 
part of rental contracts in PSS mode. One of the 
products X has a 36-month warranty, and the com-
pany is interested in determining a maintenance 
schedule to maximise profits for the use of Product- 
X during those 36 months. Either Company-X is inter-
ested in selling maintenance as a service or in advis-
ing companies (Company-Yi) in which the product is 
sold as to a proper maintenance schedule. Since com-
panies use Product-X under different conditions, the 
maintenance schedules may differ from company to 
company and even from different Product-X’s pur-
chased by the same company.

Generally, Product-X can be in one of two states at 
a specific point in time (in this example, t ∈ [0, 35] 
where t represents one of 36 months):

● Failure(t)
● Good(t)

If Product-X fails in a state, Company-Y can repair it or 
not. If the product is good in a state, Company-Y can 
maintain it or not. Each month Product-X functions 
without failure, Company-Y derives a profit of 10,000 
SEK. The cost to repair Product-X on failure is 6,000 
SEK. The cost to maintain Product-X in good states is 
3,000 SEK.

Suppose either Company-X has collected customer 
data on maintenance behaviour from individual com-
panies for 36-month periods, or an individual com-
pany has collected data about maintenance 
behaviour for x number of Product-X that they oper-
ate. Additionally, they have automatically annotated 
profit/loss info as rewards. The collected data does 
not have to be complete, but it is assumed one can 
ascertain the state of Product-X during each measure-
ment. The annotated rewards are based straightfor-
wardly on the profit, cost to repair and cost to maintain 
parameters.
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Each data point may be viewed as a collection of 
4-tuples: (s0, a0, r1, s1). For the 36-month period, it is 
assumed that the data collected is represented as 
an episode consisting of a sequence of 4-tuple 
measurements associated with the Product-X’s. 
The size of the sequence is between 1 and 36 data 
points.

The following provides some examples of 
episodes:

[’good-6ʹ, ’nm’, 10, ’good-7ʹ, ’nm’, 10, ’good-8ʹ, ’nm’, 
10, ’good-9ʹ, ’nm’, 10, ’good-10ʹ, ’m’,

7, ’good-11ʹ, ’nm’, −10, ’fail-12ʹ, ’r’, 4, ’good-13ʹ, 
’nm’, −10, ’fail-14ʹ, ’r’, 4, ’good-15ʹ, ’m’, 7,

’good-16ʹ, ’nm’, 10, ’good-17ʹ, ’m’, 7, ’good-18ʹ, ’m’, 
7, ’good-19ʹ, ’nm’, −10, ’fail-20ʹ, ’r’, 4,

’good-21ʹ, ’nm’, 10, ’good-22ʹ, ’m’, 7, ’good-23ʹ, 
’nm’, 10, ’good-24ʹ, ’nm’, −10, ’fail-25ʹ, ’r’,

4, ’good-26ʹ, ’nm’, −10, ’fail-27ʹ, ’r’, 4, ’good-28ʹ, 
’nm’, 10, ’good-29ʹ, ’m’, 7, ’good-30ʹ, ’nm’,

10, ’good-31ʹ, ’nm’, −10, ’fail-32ʹ, ’nr’, −10, ’fail-33ʹ, 
’nr’, −10, ’fail-34ʹ, ’nr’, −10, ’fail-35ʹ, ’r’,

4, ’good-36ʹ]
[’good-31ʹ, ’m’, 7, ’good-32ʹ, ’nm’, 10, ’good-33ʹ, 

’nm’, −10, ’fail-34ʹ, ’r’, 4, ’good-35ʹ, ’m’, 7, ’good-36ʹ]
[’good-30ʹ, ’nm’, 10, ’good-31ʹ, ’nm’, 10, ’good-32ʹ, 

’m’, 7, ’good-33ʹ, ’m’, 7, ’good-34ʹ, ’m’, 7, ’good-35ʹ, 
’nm’, −10, ’fail-36ʹ]

[’good-22ʹ, ’m’, 7, ’good-23ʹ, ’nm’, −10, ’fail-24ʹ, ’r’, 4, 
’good-25ʹ, ’m’, 7, ’good-26ʹ, ’m’, 7,

’good-27ʹ, ’nm’, 10, ’good-28ʹ, ’nm’, −10, ’fail-29ʹ, 
’nr’, −10, ’fail-30ʹ, ’r’, 4, ’good-31ʹ, ’m’, 7, ’good-32ʹ, 
’nm’, −10, ’fail-33ʹ, ’nr’, −10, ’fail-34ʹ, ’r’, 4, ’good-35ʹ, 
’nm’, −10, ’fail-36ʹ]
The emphasised 4-tuples provide variations on the 
type of measurements one can receive:

● ’good-6ʹ, ’nm’, 10, ’good-7ʹ – In month 6, Product- 
X is in good condition, and no maintenance was 
done. In month 7, it was still observed to be in 
good condition, resulting in a profit of 10 (where 
10 represents 10,000 SEK).

● ’good-31ʹ, ’m’, 7, ’good-32ʹ – In month 31, 
Product-X is in good condition and maintenance 
was done. In month 32, it was still observed to be 
in good condition, resulting in a profit of 
10 − 3 = 7 (where 7 represents 7,000 SEK), and 
the profit was reduced by 3,000 SEK for the 
maintenance cost.

● ’good-33ʹ, ’nm’, −10, ’fail-34ʹ – In month 33, 
Product-X is in good condition, and no mainte-
nance was done. In month 34, it was observed to 
have failed, resulting in a profit loss of −10 
(where −10 represents −10,000 SEK).

● ’fail-24ʹ, ’r’, 4, ’good-25ʹ – In month 24, Product-X 
is in a failure state and repair was done. In month 
25, it is now in good condition, resulting in 
a profit of 4 (where 10–6 = 4 represents 4,000 
SEK), and the profit was reduced by 6,000 SEK for 
the repair cost.

Figure 3 depicts several different ways to apply RL to 
this problem.

In scenario 1, raw data is used to learn a model, and 
the learned model is essentially a finite MDP. Dynamic 
programming techniques can then be applied to the 
model to generate an optimal policy for the learned 
model. Note that if the model being learned is non- 
Markovian, then the resulting Markovian model is 
only an approximation, and the policy generated is 
not guaranteed to be optimal, other than being opti-
mal relative to the finite MDP generated.

Scenarios 2a-b use Q-learning, which is a model- 
free RL approach based on interaction with the envir-
onment. In scenario 2b, raw data is gained through 
interaction with the environment. This can be based 
on simulation or collecting sensor data interactively. 
In this case, one can directly collect data about 
Product-X in operation. This data is used to learn a Q 
function incrementally similar to a value function on 
the state but considers the specific actions used to 
reach states. The Q function is updated per interaction 
(st,at,rt+1, st+1). Given a Q function, one can then gen-
erate an optimal policy.

In scenario 2a, it is assumed that data has been 
collected for previous interactions with Product-X and 
saved in a data repository. One can then use this data 
and input 4-tuples to the Q-learning algorithm to gen-
erate a Q function for the saved data. Scenarios 2a and 
2b are similar, but only 2b is truly interactive and learn-
ing a Q function through live interaction with a system.

5.1 Example 1: A hidden failure rate for Product-X

In example 1, a simulator is used for Product-X, where 
the only information that can be derived by an agent is 
through exploratory interaction with the simulator by 
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entering state-action pairs and recording the reward and 
next state output from the simulator as a result (see 
Figure 4). Of course, the idea is to use the actual product 
and its sensor outputs instead of a simulator which one 
generally does not have in real-world scenarios.

Figure 5 depicts the hidden simulation model 
used for experiments with example 1. A failed pro-
duct at time (t-1) will transition to good at time (t) 
with repair under probability 1 and net profit as 
profit-repair, or will transition to fail at time (t) with-
out repair under probability 1 and net profit as - 
profit. Similarly, a good product at time (t-1) will 
transition to good at time (t) with maintenance 
under probability 1 and net profit as profit- 

maintain, or without maintenance under probability 
1-P(fail, t) and net profit as profit, or will transition to 
fail at time (t) without maintenance under probabil-
ity P(fail, t) and net profit as -profit.

In these experiments, the sample size is set at 100,000 
generated episodes. The optimal policy resulting from 
the application of Q-learning to this scenario is shown in 
Figure 6. The state column lists the conditions of the 
product at month [0, 35], and the action column lists the 
optimal action decisions that should be taken from [no 
maintenance, maintenance, repair, no repair].

From the Q function, one can determine that the 
crossover period, as shown in Figure 7, from doing no 
maintenance to requiring maintenance is in month 6. It 

Figure 4. Example 1: Hidden failure rate for Product-X.

Figure 3. Some RL scenarios.
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means that the optimal action decision should start 
maintenance from month 6 even if the product is in 
good condition to achieve maximum accumulated 
profit.

To validate the result for interactive Q-learning, the 
following methodology is used for the learning phase:

● Do a Q-learning (episode) iteration.
● Generate a (soft) policy from the current Q[s, a] 

table.
● Run this policy in the validation mode against 

the simulator (or sensed environment) x times. In 
this case, x = 400, where 400 episodes are 
generated.

● Generate the mean average reward for the epi-
sodes generated.

● Plot the result as iteration 1 in the graph and 
repeat for y iterations.

Figure 8 shows the convergence of the Q-learning 
algorithm for 100,000 iterations. It can be seen that 
the reward curve is stabilised at around 250, which is 
in line with the M_R policy curve in Figure 9.

Figure 9 shows a post-learning analysis with three 
different policies. NM_NR is a policy that never does 
maintenance and never does repair. If run against 
a simulator/environment, one can see that the mean 

average reward for x episodes fluctuates initially but 
then settles in at a very low rate, around −200, which 
means loss of profit. NM_R is a policy where no main-
tenance is done, but the repair is done when the product 
fails. It does somewhat better in terms of rewards, set-
tling in at around 100. One sees a remarkable improve-
ment in reward for the learned policy M_R output by the 
Q-learning algorithm, settling in the vicinity of 250.

Mean time to failure (MTTF) is a parameter often used 
to measure the quality of a product. MTTF measures the 
average time before the product fails. Figure 10 shows 
the behaviour of a product using the three different 
policies, M_R, NM_NR, and NM_R. One thousand sam-
ples were used to generate the graph. It shows that for 
the learned policy, M_R, there is no failure during the 
36 months. For the NM_R policy, one sees some degra-
dation and a linear increase in MTTF at each time point 
after 7 months. For the NM_NR policy, there is a sharp 
linear increase in the MTTF rate after 5 months.

5.2 Example 2: A hidden failure rate for 
Product-X with energy cost

In example 2, the same assumptions apply as in example 
1. Besides, there is an energy cost when Product-X is not 
maintained or repaired, and the energy cost increases 
with time. In states where one transitions from a good 

Figure 5. Example 1: the simulation model.
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state to a good state without maintenance, the reward is 
profit−energycost(t). In states where one transitions 
from a good state to a fail state without maintenance, 

the reward is −profit − energycost(t). When one is in 
a fail state and transitions to a fail state without repair, 
the reward is −profit−energycost(t). Otherwise, rewards 
remain as in example 1 (see Figure 11).

Figure 6. Example 1: optimal policy.

Figure 7. Example 1: maintenance crossover. Figure 8. Example 1: reward validation.
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Figure 12 depicts the hidden simulation model 
used for experiments with example 2. This is similar 
as explained in Figure 5 but with additional energy-
cost(t) without maintenance or repair.

In these experiments, the sample size is set at 
100,000 generated episodes. The optimal policy 
resulting from the application of Q-learning to this 
scenario is shown in Figure 13. The state column lists 
the conditions of the product at month [0, 35], and 
the action column lists the optimal action decisions 
that should be taken from [no maintenance, mainte-
nance, repair, no repair].

From the Q function, one can determine that the 
crossover period, shown in Figure 14, from doing no 
maintenance to requiring maintenance is in month 4. 
It means that the optimal action decision should start 

maintenance from month 4 even if the product is in 
good condition to achieve maximum accumulated 
profit.

The same validation methodology as used in exam-
ple 1 is also used for example 2. Figure 15 shows the 
convergence of the Q-learning algorithm for 100,000 
iterations. It can be seen that the reward curve is 
stabilised at around 250, which is in line with the 
M_R policy curve in Figure 16.

Figure 16 shows a post-learning analysis of the 
mean reward with three different policies. NM_NR, 
NM_R, and M_R. Notice there is a significant shift for 
the NM_NR and NM_R policies where there are profit 
loss and no profit, respectively.

Figure 17 shows the MTTF behaviour of a product 
using the three different policies, M_R, NM_NR, and 
NM_R. One thousand samples were used to generate 
the graph.

Figure 9. Example 1: mean rewards.

Figure 10. Example 1: MTTF.

Figure 11. Example 2: hidden failure rate with energy cost.

Figure 12. Example 2: the simulation model.
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5.3 Example 3: Learning a model

For example 3, the same criteria as in example 1 were 
assumed, with the same hidden failure rate. The goal 
is to learn a model, an MDP, that supports the raw 
data generated through interaction with a simulator/ 
environment. The learning scenario 1 discussed ear-
lier in Figure 3 was used.

Begin by generating 10,000 episodes through 
interaction with a simulator/environment to gener-
ate 4-tuples (st,at,rt+1, st+1). Then learn probability 
distributions for st,at, pairs, P (St+1, Rt+1 | St,At), by 
counting frequencies. Recall that from such 
a probability distribution, one can generate all 
aspects of a finite MDP. The resulting model is 
shown in Appendix C.

Given this model, one can use dynamic program-
ming techniques to generate a value function, V * 
from the model. Using V *, one can then generate 
an optimal policy for the model. As it turns out, the 
optimal policy generated is exactly the policy learned 
in example 1. This is not too surprising since the raw 

data to learn the model was generated using 
a simulation model that was the same for interactive 
Q-learning.

In Figure 18, the learned failure rate is compared 
with the simulated failure rate. One can see that the 
learned failure rate is a close fit to the simulated fail-
ure rate.

5.4 Discussion

5.4.1 The characteristics of RL technique
RL extends machine learning beyond just modelling 
and prediction to also decision-making. The algorithm 
is a rational agent that learns how to act in an uncer-
tain environment by trial and error. The agent need 
only be given the problem state at the current time xt 

and the immediate reward rt of that state. The reward 
can be seen as the profit of a business decision, or 
equivalently the inverse cost, material and environ-
mental. Such profits and costs are condensed into one 
number, the reward, which the agent uses as 

Figure 13. Example 2: optimal policy.
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feedback on improving. As seen in Figure 19, at each 
step, the agent will have to select an action at, which 
will result in a new problem state and a new reward. 
This is a sequential decision problem as the sequence 
of actions determines the resulting sequence of states 
and rewards. The agent will have to plan a number of 
steps into the future to find the sequence of actions 
that maximises the total reward over time. In classic 
RL, no prior knowledge is needed of either the 
rewards or how the problem state changes in 
response to an action, xt+1 = f (xt, a).

RL provides a way of learning behaviour that does 
not rely on being provided with correct examples. In 
many real-world cases, the rewards and costs of the 
problem states are known and easy to define, and 

Figure 14. Example 2: maintenance crossover.

Figure 15. Example 2: reward validation.

Figure 16. Example 2: mean rewards.

Figure 17. Example 2: MTTF.

Figure 18. Comparison of learned and simulated failure rate.
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therefore such algorithms can learn autonomously, 
either in simulation or directly in the target environ-
ment. Since they encompass both learning and plan-
ning, such algorithms appear naturally suited for use 
cases in robotics and autonomy. As RL is applicable to 
any decision-making task under uncertainty, it has 
also found uses outside robotics and simulated 
worlds. For example, in a wide variety of operations 
research problems like inventory management and 
scheduling (Powell and Topaloglu 2006), considerable 
uncertainty and approximations may be needed as 
exact solution techniques are infeasible to compute. 
As many real-world business problems fall in this 
category, RL can be seen as a promising avenue for 
approaching complex sequential business decisions.

5.4.2 Application considerations
Real-world companies, including the studied case 
companies, need a robust method to handle situa-
tions with the scarcity and uncertainties of data across 
the product lifecycle to support decision-making. 
While machine learning may appear like a silver bul-
let, the key limitation of learning approaches is the 
availability of large and useful data sets for the task at 
hand. This can be a bottleneck in many traditional 
industrial and manufacturing sectors where margins 
are small, and collecting data can require investment 
in sensors, coordination with customers and infra-
structures. Secondary bottlenecks of machine learn-
ing include computational requirements, primarily to 
train these models from data, but potentially also to 
use them for making new predictions.

Common off-the-shelf techniques for black-box 
models work best when there is ample useful data 
available, and either there is a moderate number of 
relevant input variables, or the complexity of the 
problem is low. If there is a great number of 
relevant input variables, off-the-shelf tools for 
black-box models may scale poorly. However, for 
problem domains with an inherent hierarchical 
structure such as text, image and speech, deep 
learning techniques can leverage large data sets 
and GPU hardware to overcome this limitation. In, 
e.g., image classification tasks, input images may 
contain 1 million pixel values, and deep learning 
techniques have come to dominate the field, but 
decision-making is far from that.

Problems with a small amount of data in relation to 
the number of variables remain a problem. It is also 
not uncommon for a seemingly large data set to 
contain a series of small-data problems. In these 
cases, one can benefit from including prior knowl-
edge about the task one is trying to learn either 
directly on parameter values or the structure of the 
problem. Probabilistic approaches are the most theo-
retically sound framework for incorporating such prior 
knowledge (Bishop 2006; Gelman et al. 2013), where 
they can intuitively be visualised as inference in 
a Bayesian network, structured after the task at 
hand. A significant advantage of probabilistic learning 
is that it considers the level of confidence in the 
learned model and allows easier introspection of the 
results. However, such Bayesian learning techniques 
can be too computationally intensive, and probabil-
istic models therefore often require tailored solutions.

Using machine learning to learn a model of some 
business problem is often to improve decision- 
making. Initially, as decision support for manual deci-
sion-making, these could also be automated via, e.g. 
RL techniques. Another common use case is anomaly 
detection, automatically finding and flagging ‘out-
liers’, data points that may represent abnormal beha-
viour. Once these have been identified, domain 
experts can examine them to figure out what, if any-
thing, is wrong. For example, an identified anomaly in 
component longevity may be detected in 
a manufacturing process to examine the underlying 
cause. As most off-the-shelf machine learning tools 
focus more on mean-value predictions, being right on 
average rather than rare occurrences, accurate anom-
aly detection may require more tailored probabilistic 

Figure 19. RL extends learning to simultaneously solving 
a decision problem. Given just a problem state xt and a reward 
for that state rt, the agent will try to learn how to maximise the 
profits or minimise the costs over time. This can be visualised as 
a Bayesian network augmented with action nodes, where at 
each point in time t it has to make a decision based on the 
history of observed states and rewards.
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approaches. In summary, RL is suitable and appropri-
ate for the decision-making problem defined in the 
context of this paper.

6. Conclusions

In this study, the authors proposed using AI to optimise 
decision-making and planning based on historical and 
real-time data and human expert knowledge. The appli-
cation of AI is investigated for decision-making and 
planning towards sustainable operations in product life-
cycle phases. RL is adopted as the most suitable AI 
technique RL for the optimal decision-making purpose, 
which is validated through a real industry case. Firstly, 
the key stages are identified in which AI can support 
decision-making across the product lifecycle. Then, typi-
cal cases and a generalised method and procedure are 
proposed with AI for decision support based on lifecycle 
data (such as data obtained from operations and main-
tenance) to improve sustainability. An illustrative case 
study, combining with modelling and simulation, is 
conducted to demonstrate the feasibility and perfor-
mance of the proposed method using AI to improve 
the decision-making and planning in the MOL stage. 
The proposed method can achieve optimal decision 
policy to achieve maximum accumulated profit.

The main contributions of this paper over the exist-
ing works are 1) The data came from real industry, and 
the proposed method was empirically applied with 
action research. 2) The AI-based decision process cov-
ered a wider lifecycle stage. 3) It contributed to sus-
tainability goals, particularly prolonging the product 
lifetime and reducing environmental impact. In sum-
mary, this paper enriches the knowledge of using AI 
techniques to optimise decision-making and planning 
for achieving optimal sustainability throughout the 
product lifecycle.

The limitation of the current study is that it mainly 
focuses on the MOL phase, and the optimisation is 
designed for each lifecycle phase. In future research, 
the optimisation will be expanded to cover the entire 
lifecycle phases. It will combine data and knowledge 
obtained and derived by AI from all lifecycle phases to 
further enhance the optimisation towards sustainability.
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Appendices

Appendix A. RL and maintenance scheduling

A major topic in the area of sustainability and maintenance is 
sustainable maintenance scheduling. RL is used as 
a promising AI technique and is particularly good for dealing 
with uncertainties and data scarcity, and probabilistic, 
model-based approaches to RL enable reducing the negative 
effects of model errors (Deisenroth, Fox, and Rasmussen 
2015). Given a product or product component, maintenance 
scheduling can be influenced by many factors such as profit, 
cost to maintain, cost to repair, energy costs, degrading 
health conditions, etc. This case study and associated experi-
ments are intended to provide a conceptual landscape for 
how (tabular) RL can be used in this context. A subset of the 
experimental ideas considered is loosely based on a related 
paper by Knowles, Baglee, and Wermter (2011), in which they 
study maintenance planning. This overview is based on the 
seminal book by Sutton and Barto (2018) and re-paraphrased. 
Figure A.1 provides the basic idea behind RL.

An agent and its environment interact at each of 
a sequence of (discrete) time steps, t = 0, 1, 2, 3, . . . This 
results in a trajectory of state S, action A, and reward R, e.g. 
S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . The goal of an agent 
should be to learn an optimal policy, from its experience 
while interacting with the environment, that determines 
which action to execute in each state to maximise its 
accumulated rewards. The reinforcement signal or reward 
is assumed to be provided by nature or the environment in 
question. For instance, sensor streams of data from 
a product could characterise the environment, where the 
product state is summarised, and the reward, positive or 
negative, is associated with the product’s health status.

There are four major elements in an RL system:

● Policy – provides a behavioural specification of what an 
agent should do at each state.
○ A policy is a state to action mapping that can be deter-

ministic or stochastic.
● Reward signal – defines the goal in an RL problem.

○ A reward signal determines the immediate, intrinsic value 
of a state.

○ Rewards determine good and bad events, and nature 
determines rewards.

○ Rewards are, in general, stochastic functions of the state 
of an environment and the actions taken.

○ The objective of an agent is to maximise the total reward 
it receives over the long run based on its interactions with 
the environment.

○ Agent goals are specified declaratively through the spe-
cification of direct rewards for states in the learning 
domain.

● Value function – specifies what is good in the long run for 
the agent in terms of states.
○ The value of a state is the total amount of reward an 

agent can expect to accumulate over the future, starting 
from an initial state.

○ Actions are then made based on value judgements about 
the state.

○ RL is, in large part, about value estimation and efficient 
ways in which it can be determined based on interaction 
with the environment.

○ Once one has a value function, either stochastic or deter-
ministic, one can determine an optimal policy.

● Model – models mimic the behaviour of an environment 
and allow agents to infer their behaviour.
○ Model-based reinforcement methods assume a model 

and use it to determine optimal policies. Consequently, 
it is a form of planning.

○ Model-free reinforcement methods use trial and error 
interaction in an attempt to learn models. Once such 
models are learned, model-based methods can be used 
to generate optimal policies.

RL is related to several other AI techniques, such as AI search 
and planning. Model-based methods such as value or policy 
iteration use dynamic programming are the basis for generat-
ing optimal policies. These policies can be viewed as universal 
plans in the automated planning research area, where the 
search is used to generate plans in various ways. Essentially, 

Figure A1. RL overview.
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dynamic programming does a breadth-first search on an 
inverse search graph to generate cost-to-goal measures for 
each state in the search tree, where each leaf is a policy. The 
cost-to-goal measures are, in fact, components in a value func-
tion. According to Poole and Mackworth (2017), dynamic pro-
gramming is useful when:

● Goal nodes are explicit. General AI search and planning can 
use functions to recognise goal states.

● The lowest cost path is needed.
● The graph is finite and small enough to use a table to store 

cost-to-goal measures for each state.
● The goals do not change very often (since dynamic pro-

gramming is a form of compilation for a single goal).
● The generated policy is used many times, so the cost of 

generating an explicit table can be amortised.

There are several problems with dynamic programming:

● The technique only works when the graph is finite, and the 
cost-to-goal table is small enough to fit into memory.

● An agent would have to re-compute a policy for each 
different goal.

● The time and space required are linear in the size of the 
graph, where the graph size for finite graphs is typically 
exponential in the path length.

Automated planning and search require explicit models, as 
do tabular-based RL methods. On the other hand, the search 
graph does not have to be finite, as goal specification is much 
more generic, and general-purpose planners can easily be 
reused for diverse goals.

Appendix B. Finite Markov decision processes 
(MDPs)

Finite Markov decision processes (MDPs) offer an elegant 
mathematical model of the RL problem. An MDP consists of:

(i) i. S – a finite set of states.
(ii) ii. A – a finite set of actions.

(iii) iii. R – a finite set of rewards.
(iv) iv. A(s) – a specification of applicable actions for each state.
(v) St,Rt – a set of discrete random variables for each timepoint 

with probability distributions dependent only on the pre-
vious state and action.

For particular values of St ∈ S, Rt ∈ R, there is a probability 
of these values occurring at time t, given particular values of 
the previous state and action: 

"s0; s 2 S; r 2 R; a 2 A;

pðs0; rjs; aÞ _¼ Pr fSt ¼ s0; Rt ¼ rjSt� 1 ¼ s;At� 1 ¼ ag (B1) 

where p is a deterministic function of four arguments that 
specifies the probability distribution for each choice of s and a: 

X

s02S

X

r2R

pðs0; rjs; aÞ ¼ 1;"s 2 S; a 2 A (B2) 

The dynamics of an MDP is completely characterised by the 
function p. State-transition probabilities are defined in terms of 
p as:

p: S × S × A → [0, 1], where, 

Figure B1. Q-Learning using interaction.
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pðs0; rjs; aÞ _¼ Pr fSt ¼ s0jSt� 1 ¼ s;At� 1 ¼ ag ¼
X

r2R

pðs0; rjs; aÞ

(B3) 

Expected rewards for state-action pairs are defined in terms of 
p as:

p: S × A → ℝ, where, 

r s; að Þ _¼E½RtjSt� 1 ¼ s;At� 1 ¼ a� ¼
X

r2R

r
X

s02S

pðs0; rjs; aÞ (B4) 

Expected rewards for state-action-state tuples are defined in 
terms of p as:

p: S × A × S → ℝ, where, 

r s; a; s0ð Þ _¼E½RtjSt� 1 ¼ s;At� 1 ¼ a; St� 1 ¼ s0� ¼
X

r2R

r
pðs0; rjs; aÞ

pðs0js; aÞ

(B5) 

The Q-learning algorithm is a temporal difference algorithm. 
For each interaction with the environment, it updates the 
Q function using the following update equation: 

Q st; at½ � ¼ Q st; at½ � þ α�½rtþ1 þ γ� max
a2A stþ1ð Þ

Q stþ1; a½ � � Q st; at½ ��

(B6) 

The parameter γ takes a value in the interval [0, 1] and is 
a discount rate that determines how much weight should 
be placed on future rewards compared to more recent 
rewards. γ = 0 is a completely greedy algorithm taking 
no account of future rewards, and γ = 1 takes account of 
all future rewards but only works in the case where epi-
sodes terminate in a finite number of steps.

The parameter α takes a value in the interval [0, 1] and 
determines the learning rate of the algorithm. Usually, this 
parameter must be determined empirically. For the experi-
ments, α = 0.85, a constant rate was used. Generally, variable- 
rate parameterisation is used. The value of both parameters 
may not be stationary but is often a function of state counts or 
time.

Figure B.1 provides a sketch of the Q-learning algorithm 
used in the experiments with direct interaction through simu-
lation or sensing.

The function call update_Q(Q,state0,action0,reward1,state1) 
uses the update equation (A6).

Figure B.2 provides a sketch of the Q-learning algorithm 
used in the experiments that iterate on raw data episodes 
provided to the algorithm.

The function call update_Q(Q,state0,action0,reward1,state1) 
uses the update equation (6).

Figure B2. Q-Learning using raw data.
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Appendix C. MDP model depicting the 
36 months

Figure C1. Months 0–9.
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Figure C2. Months 10–19.
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Figure C3. Months 20–29.
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Figure C4. Months 30–35.
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