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Neuro‑adaptive augmented 
distributed nonlinear dynamic 
inversion for consensus 
of nonlinear agents with unknown 
external disturbance
Sabyasachi Mondal* & Antonios Tsourdos

This paper presents a novel neuro-adaptive augmented distributed nonlinear dynamic inversion 
(N-DNDI) controller for consensus of nonlinear multi-agent systems in the presence of unknown 
external disturbance. N-DNDI is a blending of neural network and distributed nonlinear dynamic 
inversion (DNDI), a new consensus control technique that inherits the features of Nonlinear Dynamic 
Inversion (NDI) and is capable of handling the unknown external disturbance. The implementation 
of NDI based consensus control along with neural networks is unique in the context of multi-agent 
consensus. The mathematical details provided in this paper show the solid theoretical base, and 
simulation results prove the effectiveness of the proposed scheme.

Cooperation among agents, i.e., the consensus, is a fundamental and essential requirement to execute a com-
plex task cooperatively. In a real-world scenario, the agents face a variety of issues while making the consensus. 
These issues are associated with communication among the agents, plant’s uncertainty and unknown external 
disturbances. The former does not affect the agent dynamics, but the latter does a lot resulting in a mission 
failure. Considering the importance of a mission, the researchers focused on designing adaptive controllers 
capable of handling unknown disturbances. These controllers implement adaptive control laws, including the 
neural network (NN) based approximation scheme and the conventional linear or nonlinear control theory 
depending on the plant dynamics. The primary reason for selecting the NN is that it is an efficient technique to 
approximate unknown nonlinear functions1, especially the radial basis function (RBF) neural network, which is 
widely used due to its simple structure. Such neuro-adaptive controllers are proposed to solve a variety of con-
sensus problems. A few examples are mentioned here. A leader-follower synchronization problem for uncertain 
dynamical nonlinear agents was solved using neuro-adaptive scheme2. A cooperative tracking problem of agents 
with unknown dynamics3 was proposed using a neural network-based controller. A bipartite consensus4 was 
achieved using a neural network to learn the uncertainties of agents. Another leader-follower output consensus 
problem was solved5 using a neuro-adaptive controller for a class of uncertain heterogeneous non-affine pure-
feedback multi-agent systems in the presence of time-delay and input saturation. An adaptive leader-following 
consensus control for a class of strict-feedback agents6 was solved using neuro-adaptive control. An exciting 
example of distributed finite-time formation tracking control problem for multiple unmanned helicopters was 
presented by Wang et al.7. The authors used the radial basis function neural network (RBFNN) technique to 
design a novel finite-time multivariable neural network disturbance observer (FMNNDO) to approximate the 
unknown external disturbance and model uncertainty law. In addition to nonlinear systems, a neural-network-
based leaderless consensus control problem of fractional-order multi-agent systems (FOMASs) with unknown 
nonlinearities and unknown external disturbances was reported8. The effect of actuator fault on consensus 
asymptotic convergence of nonlinear agents with unknown dynamics was discussed by Li et al.9. Other examples 
include event-triggered consensus control problem for nonstrict-feedback nonlinear systems with a dynamic 
leader10, fixed-time leader-follower consensus problem for multi-agent systems (MASs) with output constraints, 
unknown control direction, unknown system dynamics, an unknown external disturbance11, stochastic nonlinear 
multi-agent systems with input saturation12 etc.
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These papers implemented a variety of nonlinear controllers (e.g. feedback linearization, Lyapunov function, 
sliding mode, backstepping etc.) and a neural network approximation for uncertainty and unknown disturbances. 
In this paper, we have presented a neuro-adaptive augmented distributed controller, which is designed based 
on Distributed Nonlinear Dynamic Inversion (DNDI)13. We named it N-Distributed NDI (N-DNDI). It can be 
mentioned that the adaptive control expression in the papers mentioned earlier contains a linear or nonlinear 
error feedback term, and an adaptive term is added to it. However, N-DNDI is a new neuro-adaptive structure 
augmented in the DNDI frame. The primary reasons for selecting NDI are given as follows.

•	 The NDI is an effective way to design a controller for plants with nonlinear dynamics. The nonlinearities in 
the plant are eliminated by using feedback linearization theory. Moreover, the response of the closed-loop 
plant is similar to a stable linear system.

•	 The NDI controller has many advantages. Examples of these advantages include 1. simple and closed-form 
control expression, 2. easily implementable, global exponential stability of the tracking error, 3. use of non-
linear kinematics in the plant inversion, 4. minimize the need for individual gain tuning, etc.

Many researchers have used NDI to solve their research problems. Enns et al.14 implemented NDI to design a 
flight controller. Singh et al.15 developed a controller for autonomous landing of a UAV. Padhi et al.16 described 
reactive obstacle avoidance schemes for UAVs in a Partial Integrated Guidance and Control (PIGC) framework 
using neuro-adaptive augmented dynamic inversion. Mondal et al.17 applied NDI to propose a formation flying 
scheme. They presented how the NDI is implemented for tracking the leader’s commands in terms of coordi-
nate, velocity, and orientation. Caverly et al.18 used NDI to control the attitude of a flexible aircraft. Horn et al.19 
designed a controller of rotorcraft using Dynamic Inversion. Lombaerts et al.20 proposed NDI-based attitude 
control of a hovering quad tilt-rotor eVTOL Vehicle.

The contribution is given as follows.

•	 In this paper, a novel neuro-adaptive Distributed NDI (N-DNDI) is proposed to achieve the consensus among 
a class of nonlinear agents in the presence of unknown external disturbance. It can be mentioned that DNDI 
is a new consensus protocol13 and augmentation of the neural network with DNDI is a new formulation. 
Hence, this is new in the context of MASs and not reported in the literature.

•	 The main advantage of N-DNDI is it inherits the features of NDI. Moreover, the augmentation of the neural 
network provides a very good approximation of the unknown external disturbances. Therefore, N-DNDI 
is a perfect combination for designing consensus controllers for nonlinear agents. The realistic simulation 
study justifies the effectiveness of blending DNDI and neural networks.

•	 The formulation to accommodate the neuro-adaptive structure in the DNDI framework is a significant 
contribution. Moreover, the mathematical details for convergence are provided to show the solid theoretical 
base of this new controller.

The rest of the paper is organized as follows. In section “Preliminaries”, preliminaries are given. Section “Prob-
lem formulation” presents the problem definition. The mathematical details of the DNDI are provided in sec-
tion “Nominal distributed nonlinear dynamic inversion (DNDI) controller”. The mathematical details of N-DNDI 
are given in section “Neuro-adaptive augmented DNDI for consensus”. The simulation study is presented in 
section “Simulation results”. The conclusion is given in section “Conclusion”.

Preliminaries
The topics which are relevant to the problem considered in this paper are given in this section.

Consensus of multiple agents.  The consensus of MASs on communication network is discussed in this 
section. The definition of the consensus is given as follows.

Definition 1  Let us consider a MASs with N agents, where Xi , (i = 1, 2, 3, ...,N) denotes the states of the ith 
agent. The MASs will achieve the consensus if � Xi − Xj �→ 0,∀i �= j as t → +∞.

The consensus protocol aims to minimize the error in similar states of the individual agent with their neigh-
bour by sharing information over the communication network, which is generally described using graph theory.

Graph theory.  The communication among the agents can be represented by a weighted graph written by 
G = {V ,E} . The vertices V = {v1, v2, . . . , vN } of the graph denote the agents, and the set of edges, denoted by 
E ⊆ V × V  , represents the communication among the agents. The weighted adjacency matrix A = [aij] ∈ R

N×N 
of G is denoted by aij > 0 if (vj , vi) ∈ E , otherwise aij = 0 . There is no self loop in the graph. This fact is expressed 
by selecting the diagonal elements of the adjacency matrix A as zero, i.e., i ∈ V  , aii = 0 . The degree matrix 
is denoted by D ∈ R

N×N = diag{d1 d2 . . . dN } , where di =
∑

j∈Ni
aij . The Laplacian matrix is written as 

L = D − A . A graph with the property that aij = aji is said to be undirected graph. If any two nodes vi , vj ∈ V  , 
there exists a path from vi to vj , then the graph is called a connected graph. In this paper, we suppose that the 
topology G of the network is undirected and connected.
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Radial basis function neural networks (RBFNNs).  Due to the ‘linear in the weight’ property, the Neu-
ral networks are widely implemented to approximate unknown functions and the radial basis function neural 
network (RBFNN) is a good candidate21. A continuous unknown nonlinear function ζ(X) : Rn → R

m can be 
approximated by

where X ∈ R
n is input vector, WNN ∈ R

q×m is the weights of RBFs, �(X) = [φ1(X) . . . φq(X)]T denotes the 
basis function vector. ‘q’ denotes the number of neurons. ǫX ∈ R

m is the approximation error. The ith basis 
function φi is given by

where µi ∈ R
n is the center of the receptors and ψi is width of the ith gaussian function.

Useful lemma.  The useful lemmas used in this paper are given as follows.

Lemma 1  22 The Laplacian matrix L in an undirected graph is semi-positive definite, it has a simple zero eigenvalue 
and all the other eigenvalues are positive if and only if the graph is connected. Therefore, L is symmetric and it has 
N non-negative, real-valued eigenvalues 0 = �1 ≤ �2 ≤ . . . ≤ �N.

Lemma 2  23 Let ψ1(t),ψ2(t) ∈ Rm be continuous positive vector functions, by Cauchy inequality and Young’s 
inequality, there exists the following inequality:

where

Lemma 3  24 Let R(t) ∈ R be a continuous positive function with bounded initial R(0). If the inequality holds 
Ṙ(t) ≤ −βR(t)+ η where, β > 0, η > 0 , then the following inequality holds.

Problem formulation
In this section, the problem definition is given. The objective is to design a neuro-adaptive consensus protocol 
that enables a class of nonlinear agents to achieve the consensus in the presence of external disturbance. Let us 
consider a group of N nonlinear agents. They are connected by the undirected and connected network topology. 
All the agents are homogeneous, i.e., they have similar dynamics. The dynamics of ith agent is given by Eqs. 
(5)–(6) as follows.

where, Xi ∈ R
n , Ui ∈ R

n are states and control respectively. f is a continuously differentiable vector-valued 
function representing the nonlinear dynamics. Di(Xi) ∈ R

n is the unknown bounded and smooth external 
disturbance term with ∀t ≥ 0.

Assumption 1  The matrix g(Xi) is invertible for all time.

Nominal distributed nonlinear dynamic inversion (DNDI) controller
It is relevant to get an overview of the DNDI controller13 and its convergence behaviour before augmenting 
neuro-adaptive structure is explained.

Brief overview of DNDI.  A brief overview of DNDI controller is presented here. The block diagram of the 
consensus control scheme with nominal DNDI is shown in the Fig. 1.

The nominal dynamics of ith agent is given as follows.

(1)ζ(X) = WT
NN�(X)+ ǫX

(2)
φi(X) = exp

(X−µi )
T (X−µi )

ψ2
i ; i = 1, 2, . . . , q.

(3)

ψ1(t)ψ2(t) ≤� ψ1(t) �� ψ2(t) �

≤ � ψ1(t) ��
�

+ � ψ2(t) �ζ
ζ

1

�
+ 1

ζ
= 1

(4)R(t) ≤ R(0)e−βt + η

β

(

1− e−βt
)

(5)Ẋi = f (Xi)+ g(Xi)Ui + Di(Xi)

(6)Yi = Xi

(7)Ẋi = f (Xi)+ g(Xi)Uid
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where, Xi ∈ R
n , Uid ∈ R

n . ei denotes the consensus error of ith agent given by

where ei ∈ R
n , d̄i = (di ⊗ In) ∈ R

n×n , āi = (ai ⊗ In) ∈ R
n×nN , and X = [XT

1 XT
2 . . . XT

N ]T ∈ R
nN . In is n× n 

identity matrix. ‘ ⊗ ’ denotes the Kroneker product. Enforcing the first order error dynamics we get

Differentiation of Eq. (9) yields

Substitution of the expressions for ei and ėi in Eq. (10) gives

Simplification of Eq. (12) gives the expression of control Uid for ith agent as follows.

Convergence of DNDI.  Convergence study of DNDI is presented here. Let us consider a smooth scalar 
function given by

L⊗ In can be written as

where, S ∈ R
nN×nN is the left eigenvalue matrix of L⊗ In , � =

(

diag{0, �2(L), �3(L), . . . , �N (L)} ⊗ In

)

∈ R
nN×nN 

is eigenvalue matrix, STS = SST = InN×nN.

(8)Yi = Xi

(9)ei = d̄iXi − āiX

(10)ėi + Kiei = 0

(11)
ėi = d̄iẊi − āiẊ

= d̄i
(

f (Xi)+ g(Xi)Uid

)

− āiẊ

(12)d̄i
(

f (Xi)+ g(Xi)Uid

)

− āẊ + Ki(d̄iXi − āiX) = 0

(13)Uid = (g(Xi))
−1

[

−f (Xi)+ d̄−1
i (āiẊ − Ki(d̄iXi − āiX))

]

(14)V = 1

2
X
T (L⊗ In)X

(15)L⊗ In = S�ST

Figure 1.   Block diagram of distributed NDI or DNDI.
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w here  �̄ =
(

diag{�2(L), �2(L), �3(L), . . . , �N (L)} ⊗ In

)

∈ R
nN×nN  ,  E = [eT1 e

T
2 . . . eTN ]T ∈ R

nN  ,  and 
� = S�̄−1ST ∈ R

nN×nN.

Remark 1  It can be observed from Eqs. (14) and (16) that

Remark 2  According to Lemma 1, �2 > 0 . Hence, �̄ is invertible.

Remark 3  � = S�̄−1ST is positive definite matrix. Hence, V is positive definite subject to consensus error and 
qualify for a Lyapunov function.

Differentiating Eq. (14), we get

where, E = [eT1 e
T
2 . . . eTN ]T ∈ R

nN . Substituting the control Uid expression in Eq. (19) yields

According to Lemma 2, we can write

Substituting the inequality relation in Eq. (20)

Let us design the gain Ki as follows.

Eq. (22) is written as

(16)

V = 1

2
X
T (L⊗ In)X

= 1

2
X
TS�STX

= 1

2
X
TS

√
�
√
�STX

= 1

2
X
TS

√

��̄
√

�̄−1
√

�̄−1
√

�̄�STX

= 1

2
X
TS��̄−1�STX

= 1

2
X
TS�

(

STS
)

�̄−1
(

STS
)

�STX

= 1

2
X
T
(

S�ST
)(

S�̄−1ST
)(

S�ST
)

X

= 1

2
X
T (L⊗ In)�(L⊗ In)X

= 1

2
ET�E

(17)
�min(�)

2
� E �2≤ V ≤ �max(�)

2
� E �2

(18)V = 1

2
X
T (L⊗ In)X = 1

2
X
TE

(19)V̇ = X
T (L⊗ In)Ẋ = ET Ẋ =

N
∑

i=1

e
T
i

[

f (Xi)+ g(Xi)Uid

]

(20)

V̇ =
N
∑

i=1

e
T
i

[

d̄−1
i (āiẊ − Kiei)

]

=
N
∑

i=1

−e
T
i d̄

−1
i Kiei +

N
∑

i=1

e
T
i d̄

−1
i āiẊ

(21)e
T
i d̄

−1
i āiẊ ≤� ei � � d̄−1

i āiẊ �≤ � ei �2
2

+ � d̄−1
i āiẊ �2
2

(22)V̇ ≤
N
∑

i=1

[

−e
T
i d̄

−1
i Kiei +

� ei �2
2

+ � d̄−1
i āiẊ �2
2

]

(23)Ki = d̄i

(

1

2
+ αi

2
�max(�)

)
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where, η =
∑N

i=1
�d̄−1

i āiẊ�2
2  . Applying Lemma 3 we get

Hence, we conclude that V is bounded as t → ∞ . In addition, we show the Uniformly Ultimate Boundedness 
(UUB) here.

Using Eq. (17), Eq. (25), and Lemma 1.2 presented by Ge et al.24 we can write

Eq. (26) can be written as follows.

It can be observed that, if V(0) = η
αi

 then

∀t ≥ 0 and κ∗ =
√

2η
αi�min(�)

 . If V(0)  = η
αi

 then for any given κ > κ∗ there exist a time T > 0 such that ∀t > T , 
� E �≤ κ.

Therefore, we can conclude

Neuro‑adaptive augmented DNDI for consensus
Before going to the main derivation of Neuro-adaptive DNDI, we present the philosophy of neuro-adaptive 
control design25.

Philosophy of neuro‑adaptive control.  The sole objective of the design is to drive the actual state X to 
desired state Xd . The scheme adopted is to make actual state X to track the desired or nominal state Xd through 
the virtual state Xa as shown in Fig. 2.

The tracking of X to Xa and Xa to Xd is achieved by enforcing error dynamics to obtain the control considering 
nonlinear plant dynamics. We use the same philosophy to design the Neuro-adaptive distributed NDI controller 
in the next section.

Mathematical details of neuro‑adaptive augmented DNDI (N‑DNDI).  Neuro-adaptive augmented 
DNDI is a blending of neuro-adaptive control and DNDI. The block diagram of the control scheme is shown in 
Fig. 3. The portion of the diagram inside the blue border is the proposed design of neuro-adaptive controller.

In case of neuro-adaptive augmented DNDI, the consensus error of ith agent is defined such that, the virtual 
state of ith agent, i.e., Xai ∈ R

n reach consensus with the neighbours. Therefore, the consensus error of ith agent 
is given by

(24)
V̇ ≤

N
∑

i=1

[

−αi

2
�max(�) � ei �2 +

� d̄−1
i āiẊ �2
2

]

≤ −αiV + η

(25)V ≤ η

αi
+

(

V(0)− η

αi

)

e−αi t

(26)
�min(�)

2
� E �2≤ V ≤ η

αi
+

(

V(0)− η

αi

)

e−αi t

(27)

�min(�)

2
� E �2 ≤ η

αi
+

(

V(0)− η

αi

)

e−αi t

� E � ≤

√

√

√

√

2 η
αi

+ 2
(

V(0)− η
αi

)

e−αi t

�min(�)

(28)� E �≤ κ∗

(29)κ =

√

√

√

√

2 η
αi

+ 2
(

V(0)− η
αi

)

e−αiT

�min(�)

(30)lim
t→∞

� E �= κ∗

Figure 2.   Philosophy of neuro-adaptive control.
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where Edi ∈ R
n . X ∈ R

nN denotes the actual states of all the agents. The actual dynamics of ith agent is given by

where D(Xi) is the external disturbance added to ith agent. The virtual dynamics for ith agent is given by

where D̂(Xi) is the approximation of D(Xi).
It is important to note that, the consensus error Edi in Eq. (31) is designed to measure the error in virtual state 

of ith agent and actual states of its neighbours. To drive this error to zero (i.e., Edi → 0 ), we define a Lyapunov 
function Vi as follows.

Differentiating Eq. (34) yields

According to the Lyapunov stability theory, let the time derivative of the Lyapunov function should be

where Kdi ∈ R
n×n is a positive definite diagonal matrix. The expression of V̇i in Eqs. (35) and (36) are equated 

to obtain

Eq. (37) is simplified as follows

Substituting the expression of Edi in Eq. (38) we obtain

Putting the expression of Ẋai in Eq. (39) yields

The expression of control UiN can be obtained by simplifying Eq. (40) as follows.

(31)
Edi =

∑

j∈Ni

aij(Xai − Xj)

= d̄iXai − āiX

(32)Ẋi = f (Xi)+ g(Xi)UiN + D(Xi)

(33)Ẋai = f (Xi)+ g(Xi)UiN + D̂(Xi)+ Kai(Xi − Xai)

(34)Vi =
1

2
ETdiEdi

(35)V̇i = ETdiĖdi

(36)V̇i = −ETdiKdiEdi

(37)ETdiĖdi = −ETdiKdiEdi

(38)Ėdi + KdiEdi = 0

(39)d̄iẊai − āiẊ + Kdi(d̄iXai − āiX) = 0

(40)d̄i

(

f (Xi)+ g(Xi)UiN + D̂(Xi)+ Kai(Xi − Xai)

)

− āiẊ + Kdi(d̄iXai − āiX) = 0

Figure 3.   Block diagram of Neuro-adaptive DNDI or N-DNDI.
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It can be observed that the control expression in Eq. (41) is different from Eq. (13). Next, the error dynamics is 
enforced for driving the actual state of ith agent to its virtual state, i.e., Xi → Xai.

where Eai = Xi − Xai . To approximate the unknown disturbance a single layer neural network is designed as 
shown in Eq. (43).

where �(Xi) is a basis function vector. It is important to note that the ideal value of Ŵi is Wi and thus the distur-
bance D(Xi) can be approximated by

where ǫXi is the error tolerance. Eq. (42) is rewritten as

where W̃i = Wi − Ŵi . The weight update rule is given by

where γi is learning rate and σi is stabilizing factor of ith agent. It is important to note that ˙̃Wi = − ˙̂Wi because 
Wi is constant and Ẇi = 0.

Convergence study of E
ai

.  The convergence study of the error Eai is important. We have selected a Lyapu-
nov function as follows.

where VEai = 1
2E

T
aiEai and VW̃i

= 1
2W̃

T
i

(

γ−1
i

)

W̃i.
Differentiation of Eq. (48) yields

Using Lemma 2 and Ŵi = −W̃i +Wi , Eq. (49) is written as

where ζi =
�ǫXi �2

2 + 1
2σi � Wi �2 . Let us define

where, δi > 0 . Hence, we can write the Eq. (50) as follows.

Using Eq. (17) we can write

(41)UiN = [g(Xi)]−1
[

− f (Xi)− D̂(Xi)− Kai(Xi − Xai)+ d̄−1
i

(

āiẊ − Kdi(d̄iXai − āiX)
)]

(42)Ėai + KaiEai = D(Xi)− D̂(Xi)

(43)D̂(Xi) = ŴT
i �(Xi)

(44)D(Xi) = WT
i �(Xi)+ ǫXi

(45)Ėai + KaiEai = W̃T
i �(Xi)+ ǫXi

(46)˙̂Wi = γi

[

�(Xi)E
T
ai − σiŴi

]

(47)Vi =
1

2
ETaiEai +

1

2
W̃T

i

(

γ−1
i

)

W̃i

(48)= VEai + VW̃i

(49)

V̇i = ETaiĖai + W̃T
i γ

−1
i

˙̃Wi

= ETai
(

Ẋi − Ẋai

)

− W̃T
i γ

−1
i γi

[

�(Xi)E
T
ai − σiŴi

]

= ETai

(

W̃T
i �(Xi)+ ǫXi − KaiEai

)

− W̃T
i

[

�(Xi)E
T
ai − σiŴi

]

=
(

ETaiǫXi − ETaiKaiEai

)

+ σiW̃
T
i Ŵi

(50)

V̇i ≤
� Eai �2

2
+ � ǫXi �2

2
− ETaiKaiEai − σi � W̃i �2 +σi � W̃i �� Wi �

≤ � Eai �2
2

+ � ǫXi �2
2

− ETaiKaiEai − σi � W̃i �2 +
1

2
σi � W̃i �2 +

1

2
σi � Wi �2

= � Eai �2
2

+ � ǫXi �2
2

− ETaiKaiEai −
1

2
σi � W̃i �2 +

1

2
σi � Wi �2

= � Eai �2
2

− ETaiKaiEai −
1

2
σi � W̃i �2 +ζi

Kai = δi

(

1

2δi
+ 1

2

)

and σi ≥ δi�max(γ
−1
i )

(51)V̇i ≤ − δi

2
� Eai �2 −

δi�max(γ
−1
i )

2
� W̃i �2 +ζi
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Therefore, Eq. (51) is written as follows.

Applying Lemma 3 we can write

Lemma 4  24 Consider the positive function given by

where e(t) = x(t)− xd(t) and W̃ = Ŵ −W∗ . If the following inequality holds:

then, given any initial compact set defined by

we can conclude that

1.	 the states and weights in the closed-loop system will remain in the compact set defined by

2.	 the states and weights will eventually converge to the compact sets defined by

where constants

We will present the Uniformly Ultimate Boundedness (UUB) here using conclusion 2. Using Eqs. (52), (53), 
and (56) we can write

(52)
1

2
� Eai �2≤ VEai ≤ Vi

(53)�min(γ
−1
i )

2
� W̃i �2≤ VW̃i

≤ Vi

(54)V̇i ≤ −δiVEai − δiVW̃i
+ ζi

(55)= −δiVi + ζi

(56)Vi(t) ≤
ζi

δi
+

(

Vi(0)−
ζi

δi

)

e−δi t

(57)V = 1

2
e(t)TQ(t)e(t)+ 1

2
W̃T

i

(

Ŵ−1
i

)

W̃i

(58)V̇(t) ≤ −c1V(t)+ c2

(59)�0 =
{

x(0), xd(0), Ŵ(0)|x(0), Ŵ(0)finite, xd(0) ∈ �d

}

(60)� =
{

x(t), Ŵ(t)| � x(t) �≤ Ce max + max
τ∈[0,t]

{� xd(τ ) �}, xd(t) ∈ �d , � Ŵ �≤ CW̃ max+ � W∗ �
}

(61)�s =
{

x(t), Ŵ(t)| lim
t→∞

� e(t) �= µ∗
e , limt→∞

� W̃(t) �= µ∗
W̃

}

(62)Ce max =

√

2V(0)+ 2c2
c1

�Q min

(63)CW̃ max =

√

2V(0)+ 2c2
c1

�Ŵ min

(64)µ∗
e =

√

2c2

c1�Q min

(65)µ∗
W̃

=
√

2c2

c1�Ŵ min

(66)� Eai �≤
√

2
ζi

δi
+ 2

(

Vi(0)−
ζi

δi

)

e−δi t
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If Vi(0) = ζi
δi

 then � Eai �≤ µ∗
Eai

 , ∀t > 0.

If Vi(0)  = ζi
δi

 then for a given µEai > µ∗
Eai

 there exist a TE > 0 such that ∀t > TE , we get � Eai �≤ µEai

Therefore, we conclude

In a similar fashion, we can conclude

Therefore, according to conclusion 2, the proposed controller is able to make the approximation error to converge 
in the compact set defined by �s.

Simulation results
Simulation results are presented here. The simulation study is performed on PC with AMD Ryzen 5 processor 
and 8 Gb RAM.

Agent dynamics.  The agent dynamics are given as follows.

where Xi =
[

Xi1 Xi2

]T . Equations (71) and (72) give

and

and

The values of the parameters used in this simulation study are given as follows.

The  le ar ning  rate  γi = 30  .  We have  s e lec ted  RBF NN bas is  f unc t ions  g iven  by 
�(Xi) = [φ1(Xi) φ2(Xi) . . . φ30(Xi)]T , where, φj(Xi) = exp

−
(Xi−µj )

T (Xi−µj )

ψ2
j  . The centers of the basis functions 

are spaced evenly in the range of [−10, 10] × [−10, 10] . The width of each basis function is selected as ψj = 2 . 
The value of σi is chosen as 0.12. The disturbance added is given by

which is unknown to the controller. The state trajectories of all the agents are shown as X1 and X2 , 
where, X1 = [X11 X21 . . . X101 ] and X2 = [X12 X22 . . . X102 ] . Similarly, the controls for the agents are 
shown by U1 = [U11 U21 . . . U101 ] , and U2 = [U12 U22 . . . U102 ] . Also, the virtual states are given by 
Xa1 = [Xa11 Xa21 . . . Xa101 ] , and Xa2 = [Xa12 Xa22 . . . Xa102 ] . The initial values of the states of all the agents are 
given in Table 1.

The adjacency matrix is given by

(67)� W̃i �≤

√

√

√

√

2 ζi
δi
+ 2

(

Vi(0)− ζi
δi

)

e−δi t

�min(γ
−1
i )

µ∗
Eai

=
√

2ζi

δi

(68)µEai =
√

2
ζi

δi
+ 2

(

V(0)− ζi

δi

)

e−αiTE

(69)lim
t→∞

� Eai �= µ∗
Eai

(70)lim
t→∞

� W̃i �= µ∗
W̃i

(71)Ẋi1 = Xi2 sin(2Xi1)+ Ui1

(72)Ẋi2 = Xi1 cos(3Xi2)+ Ui2

(73)f (Xi) =
[

Xi2 sin(2Xi1)

Xi1 cos(3Xi2)

]

(74)g(Xi) =
[

1 0
0 1

]

(75)Ui =
[

Ui1
Ui2

]

Kdi =
[

12 0
0 10

]

, Kai =
[

10 0
0 10

]

Di =
[

20 cos

(

πXi1

2

)

0

]T
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The unknown external disturbance is approximated by a neuro-adaptive controller. The approximated and real 
disturbance is shown in Fig. 4a and the approximation error is shown in Fig. 4b.

It can be observed that the approximation is very good, which can be confirmed using the approximation 
error plot. Consequently, the states of the agents achieved the consensus in a few seconds. The state trajectories 
of all the agents, i.e., X1 and X2 , are shown in Fig. 5a and 5b respectively. The states of the agents reach the con-
sensus in finite time.

The consensus is achieved by neuro-adaptive consensus controls U1 and U2 which are shown in Fig. 6a and 6b 
respectively.

The convergence of the states is shown by the consensus errors Edi in state X1 and X2 . They are shown in 
Fig. 7a and 7b respectively. The errors converged in a few seconds. This means the virtual states Xa1 and Xa2 
successfully reach the consensus.

The virtual states Xa1 and Xa2 are shown in Fig. 8a and 8b respectively. It can be observed that the consensus 
value of the virtual state and the actual states are the same. Therefore, the actual states tracked the virtual states 
accurately. The proof of the tracking can be given by virtual errors.

The virtual errors Eai in states X1 and X2 are shown in Fig. 9a and 9b respectively. They have converged in 
finite time.

A =





























0 0 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 1
1 0 0 0 1 1 0 0 0 1
1 0 0 1 0 1 0 1 0 0
1 0 0 1 1 0 1 1 1 0
0 0 1 0 0 1 0 1 1 0
1 1 0 0 1 1 1 0 0 1
1 0 0 0 0 1 1 0 0 1
1 1 1 1 0 0 0 1 1 0





























Table 1.   Initial conditions of the states of the agents.

X1 2 − 2 − 2 − 1 9 3 − 1 6 5 − 5

X2 0 − 1 4 1 0 − 5 7 8 − 3 4

Figure 4.   Performance of N-DNDI in approximating unknown external disturbance.
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Conclusion
The augmentation of neuro-adaptive structure to distributed nonlinear dynamic inversion (DNDI) frame pro-
duces a unique adaptive controller (N-DNDI) that efficiently handles the external disturbance. The N-DNDI 
inherits the features of the NDI technique and handles the unknown external disturbance. The convergence study 
provided in this paper explains the correctness of the design. The simulation results show that the neural network 
embedded in the controller approximates the unknown external function and the DNDI controller computes the 
consensus control signal accordingly. Consequently, the consensus is achieved in finite time. Hence, the proposed 
N-DNDI is a deserving candidate for consensus control in the presence of unknown external disturbances. We 
consider the heterogeneous agents along with communication issues as part of our future research plan. Also, 
we will present a comparison study of the proposed controller with the existing controllers.

Figure 5.   Actual state trajectories.

Figure 6.   Neuro-adaptive control.
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Figure 7.   Consensus error Edi.

Figure 8.   Virtual state trajectory.
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