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Abstract—Non-orthogonal multiple access (NOMA) promises
to fulfill the fast-growing connectivities in future Internet of
Things (IoT) using abundant multiple-access signatures. While
explicitly notifying the utilized NOMA signatures causes large
signaling cost, blind signature classification naturally becomes
a low-cost option. To accomplish signature classification for
NOMA, we study both likelihood- and feature-based methods.
A likelihood-based method is firstly proposed and showed to
be optimal in the asymptotic limit of the observations, despite
high computational complexity. While feature-based classification
methods promise low complexity, efficient features are non-trivial
to be manually designed. To this end, we resort to artificial intelli-
gence (AI) for deep learning-based automatic feature extraction.
Specifically, our proposed deep neural network for signature
classification, namely DeepClassifier, establishes on the insights
gained from the likelihood-based method, which contains two
stages to respectively deal with a single observation and aggregate
the classification results of an observation sequence. The first
stage utilizes an iterative structure where each layer employs
a memory-extended network to explicitly exploit the knowledge
of signature pool. The second stage incorporates the straight-
through channels within a deep recurrent structure to avoid
information loss of previous observations. Experiments show that
DeepClassifier approaches the optimal likelihood-based method
with a reduction of 90% complexity.

Index Terms—Non-orthogonal multiple access, signature clas-
sification, deep learning, recurrent neural network, automatic
feature extraction

I. INTRODUCTION

DRIVEN by the unprecedented proliferation of machine-
type devices and intelligent applications, novel massive

access technologies are desperately required for future Internet
of Things (IoT) [1]–[5]. As a promising candidate technology,
non-orthogonal multiple access (NOMA) constructs a number
of non-orthogonal signatures over limited orthogonal physical
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resources so as to provide abundant access opportunities [7],
[8], and to accommodate the massive connectivity require-
ments in IoT networks [9], [10]. These well-desinged signa-
tures define how the IoT transmitters encode and spread the
source information over physical resources in a non-orthogonal
fashion [11]–[13]. Accordingly, advanced multi-user detection
algorithms are studied to recover the source information of
the IoT devices from the superimposed signals at the receiver
[14]–[17].

To enable coherent NOMA detection, the receiver re-
quires full knowledge of the multiple-access signatures used
by the IoT transmitters. On the one hand, connected-based
OMA/NOMA schemes achieve this using centralized schedul-
ing, where the receiver assigns the user-specific signatures
to the transmitters for uplink transmission [18], [19]. On the
other hand, some NOMA schemes allows the IoT transmitter
to automatically select a signature for transmission, and the
indexes of the selected signatures are then transmitted to the
receiver via uplink signaling [15]. However, both the above
approaches require tedious signaling interactions between the
transceivers and thus causes large delay and high power
consumption, which are large burdens for hardware-limited
IoT devices [12]. So the explicit notifications of NOMA
signatures may not be suitable for the scenarios with massive
low-cost devices in future IoT networks.

As an alternative approach, conducting AI-driven blind
signature classification at the receiver can avoid the explicit
notifications and thus reduce the signaling overheads [20],
[21]. Therefore, blind signature classification can be a good
option for NOMA in future IoT networks. However, with
multiple overlapped signals and different fading states of the
transmitters, the classification of NOMA signatures becomes
non-trivial. This work aims to efficiently solve the blind
signature classification problem in IoT, which, to the best of
our knowledge, still lacks a unified framework for the case of
NOMA.

With one single transmitter, the blind signature classification
problem falls back to the automatic modulation classification
(AMC) problem [22], where different signatures resemble the
roles of different modulation schemes. Classical AMC tech-
nologies can be divided into likelihood-based (LB) methods
[23], [24] and feature-based (FB) methods [22], [25], which
respectively exploit the likelihood functions and the statistical
features of the received signals. Among the above two types
of approaches, the former approach makes optimal decision
in Bayesian perspective at the expense of high computational
complexity and delay [22]. The latter approach relies on
the heuristic feature engineering to enable low-complexity
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implementation, while the designed features are normally
subject to certain modulations and the classification accuracy
performance is not optimal. All these model-driven approaches
manually decide the rules for AMC according to the exact
knowledge of the modulations. However, the manual design
of useful features is tedious for different kinds of constellation
mappings [26].

The recent booming of deep learning provides an effi-
cient and automatic approach for FB modulation classifica-
tion [26]–[32]. Through data-driven end-to-end optimization,
deep neural networks (DNNs) have strong ability in feature
learning which automatically learns useful features of the
inputs as hidden representations [33]. In [28], an sparse deep
autoencoder method is proposed to obtain meaningful sparse
representations for modulation classification. The authors in
[29] and [30] further exploit the scalability of convolution
neural network (CNN) to deal with sequence inputs. With
the extracted features, these deep learning-based methods can
approach near maximum-likelihood performance [27], [29].
Deep recurrent neural network (RNN) structure and long
short term memory (LSTM) cells are deployed in [26] to
learn long-term temporal dependencies. A two-layer LSTM
model is implemented by stacking two classical LSTM layers
and trained with supervised training. Performance evaluations
show the model achieve better performance than other machin-
ing learning methods when facing variable-length time-domain
sequences.

Nonetheless, the above-mentioned approaches assume one
single transmitter. None of them can deal with the blind
signature classification problem for NOMA where the received
signal is superimposed and highly-condensed. The authors in
[34] resort to capsule network to solve a multi-signal AMC
problem in uplink where multiple transmitters simultaneously
transmit signals at adjacent frequencies. However, this method
is not applicable in NOMA system, since NOMA signals
overlap on exactly the same time and frequency resources.
The authors in [20] develop a Anderson-Darling test-based
machine learning algorithm to determine the modulation order
of the interference signal in downlink NOMA system. The
very recent work [21] considers the blind signal classification
in a two-user downlink NOMA system. However, the methods
in [20] and [21] are limited to the quadrature amplitude
modulation (QAM) constellations and downlink power-domain
NOMA system, and there still lacks a unified framework for
blind signature classification for uplink NOMA.

In this paper, we firstly propose an optimal LB method
for NOMA signature classification, and then show that this
method achieves perfect classification in the asymptotic limit
of the observations of the received signals. To reduce the
exponentially increased computational complexity invoked in
the likelihood calculations, we consider to employ the FB
classification methods. Whereas the efficient features are non-
trivial to be manually designed in NOMA case, we resort
to deep learning for automatic feature extraction and com-
plexity reduction. Due to the superimposed signal space and
diversified fading states among the transmitter, we find that
straightforward DNN methods do not cope with this problem.
So we adopt a model-driven DNN design approach [35], where
the insights gained from the optimal LB method play a vital

role. The detailed contributions of this paper are summarized
as follows:
• We formulate the blind signature classification problem

for NOMA and propose a likelihood-based method to
achieve optimal classification accuracy performance un-
der the perspective of maximum a posteriori estimation.
We also prove that, under some reasonable assumptions,
the classification error asymptotically goes to zero given
enough observations of received NOMA signal blocks.

• We propose a deep learning framework, namely Deep-
Classifier, which automatically extracts efficient features
for low-complexity signature classification. To benefit
from the communication-domain expertise, DeepClassi-
fier mimics the LB method by considering two processing
stages, i.e., the feed-forward stage and the recurrent stage.
In the feed-forward stage, we deal with one single obser-
vation by considering an iterative layered DNN structure,
where the classification result is revised layer by layer.
Within each layer, we propose a memory-extended struc-
ture which explicitly embeds a cache module to exploit
the prior knowledge of NOMA signature pool.

• We propose a deep recurrent accumulation neural net-
work in the recurrent stage of DeepClassifier framework
to fully utilize the sequentially received observations.
The immediate classification result as well as the ex-
tracted features for all observations are commendably
aggregated. Specifically, we construct the straight-through
channels in the recurrent stage to eliminate the informa-
tion loss which exists in conventional RNNs.

• We implement DeepClassifier and evaluate its perfor-
mance. Experiments show that, the proposed design out-
performs some straightforward DNN-based methods and
can approach the optimal classification performance with
greatly reduced computational complexity compared with
the LB method.

The rest of this paper is organized as follows. The NOMA
signature classification problem are formulated in Section II.
The likelihood-based classification method is proposed and
analyzed in Section III. Section IV describes the proposed
model-based deep learning method. Section V presents the
experiment results. Finally, Section VI concludes this paper.

Notations: Normal lower-case, bold lower-case and bold
upper-case symbols denote the scalars, vectors and matrices,
respectively. R and C denote the fields of real and complex
number, respectively. | · | denotes the modulus of a scalar or
the cardinality of a set, and ‖ · ‖j represents the `j-norm.
CN (µµµ,ΣΣΣ) represents circular symmetric complex Gaussian
distribution with mean µµµ and covariance ΣΣΣ.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a synchronized uplink NOMA system with K
IoT devices and one base station (BS), where these devices are
pre-configured by the BS to share one periodically appeared
physical resource region [15]. Specifically, the source symbols
of the K devices are first mapped to N -dimensional complex
symbol sequences and then overlapped on N orthogonal
physical resource elements (REs), as shown in Fig. 1. We call
the bundle of N REs as a NOMA transmit block.
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Fig. 1. System model of uplink NOMA with blind signature signature
classification in IoT network.

Define the available multiple-access signature pool f of the
NOMA system consisting of J signatures as

f = {f1(·), · · · , fj(·), · · · , fJ(·)}, (1)

where each signature, i.e., fj(·), refers to a mapping function
which maps the input symbol x ∈ X to an N -dimensional
symbol vector and X is the input alphabet, with normalized
transmit power, i.e., ‖fj(x)‖2 = 1, 1 ≤ j ≤ J,∀x. The index
set of f is then defined as J = {1, · · · , j, · · · , J}. To reduce
the signaling overhead [15], this paper assumes that each IoT
transmitter automatically and uniformly selects a signature
out of f for uplink transmission, and the BS performs blind
signature classification to avoid the explicit notifications. This
case is common in NOMA-based IoT network [36], [37],
where small data packet is transmitted and tedious signaling
interactions become expensive.

Now we describe the signal model. Assume that each
physical resource region contains T NOMA transmit blocks,
and the selection of signature remains unchanged within each
resource region. For the t-th block, 1 ≤ t ≤ T , the channel
vector ht ∈ CK of the K IoT transmitters is defined as

ht = [h1,t, · · · , hk,t, · · · , hK,t]> , (2)

where hk,t is the instantaneous channel coefficient of the k-
th transmitter. While each IoT transmitter can be randomly
deployed within the cell, we assume that hk,t ∼ Ph (h) ,∀k, t,
where Ph (h) is the probability density function. Further, we
consider perfect channel information at the BS via orthogonal
reference signal ports [15].

Assume that the k-th transmitter deploys the lk-th signature
flk(·) to transmit source symbol xk,t ∈ X . We denote l =
[l1, · · · , lk, · · · , lK ] ∈ JK as the vector of the indexes of the
deployed signatures. The received signal yt ∈ CN at the BS
is then given by

yt =
K∑
k=1

hk,tflk(xk,t) + wt = h>t Fl(xt) + wt, (3)

where wt ∼ CN (0, σ2
0I) denotes the additive white Gaussian

noise (AWGN) with variance σ2
0 , and Fl(xt) is defined as

Fl(xt) = [fl1(x1,t) , · · · , flK(xK,t)]
> ∈ CK×N , (4)

with xt = [x1,t, · · · , xk,t, · · · , xK,t].

To fully exploit the information conveyed by the entire
resource region, signature classification is conducted after re-
ceiving the continuous T observations of the NOMA transmit
blocks. We can write the overall received signal for the T
blocks in a compact form, as follows

Y = [y1, · · · ,yt, · · · ,yT ]

= tr
(

[h1, · · · ,hT ]
>
[Fl(x1) , · · · ,Fl(xT )]

)
+ W

= tr
(
H>FFF l (X)

)
+ W,

(5)

where H = [h1, · · · ,hT ], X = [x1, · · · ,xT ], FFF l (X) =
[Fl(x1) , · · · ,Fl(xT )], and W = [w1, · · · ,wT ].

At the BS, a classifier g(·) is deployed for signature
classification given the channel information and the received
signal, as defined by

g : Y,H→ l̂ ∈ JK , (6)

where l̂ = [l̂1, · · · , l̂k, · · · , l̂K ] is the estimated index vector.
The mis-classification probability can be derived by calculat-
ing the differences between l̂ and the true index vector l, and
can be formally defined as

Pe =
‖̂l− l‖0
K

, (7)

where ‖ · ‖0 refers to `0-norm which calculates the number of
non-zero elements. In our paper, we aim to design good g(·)
to minimize Pe.

III. LIKELIHOOD-BASED ALGORITHM MODEL AND
ASYMPTOTIC ANALYSIS

This section proposes the optimal LB method for NOMA
signature classification. Analysis is then conducted to show
that the LB method can achieve the perfect classification in
the asymptotic limit of the observations. The derived algorithm
model provides physical insights into the design of the deep
learning method in Section IV.

A. Optimal Likelihood-Based Classification Method

Define Pl|Y,H (l|Y,H) as the posterior probability distri-
bution of the index vector l given the received signal Y and
channel coefficient H. To achieve optimal signature classifica-
tion under the maximum a posteriori (MAP) perspective, we
formulate the classification problem as

P1: l̂ = argmax
l

ln
[
Pl|Y,H (l|Y,H)

]
,

s.t. l ∈ JK ,
(8)

where Pl|Y,H (l|Y,H) is given by

Pl|Y,H (l|Y,H) =
PY|l,H (Y|l,H)Pl (l)

PY (Y)
(a)
∝ PY|l,H (Y|l,H)

=
∑
X

PY|l,X,H (Y|l,X,H)PX (X)

∝ EX

[
exp

(
− 1

σ2

∥∥Y − tr
(
H>Fl (X)

)∥∥2
F

)]
= EX

[
exp

(
− 1

σ2

T∑
t=1

∥∥yt − h>t Fl(xt)
∥∥2

2

)]
,

(9)
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where Pl (l) and PX (X) are the prior distributions of the
index vector and source symbols, respectively, and ‖·‖F refers
to Frobenius-norm. Here, (a) holds since PY (Y) and Pl (l)
are consistent for all l.

The objective function of P1 is further simplified as follows

ln
[
Pl|Y,H (l|Y,H)

]
= ln

[
EX

[
T∏
t=1

exp

(
− 1

σ2

∥∥yt − h>t Fl(xt)
∥∥2

2

)]]
(a)
= ln

[
T∏
t=1

Ext

[
exp

(
− 1

σ2

∥∥yt − h>t Fl(xt)
∥∥2

2

)]]

=
T∑
t=1

ln

[
Ext

[
exp

(
− 1

σ2

∥∥yt − h>t Fl(xt)
∥∥2

2

)]]

=
T∑
t=1

ln
∑
xt

Py|l,x,h (yt|l,xt,ht)Px (xt)

=
T∑
t=1

ln
[
Py|l,h (yt|l,ht)

]
,

(10)

where (a) holds since the transmission symbols xt and the
channel coefficients ht of the K IoT transmitters are inde-
pendent and identically distributed (i.i.d.) for each t. Optimal
classification solution to P1 is obtained by calculating the log-
likelihood function (10) for all l ∈ JK , and then choose the
one l̂ which corresponds the larger value.

B. Asymptotic Analysis of Classification Accuracy

In single-user case, using LB methods can ensure perfect
classification in a asymptotic limit, i.e., given sufficient ob-
servations of the received signals. The following part of this
section analyzes whether this conclusion still holds in the
NOMA case. Define l∗ as the true index vector of the selected
signatures. Our aim is to prove that the following inequation
holds for any l 6= l∗, l ∈ JK , when T → +∞

ln
[
Pl|Y,H (l∗|Y,H)

]
> ln

[
Pl|Y,H (l|Y,H)

]
. (11)

For simplicity of notation, we define a decision variable
Dt (yt,ht, l) as

Dt (yt,ht, l) = ln
[
Py|h,l (yt|ht, l)

]
(12)

and denote D (Y,H, l) as

D (Y,H, l)=ln
[
Pl|Y,H (l|Y,H)

]
=

T∑
t=1

Dt (yt,ht, l) . (13)

Comparing (10), (12) and (13), to prove that (11) holds, it is
equivalent to prove

D (Y,H, l∗) > D (Y,H, l) ,∀l 6= l∗, l ∈ JK . (14)

First of all, we consider an ideal case with a sufficient high
signal to noise ratio (SNR), i.e., σ0 → 0.

Definition 1 (Ambiguity): The ambiguity of signature clas-
sification is defined as the case that, there exists an non-
identical mapping π : l∗ → l′ ∈ {1, 2, · · · , J}K , such that

h>t Fl∗(xt)− h>t Fl′(x
′
t) = 0, (15)

where xt,x
′
t ∈ XK . �
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Fig. 2. Performance of NOMA LB signature classification method with K =
2 and J = 2, 4, 6.

If ambiguity happens, the receiver cannot identify which
among l∗ or l′ is the true situation. This leads to mis-
classification. To enable asymptotic analysis, two basic and
reasonable assumptions are considered in the following:

Assumption 1: Ph (h) is not a discrete distribution. �
Assumption 1 normally holds for realistic fading channel

models and ensures that the probability of hk,t 6= hm,t equals
to zeros. This avoids the ambiguity of signature classification
in a statistical sense.

Assumption 2: For x, s ∈ X , fj(x) 6= fc(s) if either j 6= c
or x 6=s. �

Assumption 2 is natural, since the opposite will lead to the
ambiguity of the source symbols.

In the following Lemma 1, we prove that the ambiguity
happens with probability zero, under the aforementioned as-
sumption.

Lemma 1: Assume that l∗ is true. The classification error
goes to zero given a sufficient high signal to noise ratio (SNR),
i.e.,

lim
σ→0

Pr
[
Pl|Y,H (l∗|Y,H) > Pl|Y,H (l|Y,H)

]
= 1,∀l 6= l∗.

(16)
Proof : Please refer to Appendix A.

Theorem 1 (Asymptotic performance): Assume that l∗ is
true. For any σ0, the classification error goes to zero when the
number of the received signal blocks goes to infinity, i.e.,

lim
T→∞

Pr
[
Pl|Y,H (l∗|Y,H) > Pl|Y,H (l|Y,H)

]
= 1,∀l 6= l∗.

(17)

Proof : Please refer to Appendix B.
Compared with the asymptotic analysis for the single-user

case [23], [24], the above two assumptions are required in the
NOMA case to ensure perfect classification in the asymptotic
limit of the observations. We demonstrate the correctness of
Theorem 1 in Fig. 2. Here we consider a NOMA system
with K = 2 transmitters and J = 2, 4, 6 available signatures.
Rayleigh fading channel model is considered for both trans-
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mitters. As show in Fig.2, enlarging the value of T provides
better classification accuracy, which finally converges to 1.

Now we discuss the computational complexity involved
in the optimal LB method. For the t-th NOMA block, the
proposed method requires to traverse the entire search space,
i.e., JK , which leads to JK times of calculations. Besides,
each calculation requires to provide an expectation over XK ,
i.e., Ext

[·], which leads to another |X |K times of calculations.
Therefore, the computational complexity for this LB method
is in the order of O(cLBTJ

K |X |K), where cLB is number
of the calculations required for calculating the likelihood
function of each l ∈ JK [29]. Although solving P1 ensures
optimal classification performance, large computational efforts
are required due to the finite-alphabet search-space JK and the
expectation over all possible xt in (10), which is inefficient
for future IoT system.

As an alternative approach, FB classification method has
been considered in the conventional modulation classification
problems for its low computational complexity compared with
LB method [25]. These researches normally explore the mo-
ments of the statistical distributions of the received signal and
manually design the features for different modulation schemes.
However, these approaches meet the obstacle in NOMA case
because of the superimposed received signals and different
fading states of the transmitters. We consider a 6-user NOMA
system with 6 signatures, which leads to 66 = 46656 combina-
torial possibilities and is thus non-trivial to manually design
the features for NOMA signature classification. Fortunately,
the recent booming of DNN provides a new methodology to
automatically extract efficient features in a data-driven fashion.
The following section will develop a deep learning framework
for efficient signature classification.

IV. DEEPCLASSIFIER: A MODEL-BASED SIGNATURE
CLASSIFICATION FRAMEWORK VIA DNN

The universal approximation property of DNN ensures it
can perfectly approximate any measurable function with any
desired degree of accuracy [39]. We regard the likelihood
decision variable D (Y,H, l) as the function to be approx-
imated and generalize the universal approximation property
into signature classification. Therefore, a DNN classifier with
enough size can achieve the same performance as the optimal
LB method, which is formally expressed in the following
Theorem 2.

Theorem 2 (Universal approximation property): The deci-
sion variable D (Y,H, l) in (13), can be accurately approxi-
mated by a DNN in the following sense: ∀ε > 0, there exists
a DNN, denoted as DDNN (Y,H, l), such that∣∣D (Y,H, l)−DDNN (Y,H, l)

∣∣ < ε. (18)

Proof : The proof is straightforward following the universal
function approximation property of DNN [39].

Although Theorem 2 indicates the existence of an optimal
DNN, the algorithmic learnability is not ensured. A straightfor-
ward DNN with a practical network size performs way worse
than the LB method, as we will show in Section V. Existing
researches have shown that model-driven design can exploit
the communication-domain expertise and thus enhance the

learning efficiency [35]. So this section will firstly gain design
insights from the LB algorithmic model and then develop a
DNN for efficient signature classification, which will be named
from now on, DeepClassifier. The objective of DeepClassifier
is to extract the likelihood function features and obtain the
approximate optimal classification result based on maximum
likelihood method.

A. Design Insights

Recall the LB method proposed in Section III-A which
consists of two processing stages. In the first stage, the
immediate decision variable Dt is calculated based on yt for
each t. Then in the second stage, Dts are aggregated to obtain
the final decision. Correspondingly, DeepClassifier will also
consist of two stages, i.e., a feed-forward stage and a recurrent
stage, to mimic the algorithmic model of the LB method. The
first stage recasts the iterative structure described in (20) to
obtain immediate features for each NOMA block. Then the
second stage aggregates the features of multiple signal blocks
to obtain final classification results by taking the advantage of
a deep recurrent structure.

Now we focus on the first stage. For the t-th NOMA block,
we firstly simplify the expectation over X in (10) according
to Max-Log-MAP algorithm as follows

ln
[
Py|l,h (yt|l,ht)

]
= ln

[
Ext

[
exp

(
− 1

σ2

∥∥yt − h>t Fl(xt)
∥∥2

2

)]]
≈max

xt

[
−
∥∥yt − h>t Fl(xt)

∥∥2
2

]
.

(19)

A general communication-theoretic paradigm to solve NP-hard
problem is to develop an iterative framework [38]. In this way,
we can formulate the classification result of the t-th block in
the (i+1)-th iteration as l̂

(i+1)
t

l̂
(i+1)
t = Π

[̂
l
(i)
t − δ(i)∆l̂

(i)
t

]
, (20)

where l̂
(i)
t is the estimated result for the i-th iteration, ∆l̂

(i)
t

is the adjustment value on l̂
(i)
t and δ(i)t is the step size for the

adjustment. Π [·] refers to a non-linear projection operator to
ensure that l̂(i+1)

t holds effective values. The gradient descent
method is normally used to generate ∆l̂(i) for each iteration

∆l̂(i) ≈ max
xt

[
∂
∥∥yt − h>t Fl(xt)

∥∥2
2

∂l

∣∣∣∣̂
l
(i)
t

]

∝ max
xt

[
∂F>l (xt)

∂l
ht
(
F>l (xt)ht − y>t

) ∣∣∣∣̂
l
(i)
t

]
.

(21)

With conventional mathematical tools, it is neither easy to find
the optimal xt in (19), nor is it easy to derive the gradients
in (21). With deep learning, however, this iterative structure
becomes feasible since the operations in each iteration can be
automatically learned by a DNN, as in our proposed design
of the feed-forward stage.

After obtaining the estimated results for each NOMA block,
the second stage then aggregates them to derive the final
classification results according to (14). The recurrent stage of
DeepClassifier is designed to accomplish the same goal.
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For the ease of discussion, in this section, we encode
each index lk ∈ J into the one-hot representation lk =
[lk,1, · · · , lk,j , · · · , lk,J ] ∈ {0, 1}J , where lk,j is given by

lk,j =

{
1, if j = lk,
0, otherwise. (22)

The representation lk is used as the label for the k-th IoT
transmitter. We also note that, the following part uses the
complex domain to describe the network model for simplicity
of notation, while each complex value can be represented by
its real and image parts during implementation. The following
parts elaborate the designs of feed-forward and the recurrent
stages of DeepClassifier, respectively.

B. Feed-Forward Stage of DeepClassifier

We derive two hints from Section IV-A to design the feed-
forward stage of DeepClassifier:
• First of all, an iterative structure shall be considered

where each iteration provides a rough classification result,
and this result is then utilized as the side information in
the next iteration to achieve more accurate classification,
as illustrated in (19).

• Secondly, the main ingredients shall include not only the
received signal Yt and the channel coefficient ht, but
also the knowledge of NOMA signature pool, i.e., f, as
illustrated in (20).

The first hint leads to an iterative layered network structure,
as elaborated in Section IV-B1, which is similar to Learned-
AMP [38] or DetNet [40]. The second hint stimulates us
to explicitly include the signature pool within the network,
which, however, has not been exploited before according to
our best knowledge. Inspired by the recently proposed neural
Turing machine (NTM) [41], we explicitly construct a cache
module within the feed-forward stage, such that each iteration
can take advantage the knowledge of the signature pool, as
detailed in Section IV-B2.

1) Iterative Layered Network Structure: The feed-forward
stage of the proposed DeepClassifier consists of L layers to
mimic the iterative framework as descried in Section IV-A.
We employ fully connected DNN (FC-DNN) to construct the
iterative layered network to process the low-dimensional raw
signal data, which are generated by the channel coefficients
and the received NOMA signals. During propagation, the
classification results of previous layers are sent to the next
layer to iteratively improve the classification accuracy. The
(i+1)-th layer is depicted in Fig. 3 and detailed as follows.

Before training, in the t-th NOMA block, the channel
coefficients ht = [h1t , h

2
t , . . . , h

K
t ] ∈ CK and the received

signals yt = [y1t , y
2
t , . . . , y

N
t ] ∈ CN of all users are con-

catenated into one vector. Then the complex vector is decom-
posed into the real part and the imaginary part to generate
the in-phase and quadrature (IQ) data, which is denoted as
It = [Re{ht}, Im{ht},Re{yt}, Im{yt}] ∈ R2(K+N). Our
proposed layered DNN then processes It to perform automatic
feature extraction and signal classification for the t-th NOMA
block. After the processing of the i-th layer, we denote the
vector â(i)k,t ∈ [0, 1]J , 1 ≤ k ≤ K, as the obtained classification
result for the k-th user, where â

(i)
k,t(j), 1 ≤ j ≤ J , is the j-th

y
t
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Fig. 3. Flow diagram of the (i+1)-th layer of the feed-forward stage of
DeepClassifier, taking the three-user NOMA system as an example.

element of â
(i)
k,t representing the estimated probability of the

k-th user using the j-th signature, with
∑J
j=1 â

(i)
k,t(j) = 1. We

denote â
(i)
t = [â

(i)
1,t, · · · , â

(i)
k,t, · · · , â

(i)
K,t] as the collection of

the classification results for K users in the i-th layer. Besides,
we denote ĉ

(i)
t = [̂c

(i)
1,t, · · · , ĉ

(i)
k,t, · · · , ĉ

(i)
K,t] as the collection of

the outputs of the cache module in the i-th layer, where ĉ
(i)
k,t

corresponds to the k-th transmitter. The (i+1)-th layer then
takes It, â

(i)
t and ĉ

(i)
t as the input to extract the shared feature

s
(i+1)
t via a feed-forward DNN g

FF-(i)
Pub (·), as follows

s
(i+1)
t = g

FF-(i+1)
Pub

(
It, ĉ

(i)
t , â

(i)
t ;WPub

)
, (23)

where WPub corresponds to all trainable parameters related
to this network. Note that, the superscript “FF” refers to feed-
forward DNN and the subscript “Pub” refers to the fact that
this network is a public part for K classification tasks. Note
that, the original inputs yt and ht are fed to all layers, inspired
by the shortcut connections introduced in ResNet [42].

Normally, g
FF-(i+1)
Pub (·) is a DNN constituted by multiple

nested non-linear transformation, where each transformation
maps In to Out as follows

Out = σ (wIn + b) , (24)

where w and b denote the parameter matrix and the bias
associated with this DNN, respectively. The mapping σ(·)
corresponds to the activation function of this DNN, which can
be either identity, sigmoid, tanh, softmax or rectified linear unit
(ReLU) functions. In the rest of the paper, without ambiguity,
we will omit the notation of the parameter set related to all
DNNs for simplicity.

With the shared feature s
(i+1)
t , we then deploy K private

DNNs to obtain immediate classification results a
(i+1)
k,t , where

its j-th element is the probability that the hypothesis of the j-th
signature holds true. For the k-th transmitter, a DNN, denoted
as g

FF-(i+1)
Pri-k (·), is employed to extract a(i+1)

k,t from s
(i+1)
t

a
(i+1)
k,t = g

FF-(i+1)
Pri-k

(
s
(i+1)
t

)
, (25)

where the subscript “Pri-k” reflects that gFF
Pri-k(·) is a private

network of the k-th transmitter. Note that, a softmax layer
shall be used as the output layer to ensure that each element
of ak,t is greater than zero and the sum of all elements equals
to one.
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2) Memory-Extended Structure: To explicitly utilize the
knowledge of NOMA signature pool, we employ a memory-
extended structure by introducing a cache module which
contains all the elements of the signature pool.

Define F ∈ CJ|X |×J|X | as all complex values that can be
generated by the signature pool f and source symbol alphabet
X . The vector F thus contains the entire knowledge related
to encoding procedure at the IoT transmitters. Therefore, for
the k-th transmitter, the cache module takes â

(i+1)
k,t as the

input through a read head, denoted as WRe ∈ CJ|X |×J ,
and then generate ĉ

(i+1)
k,t through a write head, denoted as

WWr ∈ CN×J|X |. This procedure can be represented by

c
(i+1)
k,t = g

FF-(i+1)
Cache-k

(
â
(i+1)
k,t

∣∣Fl(·)
)

= σ (WWrFWReak,t) ,
(26)

where WWr and WRe are trained to learn what to read and
write, respectively, according to ak,t. Nonetheless, the size of
the vector F is large, which may leads to large read/write
heads. In a special case where the linear spreading-based
NOMA scheme is considered to achieve low implementation
complexity [15], [44], [45], we note that, the cache module
can take a very simple structure. With the assumption of linear
spreading signature, yt − h>t Fl(xt) can be written as

yt − h>t Fl(xt) = yt −
K∑
s=1

hs,txs,tFls, (27)

where F ∈ CN×J is the collection of the J linear spreading
signatures with length N . Therefore, we can calculate the
gradient with respect to lk using â

(i+1)
k,t as follows

max
xt

∂
∥∥∥yt −∑K

s=1 hs,txs,tFls

∥∥∥2
2

∂lk

∣∣∣∣
lk=â

(i)
k,t


= max

xt

[
(hk,txk,tF)

>

(
K∑
s=1

hs,txs,tFls−yt

)∣∣∣∣
lk=â

(i)
k,t

]
(a)
∝ max

xk,t

[
(hk,txk,tF)

>
hk,txk,tFlk

∣∣∣∣
lk=â

(i)
k,t

]
(b)
= (hk,tF)

>
hk,tFâ

(i)
k,t,

(28)

where in step-(a) we only focus on the terms related to the
k-th transmitter, and step-(b) is due to ‖xk,t‖2 = 1,∀k, t.
According to (28), the gradient is approximately irrelevant to
the choice of xk,t. As a result, the output of cache module is
derived as

c
(i+1)
k,t = σ (WWrFWReak,t) (29)

where WWr ∈ CJ×J and WRe ∈ CJ×J are the read and write
heads, respectively, and they are initialized as identical matrix
to cope with the formulation of (28).

For simplicity of notation, we write the mapping function
gFF-(i+1)(·) of the (i+ 1)-th layer as[

ĉ
(i+1)
t , â

(i+1)
t

]
= gFF-(i+1)

(
yt,ht, ĉ

(i)
t , â

(i)
t

)
. (30)

Assume that the feed-forward stage consists of L layer. The
final classification results are then denoted as â

(L)
t .

s t

â t

rt-1 v  t-1

r t v  t

wa

C
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ca
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na

te

ê  t

C
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ca
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na

te

g r
R
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gCls
R

(L)

Fig. 4. Detailed network structure of the proposed RANN of DeepClassifier.

C. Recurrent Stage of DeepClassifier

If we obtain optimal decision variables in the feed-forward
stage for all NOMA blocks, then a simple accumulation of
these variables can lead to the optimal classification, according
to (13). Nonetheless, a limited network size is normally
considered in DeepClassifier to control the implementation
complexity, so the bias between true decision variables and
the obtained ones is inevitable. In this case, using a simple ac-
cumulation of â(L)t s, ∀t, may result in the error accumulation.
To overcome this obstacle, a deep recurrent structure shall be
considered to take the advantage of the sequentially extracted
features sts, ∀t, for classification accuracy enhancement.

RNN is a well-known recurrent network which aims to deal
with sequential inputs. In the inference procedure of RNN,
the outputs will largely depend on more recent inputs and the
effect of the inputs in previous time stamps tends to fade away
as time goes by. Its variant LSTM also encounters the similar
problem owing to the non-linear accumulation. According
to (13), for the signature classification, each NOMA sample
should have equal influence on the final decision. Therefore,
RNN and LSTM can not meet the hypothesis of the signature
classification.

To cope with our problem, we propose a specially designed
recurrent structure, namely deep recurrent accumulation neural
network (RANN), as illustrated in Fig. 4. The theoretical
hypothesis of RANN model originates from the fact that each
received sample contributes equally to the final classification
decision. The core idea is to construct two straight-through
channels to run straight down the entire chains, correspond-
ing to the extracted features and the estimated classification
results, denoted as rt−1 and vt−1, respectively. The straight-
through channels help avoid the information loss existed in
RNN and LSTM. By taking the state rt−1 and vt−1 generated
in the previous time stamp, the input features st

(L) and the
immediate classification result â

(L)
t as input, the proposed

RANN, denoted as gR(·), generates the new state vectors rt
and vt as well as the instantaneous output êt, as follows

[rt,vt, êt] = gR
(
rt−1,vt−1, st

(L), â
(L)
t

)
, (31)

where the superscript “R” refers to RANN, and êt =
[̂e1,t, · · · , êk,t, · · · , êK,t] is the collection of all classification
results after this time stamp with êk,t ∈ [0, 1]J . Specifically,



Algorithm 1 Training Algorithm of DeepClassifier
Require: Dataset D.
Ensure: DNNs gFF-(i)(·), 1 ≤ i ≤ L, and gR(·).

1: repeat
2: Draw a mini-batch D′ out of D
3: gFF-(i)(·),∀i← SGD

(
LFF,D

′,gFF-(i)(·),∀i
)

4: until Stop criterion is met
5: repeat
6: Draw a mini-batch D′ out of D
7: gR(·),gFF-(i)(·),∀i←SGD

(
LR,D

′,gR(·),gFF-(i)(·),∀i
)

8: until Stop criterion is met sphere decoding

rt, vt and êt are respectively given by
rt = rt−1 + Wr · gR

r

(
â
(L)
t , st

)
,

vt = vt−1 + Wa · â(L)t ,

êt = gR
Cls (rt,vt) ,

(32)

where gR
r (·) denotes a DNN used to aggregate the input

features, Wr and Wa are the weight parameters for two
straight-through channels, and gR

r (·) denotes the classification
layer used to generate classification results. Different from
LSTM which utilizes the instant inputs and non-linear gates
to control the long-term memory in straight-through channels,
RANN uses the input-independent weights for accumulation,
i.e., Wr and Wv, based on the intuition of (13). Therefore,
RANN requires far less number of trainable parameters.

Fig. 5 illustrates the overall architecture of the proposed
DeepClassifier. The feed-forward stage constructs an iterative
layered structure to process the classification of the single
NOMA block. Each iteration provides a rough classification
result as the side information in the next iteration. The
network parameters of different blocks can be shared. After L
iterations, the feed-forward network outputs the classification
result ât and the corresponding feature st of the t-th NOMA
block. Then RANN aggregates these results and features by
the straight-through channels, which can equally utilize the
observations of all blocks. At the end of the T NOMA
transmission blocks, we obtain êT as the final estimation of
the signature classification results.

D. Dataset, Loss Function and Training Algorithm

We generate a synthetic dataset D to train DeepClassifier

D =
{

(Y,H, l1, · · · , lk, · · · , lK)
(m)
}M
m=1

, (33)

where (Y,H, l1, · · · , lk, · · · , lK)
(m) is the m-th instance in

the dataset, and M is the number of instances in the dataset.
For each instance, lks, ∀k, are firstly randomly generated ac-
cording to uniform distribution, then H is randomly generated
according to a predefined channel model, and finally Y is
generated according to (5).

Now we analyze the loss functions related to DeepClassifier.
For the feed-forward stage, since we are dealing with a typical
classification problem, it is natural to deploy cross-entropy
(CE) loss. The CE loss between â

(i)
k,t and lk in the i-th layer

is defined as
L(i)

FF-k,t = l>k log
(
â
(i)
k,t

)
, (34)

where FF-k refers to the CE loss of the k-th classification
task of the feed-forward stage. The total loss, denoted as LFF,
related to the feed-forward stage is then given by

LFF =
L∑
i=1

wi

T∑
t=1

K∑
k=1

L(i)
FF-k,t, (35)

where wi, 1 ≤ i ≤ L, is the weight coefficient of L layers.
Similarly, for the recurrent stage, the CE loss between êk,T
and lk is given by

LR-k = l>k log (êk,T ) . (36)

Since we only use the output of the final time stamp in the
recurrent stage, so the total loss, denoted as LR, is given by

LR =
K∑
k=1

LR-k. (37)

The CE loss measures the difference between the true index
and the estimated index, so DeepClassifier shall be trained to
minimize the CE loss. The pseudocode of the entire training
process is shown in Algorithm 1. In the first step, we train the
feed-forward stage, i.e., gFF-(i)(·), 1 ≤ i ≤ L. The second step
takes the trained parameters as a good initialization to fine-
tune the recurrent stage, i.e., gR(·). For each step, a mini-batch
of data is randomly drawn out of the dataset. The optimization
step is then performed using stochastic gradient descent (SGD)
or a variant [43], by taking the loss function, the mini-batch
and the DNN to be trained as the inputs.

E. List Detection-Aided DeepClassifier
To approach near-optimal performance, we further consider

a list detection-aided DeepClassifier method. The output of
the recurrent stage is first used to generate a list of candidate
hypotheses, and then an exhaustive search is conducted to
determine the most possible hypothesis.

Given the final classification output êT , the DeepClassifier-
based list detection aims to solve the following problem

P2: l̂k,∀k = argmax
lk,∀k

ln
[
Plk,∀k|Y,H (lk,∀k|Y,H)

]
,

s.t., (a) l ∈ JK ,
(b) l ∈ {êk,T }max,D0

, D0 ∈ N+,

and (c) lk are generated by l according to (22),

(38)

where D0 denotes the search radius of a hyper-sphere,
{êk,T }max,D0

denotes the indexes of D0-largest elements in
êk,T , and thus (38b) determines the list of hypotheses to
be searched. Note that, since D0 is smaller than J , hence
DK

0 would be much smaller than JK . Therefore, using the
output of DeepClassifier as search center can greatly reduce
the computational complexity compared with the LB method.

Finally, we analyze the computational complexity order of
the proposed DeepClassifier. Assume that cFF is the parameter
number of each layer in the feed-forward stage, and cR is
the parameter number of the recurrent stage. Therefore, the
complexity order is given by O(cFFTL + cRT ). Considering
in the complexity involved in the list detection, the total
complexity is about O(cFFTL + cRT + cLBTD

K
0 |X |K). It is

much less than the computational complexity of LB method,
which grows exponentially with the number of the available
NOMA signatures.
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Fig. 5. The overall architecture of DeepClassifier.
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Fig. 6. Network training performance of the feed-forward stage of DeepClas-
sifier with J = 6, L = 1, and K = 1, 2.

V. EXPERIMENT RESULTS

In this section, we use the Tensorflow framework to imple-
ment the proposed DeepClassifier. The depth and the width of
DNN adopted in this section are empirically determined. For
comparisons, the performances of other straightforward DNN
methods are evaluated. Meanwhile, Monte-Carlo simulations
are also conducted based on the optimal LB method.

A. Performance of the Feed-Forward Stage

In this section, we emphasize on the training performance
of the feed-forward stage of DeepClassifier. During experi-
ments, the signature pool f is assumed to be composed of
the equiangular tight frames (ETF) based signatures, as one
recommendation in 3GPP Study Item of NOMA [15]. Each

TABLE I
EXPERIMENTAL SETUP OF NETWORK TRAINING.

Experimental Setup Values or Assumptions

User Numbers 1, 2

Signature Pool 6

Training SNR 14 dB

Channel Model Rayleigh fading channel

Dataset Size 1000000

Network layer 5

Network Width 128

Batch Size 128

Learning Rate 0.0003

Optimizer Adam

complex spreading signature is generated by solving Grass-
mannian line packing problem with the parameter |f| = J .

Fig. 6 presents the total loss and classification accuracy
performance versus training epoch under Rayleigh fading
channel with K = 1 and 2. The sizes of the signature pool and
the transmit blocks are set as J = 6 and T = 1, respectively.
Besides, Rayleigh fading channel model is considered and the
training signal-to-noise ratio (SNR) is set as 14 dB. The size
of the dataset D is set as M = 106. During both training and
testing stages, each complex data sample is decomposed into
the real part and the imaginary part as the input to DeepClassi-
fier. To achieve good performance in this case, we simply use
the feed-forward stage of DeepClassifier with L = 1, where
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g
FF-(1)
Pub (·) is parameterized by a 5-layer fully-connected DNN

with the width of 128 neurons. Adam optimizer is used for
SGD. The corresponding experimental setup is summarized
in Table I. The network parameter settings are empirically
determined. And we note that, the proposed DeepClassifier has
good robustness and is not sensitive to the hyper-parameters.
As shown in Fig. 6, the total CE loss decreases during training,
and the proposed method can approach the optimal LB method
after convergence with respect to classification accuracy. In
Table II, we display the classification accuracy between the
optimal LB-based method and DeepClassifier with various
SNRs and J . These results indicate that the optimal LB method
can be perfectly mimicked by DNNs, which are consistent with
Theorem 2.

Fig. 7 considers the network training performance with
K = 3 overlapped IoT transmitters, and displays classification
accuracy of â

(i)
t , i = 1, · · · , L. Other experiment settings are

the same as those in Fig. 6, except that the feed-forward
stage is implemented with L = 3 and weight coefficients
wi = 1, i = 1, · · · , L. Comparing the performances achieved
by the 1st layer of DeepClassifier and the optimal LB method,
we see that, the optimal LB method cannot be approached
with a limited network size, especially when the number
of the IoT devices enlarges. This validates the discussion
about Theorem 2 that the proof of existence does not ensure
algorithmic learnability, and sophisticated design on network
structure is required. As shown in Fig. 7, the layers with larger
index i takes the side information from previous layer and
thus achieves better accuracy. In this case, simply using a
straightforward DNN performs way worse than the proposed
DL, which validates the effectiveness of the proposed iterative
layered structure. To approach the performance limit, we
perform list detection based on the estimates of DeepClassifier,
i.e., â(3)t . We set a search radius D0 such that the search space
of the list detection constitutes less than 10% of the full search
space JK , and then display the achieved classification accu-
racy. It is seen that, the proposed method nearly approaches
the optimal LB method with greatly reduced computational
delay.

Fig. 8. Visualization of the hidden feature S
(1)
t with t-SNE technique.

Different shapes represent the indexes of different signatures in f.

To validate the argument that useful features are automati-
cally extracted during training, in Fig. 8, we visually illustrate
the hidden representations s

(i)
t before and after training with

K = 1 and J = 6. The visualization of s
(i)
t is realized

by t-SNE technique, which converts the high-dimensional
NOMA signature features into a matrix of pairwise similar-
ities [46]. With t-SNE technique, the complex features of
different signature classes at various stages can be clearly
presented. After training, we observe that the separability of
the hidden features becomes more prominent. This reflects that
meaningful features are automatically extracted via data-driven
training.

B. Performance of the Recurrent Stage

In Fig. 9, we numerically evaluate the advantages of the
proposed recurrent structure in DeepClassifier. All the settings
are the same as those in Section V-A except that T = 2
and RANN is applied to aggregate the results of multiple
time stamps. As illustrated in Algorithm 1, we only train the
feed-forward stage for the first 2000 epochs, and then jointly
train the feed-forward and the recurrent stages for the rest
of the times. For comparison, we display the performance
of a straightforward method, which simply accumulates the
decision variables obtained by the feed-forward stage of T
observations, just as (13). The performance of the optimal LB
method is also provided as an reference. As observed in Fig. 9,
combining the T observations can always provide better classi-
fication accuracy than directly using the results obtained by the
3rd layer of the feed-forward stage. Specifically, deploying the
proposed RANN can achieve significantly better classification
accuracy than the straightforward method. This indicates that
the hidden features are well exploited in RANN for better
classification performance. Using the list detection can further
approach the performance limit.

C. Evaluations on Classification Accuracy

In the following, we evaluate the classification accuracy
performance of the proposed method with a typical NOMA
system which assumes K = 6, J = 6, and |X | = 4 [15].
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TABLE II
COMPARISONS OF CLASSIFICATION ERROR PROBABILITY BETWEEN LB-BASED METHOD AND DEEPCLASSIFIER.

Number of Users Size of Signature Pool 0 dB 5 dB 10 dB 15 dB

LB DL LB DL LB DL LB DL

K=1

J=2 0.1730 0.1735 0.0719 0.0722 0.0250 0.0252 0.0080 0.0081

J=4 0.3108 0.3117 0.1361 0.1368 0.0499 0.0499 0.0170 0.0173

J=6 0.3802 0.3810 0.1697 0.1699 0.0637 0.0639 0.0217 0.0218

K=2

J=2 0.2375 0.2381 0.1194 0.1201 0.0471 0.0476 0.0165 0.0168

J=4 0.3935 0.3951 0.1996 0.2005 0.0796 0.0804 0.0279 0.0285

J=6 0.4696 0.4717 0.2419 0.2433 0.0953 0.0961 0.0334 0.0347
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Fig. 9. Performance of DeepClassifier with J = 6, K = 3, L = 3, and
T = 2.
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The network configurations and the settings of the dataset
are the same as those in section V-B. Fig. 10 displays the
network training performance of the proposed method with
T = 1 and 6. Similar to the observations in Fig. 7, for
the case of T = 1, the classification accuracy is enhanced
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Fig. 11. Average classification error probability under various SNRs with
K = 6 and J = 6.

during training and deeper layer performs better than shallow
layers in the feed-forward stage. Using list detection with
D0 = 4 can approach the performance limit achieved by LB
method with only 46

66 < 10% computational complexity. When
T = 6, owing to the aggregation of multiple observations,
using RANN significantly promotes the classification accuracy
and even outperforms LB method with T = 1. The testing
performance, which coincides the training performance, is
also illustrated in Fig. 10 to show that the trained network
is efficient for deployment.

The above DeepClassifier trained with T = 6 is then
deployed under various SNRs and various T s, as shown in
Fig. 11. As observed in Fig. 11(a), although the network
is trained for T = 6, its performance promotes with the
enlargement of T due to the accumulation of the information
conveyed by T signal blocks. This also validates that the
offline trained DeepClassifier has the flexibility and generaliza-
tion ability to cope with different transmission settings during
online deployment. Then we analyze the effect of the search
radius D0 of the list detection. We note that, with the spreading
factor of N = 4, one resource region assumed for NOMA
transmission normally contains 36 NOMA signal blocks [15].
Therefore, we assume the block size T = 36 and vary D0 in
Fig. 11(b) to evaluate the achievable classification accuracy
of the proposed method. With 10 dB SNR and D0 = 2,
the proposed scheme achieves 90% classification accuracy.
With 15 dB SNR and D0 = 3, an classification accuracy
better than 99% can also be achieved. Since IoT services such
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as machine-type communications normally accept the block
error rate (BLER) at the the level of 10% per transmission
[15], the achieved level of accuracy is acceptable for practical
deployment. As a reference, we show the performance of the
optimal LB method with T = 2, where 97% classification
accuracy can be achieved with 15 dB. Nonetheless, even with
T = 2 NOMA blocks, the LB method leads to a computational
delay 100 times larger than the proposed deep learning scheme
with T = 36 and D0 = 3 when inferencing in Python. In this
case, DeepClassifier realizes the reduction of 90% deployment
complexity compared with LB method. As for the training
complexity, DeepClassifier uses 731.3K training parameters
and requires 2.91M floating point operations (FLOPs), which
is lower than many existing classification network models
[47]–[50] as illustrated in Table III. These results reflect
that the proposed DeepClassfier is an efficient method to
achieve an acceptable signature classification accuracy with
acceptable computational complexity and delay. Owing to
the above properties, DeepClassifier can also be applied into
other emerging systems with massive connectivity and high
energy efficiency requirements, e.g., reconfigurable intelligent
surface (RIS) [51] and holographic multiple-input-multiple-
output surfaces (HMIMOS) [52].

TABLE III
THE COMPARISONS OF NETWORK COMPLEXITY

Network Model Reference MFLOPs

DeepClassifier 2.91

NAS-based AMC [47] 4.82

CRFN-CSS [47] 20.87

MobileNetV3 [47] 44.37

AlexNet [48] 43.20

DistAMC [49] 4.42

VGG [50] 8.34

VI. CONCLUSION

This paper considered the blind signature classification
problem for NOMA in future IoT networks. An optimal LB
method was proposed and then proven to achieve perfect
classification given enough received signal blocks. To achive
a good tradeoff between computational complexity and clas-
sification accuracy, we proposed a AI-driven deep learning
method, i.e., DeepClassifer, to automatically extract efficient
features for signature classification. Sophisticated network
structures were designed for DeepClassifer by embedding the
communication domain-expertise, and the effectiveness of the
proposed designs were validated by extensive experiments.
The proposed method could achieve 99% classification accu-
racy under a typical NOMA transmission configuration with
rather low computational complexity and delay, compared with
the optimal LB method. In the future, the proposed network
structures can be extended to other emerging systems with
non-orthogonal connectivity such as massive MIMO, RIS, and
HMIMOS.

APPENDIX A
PROOF OF LEMMA 1

Given σ → 0, we use mathematical induction to prove this
Lemma.

(1) Consider the single-user case with K = 1 transmitters.
According to Assumption 2, i.e., fj(x) 6= fc(s) if either j 6= c
or x 6= s, we readily see that ambiguitly cannot happen since
(15) does not hold.

(2) Consider the two-user case with K = 2 transmitters.
Assume that there exists the ambiguity, i.e., there exist a non-
identical mapping π and xi, xj , xu, xv ∈ X , such that

h1
(
fl1(xi)− fπ(l1)(xu)

)︸ ︷︷ ︸
I

+h2
(
fl2(xj)− fπ(l2)(xv)

)︸ ︷︷ ︸
II

= 0.

(39)
Note that at least one term out of I and II does not equal to
zero, since the opposite will makes π a identical mapping.

Therefore we have two situations:
a). Only one term among I and II does not equal to zero.
Assume that I 6= 0 and II = 0. Then (39) holds only when
h1 = 0.
b). Both terms equal to zero, i.e., I = 0 and II = 0. Then (39)
holds only when h1 = h2 = 0 or h1/h2 = −I/II.

Since Ph(h) is a non-discrete distribution, both cases hap-
pen with probability zero, according to measure theory.

(3) Consider the case with arbitrary number K of the
transmitters. We can regard K − 1 transmitters among the K
transmitters as one single transmitter. Then the K-user case
can be generalized into the two-user case. Therefore, we have
Lemma 1.

As a straightforward extension, we consider the case where
σ 6= 0 and the probability density function of Py,h|l∗ (yt|ht, l)
follows the Gaussian mixture model, where the means of each
component Gaussian model is defined by the h>t Fl∗(x1,t).
According to Lemma 1, we have the following proposition:

Prob
[
Py,h|l (yt|ht, l) = Py,h|l∗ (yt|ht, l)

]
= 0, (40)

since the means of the Gaussian mixture models are unequal
in probability.

APPENDIX B
PROOF OF THEOREM 1

Recall that the decision variable Dt (yt,ht, l) defined as

Dt (yt,ht, l) = ln
[
Py,h|l (yt,ht|l)

]
. (41)

Observe that the received signal samples are i.i.d. To prove
that (14) holds, it is equivalent to prove that

Eyt,ht
[Dt (yt,ht, l

∗)−Dt (yt,ht, l)] > 0. (42)

The left-hand-side of (42) can be written as

LHS of (42)

=

∫
[Dt (yt,ht, l

∗)−Dt (yt,ht, l)]Py,h|l (yt,ht|l∗) dytdht

=

∫
ln

[
Py,h|l (yt,ht|l∗)

][
Py,h|l (yt,ht|l)

] Py,h|l (yt,ht|l∗) dytdht.

(43)
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We see that (43) follows the definition of Kullback-Leibler
divergence (KLD), i.e.,

(43) = KLD
(
Py,h|l (yt,ht|l∗)

∥∥Py,h|l (yt,ht|l)
)
≥ 0, (44)

where the the equal sign holds only when Py,h|l (yt,ht|l∗) =
Py,h|l (yt,ht|l). Now we show that the equal sign does not
hold. According to Lemma 1,

Prob
[
Py,h|l (yt|ht, l) = Py,h|l∗ (yt|ht, l)

]
= 0. (45)

Therefore, (42) holds.
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