
Accurate and dynamic driver head pose tracking is of great 

importance for driver-automation collaboration, intelligent co-

pilot, head-up display (HUD), and other human-centered 

automatedt driving applications. To further advance this 

technology, this paper proposes a low-cost and mark-less head 

tracking system using a deep learning-based dynamic head 

pose estimation model. The proposed system only requires an 

RGB camera without other hardware or markers. To enhance 

the accuracy of the driver’s head pose estimation, a spatial-

temporal vision transformer (ST-ViT) model, that takes an 

image pair as the input instead of a single frame, is proposed. 

Compared to the standard transformer, this contains a spatial 

convolutional vision transformer and a temporal transformer, 

which can improve the model performance. To handle the error 

fluctuation of the head pose estimation model, this paper 

proposes an adaptive Kalman filter (AKF). By analyzing the 

error distribution of the estimation model and user experience 

of the head tracker, the proposed AKF includes the adaptive 

observation noise coefficient; this can adaptively moderate the 

smoothness of the curve. Comprehensive experiments show that 

the proposed system is feasible and effectiveness, and it 

achieves a state-of-the-art performance. 

Background 

       Intelligent driving is currently a hot research topic that 

requires a combination of multiple disciplines and algorithms. 

Developing and testing algorithms for real intelligent vehicles 

is an expensive and time-consuming process. The development 

of simulation technology provides an alternative way as it can 

offer physically and visually realistic simulations for several 

research goals and can also collect a large number of annotated 

samples to leverage deep learning and machine learning [1]. 

The driving simulator cockpit is a widely used experimental 

platform. Immersion is one of the key characteristics. One way 

to improve visual realism is to use virtual reality (VR) devices 

that will result in two problems: 1. The dizziness caused by the 

serious mismatch between the fixed seat and the dynamic 

virtual graphics; and 2. VR glasses will cover the driver’s face, 

making it impossible to conduct research on the driver’s state 

[2]. Therefore, this study proposed a vision-based driver head 

tracking system to improve immersion and interaction, as 

shown in Figure 1. This technique can also be used to improve 

the user experience of HUD for intelligent vehicles and other 

driver-in-the-loop applications. 

       The head pose is an important clue that has been used in 

several human–machine interaction fields. [3] proposed an 

orientation sensor-based head tracking system to monitor the 

behavior of drivers engaging in various non-driving 

activities. [4] presented a sensor fusion method that integrates 

the IMU, IR LED, CCD camera, and other sensors. [5] 

developed a low-cost head tracking device based on the 

SteamVR tracking technology for a VR system. These methods 

typically adopt different types of sensors to build the system. 

There are several similar products in flight simulators. They 

typically require special devices or optical markers, such as an 

infrared camera. Although some devices require only an RGB 

camera, they all require the user to manually adjust the relative 

parameters, and they typically use certain traditional head 

estimation methods. Therefore, this study proposed a low-cost 

and mark-less solution that is only dependent on the RGB 

sensor as the input device, and a dynamic head pose estimation 

model based on deep learning was developed to improve the 

accuracy of the system.  

      Currently, several types of head pose estimation models 

combined with multimodality inputs have been proposed to 

achieve a state-of-the-art performance. These methods can be 

divided into model-based and model-free methods [6]. Model-

based methods typically use a deformable head model to fit the 

input image. They also locate the facial landmarks to align with 

the predefined model. Generally, these methods are time-

consuming. The model-free approaches are more popular; they 
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train a regression model to map the head image to the pose 

manifold, and deep learning-based models are basically 

adopted. To improve the model performance, facial landmarks 

are also leveraged in certain model-free methods that can be 

used with vision geometry algorithms or multi-task learning to 

estimate the head pose [7]. To eliminate the influence of the 

illumination intensity, the depth image is explored to obtain 

more robust head poses under poor illumination or large 

illumination variations. The depth image can also provide 

additional depth information to improve the model accuracy 

[8]. These methods estimate the head pose independently for 

each frame. As a dynamic head tracker, this study focused on 

leveraging the prior frame to improve the performance of the 

model. A recurrent neural network (RNN) is a widely used 

model to handle sequential data and can be combined with a 

convolutional neural network (CNN) to handle video-based 

tasks. Recently, self-attention-based models, particularly vision 

transformers, have shown great potential in multiple tasks [9]. 

They outperformed inductive bias methods, including the CNN 

and RNN models based on a large dataset. However, these 

transformers typically focus only on either the spatial 

information of the image or the temporal features of the 

sequential data. Therefore, this study proposed a novel spatial-

temporal vision transformer structure that can achieve better 

performance. It was compared and analyzed using a CNN–

RNN-based model.  

       The estimated curve of consecutive frames fluctuated 

owing to the error variance of the model. A Kalman filter was 

used for post-processing to address this problem. By analyzing 

the error distribution of the estimation model, the AKF 

improved the performance of filtering, which includes an 

adaptive observation noise coefficient; it adaptively moderated 

the smoothness and maintained the curve stable near the initial 

position. 

The main contributions of this study are as follows: 1. A 

low-cost and effective system for dynamic driver head tracking 

is proposed, which uses only a normal RGB camera; 2. A novel 

ST-ViT, which uniquely integrates a spatial vision 

transformer and a temporal transformer, is proposed, and to the 

best of our knowledge, this is the first time that a vision 

transformer is used in the dynamic head pose estimation; and 3. 

According to the characteristics of the head pose estimation 

model, an AKF is proposed to improve the stability and 

continuity of the dynamic head tracking system. 

Spatial-Temporal Vision Transformer Based 

Head Tracker 

       The purpose of this study is to develop a vision-based 

dynamic head tracker and implement it on a driving simulator 

whose view can be automatically aligned with the driver’s head 

pose using a frontal RGB camera. The benefits are as follows: 

1. This can improve the immersion and interaction of the 

simulator. The driver’s view will be unconstrained and non-

fixed, and the virtual camera will be synchronized with the 

driver’s head pose; 2. The extracted head pose can also be used 

to monitor the driver’s multi-state and further improve their 

experience in human-centric automotive applications; and 3. 

This is a low-cost solution that uses a non-invasive camera 

sensor. 

        The development of deep learning and computer vision 

technology provides the basis for the proposed method. Current 

state-of-the-art head pose estimation methods typically use a 

single frame as the input. In this study, the prior frame is 

leveraged, which is combined with the current frame as the 

input to improve the performance of the model. A novel ST-

ViT is proposed to achieve this task. To smooth the 

inconsistency and volatility of the estimation, this study also 

proposes an AKF. The overall proposed architecture is 

illustrated in Figure 1. 

Dynamic head pose estimation 

        Estimating the head pose, a crucial problem that has 

several applications, is a task that must infer the 3D pose 

(pitch, yaw, roll) of the head from the input image. There are 

several different methods that use multi-modal input data, 

including depth images, RGB images, and video clips. 

Considering the trade-off between system performance and 

cost, this study investigates the dynamic head pose estimation 

approach based on the RGB image.  

       With the development of deep learning, research on head 

 
Figure 1 Framework of the proposed dynamic driver head pose tracking system. The left picture shows the used driving cockpit which 
includes the input devices, computing server, and RGB camera. The proposed ST-ViT model is adopted as the measurer to estimate 
the pose, and its result as the observation. The proposed AKF is used to optimize the estimation. Finally, the virtual camera of the 
simulator is aligned with the output of the framework. 



pose estimation has also achieved good results, but they 

typically use a single frame as the input. In this study, the prior 

frame is leveraged, which is combined with the current frame 

as an input pair. Generally, an RNN is a widely used model to 

handle this type of sequential data, and it can use a CNN as the 

feature extractor to handle video-based tasks. We adopt this 

type of structure model in this study. Notably, the transformer 

model has shown significant potential, particularly in natural 

language processing (NLP). Some researchers have also begun 

to apply it to computer vision tasks and have proposed some 

vision transformer models [9]. Compared to inductive bias 

models, such as CNN and RNN, the transformer can better 

handle a large amount of data and achieve better performance 

on large datasets. 

To handle the dynamic driver head pose, this study proposes 

a ST-ViT architecture, as illustrated in Figure 1. The input pair 

includes loosely cropped images from a face detector. It allows 

the model to focus on the head area and is easy to train. The 

ST-ViT adopts a pre-trained feature extractor as the CNN 

backbone, rather than the standard vision transformer which 

requires large-size datasets for training. The feature extractor 

shares the weight between the input pair. The extracted feature 

maps are input into the spatial vision transformer modul.  

In the spatial vision transformer (S-ViT) module, the 

positional embedding (PE) is learnable, and the transformer 

encoder is convolutional, as shown in the Convolutional 

Transformer Encoder (ConvTE) module of Figure 1. The 

Query, Key, and Value (QKV) are calculated through the 

convolutional layer, rather than the linear connection layer of 

the standard transformer. 

         𝑄𝐾𝑉(𝑢,𝑣) = 𝐵𝑁(𝐶𝑜𝑛𝑣(𝑥, 𝑊𝑄𝐾𝑉) 

                           = 𝐵𝑁 (∑ ∑ 𝑤𝑞𝑘𝑣𝑢−𝑖,𝑣−𝑗
∙ 𝑥𝑖,𝑗𝑗𝑖 )                      (1) 

where 𝐵𝑁 denotes the batch normalization layer, 𝐶𝑜𝑛𝑣 denotes 

the convolutional layer without bias, and 𝑊  denotes the 

corresponding weight kernel. Then, the QKV is used to extract 

the spatial attention information using the multi-head attention 

mechanism as follows: 

           𝑥𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣𝑜𝑢𝑡(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉))  (2) 

= 𝐶𝑜𝑛𝑣𝑜𝑢𝑡 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇 + 𝑃𝑜𝑠

√𝑑𝑘

) 𝑉) 

 where 𝑃𝑜𝑠 denotes the position bias that is learnable and 𝑑𝑘 

denotes the dimension of the Key. The attention mechanism 

leverages the Query and Key to obtain the similarity or 

correlation of the feature maps or vectors, then a weighted sum 

with the Value are implemented. The convolution layer, rather 

than the linear layer, can determine the formal consistency of 

the feature maps, allowing the residue connection to be used to 

avoid network degradation. Using the convolutional multi-head 

attention module with the two convolutional feed-forward 

layers, the spatial dependency and relationship of the feature 

maps are expected to be obtained.  

The temporal vision transformer (T-ViT) receives the feature 

vectors of the image pair through an average pooling layer, and 

a linear projection (LP) layer is used to embed the feature 

vectors. In this module, the positional embedding, which uses 

the sine-cosine function, calculates the position encoding, as 

shown in Equation 3. And an extra token is used to concatenate 

with the embedding vector that is designed to obtain the 

prediction of the last frame through the final multilayer 

perceptron (MLP) head.  

{
𝑃𝐸(𝑘,2𝑖) = 𝑠𝑖𝑛(𝑘/100002𝑖/𝑑𝑣𝑒𝑐𝑡𝑜𝑟)

𝑃𝐸(𝑘,2𝑖+1) = 𝑐𝑜𝑠(𝑘/100002𝑖/𝑑𝑣𝑒𝑐𝑡𝑜𝑟)
                 (3) 

where 𝑃𝐸(𝑘,2𝑖) represents the position encoding of the 2𝑖 − 𝑡ℎ 

position of the feature vector of the 𝑘 − 𝑡ℎ frame, and 𝑑𝑣𝑒𝑐𝑡𝑜𝑟 

denotes the dimension of the feature vector. The temporal 

transformer module employs the standard transformer encoder 

(TE) with the linear layers for calculating the QKV. 

   The classic transformer is used to handle the sequential task 

to obtain the temporal dependency. The typical ViT is usually 

used to learn the spatial information by splitting an image into 

several patches. The proposed ST-ViT uniquely uses a 

spatiotemporal architecture to tackle the image sequences, and 

it also leverages a pre-trained CNN backbone to alleviate the 

dependence of the large dataset. In the spatial ViT, the 

convolutional layer, rather than the linear layer, is utilized, 

allowing the residue connection to be used for avoiding 

network degradation. Overall, the proposed ST-ViT can obtain 

the spatiotemporal attention, which is advantageous over the  

single dimension attention of the standard transformer.  

Adaptive Kalman filter 

        Although the current head pose estimation method 

exhibits good performance, there is still a certain error. When it 

is applied to the simulator, its flaws of fluctuation and 

discontinuity are highlighted. From a practical perspective, the 

smoothness and continuity of view changes are more important 

 
Figure 2 Error of the proposed head pose estimation model on 
the pitch and roll axes tested on the BIWI dataset. The 3D blue 
point represents each sample, and the curved surface is the 
result of 2D Gaussian fitting. 



than accuracy. To address this problem, a Kalman filter (KF) is 

adopted. Kalman filtering is an algorithm that provides the 

estimates of certain unknown variables that tend to be more 

accurate, given the measurements observed over time, and 

contain statistical noise and other inaccuracies. KFs have been 

demonstrated to be useful in various applications, such as the 

guidance, navigation, and control of vehicles. The KF has a 

relatively simple form and requires a small amount of 

computational power. 

      Due to the characteristics of approximate uniform and low-

speed, the head pose motion can be described by using a linear 

coordination transformation model, which only involves the 

pose and velocity, as shown in the post-processing module of 

Figure 1. This is also beneficial for reducing the computing 

complexity. The output of the head pose estimation model is 

used as the observation of the AKF model. 𝑅𝑘  is the 

observation noise covariance that is related to the estimation 

model and affects the performance of the filter. The results of 

the head pose estimation model are studied to determine 𝑅𝑘 . 

Statistics revealed that the model usually has different 

performances at different intervals of the head pose. The 

accuracy is higher when the pose angle is small; otherwise, the 

error is higher, particularly on the pitch and roll axes. For 

example, the BIWI dataset [10] was used to evaluate the 

proposed head pose estimation model, and the results are 

shown in Figure 2. The error on the pitch and roll is taken as 

the X and Y axes, and the error on what is taken as the Z-axis. 

The blue 3D points represent different samples. A 2D Gaussian 

function is used to fit the points, as shown in the curved 

surface. Therefore, adaptive 𝑅𝑘 , which can be adaptively 

adjusted in the iterative process, is proposed in this study. It 

can make the filtered value close to the observed value when 

the rotation angle is small, whereas the filtered value becomes 

smoother when the rotation angle is large.  

 

Evaluation and Results 

Dynamic head pose dataset 

The BIWI dataset, the only dataset suitable for our task, was 

chosen to evaluate the proposed method. The other datasets did 

not contain sequential images. The BIWI dataset contained 24 

videos, which are over 15 K images of 20 subjects (14 males 

and 6 females). For each sample, an RGB image and the 

corresponding annotation were provided. The head pose range 

covered approximately ±75° yaw, ±60° pitch, and ±60° roll 

[10]. The ground truth was provided in the form of the 3D 

location of the head and its rotation, which can be converted to 

(pitch, yaw, and roll).  

Model comparison and results 

      In this study, EfficientNet-B0 [11], a popular backbone, 

was used as the CNN backbone to extract the feature maps. It 

developed a new baseline network by performing a neural 

architecture search and optimized both accuracy and efficiency.  

      To verify the proposed method, four paradigms were 

designed as follows: 1. Baseline An MLP was leveraged to 

handle the feature maps extracted from the CNN backbone; the 

number of hidden layers was 512. 2. LSTM Compared to the 

baseline, an image pair was used as the input rather than a 

single image, and a long short-term memory (LSTM) module 

 
（a） 

 
(b) 

Figure 3 Comparison of the different head estimation 

models. (a) The MAE (°) between different models. (b) 

The absolute error (°) distribution of different models. 

 
Figure 4 Comparison of the different lengths of the sequence 
input. Sn indicates the length of sequence n. 
  



was used instead of the MLP to handle the image pair. The 

number of hidden layers was 512. 3. T-ViT In this paradigm, 

the LSTM module was replaced by a T-ViT. The depth of the 

transformer module was one, the number of heads was eight, 

the embedding dimension and the number of hidden layers of 

the MLP head were 512, and the dimensions of Q, K, and V 

were 64. 4. ST-ViT This is our proposed spatial-temporal 

vision transformer model. This included a spatial convolutional 

vision transformer to handle the feature maps first compared to 

the T-ViT. The depth of the spatial transformer and number of 

heads were same as that of the temporal transformer, and the 

dimensions of Q and K were 32, whereas that of V was 64. 

      We followed the common three-fold cross-evaluation 

experimental protocol proposed earlier in [12] that splits the 

dataset into 70% (16 videos) for training and 30% (8 videos) 

for testing. In the training process, the batch size was 16, Adam 

was used as the optimizer, and the learning rate was 1 × 𝑒−4. 

The mean absolute error (MAE) was used as the metric, which 

is the same as in other studies. The average results are 

presented in Figure 3. The results indicated that the image pair 

effectively improved the performance, compared to the single 

image, especially on the Yaw axis whose value range is large. 

The changes in features caused by this axis are also more 

significant, so the overall error is smaller. Compared to the 

LSTM model, the T-ViT model was not always competitive; it 

had a smaller error only in the Pitch axis. Compared with 

others, the ST-ViT can effectively reduce the error variance, 

resulting in a significant improvement on the Roll axis which 

usually has a larger error variance. To further evaluate the 

performance of the models, the error distribution is also 

displayed, which can reflect the error percentage and 

distribution under different thresholds. Notably, the overall 

performance of the LSTM was better than that of the T-ViT 

because the used dataset did not have sufficient samples, and it 

could not completely reflect the learning ability of the 

transformer, especially the used T-ViT is not deep. However, 

the proposed ST-ViT can still outperform others and achieve 

the best performance. It has a great potential to handle a larger 

number of samples. 

      The above results demonstrated that the image pair 

improved the performance of the models owing to the extra 

sequential information. To further analyze the effect of 

sequence, we used three consecutive frames as the input to 

train the ST-ViT and LSTM models, and the results are shown 

in Figure 4. The comparison indicated that a longer sequence 

degenerated the model that had a higher MAE in all three axes. 

This was because longer sequential information could not solve 

Videos Mean\Std Method Pitch (°) Yaw (°) Roll (°) 

1-8 

Mean 

Original 3.795 3.206 3.619 

KF 3.809 3.253 3.631 

AKF 3.803 3.196 3.619 

Std 
KF 3.649 3.556 4.342 

AKF 3.632 3.495 4.351 

9-16 

Mean 

Original 2.552 2.313 2.568 

KF 2.618 2.371 2.595 

AKF 2.565 2.329 2.571 

Std 
KF 2.473 2.003 3.061 

AKF 2.368 1.924 3.054 

17-24 

Mean 

Original 3.485 2.955 3.218 

KF 3.586 3.121 3.248 

AKF 3.496 3.034 3.213 

Std 
KF 3.105 2.595 4.306 

AKF 3.019 2.546 4.304 

Table 2 Comparison of the different filtering methods. 

 

 

 
Figure 5 Visualization of the attention map learned by the 
proposed ST-ViT model. 
  

Model Input Pitch(°) Yaw(°) Roll(°) Avg(°) 

DeepHeadPose
[13] 

RGB 5.18 5.67 - - 

DeepHeadPose

[13] 

RGB+

Depth 
4.76 5.32 - - 

SSR-Net-

MD[14] 
RGB 4.35 4.24 4.19 4.26 

VGG16[14] RGB 4.03 3.91 3.03 3.66 

FSA-Caps-
Fusion[14] 

RGB 4.29 2.89 3.60 3.60 

MultiLossResN

et50[12] 
RGB 3.39 3.29 3.00 3.23 

FDNNet[15] RGB 3.98 3.00 2.88 3.29 

Martin[14] 
RGB+

Depth 
2.50 3.60 2.60 2.90 

Baseline RGB 3.44 3.12 3.40 3.32 

LSTM RGB 3.28 2.87 3.12 3.14 

T-ViT RGB 3.35 2.84 3.28 3.16 

ST-ViT RGB 3.27 2.82 3.12 3.07 

Table 1 Comparison of the state-of-the-art sequential-based 
models on the BIWI dataset. 

 

 



the problem of cross-subject evaluation. Besides, the framerate 

of the BIWI videos was not high, thus the deviation between 

consecutive frames was large. If the framerate can be 

increased, the performance of longer sequences might be better. 

Further, the number of sequences can be easily adjusted in the 

proposed model according to different situations. Compared to 

ST-ViT, the degradation of LSTM was more serious. For the 

same length of input, ST-ViT outperformed LSTM. This 

demonstrated that ST-ViT was more robust than LSTM in 

handling the sequence data. ST-ViT learnt the relationship 

between consecutive frames and achieved better performance. 

       To comprehensively evaluate the proposed method, it was 

compared to other sequential-based methods, as shown in 

Table 1. These models also adopted the same training protocol. 

Because the BIWI dataset contained depth images, certain 

methods leveraged depth information to improve performance. 

Table 1 also demonstrates that the benefit of the RGB image is 

combined with the depth information. To improve the 

performance of the head pose estimation model, these methods 

designed different types of models and loss functions from 

different perspectives. Compared to RGB-based methods, our 

proposed method achieved state-of-the-art performance. Even 

on the yaw axis, our proposed method was superior to the 

depth-based methods. The performance of the baseline and 

LSTM methods also demonstrated the importance of the 

backbone, which provides guidelines for future research. A 

comparison with other methods demonstrated the effectiveness 

of the proposed method. 

       Figure 5 illustrates the visualization of the attention map 

learned by the ST-ViT model; the attention map for the input 

image was visualized through the attention score of self-

attention. It was observed that the method could pay attention 

on the representative region of the face; they are coincidentally 

similar to the face landmarks, which can represent the facial 

expression and orientation. It demonstrated the learning ability 

of the proposed model. This helps us understand the 

mechanism of the spatial vision transformer.  

Post-processing and results 

      To evaluate the proposed pipeline, ST-ViT was used to 

estimate the head pose on the BIWI dataset, and the results are 

shown in Figure 2 and Figure3. The head pose estimation 

model inevitably had an error and variance, and hence, it could 

not be directly used for dynamic head tracking. A reasonable 

method was to leverage a filter to smooth the curve. 

Considering that the head pose model had different 

performance under different angle ranges, this study proposed 

the AKF. We chose a sequence under large angle range of the 

pitch axis to illustrate, and the results are shown in Figure 6. 

The use of the KF smoothened the curve and reduced volatility. 

Notably, the ground truth also has measurement errors and 

deviations. This shows that it is necessary and reasonable to 

use a filter. For the standard KF, 𝑅𝑘 is a constant value, which 

is the mean error of the head pose estimation model. To further 

improve the performance, constant 𝑅𝑘  is replaced as the 

adaptive one, as mentioned above, and the related parameters 

are the results of the Gaussian fitting on the dataset. The 

comparisons are presented in Table 2. The standard KF and the 

filter with adaptive 𝑅𝑘 almost coincided at a low angle range. 

However, the filter with adaptive 𝑅𝑘 has better performance in 

the high-angle range, and the curve is smoother. The filtering 

algorithm is a compromise between accuracy and smoothness. 

The increase in smoothness inevitably loses a certain degree of 

accuracy. The proposed AKF can maintain accuracy while 

reducing variance. This is an advantage of adaptive 𝑅𝑘. 

Conclusion 

       To improve the immersion and interaction of the driving 

simulator and related applications, this study proposed a 

dynamic head pose tracking system. The proposed system used 

only an RGB camera without other hardware or markers. To 

enhance the accuracy of the dynamic head pose estimation, this 

study proposed a ST-ViT model that used an image pair as the 

input instead of a single frame. Compared to the standard 

transformer, this contained a spatial convolutional vision 

transformer and a temporal vision transformer, which improved 

the effectiveness of the model. A comprehensive experimental 

comparison demonstrated that the proposed method 

outperformed the state-of-the-art methods. Another challenge 

to deploy the head tracking system was that the head pose 

estimation models still had certain errors, and hence, could not 

be directly adopted. To address this problem, this study 

proposed post-processing of the raw estimation. By analyzing 

the error distribution of the estimation model and user 

experience, an AKF was proposed that included the adaptive 

observation noise coefficient that makes the curve smoother in 

the area where the estimation model has a large error. The 

experiments showed that the proposed method was feasible and 

could be deployed into the driving simulator. 

     This paper proposed a reasonable low-cost vision-based 

solution for head tracking, which can be further optimized as 

the algorithm of head pose estimation improves. It can also be 

used in other driver-in-the-loop applications, and the source 

code of this paper will be open-sourced.  

 

 
Figure 6 Comparison of the standard KF and AKF during 
different angle ranges. 
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