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Abstract
The COVID-19 pandemic is having a huge impact worldwide and has highlighted the extent of health inequalities between

countries but also in small areas within a country. Identifying areas with high mortality is important both of public health

mitigation in COVID-19 outbreaks, and of longer term efforts to tackle social inequalities in health. In this paper we

consider different statistical models and an extension of a recent method to analyze COVID-19 related mortality in English

small areas during the first wave of the epidemic in the first half of 2020. We seek to identify hotspots, and where they are

most geographically concentrated, taking account of observed area factors as well as spatial correlation and clustering in

regression residuals, while also allowing for spatial discontinuities. Results show an excess of COVID-19 mortality cases

in small areas surrounding London and in other small areas in North-East and and North-West of England. Models

alleviating spatial confounding show ethnic isolation, air quality and area morbidity covariates having a significant and

broadly similar impact on COVID-19 mortality, whereas nursing home location seems to be slightly less important.
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1 Introduction

The COVID-19 epidemic has highlighted the extent of

disease inequalities between different small areas within

countries, and identifying higher risk areas is an important

aspect both of public health mitigation in infectious disease

outbreaks, and of longer term efforts to tackle social

inequalities in health. Research into spatial inequalities in

COVID-19 incidence and mortality draws on a longer

tradition of ecological research into health inequities.

Ecological research examines the impact of area social and

physical environments on population health, and seeks to

establish areas with high disease risk (Roux 2016; Correa-

Agudelo et al. 2021; Morenoff and Lynch 2004; Berkowitz

et al. 2020). Spatial clustering in area risk factors, whether

observed or unobserved, is likely to produce geographic

concentrations in excess risk. For example, in a study of

COVID-19 mortality in Italian municipalities the authors

Ciminelli and Garcia-Mandicó (2020) find that relatively

few municipalities account for a disproportionate number

of deaths. An official UK study into geographic concen-

trations of COVID-19 mortality (Office of National

Statistics (ONS) 2020a) reported that ‘‘a few areas saw

COVID-19 mortality more than seven times the expected

level compared with the rest of the country’’. Another UK

study (Kontopantelis et al. 2021) reported disproportionate

concentrations of excess mortality due to COVID-19 in

some regions.

Diverse methodologies have contributed to recent

developments in ecological research and to assessing area

health risks, including Bayesian disease mapping or BDM

(Kang et al. 2016). Disease mapping uses statistical models

which recognize the spatial pattern present in disease rates

(e.g. geographically close areas tend to have similar disease

rates) through use of random effects, and offers methods to

formally identify extreme risk (Stern and Cressie 1999).

One aim of such research is to smooth erratic fluctuations
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in risk arising from small populations and stochastic vari-

ation in disease counts. However, these procedures may

sometimes produce over-smoothing, masking distinctive

features in the disease risk surface, including sharp dis-

continuities (Duncan and Mengersen 2020). Refinements

of the basic BDM models to counter this include the use of

different neighborhood matrix specifications for spatial and

spatio-temporal model fitting (Briz-Redón et al. 2021) or

attempts to identifying clusters or individual areas

exhibiting discontinuity (Knorr-Held and Rasser 2000;

Anderson et al. 2014; Santafé et al. 2021). Ecological

regression involving analysis of health outcomes should

ideally use a relatively small area scale. Pinzari et al.

(2018) mention that, to avoid attenuating impacts of area

characteristics, ‘‘units with greater social homogeneity

would be appropriate for studying the associations between

unit characteristics and a given health indicator’’. In a study

of geographic obesity variations the authors Procter et al.

(2008) argue that ‘‘operating at purely a global scale, say

for a whole city, will ‘average out’ small areas of high

prevalence such that the mean can be deemed accept-

able and the pockets of problem areas are ignored, or

rather, not noticed’’. Geographically disaggregated models

of COVID-19 outcomes have been quite widely applied

(Karmakar et al. 2021; Gaudart et al. 2021; Ciminelli and

Garcia-Mandicó 2020). For example, Karmakar et al.

(2021) consider variations in COVID-19 incidence and

mortality between US counties; this scale of analysis has

the caveat that US counties vary considerably in population

size, meaning some counties may contain considerable

outcome heterogeneity within their boundaries. Jalilian and

Mateu (2021) study variations in the daily number of new

COVID-19 confirmed cases in first-level administrative

division units from Spain, Italy and Germany. Gaudart

et al. (2021) consider variation in COVID-19 across 96

administrative departments in France, while Ciminelli and

Garcia-Mandicó (2020) consider a sample of 1161 Italian

municipalities in the seven regions most severely hit by

COVID-19. Several ecological regression models have

been considered to estimate COVID-19 mortality risks at

various geographic scales in the UK. The analysis of excess

COVID-19 mortality by Kontopantelis et al. (2021) uses

ten regions in England and Wales, while Travaglio et al.

(2021) use data for English local authorities, averaging

around 200 thousand population. The latter study found

higher air pollution led to large increases in COVID-19

infectivity and mortality rates after controlling for demo-

graphic factors and health-related preconditions. Some UK

analyses have been at small area level: for example, Harris

(2020) considered COVID-19 mortality within the London

region at the level of middle super output areas (MSOAs).

MSOAs are census units averaging around 8300 population

across England, with a 95th percentile population of

11,900. The study by Daras et al. (2021) was also at

MSOA level, but across all of England, and found COVID-

19 area vulnerability to relate to ethnic composition, pov-

erty, prevalence of long-term health conditions, living in

care homes and living in overcrowded housing. As men-

tioned above, risk factors such as pollution, ethnic com-

position and poverty have been identified as area risk

factors for COVID-19 in several studies. These are likely to

be spatially concentrated (for example, pollution is higher

in highly urbanized areas), and so one may anticipate

spatial clustering in excess risk of COVID-19 outcomes.

Discontinuities may also be present, due to factors such as

location of food processing plants (Food and Environment

Reporting Network (FERN) 2021; Davies 2020-27-09);

particular types of institution, such as prisons (Braithwaite

et al. 2021); or segmented housing patterns, such as sub-

urban social housing estates set in mainly owner occupied

areas (White 2000).

In this paper we consider several classical disease

mapping models and an extension of the clustering method

named DBSC (Santafé et al. 2021) to an analysis of

COVID-19 related mortality in English small areas during

the first wave of the epidemic in the first half of 2020. We

seek to identify high risk areas, and where they are most

geographically concentrated, taking account of observed

area factors (e.g. pre-existing illness, ethnic composition)

via regression, as well as spatial correlation and clustering

in regression residuals, while also allowing for spatial

discontinuities. Identifying associations between the risk of

mortality and several covariates, alleviating spatial con-

founding, i.e., avoiding collinearity between fixed and

random effects, is also of interest.

The rest of the paper is structured as follows. Section 2

describes the methodology used to analyze the COVID-19

data. All the results are provided in Sect. 3. The paper ends

with a discussion.

2 Methods

2.1 Choice of covariates

Choice of covariates is important in defining regression

residuals which are the input to the clustering stage used

later. For area covariates, we consider results from a study

of COVID-19 mortality (Congdon 2021), across 6791

MSOAs (providing entire coverage of England), and cov-

ering March to June 2020 inclusive. This study found a

measure of ethnic segregation to provide a better fitting

model than one using simply the area percentage in ethnic

groups. The following covariates have been included in the

model as potential area-level risk factors: the Lieberson

isolation index (ISOL) for measuring ethnic segregation;
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nursing home location (NH) to represent concentrations of

frail elderly; a health deprivation and disability index

(HDD) as a spatial measure of long term illness levels; and

a measure of poor air quality (AIRQ). These variables are

all continuous, and in the regression analysis they are all

coded in such a way as to be ‘‘positive’’ risk factors, with

higher scores expected to be associated with higher mor-

tality. ISOL is a segregation measure with theoretical

minimum and maximum values of 0 and 1 respectively

(higher for increased segregation); the NH scores were

originally percentages, increasing in line with percentages

of older people in nursing homes; while AIRQ is measured

as a continuous positive scale, increasing as air quality

worsens. The HDD for MSOAs is obtained using HDD

ranks for smaller area units, known as lower super output

areas (LSOAs) and nested within MSOAs. The ranks, from

1 to 32,844, are ascending as health deprivation lessens,

and are averaged within MSOAs to provide a score ranging

from 35.4 to 32,835.6. These HDD scores are reversed and

standardized in the regression, to provide a positive risk

factor score. Table 1 provides summary descriptive statis-

tics of these variables.

The COVID-19 deaths data is associated with the online

article by the UK Office of National Statistics entitled

‘‘Deaths involving COVID-19 by local area and socioe-

conomic deprivation: deaths occurring between 1 March

and 31 July 2020’’ (Office of National Statistics (ONS)

2020b). Data on ethnicity and nursing homes are from the

UK Census, data on health deprivation are from a 2019

compendium of different types of small area deprivation

(Ministry of Housing, Communities and Local Government

(MHCLG) 2019), while data on air pollution are from the

Access to Healthy Assets and Hazards small area indicators

profile at https://www.cdrc.ac.uk/new-update-access-to-

healthy-assets-and-hazards-ahah-data-resource/ (Green

et al. 2018).

2.2 Predicting relative risk: preliminary
regressions

We first consider conventional spatial regression of

COVID-19 mortality as a preliminar analysis and to study

the best representation of the baseline spatial random effect

structure.

Let Oi denote observed mortality data (counts of

COVID-19 related deaths) in the i-th MSOA during March

to June 2020. The following spatial Poisson mixed model is

considered

Oijri �PoissonðEiriÞ; i ¼ 1; . . .; n

logðriÞ ¼ aþ x
0

ibþ ni
ð1Þ

where Ei denotes the expected number of deaths. These are

computed using age specific national COVID-19 mortality

rates applied to MSOA populations, so that impacts of

population age structure on deaths are controlled for in the

analysis; a is an intercept term; ri is the relative risk in area

i (with the England wide relative risk being 1); x
0

i ¼
ðxi1; . . .; xi4Þ is the vector of standardized covariates in area

i; b ¼ ðb1; . . .; b4Þ
0
is the vector of fixed effects coeffi-

cients; and ni is a spatial random effect. We use stan-

dardized forms of the four risk factors, putting them on a

common scale so that their relative effects can be assessed

(Gelman 2008). For example, we might wish to assess

which risk factor is the most important influence on

COVID-19 mortality.

The random effect is spatially structured to reflect pos-

sible geographic clustering in regression residuals, and a

conditional autoregressive (CAR) prior is usually assumed

(Besag et al. 1991; Lee 2011). In CAR priors the spatial

effect for area i given the spatial effects in neighbouring

areas is based on the average in surrounding areas (the

surrounding areas may be denoted as the neighborhood or

locality of area i); estimated risks in area i are smoothed

towards the locality average. Different prior distributions

for the spatially structured random effect n have been

proposed and there is still debate about which is the most

effective at detecting risk variations (Lee 2011; Riebler

et al. 2016). Some variation in area disease risk may be

spatially unstructured, and this motivates models allowing

for unstructured heterogeneity as well as spatial clustering

in risk. Thus, the long established intrinsic CAR (iCAR)

prior (Besag et al. 1991) represents pure spatial depen-

dence. However, greater flexibility may be provided by

other area priors. For instance, the Leroux CAR (LCAR)

prior (Leroux et al. 1999) includes a parameter ks, varying
between 0 and 1, to represent the proportion of risk vari-

ation that is spatially structured. This LCAR prior only

includes a single random effect. By contrast, the convolu-

tion CAR prior, often termed the BYM model (Besag et al.

Table 1 Descriptive statistics of predictor variables (risk factors)

ISOL NH HDD AIRQ

Average 0.148 3.49 16,508.6 26.1

Standard deviation 0.185 3.38 8475.3 19.7

Minimum 0.005 0.00 35.4 0.4

Maximum 0.946 41.10 32,835.6 99.7

ISOL: Lieberson isolation index; NH: nursing home location; HDD:
health deprivation and disability index; AIRQ: poor air quality
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1991), includes a random effect for unstructured hetero-

geneity as well as an spatially structured random effect.

Additionally, a modification of the Dean et al. (2001)

model proposed by Riebler et al. (2016), hereafter called

the BYM2 model, addresses both identifiability and scaling

issues of the BYM model. Scaling the model is crucial to

ensure that the priors for the precision parameters have the

same interpretation irrespective of the spatial graph. LCAR

and BYM2 also deal with spatially structured and

unstructured heterogeneity, although in a different way

than the BYM model does: the LCAR model through the

precision matrix, and the BYM2 model uses the covariance

model instead (see for example Vicente et al. 2020 for

details).

As well as the standard regression estimation used in

disease mapping, we also consider restricted regression

(RR) models (Reich et al. 2006). RR models ensure the

random effects are orthogonal to the fixed effects, and so

alleviate spatial confounding (see for example, Adin et al.

2021 and references therein). Spatial confounding (mean-

ing that the spatial random effect is collinear with the

observed covariates) may attenuate or bias regression

coefficients on the observed covariates, and inflate the

variance of the estimates of these coefficients (Prates et al.

2019). As it can be seen in Sect. 3, similar posterior dis-

tributions of the regression coefficients to those given by

the non-spatial model (GLM) are obtained when fitting

RR-models, with similar relative risk estimates in relation

to non-RR models as expected.

For completeness, results from a non-spatial generalized

linear model (GLM) are shown also. As measures of fit, we

adopt the Deviance Information Criterion (DIC) (Spiegel-

halter et al. 2002), and the widely applicable information

criterion (WAIC) (Watanabe 2010). These are both lower

for better fitting models. Predictive fit (cross-validation

outside the sample) is measured using two score statistics:

Dawid–Sebastiani score, denoted DSS, and the logarithmic

score, denoted LS (Czado et al. 2009). These are also lower

for better fitting models. We initially consider a prelimi-

nary regression on the four area risk factors mentioned

above, before investigating clustering in risks beyond that

represented by the CAR random effect(s), for example due

to risk discontinuities. Model fitting and inference is car-

ried out using the very popular integrated nested Laplace

approximation technique (INLA, Rue et al. 2009). All

computations are made using the simplified Laplace

approximation strategy of the R-INLA package

(stable version 21.02.23). Regarding model hyperparame-

ters, Normal prior distributions with mean 0 and variance

equal to 1000 for fixed effects and uniform prior distribu-

tions on the positive real line for the standard deviations of

the random effects have been adopted. A uniform(0, 1)

prior for the spatial autocorrelation parameter ks was also
assumed.

We adopt commonly used, relatively diffuse, priors to

summarize existing knowledge. COVID-19 is a novel

infectious disease, and while there is accumulated evidence

on impacts of area risk factors on respiratory diseases, there

is still considerable debate and uncertainty regarding

impacts of area attributes on COVID-19 mortality. Hence

strongly informative priors, such as assuming that some

regression coefficients are positive, are avoided. In the

analysis here, the observed data has over 6000 cases (i.e.,

the 6791 neighbourhoods), so the likelihood will tend to

dominate the influence of priors, unless these are highly

informative.

There has been some effort to develop ‘‘objective’’ or

‘‘rule-based’’ priors in Bayesian analysis (Consonni et al.

2018), especially in the absence of strong prior informa-

tion. For example, under the maximum entropy approach

(Jaynes 2003; Schroeder 2010), suppose our background

knowledge is limited to the parameter being continuous

with finite mean and finite variance. Then a normal prior

distribution is the maximum entropy prior, and in the

analysis here we assume normal prior densities with means

of zero and large finite variances to express uncertainty

about the direction and variability of regression effects.

2.3 Excess risk detection with models including
cluster-level random effects

Estimation of spatial regressions may show relatively high

proportions of risk variation due to unstructured hetero-

geneity. This component of variation may contain impor-

tant information about risk patterns that is not captured by

the smoothly varying spatial random effect. There are also

likely to be irregularities in disease patterns such that

smoothing towards the locality average (a central feature in

the spatial random effect modelling) is not appropriate. For

example, a deprived area with relatively poor health may

be surrounded by relatively affluent areas. Hence, a novel

density-based spatial clustering (DBSC) algorithm was

proposed in Santafé et al. (2021) to deal with discontinu-

ities and to smooth noisy risks in small areas. Here, we

extend the proposed methodology to the context of eco-

logical regression models as follows. In a first stage, the

DBSC algorithm is used to obtain a single clustering par-

tition C ¼ fC1; . . .;Ckg of the residuals of the non-spatial

generalized linear model, that is,

�̂i ¼ logðOi=EiÞ � x
0

ib̂: ð2Þ

To avoid numerical instabilities when the number of

observed cases in a given small area is equal to zero, a
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small constant (0.0001) is added to the quotient Oi=Ei in

Eq. (2).

The DBSC algorithm automatically detects cluster

centers in the residuals, �̂i, based on the idea that cluster

centers are areas with high local density and relatively

large distances to other areas with higher local density.

This idea is implemented into a cluster-centroid score, c,
which is calculated for each area. This score depends on

the area’s local density and the geographical distance to its

closest area with a higher local density. Then, cluster

centroids are automatically selected by detecting outliers in

the cluster-centroid score c. Thus, the number of clusters k

is estimated by the algorithm and the final clustering par-

tition is obtained by assigning the areas to their nearest

cluster centroid. See Santafé et al. (2021) for more details.

In addition, the DBSC algorithm has a user-given param-

eter, ‘, that defines the neighborhood order to compute the

area’s local density. If ‘ ¼ 1 is considered, the area’s local

density is computed within its adjacent neighboring areas

(i.e. areas that share a common border). However, greater

values of ‘ can be used to extend the area’s neighborhood

by considering ‘-order neighborhoods.

Then, in a second stage, the following model that

includes both small area and cluster-level spatial random

effects is fitted

logðriÞ ¼ aþ x
0

ibþ ni þ wjðiÞ ð3Þ

where wjðiÞ is the cluster-level spatial random effect and j(i)

denotes that ith area is in cluster Cj. The same prior dis-

tribution is adopted for both spatial random effects ni and
wjðiÞ. As in Eq. (1), different CAR prior distributions can be

considered (see Tables 5, 10, 11 and 12 in the Appendix

for a comparison between the different CAR priors adopted

in this paper). To achieve identifiability, the following

sum-to-zero constrains are placed over the area and cluster

random effects respectively, namely

Xn

i¼1

ni ¼
Xk

j¼1

wjðiÞ ¼ 0:

Based on the evidence from the preliminary regressions,

and considering that the clustering stage is computed using

the residuals of a non-spatial model, restricted regression

will be also applied in the second stage of the DBSC

algorithm to alleviate confounding between fixed effects

and the combined random effect ni þ wjðiÞ, i.e, to avoid

collinearity between fixed and random effects, making the

fixed effect orthogonal to the random effects. The R code

to run the DBSC algorithm and to fit the spatial models

described in Sect. 2 is available at https://github.com/spa

tialstatisticsupna/DBSC_RR_article. It also includes the

original data set and the code to reproduce all figures and

tables of the present manuscript.

3 Results

3.1 Preliminary regressions

Table 2 shows fit measures under different specifications of

the spatial effects in the preliminary regressions. A simple

Poisson model without random effects (named GLM in the

table) together with mixed Poisson models incorporating

different areal random priors (iCAR, LCAR, BYM, and

BYM2) have been fitted. To deal with spatial confounding

the corresponding restricted regression (RR) models have

been also fitted. A summary of posterior distributions for

the fixed effects and model hyperparameters is presented in

Tables 3 and 4 respectively. The posterior marginal dis-

tributions of the regression coefficients estimated for each

model are plotted in the Appendix (Figs.3, 4, 5 and 6).

There, it can be clearly seen how restricted regression

alleviates spatial confounding with regard to the spatial

regressions.

Examination of the spatial autocorrelation parameter ks
for the LCAR and the BYM2 models (see Table 4) sug-

gests that the LCAR prior may overestimate the amount of

spatial dependence in the random effect (the parameter

takes values between 0 and 1, with 1 representing pure

spatial dependence). In contrast, the BYM2 model gives a

posterior mean estimate of 0.528 for its spatial autocorre-

lation parameter which also weights the spatially structured

and spatially unstructured variability. In addition, the

BYM2 model is better supported than the LCAR by the

model fit criteria (see Table 2) with a significant

improvement in mean deviance and better DIC, WAIC, LS,

and DSS values. The BYM convolution model provides an

estimate of 0.529 when computing the ratio between the

marginal variance of the spatial error and the total of the

marginal variances (one for spatial, one for heterogeneity),

which could be interpreted as an approximation to the

spatial autocorrelation parameter. However, we recom-

mend to use the ks parameter in a scaled BYM2 model. The

BYM2 and the convolution model have similar fit mea-

sures (and both provide an improved fit over the LCAR),

suggesting that unstructured heterogeneity is important in

the overall pattern of COVID-19 mortality risk variation.

The regression coefficients on all models show signifi-

cant effects, namely 95% credible intervals confined to

positive values, so all four postulated risk factors are rel-

evant to explaining mortality variation. Covariate values

are standardized, so comparing coefficients shows which

are the most important risk factors: it seems that ethnic

isolation, air quality and area morbidity have a broadly
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similar impact, whereas nursing home location is slightly

less important. As can also be seen, similar posterior dis-

tributions to those obtained with the non-spatial general-

ized linear model (GLM) are obtained when fitting the

restricted regression models. The Appendix plots show that

the restricted regression coefficient estimates are more

precise (narrower 95% credible intervals). This feature of

the restricted regression option (in addition to controlling

for spatial confounding) may be beneficial in establishing

which observed risk factors are important for explaining

mortality variation. It suggests that if restricted regression

is not adopted, area risk factors that are relevant to risk

variations are incorrectly assessed as not significant.

Table 3 also suggests that impacts of ethnic isolation and

poor air quality may be attenuated when there is no control

for spatial confounding. High-resolution maps with the

posterior median estimates of relative risks and posterior

exceedence probabilities Prðri [ 1jOÞ obtained with the

BYM2 model are available at https://emi-sstcdapp.una

varra.es/England_MSOA/.

3.2 Risk clustering

The model selection criteria of the preliminary regressions

(see Table 2) support the BYM and BYM2 options (in-

volving an unstructured heterogeneity random effect, as

well as a spatial effect that pools towards the locality

average). The DBSC clustering aims to better elucidate the

sources of this variability and also assesses when the

principle of locality smoothing may need to be modified.

Having identified clusters using the regression residuals of

the simple Poisson model described in Eq. (2), we then

apply an extended spatial regression model including

cluster random effects wjðiÞ [see Eq. (3)]. Finally, we also

carry out restricted regression to alleviate spatial con-

founding. The results obtained for different values of the ‘

parameter when fitting the BYM2?C models are shown in

Table 5. In general, considerably improved model fit cri-

teria are obtained as compared to the preliminary BYM2

model which do not take account of risk clustering (com-

pare Tables 2 and 5). The option ‘ ¼ 1 is clearly preferred.

The corresponding results when fitting iCAR?C,

LCAR?C and BYM2?C models are shown in

Tables 10, 11 and 12 of the Appendix, respectively.

Posterior marginal distributions of the regression coef-

ficients under the confounded and restricted regression

options are shown in Table 6 and Fig. 1. As before, it can

be seen that restricted regression produces more precise

estimates of the regression coefficients, with ethnic isola-

tion, area morbidity, and poor air quality again figuring as

the most important observed predictors of risk variability.

3.3 Risk classifications

The geographic distribution of extreme relative risk is of

importance for prioritizing areas for intervention and

countering excess morbidity in future epidemics. To this

end we use an eight-fold categorization of MSOAs

according to both their urban-rural location (Office of

National Statistics (ONS) 2013) and region of location

(nine regions). We define extreme relative risk in the i-th

MSOA using high posterior probabilities that ri exceeds

1.5, namely the exceedence probabilities

Prðri [ 1:5jOÞ[ 0:9. In words, there is a high probability

that the excess of risk in the i-th MSOA will be at least

50% more when compared with the global risk in England.

We also consider overlapping relative risk: where risk is

Table 2 Model selection criteria

for models fitted with INLA
�D pD DIC WAIC LS DSS

GLM 44,421.6 5.3 44,426.9 44,439.9 22,219.9 34,661.2

iCAR 31,409.5 3296.4 34,705.8 34,779.1 18,546.5 17,765.2

iCAR?RR 31,409.5 3296.6 34,706.0 34,779.1 18,546.7 17,765.1

LCAR 31,355.4 3339.8 34,695.1 34,722.2 18,548.5 17,727.1

LCAR?RR 31,355.2 3340.2 34,695.4 34,722.0 18,548.6 17,726.8

BYM 30,910.7 3593.0 34,503.7 34,190.2 18,268.3 17,407.5

BYM?RR 30,910.4 3593.6 34,504.0 34,189.8 18,268.2 17,407.1

BYM2 30,911.0 3592.7 34,503.7 34,190.4 18,268.0 17,407.7

BYM2?RR 30,910.8 3593.9 34,504.6 34,190.2 18,268.1 17,407.2

GLM indicates the fit of a Generalized Linear Model (Poisson model) without random effects. iCAR,

LCAR, BYM and BYM2 indicates the fit of a Poisson mixed model incorporating the intrinsic CAR, the

Leroux CAR, the BYM and the BYM2 prior respectively, to the spatial random effect. The sufix RR is

added to each name when restricted regression is applied

�D: mean deviance; pD: effective number of parameters; DIC: deviance information criterion; WAIC:
Watanabe–Akaike information criterion; LS: logarithmic score; DSS: David–Sebastiani score
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elevated both in an MSOA itself, and also in surrounding

(adjacent) MSOAs. We define this as occurring when both

relevant probabilities are high, namely when

Prðri [ 1jOÞ[ 0:9, and when PrðRi [ 1jOÞ[ 0:9, where

Ri is the average relative risk in surrounding MSOAs (the

locality of area i).

In what follows, we compare the results obtained with

the conventional BYM2 model given in Eq. (1) (without a

cluster random effect), with the BYM2?C based regres-

sion model given in Eq. (3) (which includes a cluster

random effect). Note that same results are obtained when

comparing the corresponding restricted regression models

as expected.

Table 7 shows the number of MSOAs with

Prðri [ 1:5jOÞ[ 0:9 according to urban-rural category

under both BYM2 and BYM2?C models. It can be seen

that the latter produces a higher number of MSOAs with

extremely high risk, especially in highly urbanized settings,

namely 518 as against 396. The cluster regression also

provides a classification of extreme risk that includes more

deaths (11,086 out of a total of 49,232, or 22.5%) as against

the conventional regression.

Table 8 classifies MSOAs by region. Here extremely

high risk is concentrated in London, and to a lesser extent

the two most Northerly regions. This feature is more

clearly apparent under the clustering regression, especially

in the North West region. The clustering regression also

identifies more overlapping risk, again in Northern regions.

High (but not necessarily extremely high) risk can be

assessed on the basis of probabilities Prðri [ 1jOÞ[ 0:9.

We may also consider extremely low risk areas, with rel-

ative risk below 1=1:5 ¼ 0:667, on the basis of the prob-

abilities Prðri\1=1:5jOÞ[ 0:9, and low relative risk areas

with Prðri\1jOÞ[ 0:9.

Table 9 shows that the conventional model classifies a

much higher proportion of areas as having intermediate

risk, with lower numbers of extreme high or low risk.

Discrepant classifications of risk can be defined based on

comparing Prðri [ 1:5jOÞ between the cluster-adjusted

and conventional models. A discrepant high risk classifi-

cation is defined when Prðri [ 1:5jOÞ[ 0:9 under the

BYM2?C model, but Prðri [ 1:5jOÞ\0:8 under the

BYM2 model. There are 93 such areas, in which total

deaths are 952, and total expected are 501.8, giving a point

estimate of 1.90 for the standard mortality ratio, so merit-

ing the classification as high risk. A discrepant low risk

classification is defined when Prðri\0:667jOÞ[ 0:9 under

the BYM2?C model, but Prðri\0:667jOÞ\0:8 under the

BYM2 model. There are 176 such areas, with a total of 340

deaths against 683.5 expected, giving a point estimate of

0.5 for the standardized mortality ratio in these areas, and

so clearly low risk areas.

Maps with the posterior median estimates of relative

risks and posterior exceedence probabilities Prðri [ 1jOÞ
obtained with the BYM2?C model (‘ ¼ 1) are plotted at

Fig. 2. High-resolution version of these maps are also

Table 3 Posterior mean, posterior standard deviation, and 95%

credible intervals of the regression coefficients for GLM, iCAR,

LCAR, BYM and BYM2 models (and the corresponding RR ver-

sions) fitted with INLA

INLA models Mean SD q0:025 Median q0:975

Lieberson index (ISOL)

GLM 0.162 0.005 0.151 0.162 0.173

iCAR 0.102 0.015 0.072 0.102 0.132

LCAR 0.105 0.015 0.075 0.105 0.135

BYM 0.113 0.013 0.087 0.113 0.139

BYM2 0.113 0.013 0.087 0.113 0.139

iCAR?RR 0.153 0.006 0.142 0.153 0.164

LCAR?RR 0.153 0.006 0.142 0.153 0.164

BYM?RR 0.153 0.006 0.142 0.153 0.164

BYM2?RR 0.153 0.006 0.142 0.153 0.164

Nursing homes (NH)

GLM 0.087 0.004 0.079 0.087 0.095

iCAR 0.115 0.007 0.101 0.115 0.129

LCAR 0.114 0.007 0.100 0.114 0.128

BYM 0.107 0.007 0.092 0.107 0.121

BYM2 0.107 0.007 0.092 0.107 0.121

iCAR?RR 0.100 0.004 0.092 0.100 0.108

LCAR?RR 0.100 0.004 0.092 0.100 0.108

BYM?RR 0.101 0.004 0.092 0.101 0.109

BYM2?RR 0.101 0.004 0.092 0.101 0.109

Health deprivation and disability (HDD)

GLM 0.163 0.005 0.154 0.163 0.172

iCAR 0.195 0.013 0.170 0.195 0.220

LCAR 0.188 0.012 0.164 0.188 0.213

BYM 0.192 0.012 0.169 0.192 0.216

BYM2 0.192 0.012 0.169 0.192 0.216

iCAR?RR 0.167 0.005 0.158 0.167 0.176

LCAR?RR 0.167 0.005 0.158 0.167 0.176

BYM?RR 0.166 0.005 0.157 0.166 0.175

BYM2?RR 0.166 0.005 0.157 0.166 0.175

Air quality (AIRQ)

GLM 0.170 0.006 0.158 0.170 0.181

iCAR 0.071 0.038 -0.003 0.071 0.145

LCAR 0.121 0.036 0.049 0.121 0.189

BYM 0.082 0.027 0.028 0.082 0.135

BYM2 0.082 0.027 0.028 0.082 0.135

iCAR?RR 0.145 0.006 0.133 0.145 0.157

LCAR?RR 0.145 0.006 0.133 0.145 0.157

BYM?RR 0.147 0.006 0.135 0.147 0.159

BYM2?RR 0.147 0.006 0.135 0.147 0.159
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available at https://emi-sstcdapp.unavarra.es/England_

MSOA/.

4 Discussion

Delineation of high risk areas is a primary aim in disease

mapping. A disease mapping model that underpredicts

cases or deaths in high risk areas may lead to resourcing

decisions that do not match health need. It may also be

relevant to consider distinctively low risk areas, not so

much on resourcing grounds, but because the location of

low risk is important in assessing which environments are

favorable from the viewpoint of reducing health risk. The

preceding section has compared risk classifications under a

conventional disease mapping model (without a clustering

term) and a model including a cluster random effect to

account for discrepancies in the conventional model, which

can be called a clustering adjusted model. It can be seen

from Table 7 that the latter produces a higher number of

MSOAs with extreme risk, especially in highly urbanized

settings. The clustering adjusted regression model (and

hence its classifications of risk) is considerably better

supported by fit measures than the conventional model.

This implies, inter alia, that the conventional model is

understating extreme relative risk in urban areas. We may

also consider areas with low risk, as defined by high

probabilities that the relative risk is under 1, or decisively

under 1, namely below 1/1.5.

Table 9 shows that the conventional disease mapping

model tends to classify a noticeably higher proportion of

Table 4 Posterior mean,

posterior standard deviation,

and 95% credible intervals of

the model hyperparameters for

GLM, iCAR, LCAR, BYM and

BYM2 models (and the

corresponding restricted

regression (RR) versions) fitted

with INLA

INLA models Mean SD q0:025 Median q0:975

iCAR and iCAR?RR models ss 1.338 0.046 1.250 1.336 1.433

LCAR and LCAR?RR models ss 1.331 0.046 1.242 1.330 1.425

ks 0.936 0.039 0.839 0.948 0.981

BYM and BYM?RR models su 7.706 0.435 6.925 7.677 8.633

sv 4.417 0.398 3.688 4.398 5.252

BYM2 and BYM2?RR models ss 3.658 0.139 3.393 3.655 3.938

ks 0.528 0.032 0.464 0.528 0.591

Table 5 Model selection criteria

for BYM2?C models fitted

with INLA considering different

neighborhood orders (parameter

‘)

BYM2?C �D pD DIC WAIC LS DSS

‘ ¼ 1 30,548.9 2417.4 32,966.3 32,879.5 16,970.6 17,222.3

‘ ¼ 2 30,665.7 2655.1 33,320.8 33,204.1 17,263.6 17,282.1

‘ ¼ 3 30,699.9 2724.8 33,424.7 33,297.4 17,377.9 17,304.5

‘ ¼ 4 30,733.9 2713.5 33,447.4 33,328.4 17,374.8 17,329.1

‘ ¼ 5 30,710.8 2829.9 33,540.7 33,363.9 17,505.2 17,296.1

‘ ¼ 6 30,750.0 2790.7 33,540.7 33,393.1 17,491.0 17,338.1

‘ ¼ 7 30,716.8 2810.1 33,526.9 33,379.3 17,457.3 17,302.4

‘ ¼ 8 30,769.0 2912.4 33,681.3 33,516.7 17,636.6 17,332.4

Table 6 Posterior mean, posterior standard deviation, and 95%

credible intervals of the regression coefficients for GLM, BYM2?C

and BYM2?C?RR models (‘ ¼ 1) fitted with INLA

INLA models Mean SD q0:025 Median q0:975

Lieberson index (ISOL)

GLM 0.162 0.005 0.151 0.162 0.173

BYM2?C 0.145 0.012 0.120 0.154 0.169

BYM2?C?RR 0.151 0.006 0.140 0.151 0.162

Nursing homes (NH)

GLM 0.087 0.004 0.079 0.087 0.095

BYM2?C 0.107 0.006 0.094 0.107 0.119

BYM2?C?RR 0.098 0.004 0.090 0.098 0.106

Health deprivation and disability (HDD)

GLM 0.163 0.005 0.154 0.163 0.172

BYM2?C 0.177 0.011 0.156 0.177 0.198

BYM2?C?RR 0.166 0.005 0.157 0.166 0.174

Air quality (AIRQ)

GLM 0.170 0.006 0.158 0.170 0.181

BYM2?C 0.151 0.028 0.096 0.151 0.207

BYM2?C?RR 0.147 0.006 0.135 0.147 0.159
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Fig. 1 Posterior marginal

distributions of the regression

coefficients (BYM2?C model)

Table 7 Total MSOAs classified as extreme relative risk by Urban–Rural category: BYM2 vs. BYM2?C models

Urban–Rural

category

Observed

SMR

Number of

areas with high

probability

ri [ 1:5
(BYM2)

Number of areas

with high

probability

ri [ 1:5
(BYM2?C)

Deaths in areas

with high

probability

ri [ 1:5
(BYM2)

Deaths in areas

with high

probability

ri [ 1:5
(BYM2?C)

Total areas with

high probability

of overlapping

risk (BYM2)

Total areas with

high probability of

overlapping risk

(BYM2?C)

Urban: major

conurbation

1.43 396 518 6471 7651 437 478

Urban: minor

conurbation

1.16 14 22 296 399 1 2

Urban: city

& town

0.89 115 155 2395 2838 31 51

Urban: city/

Town in

sparse

setting

0.47 0 0 0 0 0 0

Rural: town

& fringe

0.70 5 7 118 130 1 2

Rural: town

& fringe in

sparse

setting

0.51 0 0 0 0 0 0

Rural: village

&

dispersed

0.59 2 3 49 68 0 1

Rural: village

&

dispersed

in sparse

setting

0.37 0 0 0 0 0 0

All MSOAs 1.00 532 705 9329 11,086 470 534

BYM2: conventional regression; BYM2?C: regression adjusted for discontinuity clustering
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areas (47%) as having intermediate risk, as compared to the

clustering adjusted model (36%), and to understate the

numbers of definitively high risk and definitively low risk

areas. This suggests over-smoothing under the conven-

tional model. If the classification produced by conventional

disease mapping was used as a basis for resource alloca-

tion, then it would tend to disadvantage areas with the

highest need. An examination of areas with discrepant risk

classifications shows that the conventional disease mapping

model provides estimated probabilities

Prðri [ 1:5jOÞ\0:8 for 93 areas, despite such areas hav-

ing an SMR of 1.9. Similarly the conventional disease

mapping model provides estimated probabilities

Prðri\0:667jOÞ\0:8 for 176 areas, despite such areas

having an SMR of 0.5. Examination of the discrepant risk

areas suggest that the clustering adjusted model corrects for

misclassification, which may occur when an area has rel-

atively high (low) mortality as compared to its locality of

surrounding areas. An unadjusted spatial smoothing

mechanism (which pools to the locality average) may mean

that an above average mortality area may have a relative

risk estimate of below 1 if its locality has comparatively

lower mortality. The DBSC clustering approach will tend

to allocate such an area to a high mortality cluster to

compensate for the spatial smoothing effect. This is not to

discount the utility of spatial smoothing in disease map-

ping, but to suggest that this smoothing principle may need

to be modified when there are risk discontinuities. The

clustering model will also tend to adjust when an area is

classified as relatively low risk on the basis of observed

area risk factors (e.g. when the four predictors used to

predict COVID-19 mortality are all below average),

whereas other indications are of high mortality. This could

be a high ratio of Oi to Ei in both the area itself (especially

when Ei is relatively high, say above 5), and also in its

locality of surrounding areas.

Table 8 Total MSOAs classified as extreme relative risk by English region: BYM2 vs BYM2?C models

Region Observed

SMR

Number of

areas with high

probability

ri [ 1:5
(BYM2)

Number of areas

with high

probability

ri [ 1:5
(BYM2?C)

Deaths in areas

with high

probability

ri [ 1:5
(BYM2)

Deaths in areas

with high

probability

ri [ 1:5
(BYM2?C)

Total areas with

high probability

of overlapping

risk (BYM2)

Total areas with

high probability of

overlapping risk

(BYM2?C)

North East 1.16 42 48 909 954 11 18

North West 1.24 89 132 1616 2118 50 76

Yorkshire–

Humberside

1.01 50 67 904 1103 16 23

West

Midlands

1.13 69 86 1138 1303 68 80

East

Midlands

0.91 21 29 407 472 10 18

East 0.86 23 33 456 597 13 13

South East 0.84 28 40 590 717 1 1

London 1.58 204 262 3154 3637 301 304

South West 0.49 6 8 155 185 0 1

All Areas 1.00 532 705 9329 11,086 470 534

BYM2: conventional regression; BYM2?C: regression adjusted for discontinuity clustering

Table 9 Relative risk categories by model: BYM2 vs BYM2?C

BYM2 Model % All MSOAs BYM2?C Model % All MSOAs

Extreme high relative risk, Prðri [ 1:5 j OÞ[ 0:9 532 7.8 705 10.4

Elevated (excl extremely high) relative risk, Prðri [ 1 j OÞ[ 0:9 1055 15.5 1186 17.5

Intermediate relative risk, 0:9[Prðri [ 1 j OÞ[ 0:1 3166 46.6 2408 35.5

Low relative risk (excl extremely low), Prðri\1 j OÞ[ 0:9 1242 18.3 1386 20.4

Extreme low relative risk, Prðri\0:67 j 0Þ[ 0:9 796 11.7 1106 16.3

All categories 6791 100.0 6791 100.0
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As suggested by one reviewer, a small simulation study

was conducted to compare classical models with the

methodology proposed in this paper in terms of detecting

extreme risks. Even simulating using the risks obtained

under a BYM2 model, results suggests that our clustering

adjusted regression model proposal performs better than

usual CAR models when the objective is to correctly

identify extreme risk areas. Specifically, higher values of

true positive rates and true negative rates were obtained

when considering models that also includes a cluster-level

spatially structured random effect. Although a slight

increase is observed in terms of false negative/positive

rates, these values never overcame 2% when defining high/

low risk areas as those with high posterior probabilities that

risks exceed 1.5 or are below 0.67 (that is, 1/1.5),

respectively.

The other methodological feature of the analysis of this

paper is the benefit of comparing restricted spatial regres-

sion, which controls for spatial confounding (i.e., avoids

the collinearity between fixed and random effects), with

conventional disease mapping. The four area risk factors

used to predict COVID-19 mortality have more precisely

identified effects under restricted regression attributing all

the competing explanatory effect to the covariates and

considering random effects as smoothing devices. In some

situations, where an area risk factor has a less clear cut

effect, the gain in precision may mean the difference

between deciding whether a regression effect is significant

or not.

The main substantive conclusions to emerge from the

analysis of this paper are a pronounced metropolitan vs

rural delineation of risk, which much outweighs any North-

South divide. In fact, the main difference is between

London and other regions. This stands opposite to longer

term health contrasts between Northern and Southern

England (Buchan et al. 2017). As to establishing such

contrasts, a spatial regression model incorporating a clus-

tering stage to identify risk continuities provides a risk

classification that provides a clear advantage on the basis of

a range of fit measures. The conventional spatial regres-

sion, here provided by the BYM2 model of Riebler et al.

(2016), tends to classify a much higher proportion of areas

as having intermediate risk, and is subject to apparent

misclassification of some areas. The latter is exemplified by

subsets of areas with clearly elevated (or depressed) risk

based on standard mortality ratios, but not classified as

extreme risk. Some limitations of the analysis here may be

mentioned. No risk classifications are perfect, and are

subject to stochastic uncertainty. Furthermore risk classi-

fications of areas are of population aggregates, and more

localized analysis may be needed to establish which sub-

areas of high risk MSOAs show most adverse risk.

Appendix

See Figs. 3, 4, 5, 6 and Tables 10, 11, 12.

Fig. 2 Posterior median estimates of relative risks (top) and posterior

exceedence probabilities Prðri [ 1jOÞ (bottom) obtained with the ‘ ¼
1 BYM2?C model
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Fig. 3 Posterior marginal

distributions of the regression

coefficients (iCAR model)

0.00 0.05 0.10 0.15 0.20 0.25

0
20

40
60

Lieberson index (ISOL)

GLM
LCAR
LCAR+RR

0.00 0.05 0.10 0.15 0.20 0.25

0
20

40
60

80

Nursing homes (NH)

GLM
LCAR
LCAR+RR

0.00 0.05 0.10 0.15 0.20 0.25

0
20

40
60

80

Health Deprivation and Disability (HDD)

GLM
LCAR
LCAR+RR

0.00 0.05 0.10 0.15 0.20 0.25

0
20

40
60

Air quality (AIRQ)

GLM
LCAR
LCAR+RR

Fig. 4 Posterior marginal

distributions of the regression

coefficients (LCAR model)
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Fig. 5 Posterior marginal

distributions of the regression

coefficients (BYM model)
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Fig. 6 Posterior marginal

distributions of the regression

coefficients (BYM2 model)

Table 10 Model selection

criteria for iCAR?C models

fitted with INLA considering

different neighborhood orders

(parameter ‘)

iCAR?C �D pD DIC WAIC LS DSS

‘ ¼ 1 30,607.7 2389.5 32,997.2 32,946.9 17,020.1 17,270.1

‘ ¼ 2 30,804.1 2554.4 33,358.5 33,331.4 17,348.2 17,403.3

‘ ¼ 3 30,804.0 2633.3 33,437.3 33,381.8 17,426.2 17,397.7

‘ ¼ 4 30,879.9 2581.1 33,461.0 33,434.7 17,421.8 17,467.5

‘ ¼ 5 30,906.3 2642.2 33,548.5 33,514.2 17,593.0 17,485.3

‘ ¼ 6 30,920.2 2653.5 33,573.8 33,532.2 17,595.8 17,501.4

‘ ¼ 7 30,950.2 2624.0 33,574.2 33,567.5 17,524.0 17,523.6

‘ ¼ 8 31,037.7 2695.9 33,733.6 33,740.6 17,711.5 17,583.2
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