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Abstract

Playing techniques are expressive elements in music performances that
carry important information about music expressivity and interpretation.
When displaying playing techniques in the time–frequency domain, we
observe that each has a distinctive spectro-temporal pattern. Based on
the patterns of regularity, we group commonly-used playing techniques
into two families: pitch modulation-based techniques (PMTs) and pitch
evolution-based techniques (PETs). The former are periodic modulations
that elaborate on stable pitches, including vibrato, tremolo, trill, and
flutter-tongue; while the latter contain monotonic pitch changes, such
as acciaccatura, portamento, and glissando.

In this thesis, we present a general framework based on the scat-
tering transform for playing technique recognition. We propose two
variants of the scattering transform, the adaptive scattering and the
direction-invariant joint scattering. The former provides highly-compact
representations that are invariant to pitch transpositions for represent-
ing PMTs. The latter captures the spectro-temporal patterns exhibited
by PETs. Using the proposed scattering representations as input, our
recognition system achieves start-of-the-art results. We provide a formal
interpretation of the role of each scattering component confirmed by
explanatory visualisations.

Whereas previously published datasets for playing technique analysis
focused primarily on techniques recorded in isolation, we publicly release
a new dataset to evaluate the proposed framework. The dataset, named
CBFdataset, is the first dataset on the Chinese bamboo flute (CBF),
containing full-length CBF performances and expert annotations of
playing techniques. To provide evidence on the generalisability of the
proposed framework, we test it over three additional datasets with a
variety of playing techniques. Finally, to explore the applicability of
the proposed scattering representations to general audio classification
problems, we introduce two additional applications: one applies the
adaptive scattering for identifying performers in polyphonic orchestral
music and the other uses the joint scattering for detecting and classifying
chick calls.
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Chapter 1

Introduction

This thesis presents a computational framework based on the scattering
transform for the automatic recognition of playing techniques in music
signals. In this chapter, we provide the motivations and aim of this
work in Section 1.1. Section 1.2 and Section 1.3 list the contributions
and outline of the thesis, respectively. Associated publications with this
thesis are provided in Section 1.4.

1.1 Motivation and Aim

Playing techniques in music signals, such as vibratos and tremolos in
instrument playing or in singing voice, contain important information
of the music style and the performers’ interpretation. The modeling
and automatic recognition of playing techniques may benefit research in
automatic transcription of musical ornaments (Gainza and Coyle, 2007),
realistic music generation (Oord et al., 2016), computer-aided music
pedagogy (Han and Lee, 2014), instrument classification (Hall et al.,
2013; Lostanlen et al., 2018), and performance analysis (Yang, 2017).

The motivation of this work comes form three aspects: the scarcity of
data for playing technique analysis in the literature, the possibility of
developing a general-purpose and explainable audio representation for
playing technique recognition, and the benefits that many applications
in music signal analysis (such as those listed above) may gain. Current
computational research on playing techniques suffers from a scarcity of
real-world performances with playing technique annotations. Playing
techniques are rare events in full-length performances and annotating
them requires expert knowledge of both the music and the playing
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1.1. Motivation and Aim

techniques. Datasets employed in existing research consist of mainly
playing techniques recorded in isolation. Isolated playing techniques can
vary greatly from the same techniques used in live performances.

Existing research efforts on playing technique recognition either de-
veloped specific methods for specific playing technique(s) or intended to
recognise multiple types of playing techniques based on a large set of
audio features (Su et al., 2014b) or using data-driven methods (Wilkins
et al., 2018). However, playing techniques are music events indepen-
dent of performer, pitch, genre, instrument, and region which a playing
technique recognition system should be invariant to. Feeding with high-
dimensional features is a possible but not optimal solution since such
an approach would not explain what information of a playing technique
is captured.

With limited data available, one may seek for a compact representation
that reduces the variabilities irrelevant to the task at hand. These vari-
abilities of playing techniques indicated by the characteristics mentioned
above can be interpreted as the invariance of the targeted represen-
tation to time-shifts, time-warps, and frequency-transpositions. Take
the vibrato technique as an example: a short translation or a small
dilation of the audio signal, or a different pitch on which the technique
is played should not change its class identity. Based on an investigation
of existing time–frequency representations for audio, we find that the
scattering transform, a flexible framework for building invariant, stable,
and informative signal representations (Mallat, 2012), fills the gaps with
mathematical guarantees. Exploring representations for playing tech-
niques from an invariance property perspective in general also enables
the applicability of this research to audio signals in other domains with
similar patterns.

The aim of the thesis is to develop a general-purpose audio repre-
sentation for playing technique recognition in music signals. To this
end, we analyse the spectro-temporal patterns of two families of playing
techniques and propose two variants of the scattering transform corre-
spondingly, to encode the characteristic information of each family of
playing techniques. Based on the proposed representations, we build
recognition systems which take audio signals as input, calculate the
representations, feed them into a machine learning classifier, and output
playing technique events with a temporal location and label. For eco-
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1.2. Contributions

logically valid analysis of playing techniques in context, we create the
first dataset on the Chinese bamboo flute with full-length performances
and expert playing technique annotations, to evaluate our proposed
methodology; and make the dataset publicly available to the community.
To evaluate the generalisability of the proposed methodology, we verify
the system on different datasets with a variety of instrumental and vocal
techniques. We also test the applicability of the proposed methodology
to two classification problems beyond playing technique recognition and
music signal analysis: one identifies violin performers in polyphonic
orchestral music and the other detects and classifies chick calls.

1.2 Contributions

We summarise the main contributions of each chapter as follows.

Chapter 2

• A through literature review of existing computational research on
playing techniques.

Chapter 3

• The first dataset on the Chinese bamboo flute, the CBFdataset,
which is publicly released for computational research on playing
techniques recorded in context.

Chapter 4

• A variant of the scattering transform framework, the adaptive scat-
tering, which provides representations for pitch modulation-based
techniques (PMTs), a group of periodic modulations elaborated
on stable pitches.

• An automatic system for detecting and classifying PMTs.

• A formal interpretation of the role of each component in the scat-
tering feature extractor, confirmed with explanatory visualisations.

16



1.3. Thesis Outline

Chapter 5

• A variant of the joint time–frequency scattering, the direction-
invariant joint time–frequency scattering, for pitch evolution-based
techniques (PETs), a group of playing techniques exhibiting mono-
tonic pitch changes.

• An automatic system for detecting and classifying PETs.

• A baseline method for detecting glissandi in real-world music
performances.

• Generalisability evaluation of the proposed recognition system on
three additional datasets with a variety of instrumental and vocal
techniques.

Chapter 6

• Application of the proposed adaptive time scattering and the
standard time scattering for performer identification in polyphonic
orchestral music.

• Application of the joint time–frequency scattering representation
for detecting and classifying chick calls.

1.3 Thesis Outline

The rest of the thesis is organised as follows.

Chapter 2 provides background information related to music per-
formance analysis, an overview of existing computational research on
playing techniques, an introduction of Chinese bamboo flute music and
Chinese bamboo flute playing techniques, and a brief description of
well-known time–frequency representations for audio signals, followed
by an overview of the scattering transform.

Chapter 3 first presents the difference between isolated and performed
playing techniques with examples, followed by a grouping of commonly
used playing techniques based on their spectro-temporal patterns. Fi-
nally, it introduces the collection and annotation process, and the content
of the CBFdataset we created and publicly released.

17



1.4. Associated Publications

Chapter 4 proposes a variant of the scattering transform framework,
the adaptive scattering, for representing pitch modulation-based tech-
niques (PMTs). A recognition system is then built and evaluated on the
CBFdataset, with explanatory visualisations.

Chapter 5 modifies the joint time–frequency scattering into a direction-
invariant representation for pitch evolution-based techniques (PETs).
An automatic system is then proposed as a baseline method for detect-
ing glissando, a type of PETs. We build and evaluate two recognition
systems in this chapter, one for detecting PETs only and the other for
recognising both PMTs and PETs simultaneously. To provide further
evidence, we apply the proposed recognition systems on three additional
datasets with a variety of playing techniques.

Chapter 6 tests the applicability of the proposed framework on two
more applications beyond playing technique recognition and music signal
analysis. One identifies violin performers in polyphonic orchestral music
using vibratos detected by our proposed playing technique recognition
system; the other detects and classifies chick calls in that the chick calls
exhibit spectro-temporal patterns similar to certain playing techniques.

Chapter 7 concludes the thesis, with a summary of the contributions,
discussions on the strengths and weaknesses, and possible directions for
future work.

1.4 Associated Publications

(i) Changhong Wang, Emmanouil Benetos, Vincent Lostanlen, and
Elaine Chew. Adaptive Scattering Transforms for Playing
Technique Recognition, submitted to IEEE/ACM Transactions
on Audio, Speech, and Language Processing (TASLP).

This is a journal paper that combines the core content of Chapter 4
and Chapter 5 and that extends the content of Publications (ii)
and (iii). It develops a general framework for playing technique
recognition in musical signals, evaluated on the CBFdataset, and
with the generalisability verified over three additional datasets
with a variety of playing techniques.
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1.4. Associated Publications

CW contributed the majority of work towards this publication.
EB provided important suggestions on the extended content, such
as the selection of additional evaluation datasets, experimental
design, comparison across the datasets, and the evaluation met-
rics. VL gave useful feedback on the theoretical development of
the proposed adaptive scattering transforms. EC contributed to
technical discussions and writing.

(ii) Changhong Wang, Vincent Lostanlen, Emmanouil Benetos, and
Elaine Chew. Playing Technique Recognition by Joint
Time-Frequency Scattering. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May 2020,
pp. 881–885.

Chapter 5 is an extension of this peer-reviewed conference paper,
evaluating the system on an enlarged dataset, adding a baseline
method for glissando detection, and testing the generalisability of
the proposed recognition system on three additional datasets.

CW proposed the main idea, designed the experiments, and wrote
the majority of the paper. VL provided inspiring insights regard-
ing the directionality of the joint time–frequency scattering. EB
contributed to theoretical discussions and writing while EC offered
suggestions from a music perspective.

(iii) Changhong Wang, Emmanouil Benetos, Vincent Lostanlen, and
Elaine Chew. Adaptive Time–Frequency Scattering for
Periodic Modulation Recognition in Music Signals, In-
ternational Society for Music Information Retrieval Conference
(ISMIR), Nov 2019, pp. 809–815.

This peer-reviewed conference paper forms the basis of Chapter 4.
The latter improves the content of the paper by rerunning exper-
iments with an enlarged dataset and extends the content with
a mathematical definition of the proposed adaptive scattering
representations, and an event-based evaluation metric.

CW proposed the main idea and did the majority of the witting
for this publication, with feedback from EB on the theoretical
development and experimental design. VL and EC contributed to
technical discussions and witting.
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1.4. Associated Publications

(iv) Changhong Wang, Emmanouil Benetos, Xiaojie Meng, and Elaine
Chew. HMM-based Glissando Detection for Recordings of
Chinese Bamboo Flute, Sound and Music Computing Confer-
ence (SMC), May 2019, pp. 545–550.

This is the first published paper in the timeline towards this
thesis, of which the main idea goes into Section 5.4. Theoretical
development was shared by CW and EB. CW ran the experiments
and wrote the majority of the paper with technical feedback from
EB. Both EB and EC provided useful guidance on the paper
writing. Contributions to the data collection and annotation were
shared by all the authors.

(v) Yudong Zhao, Changhong Wang, György Fazekas, Emmanouil
Benetos, and Mark Sandler. Violinist Identification Based
on Vibrato Features, European Signal processing conference
(EUSIPCO), Aug 2021.

Section 6.1 is inspired from the above paper, although the content
of the above section is different from the paper. This work devel-
oped two systems based on vibrato features of manually annotated
vibrato notes for violinist identification. CW contributed to one
of the two systems on the experimental design, evaluation, and
writing.

(vi) Changhong Wang, Emmanouil Benetos, Shuge Wang, and Elisa-
betta Versace. Joint Scattering for Automatic Chick Call
Recognition, submitted to IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2022).

Section 6.2 is an extension of the above paper, with more chicks
included in the evaluation of the detection system and one more
scheme considered in the classification system. The idea came from
the discussions between CW with EB. CW run all the experiments
and write the majority of the paper, with feedback from EB and
EV. SW contributed to the data collection and annotation.
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Chapter 2

Background

This chapter provides the background and theoretical basis that later
chapters of the thesis are built upon. We review existing computational
research on music performance analysis and on playing techniques in
Section 2.1 and Section 2.2, respectively. Section 2.3 introduces the
music and playing techniques of the Chinese bamboo flute. Section 2.4
presents time–frequency audio representations for music signal analysis;
finally, Section 2.5 presents an overview of the scattering transform.

2.1 Music Performance Analysis

Music is a performing art. A music idea initialised by the composer in
the form of a music score or other representations may be interpreted by
the performers in different ways. Music performance analysis (MPA) can
be approached from different perspectives: ethnomusicological (Cook,
2014), musicological (Gabrielsson, 1999), and computational (Chew,
2000) amongst other perspectives. Computational research on MPA
aims at obtaining a basic understanding of music performances in a
quantitative and empirical way (Lerch et al., 2020), which is the scope
of this thesis.

Despite the ubiquity of performed music, the analysis on how this
music is created still lags behind other areas in music information
retrieval (MIR), due to the lack of data, resolution of the problem, and
indefinite boundaries of the definitions. MIR researchers focus more
on score-like information and metadata than performance information
(Lerch et al., 2020), while the latter is the focus of MPA. The nature
of performance information is often subtle and less well-defined as
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compared to score-like information. Additionally, there are a large
variety of parameters that influence a music performance and some of
them are beyond the recorded audio signal, such as gesture parameters.

In the literature, performance parameters proposed for the measure-
ment of music performances include tempo, timing, dynamics, intonation,
and articulation (Cancino-Chacón et al., 2018). The majority of the work
intends to identify general trends of a music performance or to compare
performances between different interpretations of the same composition.
For example, Srinivasamurthy et al. (2017) studied the tempo and rhyth-
mic elaboration in Hindustani music; Liem et al. (2011) proposed an
approach to analyse expressive timing between multiple recordings of
the same composition; Cancino-Chacón et al. (2017) evaluated linear
and non-linear models of expressive dynamics in classical piano music;
and Devaney et al. (2012) compared intonation characteristics between
professional and non-professional singers.

As compared to the above mentioned parameters, playing techniques
in a performance context are less-explored, although a complete mastery
of the instrumental techniques is one of the major components of excel-
lence in music performance (Gabrielsson, 1999). Additionally, playing
techniques are one of the most difficult skills to acquire in instrument
learning (Menzies and McPherson, 2015), which require considerable
time and effort. This is especially the case for folk instruments, where
the key points of the techniques are normally delivered to students by
live demonstration and oral instructions (Zhang, 2011). Even with these
instructions, it may still take a long time for students to manage a
playing technique and to flexibly apply it into performances. Compu-
tational research on playing techniques can provide technical support
for developing pedagogy tools that may greatly help with this learning
process. This is one of the possible benefits that this research can bring
with and we will discuss other potential applications in Chapter 7. We
first review existing computational research on playing techniques in
Section 2.2.

2.2 Computational Research on Playing Techniques

Due to the annotation-intensive nature and scarcity of playing techniques
in real-world performances, previous computational research on playing

22



2.2. Computational Research on Playing Techniques

techniques was typically instrument- or technique-specific, or focused
on playing techniques recorded in highly controlled environments. We
summarise the existing research in Table 2.1 with a complete list of play-
ing techniques analysed and the corresponding methodologies applied
according to instrument type.

As can be seen, prior research has focused mainly on Western instru-
ments. Guitar playing techniques are the most frequently explored ones
as compared to other instruments (Giraldo and Ramírez, 2015; Ozaslan
and Arcos, 2010; Reboursière et al., 2012; Su et al., 2014b; Chen et al.,
2015; Abeßer et al., 2010; Abeßer and Schuller, 2017). These techniques
are commonly categorised by the active hand, which leads to the cate-
gorisation of expression-style (left-hand) and plucking-style (right-hand)
techniques. Piano technique recognition only includes trills (Brown
and Smaragdis, 2004) and pedalling techniques (Liang et al., 2017).
Playing technique analysis on other Western instruments covers violin
(Charles, 2010; Su et al., 2014a), drums (Wu and Lerch, 2016; Herrera
et al., 2002), cello (Ducher and Esling, 2019), Irish flute (Jančovič et al.,
2015) and highland pipe (Menzies and McPherson, 2015). Non-Western
instruments include the erhu (Yang, 2017), guqin (Huang et al., 2020),
ney (Özaslan et al., 2012), and Chinese bamboo flute (Ayers, 2003; 2004;
2005). Due to their similarity with instrumental playing techniques,
vocal techniques (Neocleous et al., 2015; Wilkins et al., 2018) are also
included in the table for completeness. In the following, we analyse the
research work in Table 2.1 from three fronts: methodologies, datasets,
and evaluation metrics.

2.2.1 Methodologies

Early research on playing technique recognition either focused on specific
playing technique(s) to explicitly incorporate prior knowledge or fed a
large set of features to machine learning classifiers. Liang et al. (2017)
developed a system that classifies pedalling techniques, i.e., 1/4 pedal,
1/2 pedal, 3/4 pedal, and full pedal, in classical piano performances.
The system used support vector machines (SVMs) as the classifier which
takes as input the mean and standard deviation of the gesture data
between detected onsets and offsets. The filter diagonalisation method
(FDM), which efficiently extracts high resolution spectral information for
short time signals, was applied to vibrato detection in erhu performance
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Instrument Playing techniques Methodology Cite

Guitar Ornamentation defined by
rules

Dynamic time warping
sequence matching

Giraldo and
Ramírez (2015)

Legato, glissando Symbolic, aggregate
approximation

Ozaslan and Arcos
(2010)

Muted, harmonic, bend,
slide, hammer-on, pull-off

Rule-based detection Reboursière et al.
(2012)

Muting, vibrato, pull-off,
hammer on, sliding, bend-
ing

Sparse cepstral and
phase codes

Su et al. (2014b);
Chen et al. (2015)

Plucking: finger, picked,
muted, slap; expression:
harmonics, vibrato, bend-
ing, slide, etc.

Feature extraction,
SVMs with radial
basis function kernel

Abeßer et al. (2010);
Abeßer and Schuller
(2017)

Piano Trills Independent compo-
nent analysis

Brown and
Smaragdis (2004)

Pdealling techniques SVMs Liang et al. (2017)

Violin Beginners’ faults on playing
techniques

K-nearest neighbours Charles (2010)

Flageolet, non-vibrato,
pizzicato, sordino, spiccato,
sul ponticello, sul tasto,
tremolo

Sparse modelling Su et al. (2014a)

Drums Strike, buzz roll, drag, flam Non-negative matrix
factorization-based ac-
tivation

Wu and Lerch
(2016)

A variety of drum playing
techniques

K-nearest neighbours,
partial decision tree,
etc.

Herrera et al. (2002)

Cello Vibrato, tremolo, trill, glis-
sando, etc.

Folded convolutional
neural network

Ducher and Esling
(2019)

Irish flute Cut, strike, crann, roll,
shake

Rule-based method;
HMMs; neural net-
work

Jančovič et al.
(2015); Ali-
MacLachlan (2019)

Highland
pipe

60 ornamentations Dynamic time warping Menzies and
McPherson (2015)

Ney Vibrato, kaydirma Rule-based characteri-
sation

Özaslan et al. (2012)

Erhu Vibrato, portamento FDM, HMMs Yang (2017)

Guqin None, vibrato, protamento Neural network Huang et al. (2020)

Chinese bam-
boo flute

Trill, flutter-tongue,
tremolo

Synthesising Ayers (2003; 2004)

Other Vibrato, glissando Rule-based methods Renato Panda and
Paiva (2018)

Multi-
instruments

140 instrumental playing
techniques (isolated)

Scattering transform Lostanlen et al.
(2018)

Vocal
techniques

Vibrato, glissando, linear
note change

COSFIRE filter Neocleous et al.
(2015)

17 different vocal techniques Convolutional neural
networks

Wilkins et al. (2018)

Table 2.1: Summary of existing computational research on playing
techniques. 24
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(Yang, 2017). It used the fundamental frequency (F0) estimated by
the pYIN pitch detection algorithm (Mauch and Dixon, 2014) as input.
Yang (2017) also detected erhu portamenti using Hidden Markov models
(HMMs). Gainza et al. (2004) presented an automatic detection system
for two single-note ornaments in traditional Irish flute playing, ‘cut’ and
‘strike’. They first segmented the recordings based on the onset detection
results using three methods: amplitude change of both temporal and
spectral domains, and fundamental frequency. The segments below 90
ms are then classified as ornaments, and the specific type of the detected
ornament depends on the fundamental frequency change. Menzies and
McPherson (2015) recognised ornamentations of the great highland bag-
pipe from professional bagpipers’ and students’ performance recordings
using dynamic time warping. Brown and Smaragdis (2004) improved
the estimation performance of the pitch and timing of each note present
in the piano trills based on independent component analysis.

Feeding a large set of features is a possible but not optimal way
for detecting multiple types of playing techniques. Chen et al. (2015)
detected electric guitar playing techniques based on F0 sequence pattern
recognition. Using a set of timbre and pitch features, they classified five
playing techniques: bend, vibrato, hammer-on, pull-off, and slide. Based
on a systematic analysis of the bass playing techniques, Abeßer and
Schuller (2017) selected a set of features and employed SVMs to classify
both the plucking style techniques (finger, picked, muted, slap) and
the expression style techniques (harmonics, vibrato, bending, slide). Su
et al. (2014a) implemented sparse modeling for detecting violin playing
techniques including flageolet, non-vibrato, pizzicato, sordino, spiccato,
sul ponticello, sul tasto, and tremolo using a large set of temporal,
spectral, cepstral, and harmonic features.

More recent research on playing technique recognition investigated
data-driven methods. Ducher and Esling (2019) proposed a folded
constant-Q transform (CQT) (see Subsection 2.4.1) representation, which
was used as the input to a recurrent neural network for violin playing
technique recognition. The evaluation data was synthetic audio se-
quences including randomly generated notes and chords with all possible
violin playing techniques. Liang et al. (2019) applied convolutional neu-
ral network (CNNs) for detecting sustain-pedal playing techniques which
were also trained on generated piano data. Encoding specifications for
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notes with different pedalling conditions in standard MIDI, a Yamaha
Disklavier piano was used to playback the recordings. Ali-MacLachlan
(2019) proposed a two-stage method for automatic detection of Irish
flute ornamentations, which first detected note onsets from full-length
recordings followed by classifying each inter-onset segment into one of
the three classes: note, cut, and strike (see Section 5.3, Ali-MacLachlan,
2019). At the classification stage, a feedfoward neural network with 2
hidden layers and 20 neurons per each layer was used; and the input
features were 13 mel-frequency cepstral coefficients, 12 chroma features,
and the length of the inter-onset segments.

Huang et al. (2020) classified 6 types of guqin playing techniques with
onset and offset annotations based on different levels of features extracted
from the CQT, pitch salience function, and pitch contour. Wilkins et al.
(2018) trained CNNs for classifying 10 types of vocal techniques recorded
in long segments: straight, vibrato, belt, lip trill, breathy, vocal fry,
trillo, inhaled, trill, and spoken. Wang et al. (2020b) compared different
deep learning models for recognising the playing techniques of erhu and
Chinese bamboo flute, where for the latter instrument the authors used
the CBFdataset which is proposed in this thesis (see Section 3.4). Some
of these methods might achieve good results but are not explainable on
what information of a playing technique has been captured. Additionally,
most of these methods above used generated data or isolated playing
techniques, where the generalisability remains to be tested. To the
author’s knowledge, there is not yet a general framework for playing
technique recognition in real-world performances that can be used to
detect multiple types of playing techniques and that is possible to be
generalised across different instruments and datasets.

2.2.2 Datasets

As discussed above, previously published datasets for playing technique
analysis often focused on isolated playing techniques, recorded in highly
controlled environments (Su et al., 2014a; Wilkins et al., 2018; Lostanlen
et al., 2018). Although in the context of full-length performances,
playing techniques exhibit considerable variations as compared to being
played in isolation (see Section 3.1), existing datasets still provide
valuable information for evaluating playing technique recognition systems
or for other computational research of playing techniques. We list
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publicly available datasets in Table 2.2 for the community to conveniently
access suitable datasets. Except the singing voice dataset (VocalSet)
(Wilkins et al., 2018) and the vibrato/portamento dataset (VPset) (Yang,
2017), both including singing voice, the remaining datasets all comprise
instrument playing. Regarding the number of instruments included,
Contimbre, Studio On Line (SOL) dataset, and VPset (also includes
instrument playing besides singing) are datasets containing multiple
types of instruments, while the others (except VocalSet), as indicated by
the dataset names, consist of a single instrument type for each dataset.
Among these datasets, we discuss three in detail which we use as the
additional datasets in Section 5.6 to evaluate the generalisability of our
proposed methodology: VPset, SOL dataset, and VocalSet.

VPset Proposed in Yang (2017), the vibrato1/portamento2 dataset
includes two separate subsets. The vibrato subset comprises 4 full-length
performances played on the Chinese instrument erhu and the Western
instrument violin, 64 short excerpts of solo instrument playing, and
vibrato annotations. The duration of the vibrato subset is 25 minutes.
Besides having the same erhu and violin recordings as the vibrato subset,
the portamento subset also includes recordings of Beijing opera singing
and portamento annotations; the total audio duration of the portamento
subset is 55 minutes. It is not applicable to concatenate the two subsets
into one since there are no vibrato annotations for Beijing opera singing
in the portamento subset, as there are no portamento annotations for
solo instrument playing in the vibrato subset. For simplicity, we hereafter
denote these two subsets as the VPset. When it comes specifically to
vibrato detection, we will refer to the vibrato subset in Section 5.6;
similarly for portamento detection.

SOL dataset Studio On Line3 (version 0.9HL) (Lostanlen et al., 2018)
is a multitype instrument dataset, comprising 12 categories of instru-
ments playing isolated tones, with a total duration of 27.1 hours. It
covers 140 types of playing techniques although some playing techniques
have a small number of samples. To evaluate the generalisability of our
proposed methodology for playing technique recognition (see Section 5.6),

1https://github.com/skx300/vibrato_dataset
2https://github.com/skx300/portamento_dataset
3https://forum.ircam.fr/projects/detil/orchids/
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Dataset Size Content Cite

Cello 14.1 18 playing techniques Ducher and
Esling (2019)

ConTimbre 270GB Commercial, instrumental
notes with playing tech-
niques, 150 orchestral instru-
ments, 4000 playing modes

Hummel
(2014)

DrumPt 1.25 4 playing techniques, 2000
annotations (audio from
ENST)

Wu and Lerch
(2016)

ENST-Drums 1.25 318 segments, playing tech-
niques

Gillet and
Richard
(2006)

Guitar playing
techniques

7.2 6580 clips, 7 playing tech-
niques

Chen et al.
(2015)

IDMT-SMT-Bass 3.6 4300 notes, 10 playing tech-
niques

Abeßer et al.
(2010)

IDMT-SMT-
Guitar

5.7 9 guitar playing techniques,
5100 notes

Kehling et al.
(2014)

ITM-Flute-99
dataset

0.91 99 recordings, 15310 notes,
2244 cuts and 672 strikes.

Ali-
MacLachlan
(2019)

MDB Drums 0.36 Drum playing techniques Southall et al.
(2017)

SOL dataset 27.1 12 instruments, 140 instru-
mental playing techniques

Lostanlen
et al. (2018)

VPset 1.3 Vibrato and portamento
techniques on erhu

Yang (2017)

Violin Gestures
Dataset

2.3 880 recordings, 5 bowing
techniques

Sarasúa et al.
(2017)

VocalSet 10.1 20 singers, 17 vocal tech-
niques, 3560 clips

Wilkins et al.
(2018)

Table 2.2: Summary of available datasets with playing techniques. Size
of all datasets is in hours except the ConTimbre dataset of which the
duration is not available.
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we focus on commonly used playing techniques and consider only tech-
niques with over 100 samples in the SOL dataset. Non-techniques like
crescendos and decrescendos are beyond the scope of this thesis. The list
of playing techniques can be found in Figure 5.7; the audio recordings
with the considered data have a total duration of 9.8 hours. For the
playing technique labels, we follow the original annotations except for
five labels resulting from merging similar patterns: sul-tasto/ponticello,
pizzicato, glissando, trill, and flatterzunge. For example, we merge the
labels trill-major-second-up and trill-minor-second-up into one label trill.
Note that glissando in the SOL dataset corresponds to portamento on
the Chinese bamboo flute (see Section 3.2), both consisting of smooth
pitch changes; and that flatterzunge here is equivalent to flutter-tongue
on the Chinese bamboo flute.

VocalSet A singing voice dataset4 (Wilkins et al., 2018). It has
recordings of 10.1 hours of 20 professional singers (11 male, 9 female)
performing 17 different vocal techniques. To make the results comparable
to that obtained in Wilkins et al. (2018), we focus on the same ten
techniques: straight, vibrato, belt, lip trill, breathy, vocal fry, trillo,
inhaled, trill, and spoken, as shown in Section 5.6. The number of trill
and spoken techniques in this dataset are below 100, with 95 and 20
examples, respectively.

2.2.3 Evaluation metrics

For the evaluation of playing technique recognition system outputs,
two approaches can be found in the literature (Wilkins et al., 2018;
Ducher and Esling, 2019; Yang, 2017): frame- and clip-based evaluation.
Metrics for both methods include precision P, recall R, F-measure F ,
and accuracy A, defined as:

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR
P +R

, (2.1)

A =
TP

TP + TN + FP + FN
, (2.2)

where TP,FP,FN,TN are true positives, false positives, false negatives,
and true negatives, respectively (Müller, 2015). Frame-based evaluation

4https://zenodo.org/record/1193957
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compares the output labels with the ground truth in a frame wise manner.
Since most existing datasets comprise playing techniques performed on
single notes, it is common to evaluate the classification result on a clip
level. This means that the recognition system outputs one label for each
clip and compares it with the ground truth.

Not yet being applied for evaluating playing technique recognition re-
sults, event-based evaluation using these metrics is frequently considered
for other audio signal processing problems, such as sound event detection
(SED) (Mesaros et al., 2016) and automatic music transcription (AMT)
(Benetos, 2012). The events in SED are general-purpose audio events,
such as fire alarm and door opening, with associated onsets and offsets;
while those in AMT are music notes with an onset, an offset, and a pitch
value. Event-based evaluation compares a list of events output by the
SED or the AMT system with the reference list of events.

There are mainly two ways of comparing the events: onset-only and
onset-offset for both SED and AMT. For onset-only evaluation, an
event is considered to be correctly detected when its onset falls within
a window constraint of the ground truth (Mesaros et al., 2016); and a
music note is regarded to be correctly transcribed when its onset falls
within a window constraint of the ground truth and its pitch is within ±
a quarter tone of the ground truth pitch (Benetos, 2012). Besides these
rules, the onset-offset evaluation requires the offset of the event (or the
music note) to be also within a window constraint of the ground truth
offset or surround the ground truth offset within a percentage of the
ground-truth’s duration. The window constraint and percentage values
depend on the targeted accuracy of the specific tasks. Since playing
techniques are also music events with certain durations, we consider in
this thesis also event-based metrics for playing technique recognition, in
addition to the frame- and clip-based metrics.

2.3 Chinese Bamboo Flute Music and Playing

Techniques

The Chinese bamboo flute (CBF), also known as the dizi (笛子) or zhudi
(竹笛), is one of the most ancient instruments in the world. Made from
bamboo, the CBF normally has 8 effective holes on the flute: a blowing
hole, a membrane hole, and 6 finger holes, as shown in Figure 2.1 (a).
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There are also 4 end (or auxiliary) holes, 2 in line with the finger holes
and the other 2 on the opposite side of the flute, where the former
benefit the air ventilation and the latter are normally used to attach
a decoration cord. Different from the Western flute with open holes,
the CBF is characterised by a hole covered with a thin membrane (see
Figure 2.1 (b)) between the blowing hole and the sixth finger hole.
The membrane is driven by the acoustic pressure in the resonator and
radiates sounds when it vibrates. Wrinkles in the membrane are critical
to the production of the characteristic CBF timbre (Tsai, 2003).

Figure 2.1: An example of a Chinese bamboo flute5: (a) meaning of
each hole on the flute; (b) the membrane hole covered with a membrane.

There are two main schools of CBF music: the Southern style and the
Northern style, which originate from the regional Chinese opera styles
prevailing from the 17th century (Li, 2016; Zhao, 2001; Zhang, 2011). At
that stage, the CBF is an important accompanying instrument for the
operas, such as kunqu in the south of China and bangzixi in the north of
China. The Southern style music is featured by slow and soft melodies,
which are usually played by qudi ; while the Northern style music is lively
and bright, which are often performed by bangdi. Qudi and bangdi are
two groups of CBF: the former is longer in length and higher in tones
than the latter. Typical examples of qudi include C, D, and E flutes
and those of bangdi are F, G, and A flutes (Zhan, 2009). The type of
the flute is defined by the tone of the third finger hole according to
Zhao (2001). The tonal range of CBFs is normally two octaves plus two
tones, for example, G4 to A6 for the qudi in C (Tsai, 2003). A complete
introduction of CBF and CBF music is beyond the scope of this thesis,
where we will focus mainly on CBF playing techniques.

Listeners may often be captivated by the unique timbre of the CBF,
which belies the twenty or more playing techniques invoked when per-

5Both (a) and (b) were adapted from the figures on https://baike.baidu.com/
item/%E7%AC%9B%E5%AD%90/495283?fr=aladdin, accessed at 12:12, 08/03/2021
(GMT).
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forming on the instrument. Influenced by the singing styles of the
regional operas, musicians introduced some of the vocal techniques into
CBF playing. Typical Southern style techniques on the CBF include trill
(颤音 chanyin), appoggiatura (叠音 dieyin), end-note (赠音 zengyin), and
repeated note (打音 dayin); while tonguing (吐音 tuyin), portamento (滑
音 huayin), acciaccatura (垛音 duoyin), and flutter-tongue (花舌 huashe)
are frequently used Northern style ones (Zhang, 2011). There are also
other playing techniques such as vibrato (气颤音 qichanyin), tremolo (气
震音 qizhenyin), multiphonics (泛音 fanyin), flying finger (飞指 feizhi),
and circular breath (循环换气 xunhuanhuanqi), where the flying finger is
a Northern style playing technique and the remaining ones are normally
performed in Southern style pieces. The large repertoire of playing
techniques provides the CBF a rich platform for computational analysis
of playing techniques.

To the author’s knowledge, there is limited computational research on
the CBF. Tsai (2003) studied the acoustic effects of the membrane on
CBF tones and found out that the membrane enhances upper harmonics
of CBF tones while restricting its tone range. Ayers (2003; 2004) has
done some analysis of CBF playing techniques through synthesis, which
included only trills, tremolos and flutter-tongue. To fill the gap, we
explore in this thesis the computational research on commonly used
CBF playing techniques that can be generalised to other instruments
and datasets, and aims at building a general framework for playing
technique recognition based on the scattering transform. Prior to the
introduction of the scattering transform, we review some other time–
frequency representations that are frequently used for music signal
analysis.

2.4 Time–Frequency Representations for Music

Signal Analysis

Playing technique recognition is a classification problem where the main
sources of intra-class variability are translations and small deformations,
also known as time-shifts and time-warps, respectively. In this section,
we introduce briefly three well-known time–frequency representations for
music signal analysis: the STFT spectrogram, the constant-Q transform
(CQT) spectrogram, and the mel-frequency spectrogram. The wavelet
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transform which forms the basis for the scattering transform is also
presented. We compare these representations in terms of their invariance
properties to the two types of variabilities, which significantly influence
classification performance (Mallat, 2012).

2.4.1 STFT spectrogram, CQT spectrogram, mel-frequency
spectrogram

As a main signal processing tool, the Fourier transform decomposes a
signal x(t) into its frequency components:

x̂(ω) =

∫
x(t) exp(−iωt) dt, (2.3)

for time t ∈ R and frequency ω ∈ R. Since the Fourier coefficients are
averaged over the entire time domain, the transform is a globally time-
shifting invariant representation, which does not provide information
on when a frequency occurs over time. To localise the analysis, the
short-time Fourier transform (STFT) is introduced by multiplying the
signal with a window function ϕT (t) of duration T (Andén and Mallat,
2014):

Yx(t, ω) =

∫
x(τ)ϕT (τ − t) exp(−iωτ) dτ, (2.4)

where τ is the integration variable.
An STFT spectrogram |Yx(t, ω)|2 is the squared magnitude of the

short-time Fourier transform (see Section 2.5.2, Müller, 2015). It is a
representation locally invariant to time-shifts when the shifting amount
is smaller than the window size of the STFT. However, a time-warping
or dilation of the signal will result in a pitch shifting in the STFT
spectrogram; therefore it is unstable to time-warping (Andén and Mallat,
2014). Additionally, the window size for the STFT is fixed at one time
of the calculation, which may work for the time-shifting invariance
requirement of some classification problems but not for that of the
others.

The CQT spectrogram and mel-frequency spectrogram are both
perceptually-motivated time–frequency representations for audio signals.
As compared to the STFT with fixed time and frequency resolutions, the
constant-Q transform comprises frequency bins logarithmically spaced
and has a constant ratio of center frequencies over bandwidths, which
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is the quality factor (Schörkhuber and Klapuri, 2010). This means
that the frequency resolution is better for low frequencies and the time
resolution is better for high frequencies. The window argument in CQT
is the product of time, frequency, and the reciprocal of the quality factor
q ∈ R, which is related to the selectivity of the analysis (Youngberg and
Boll, 1978):

Cx(t, ω) =

∫
x(τ)ϕT

(
(t− τ)ω/q

)
exp(−jωτ)dτ. (2.5)

The CQT is essentially a wavelet transform (see Subsection 2.4.2), which
provides a certain robustness to time-warping while not being invariant
to time-shifting. These invariance properties also apply to the CQT
spectrogram |Cx(t, ω)|2.

The mel-frequency spectrogram Mx(t, λ) is a modification of the STFT
spectrogram, where the frequency bands of the latter are mapped into
the mel scale by a mel filter bank ψ̂λ(ω) (Andén and Mallat, 2014):

Mx(t, λ) =
1

2π

∫
|x̂(t, ω)|2|ψ̂λ(ω)|

2
dω. (2.6)

ψ̂λ(ω) comprises linearly-spaced bandpass filters below 1000 Hz and
logarithmically-spaced bandpass filters above it (Stevens et al., 1937;
Peeters, 2004), where we use λ to broadly denote the centre frequency of
each filter. The mel-frequency averaging removes deformation instability
by large displacements of high frequencies resulting from time-warping;
however, this averaging creates information loss (Andén and Mallat,
2014).

2.4.2 Wavelet transform

To analyse signal structure with different scales, it is necessary to use
time–frequency atoms with different time supports. The STFT and
wavelet transform are two examples of such time–frequency atoms. In-
stead of using sinusoids as the STFT, the wavelet transform decomposes
signals with wavelet bases. A wavelet ψ(t) is a bandpass filter with a
zero average

∫ +∞
−∞ ψ(t)dt = 0. It is normalised ∥ψ(t)∥ = 1 and centred

in the neighbourhood of t = 0. To measure the temporal evolution of
frequency transients, we use a complex analytic wavelet, which can sepa-
rate amplitude and phase components; therefore, its Fourier transform is
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2.4. Time–Frequency Representations for Music Signal Analysis

null on the half-line of negative frequencies, i.e., for all ω < 0, ψ̂(ω) = 0.
For more detailed theory on wavelet transform, we recommend Section
4.3 of Mallat (2008) and Section 5.1 of Vetterli and Kovacevic (1995).

The wavelet transform deals with deformations by separating the
variations of a signal x(t) at different scales with wavelets. This is
achieved by decomposing x(t) over a wavelet filterbank ψλ(t), which is
dilated from a mother wavelet ψ(t) by the scaling factor of 2−λ with

ψλ(t) = 2λψ(2λt), (2.7)

where λ ∈ R is the log-frequency variable of ψλ(t). Therefore, ψλ(t) is a
constant-Q filterbank with the centre frequency logarithmically spaced.

As dilations increase, the time support of the wavelet expands along
the time axis. For classification problems, we are often interested in a
time structure smaller than T , which corresponds to a maximum scale
2−J . To cover the entire frequency axis with the wavelet filter banks, we
define a lowpass filter ϕT (t) which covers the remaining frequencies. A
wavelet transform calculates the local average of x(t) at the scale 2−J ,
and variations at scales 2−λ > 2−J with wavelet convolutions (Mallat,
2016):

Wx(t, λ) = {x ∗ ϕT (t),x ∗ψλ(t)}. (2.8)

The modulus of the wavelet transform is called a wavelet modulus
transform:

|W|x(t, λ) = {x ∗ ϕT (t), |x ∗ψλ(t)|}. (2.9)

Different from the representations discussed in Subsection 2.4.1, the
wavelet transform is stable to small deformations (time-warping) but
it is not translation (time-shifting) invariant (Mallat, 2012). Examin-
ing the scalogram, Andén and Mallat (2014) found that although the
modulus operation removes the complex phase, it does not lose infor-
mation because the temporal variation of the multiscale envelopes is
kept. Averaging these multiscale envelopes will produce a representation
invariant to time shifts. However, this averaging comes at the detriment
of fast temporal modulations with time structures smaller than T . In
this context, the core idea of the scattering transform is to recover these
temporal modulations by means of a second wavelet decomposition, mod-
ulus, and averaging. Therefore, the obtained scattering representation
has both desirable properties: stability to time warps and invariance to
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time shifts.

2.5 Scattering Transform

In this section, we introduce the scattering transform and provide an
overview of different scattering operators. Proposed in Mallat (2012),
the scattering transform has the structure of a convolutional neural
network (CNN): both comprise a cascade of convolutions, nonlinearities,
and pooling operations. The difference is that the filters of the scattering
transform are not learnt but defined as wavelets.

Figure 2.2 displays the cascading of scattering operations with the
example of a musical trill. Let x(t) be an audio waveform andψλk

(t) with
k ∈ N+ the wavelet filterbank at the kth-order scattering decomposition.
t ∈ R is the time variable and λk ∈ R is the log-frequency variable of
ψλk

(t). Here, an “order” of the scattering transform is analogous to a
“layer” in terms of CNNs. Take the first order for instance: by convolving
x(t) with each wavelet in ψλ1(t) and applying complex modulus, we
obtain the first-order wavelet modulus transform U1x(t, λ1), also known
as scalogram. Note that U1x(t, λ1) is stable to small deformations
but not translation-invariant. The scattering transform aims at an
invariance property up to some time structure T by average pooling,
which is realised by applying to each frequency band in U1x(t, λ1) a
lowpass filter ϕT (t) of cutoff frequency T−1. This results in the first-order
scattering transform S1x(t, λ1). Cascading the operations of wavelet
convolutions with ψλk

(t) and complex modulus generates a “scattering
network”, after which the average pooling of the kth-order wavelet
modulus transform Ukx(t, λk) by ϕT (t) yield the kth-order scattering
transform Skx(t, λk). For completeness, we also extract the zeroth-order
scattering transform S0x(t) by convolving x(t) with ϕT (t).

Similar to CNNs which may have horizontal and vertical filters (Good-
fellow et al., 2016), one may apply wavelet convolutions along the
frequency axis of a given time–frequency representation. The different
ways of applying wavelet convolutions form different scattering operators,
as shown in Figure 2.3. Each operator captures a specific signal pattern,
thus making the scattering transform a flexible framework for different
music signal analysis tasks. We present in detail the time scattering,
separable scattering, and joint scattering, which are the operators that
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Figure 2.2: Diagram of the scattering transform for a trill example.
Convolving waveform x with wavelet filterbank ψλ1 and taking complex
modulus obtain the first-order wavelet modulus transform U1x. Average
pooling of U1x by lowpass filter ϕT results in the first-order scattering
transform S1x. Cascading these operations, i.e., convolution with ψλk

(k ∈ N+), complex modulus, and average pooling by ϕT , generates the
kth-order wavelet modulus transform Ukx and scattering transform
Skx, forming a “scattering network”.

the subsequent chapters of the thesis are built upon, and leave the ex-
ploration of the spiral scattering (Lostanlen and Mallat, 2015) as future
work. Throughout the thesis, we use Morlet wavelets for wavelet con-
volutions in the scattering framework. This is because Morlet wavelets
have an exactly null average while reaching a quasi-optimal trade-off in
time–frequency localisation (Mallat, 2008). Our source code is based
on the ScatNet toolbox6 and is publicly available for reproducibility at
c4dm.eecs.qmul.ac.uk/CBFdataset.html.

Figure 2.3: Relationship between different operators in the scattering
transform framework.

6https://www.di.ens.fr/data/software/scatnet
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2.5. Scattering Transform

2.5.1 Time scattering

According to Andén and Mallat (2014), the scattering transform pre-
serves the energy of the signal; and for an audio signal with T below
1.5 secs, the energy is mainly absorbed by the first- and second-order
scattering transform while the third-order and above capture negligible
amounts. We focus in this thesis on the scattering transform of these two
orders only. For simplicity, we denote the log-frequency variables of the
wavelet filterbanks at the first and second order as λ and vt, replacing λ1

and λ2 in ψλk
(t) above. The corresponding wavelet filterbanks are then

ψλ(t) and ψvt(t). ψλ(t) is obtained by dilation of a “mother wavelet”
ψ(t) with a scaling factor equal to 2−λ, yielding:

ψλ(t) = 2λψ
(
2λt
)
, (2.10)

and likewise at the second order, ψvt(t) is generated by replacing λ with
vt in Eq. (2.10). We also use the notation X(t, λ) as a shorthand for
the scalogram of the waveform x(t):

X(t, λ) = U1x(t, λ) =
∣∣x ∗ψλ

∣∣(t). (2.11)

After averaging X(t, λ) along the time axis by a lowpass filter ϕT (t), we
obtain the first-order scattering transform (Mallat, 2012):

S1x(t, λ) =
(∣∣x ∗ψλ

∣∣ ∗ ϕT

)
(t), (2.12)

which is locally invariant to time-shifting and stable to time-warping.
Similarly, we decompose each frequency band of the scalogram X(t, λ)

by another wavelet filterbank ψvt(t). We denote the log-frequency
variable associated to this filterbank by vt, where the subscript t signifies
that it captures the temporal variation of the scalogram. After complex
modulus and local averaging, we then obtain the second-order scattering
transform (Mallat, 2012):

S2x(t, λ, vt) =
(∣∣X t∗ψvt

∣∣ t∗ ϕT

)
(t, λ), (2.13)

where the symbol
t∗ denotes a one-dimensional (1-D) convolution over the

time variable t. When applied to the two-dimensional (2-D) scalogram
X(t, λ), this 1-D convolution is implicitly broadcast over the variable λ.
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To capture only the temporal variation regardless of the absolute
energy of the waveform, we normalise the second-order coefficients
S2x(t, λ, vt) over the first-order coefficients S1x(t, λ). Motivated by au-
ditory perception, the logarithm is applied to the normalised coefficients
(Andén and Mallat, 2014). The log-normalised second-order scattering
transform is expressed as (Andén and Mallat, 2014):

S̃2x(t, λ, vt) = log2

(
S2x(t, λ, vt)

S1x(t, λ) + ε

)
, (2.14)

where ε > 0 is a small additive offset whose role is to avoid division by
zero.

The above convolutions are calculated in the time domain only, thus
we also call S1x and S2x the first- and second-order time scattering.
Since the time scattering is the fundamental form of the scattering
transform, we also refer to it as the standard time scattering in the
subsequent chapters. It captures the long-term temporal structure of
the signal, which is invariant to time-shifts and stable to time-warps.

2.5.2 Time–Frequency scattering

In addition to the invariance to time-shifts and time-warps provided by
the time scattering, the time–frequency scattering goes further by adding
frequency scattering (Andén et al., 2019). The frequency scattering
has a similar framework as the time scattering, but applies a spectral
wavelet filterbank along the log-frequency axis. This operation pro-
vides frequency transposition invariance in the log-frequency dimension.
Within the time–frequency scattering, there are two sub-categories, sep-
arable scattering (Baugé et al., 2013) and joint scattering (Andén et al.,
2019), depending on how the frequency scattering is implemented. We
investigate the performance of these two operators for playing technique
recognition in Chapter 4 and Chapter 5, respectively, and compare their
performance with that of the proposed scattering transform variants. We
discuss the original definition and interpretation of these two operators
in this section.
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Separable Scattering

The separable scattering comprises separable steps of time and fre-
quency scattering transforms (Baugé et al., 2013). It was proposed to
capture variations along the log-frequency axis and to provide frequency-
transposition invariance. Convolving S2x(t, λ, vt) with a spectral filter-
bank ψvf (λ) along the log-frequency axis, taking complex modulus, and
averaging, we obtain the second-order separable scattering:

Ssepara
2 x(t, λ, vt, vf) =

(∣∣S2x
λ∗ψvf

∣∣ λ∗ ϕF

)
(t, λ). (2.15)

ϕF (λ) is a lowpass filter along the log-frequency axis, providing a fre-
quency transposition invariance up to F (in octave units). The spectral
wavelet filterbank ψvf (λ) is dilated from the mother wavelet ψ(λ) by a
scaling factor of 2−vf .

When the desired property is frequency-transposition invariance only
with no requirement on capturing spectral variations, we can average
S2x(t, λ, vt) directly along the log-frequency axis by ϕF (λ). This forms
a special case of the separable scattering, i.e., the frequency-averaged
time scattering (Andén and Mallat, 2014):

SfreqAver
2 x(t, λ, vt, vf) =

(
S2x

λ∗ ϕF

)
(t, λ). (2.16)

Joint scattering

To capture time–frequency geometry along the time and the acoustic
frequency axes simultaneously requires applying the time and the fre-
quency scattering jointly, which was defined as the joint time–frequency
scattering (Andén et al., 2019). Rather than decomposing the signal
by a temporal and a spectral wavelet filterbank in separate steps, the
joint time–frequency scattering uses a wavelet filterbank dilated from
a 2-D mother wavelet Ψ(t, λ) = ψ(t)(t)ψ(f)(λ), which is the product of
the two 1-D mother wavelets along the time and the log-frequency axes.
An orientation variable θ = ±1 is introduced to reflect the oscillation
direction (up or down) of the spectro-temporal pattern. θ = −1 flips
the centre frequency of wavelet ψ(f)(λ) from 2λ to −2λ. Dilating by
2−vt along t and dilating by 2−vf along λ, and reflecting according the θ
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yields the 2-D wavelet filterbank:

Ψvt,vf ,θ(t, λ) = (2vt+vf )ψ(t)(2vtt)ψ(f)
(
θ2vfλ

)
. (2.17)

The second-order joint time–frequency scattering Sjoint
2 x(t, λ, vt, vf , θ)

is then obtained by convolving the scalogram X(t, λ) with Ψvt,vf ,θ(t, λ),
taking complex modulus, and averaging by a 2-D lowpass filter ϕT,F (t, λ)

with translation invariance up to T and frequency-transposition invari-
ance up to F :

Sjoint
2 x(t, λ, vt, vf , θ) =

(∣∣X t,λ
∗ Ψvt,vf ,θ

∣∣ t,λ∗ ϕT,F

)
(t, λ), (2.18)

where the symbol
t,λ
∗ denotes a 2-D convolution over both the time

variable t and the log-frequency variable λ.

Spiral scattering

Although the spiral scattering is not the focus of this thesis, we include it
with a brief introduction for completeness. Besides wavelet convolutions
along the time and the log-frequency axes, the spiral scattering adds a
convolution across octaves to capture the harmonic structure of voiced
sounds, such as vowels or music tones (Lostanlen and Mallat, 2015).
This is achieved by rolling up the logarithm of the acoustic frequency,
i.e., λ, into a pitch spiral, where octave intervals correspond to full turns
and the partials with distance of one or multiple octave(s) get aligned
on a radius. Assuming we use Q filters per octave in the first-order
time scattering, pitch height k ∈ N and pitch chroma χ ∈ N in the
spiral correspond to the integer part ⌊λ⌋ and the fractional part {λ},
respectively:

λ = ⌊λ⌋+ {λ} = k +
χ

Q
(2.19)

where χ < Q.
The spiral mother wavelet is then defined as

Ψ(t, λ) = ψ(t)(t)ψ(k)(⌊λ⌋)ψ(χ)({λ}), (2.20)

which captures variations across octaves at fixed chroma and along
neighbouring constant-Q bands. Dilating by 2−vt along time, 2−vk across
octaves, and 2−vχ along neighbouring constant-Q bands, we obtain the
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spiral filterbank

Ψvt,vk,θk,vχ,θχ(t, λ) =(
2vt+vk+vχ

)
ψ(t)

(
2vtt
)
ψ(k)

(
θk2

vk⌊λ⌋
)
ψ(χ)

(
θχ2

vχ{λ}
)
, (2.21)

where θk and θχ are the oscillation directions along ⌊λ⌋ and along {λ},
respectively. Convolving the scalogram X(t, λ) with the spiral wavelet
filterbank above, taking complex modulus, and averaging by a lowpass
filter ϕT,K,X(t, ⌊λ⌋, {λ}), we obtain the second-order spiral scattering
transform:

Sspiral
2 x(t, λ, vt, vk, θk, vχ, θχ) =(∣∣X t,k,χ

∗ Ψvt,vk,θk,vχ,θχ

∣∣ t,k,χ∗ ϕT,K,X

)
(t, ⌊λ⌋, {λ}), (2.22)

where the symbol
t,λ,χ
∗ denotes a 3-D convolution along time, across

octaves, and along neighbouring constant-Q bands. T, J,X reflects the
invariance properties along the respective axes.
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Chapter 3

CBFdataset: a Dataset of
Chinese Bamboo Flute
Performances

Due to the annotation-intensive nature and scarcity of playing techniques
in music performances, there is not yet any dataset covering multiple
types of playing technique annotations in real-world performances. For
ecological validity, we create a new publicly available dataset with play-
ing techniques recorded in context. The dataset, named CBFdataset,
comprises full-length performances of the Chinese bamboo flute (CBF)
and expert annotations of playing techniques. We investigate the differ-
ence between isolated and performed playing techniques in Section 3.1.
Based on the patterns of regularity in the time–frequency domain, Sec-
tion 3.2 groups commonly used playing techniques into two families.
We introduce the collection process and content of the CBFdataset in
Section 3.3 and Section 3.4, respectively. Publications associated with
this chapter include Wang et al. (2019a), Wang et al. (2019b), Wang
et al. (2020a), and Wang et al. (submitted) since these publications all
used part of or the complete CBFdataset as the main evaluation dataset
(see Section 1.4 for publication details).

3.1 Isolated versus Performed Playing Techniques

Up to now, most of the research literature has focused on playing tech-
niques that have been recorded in highly controlled environments (see
Subsection 2.2.2). Yet, we find that, in the context of a music perfor-

43



3.1. Isolated versus Performed Playing Techniques

mance, playing techniques exhibit considerable variations as compared
to when they are played in isolation. Figure 3.1 displays the spectro-
grams of an isolated glissando and glissandi performed in a full-length
performance from the CBFdataset (see Section 3.4). Audio recordings
of these glissando examples and the whole performance recording are
available online1. As can be observed, player 1 obviously lengthens
the first note of the glissando at position A, while player 2 applies a
co-articulation here, i.e., flutter-tongue combined with glissando. For the
glissando performed by player 1 at position B, there is a pitch mutation
to lower octave, rather than consecutive note changes exhibited in other
cases. These variations point to a need for collecting playing techniques
in real-world music recordings.

Figure 3.1: Comparison of isolated glissando and glissandi performed by
two performers at different positions in the full-length performance of
Busy Delivering Harvest in the CBFdataset (see Section 3.4). Top: time
positions of upward and downward glissandi in the piece. Bottom: (a)
isolated glissando; (b) performed glissando by player 1 at position A; (c)
performed glissando by player 2 at position A; (d) performed glissando
by player 1 at position B.

1https://changhongw.github.io/publications/gliss_demo.html
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3.2 Playing Technique Grouping

As introduced in Section 2.2, some playing techniques are instrument-
specific due to the physical characteristics of certain instruments. To
develop a general framework for playing technique recognition, we aim
at playing techniques that can generalise potentially across musical
instruments and possibly to singing voice. According to an investigation
of playing techniques in music signals as listed in Table 2.1, we focus
on seven commonly used playing techniques: vibrato, tremolo, trill,
flutter-tongue, acciaccatura, portamento, and glissando.

When displaying these playing techniques in the time–frequency do-
main, we observe that each technique has a distinctive spectro-temporal
pattern as shown in Figure 3.2. Based on the patterns of regularity, we
group these playing techniques into two families: pitch modulation-based
techniques (PMTs) and pitch evolution-based techniques (PETs). The
former refers to periodic modulations that elaborate on stable pitches
and are temporally symmetric. Typical examples are vibrato, tremolo,
trill, and flutter-tongue shown in Figure 3.2 (a), all with periodic mod-
ulations appearing on each harmonic partial. The difference between
these playing techniques exists in the rate, frequency depth, and shape of
the modulations, which we introduce in detail in Section 4.1. PETs are
playing techniques which contain monotonic pitch changes over time and
are temporally asymmetric. Acciaccatura, portamento, and glissando in
Figure 3.2 (b) are three examples from this group of playing techniques.
Portamento is a continuous slide between two notes. Glissando is a
slide across a series of discrete tones. Acciaccatura, in the case of the
Chinese bamboo flute includes a sharp attack and strong air flow on the
first note followed by a rapid transition to the second note. We develop
recognition systems for PMTs and PETs in Chapter 4 and Chapter 5,
respectively.

In the case of CBF, these seven playing techniques—vibrato, tremolo,
trill, flutter-tongue, acciaccatura, portamento, and glissando—are also
known as 气颤音 (qichanyin), 气震音 (qizhenyin), 指颤音 (zhichanyin), 花
舌 (huashe), 垛音 (duoyin), 滑音 (huayin), and 历音 (liyin) (Zhan, 2009).
The first three are typical playing techniques in the Southern style pieces,
while the last four are those frequently used in the Northern style pieces.
The difference between the Southern and Northern styles can be found
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in Section 2.3.

Figure 3.2: Spectrograms of commonly used playing techniques in
musical signals which are grouped into two families: (a) pitch modulation-
based techniques (PMTs) and (b) pitch evolution-based techniques
(PETs).

3.3 CBFdataset Collection and Annotation

Our data collection2 process has taken into account diversity of playing
techniques, performers, flute types, pieces, and styles. The pieces were
selected based on the discussions with Xiaojie Meng, who is a professional
CBF performer and educator. The selected pieces are all classic CBF
performances which are abundant of playing techniques. The performers
were doctoral, master, and undergraduate students from the China
Conservatory of Music, studying Chinese bamboo flute performing. This
conservatory is one of the most authoritative conservatories on CBF
education and research in the world. The performers were selected
based on the demographics and years of training. All data was recorded
in acoustically treated environments of a professional recording studio
using a Zoom H6 recorder with its stock microphones, in xy stereo
configuration, at 44.1kHz/24-bits.

2The data collection gained ethics approval by Queen Mary University of London
with the reference number 1732.
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The annotations of the playing techniques were a joint effort of the
performers, the author of this thesis, the author’s supervisors (Dr Em-
manouil Benetos and Prof Elaine Chew), and authoritative CBF ed-
ucators. Seven commonly used playing techniques (see Section 3.2),
i.e., vibrato, tremolo, trill, flutter-tongue, acciaccatura, portamento,
and glissando, were annotated in all performances. During the annota-
tion process, the recordings and the standard scores were given back
to the players after their performance. The performers annotated the
playing techniques on the scores by listening to their own recordings.
The author of the thesis transferred them into audio-synchronised an-
notations using Sonic Visualiser (Cannam et al., 2010). Each playing
technique was annotated with a start time, an end time, and play-
ing technique type. Rounds of discussions with the performers were
launched if there were uncertain labelling cases until a final agreement
was reached. All the recordings and annotations are publicly available
at c4dm.eecs.qmul.ac.uk/CBFdataset.html.

3.4 CBFdataset Content and Statistics

The complete CBFdataset comprises 2.6-hour recordings of monophonic
full-length performances and isolated playing techniques on the Chinese
bamboo flute, and annotations of seven types of playing techniques:
vibrato, tremolo, trill, flutter-tongue, acciaccatura, portamento, and
glissando. Note that the CBFdataset was originally split into two
subsets, the CBF-periDB and the CBF-petsDB, according to the groups
of playing techniques introduced in Section 3.2. These two subsets were
released separately in the associated publications (Wang et al., 2019a)
and (Wang et al., 2020a), respectively. In the thesis, we combine them
into one as the CBFdataset, and use the entire dataset as the evaluation
dataset throughout the thesis for CBF playing technique recognition.

All data in the CBFdataset was recorded by 10 professional CBF
performers. Each performer played both isolated playing techniques
covering all notes on the CBF and two full-length pieces among Busy
Delivering Harvest «扬鞭催马运粮忙», Jolly Meeting «喜相逢», Morning
«早晨», and Flying Partridge «鹧鸪飞». The first two are Northern style
pieces performed on the G flute, while the last two are Southern style
ones played on the C flute (see an introduction of the CBF music style
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and CBF type in Section 2.3). Each piece was performed using the type
of flute originally suggested by the composer which was annotated on the
score. Performers were grouped by flute type, i.e., each player performed
one Southern and one Northern style piece (except one player who
performed two Northern pieces for personal reasons). Each performer
used their own flutes.

Figure 3.3 shows the number of examples of each type of playing
technique performed by each performer in the CBFdataset. The top
subfigure displays the number of playing techniques in the full-length
recordings of the four pieces: Busy Delivering Harvest (BH), Jolly
Meeting (JM), Morning (Mo), and Flying Partridge (FP). The bottom
subfigure shows the number of isolated playing techniques of each type
performed by each performer except isolated tremolos, which were not
recorded at the data collection. As can be observed, the number of
examples for different playing technique classes is highly imbalanced,
even for the same piece performed by different performers. For example,
the number of both flutter-tongue and portamento techniques used by
Performer 5 in the piece Busy Delivering Harvest are nearly two times
that applied by Performer 8 to the same piece. Northern style playing
techniques, i.e., flutter-tongue, acciaccatura, portamento, and glissando,
rarely appear in the Southern style pieces except Morning. Morning
is the first Southern style CBF piece that has Northern style playing
techniques introduced (Zhang, 2011).
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Figure 3.3: Number of examples for each type of playing technique
performed by each performer in the CBFdataset (FT=flutter-tongue).
Top: number of playing technique examples in the full-length pieces;
Bottom: number of isolated playing techniques. BH=Busy Delivering
Harvest, JM=Jolly Meeting, Mo=Morning, and FP=Flying Partridge
are the names of the four pieces. The first two are Northern style pieces
performed on the G flute and the other two are Southern style ones
played on the C flute. Each performer used their own flutes of these two
types.

3.5 Conclusions

In this chapter, we have created the first dataset on the Chinese bamboo
flute (CBF), the CBFdataset, for ecological valid analysis of playing
techniques in context. The dataset comprise recordings of full-length
performances and isolated playing techniques on the CBF, and playing
technique annotations. Aiming at developing a general framework
for playing technique recognition, we annotated seven commonly used
playing techniques—vibrato, tremolo, trill, flutter-tongue, acciaccatura,
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portamento, and glissando—that may be generalised potentially to other
instruments and possibly to singing voice. Including mainly monophonic
real-world performances, the CBFdataset could also be potentially used
for other computational music research such as music performance
analysis (Lerch et al., 2020) and music style transfer (Dai et al., 2018).
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Chapter 4

Adaptive Scattering for Pitch
Modulation-based Technique
Recognition

Vibratos, tremolos, trills, and flutter-tongue are playing techniques fre-
quently found in vocal and instrumental music. A common feature of
these techniques is the periodic modulations bound to stable pitches
which we define as the pitch modulation-based techniques (PMTs) in
Section 3.2. In this chapter we propose a variant of the scattering
transform, the adaptive scattering, which provides representations that
are invariant to large frequency-transpositions besides the invariance to
time-shifts and time-warps of the standard time scattering introduced in
Section 2.5 and that exhibit lower redundancy. Based on the character-
istics of PMTs, we explore three types of adaptive scattering operators,
the adaptive time scattering, the adaptive time–rate scattering, and
the combination of these two operators, for detecting and classifying
PMTs in real-world music performances. We analyse characteristics of
PMTs in Section 4.1 and define the adaptive scattering representations
in Section 4.2. Section 4.3 and Section 4.4 present the recognition system
and evaluation results, respectively. Publications associated with this
chapter include Wang et al. (2019a) and Wang et al. (submitted) (see
Section 1.4 for publication details).
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4.1 Characteristics of Pitch Modulation-based

Techniques

Although all PMTs result in some periodic modulations in the time–
frequency domain, each has distinct characteristics, as listed in Table 4.1.
The extent and shape characteristics are based on music theory and the
rate information is summarised from the CBFdataset (see Section 3.4).
Flutter-tongue has a much higher modulation rate as compared to the
other three modulations. For the other three types of techniques with
similar modulation rates, the discriminative information lies in the
modulation extent and shape of the modulation unit. The modulation
unit refers to the unit pattern that repeats periodically within the
modulation. It can be an amplitude modulation (AM), a frequency
modulation (FM), or a spectro-temporal modulation, as intuitively
observed from the spectrograms shown in Figure 4.1. Trills are note-
level modulations, for which the frequency variations are at least one
semitone. This extent of modulation is much larger than that of vibratos
and tremolos. The shape of the modulation unit for the trill is more
square-like than vibratos’ sinusoidal form. The difference between
vibrato and tremolo is that vibratos are FMs, while tremolos are AMs.
We show how this discriminative information is captured by the proposed
adaptive scattering representations in Section 4.2.

Technique Rate (Hz) Extent Shape

Flutter-tongue 25-50 < 1 semitone Sawtooth-like
Vibrato 3-10 < 1 semitone Sinusoidal (FM)
Tremolo 3-8 ≈ 0 semitone Sinusoidal (AM)
Trill 3-10 Note level Square-like

Table 4.1: Characteristics of pitch modulation-based techniques (PMTs).

4.2 Adaptive Scattering

Although the second-order time scattering (see Subsection 2.5.1) is able
to capture amplitude and frequency modulations in audio signals (Andén
and Mallat, 2012), it is a redundant representation for PMTs. This
is because the second-order time scattering decomposes all frequency
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Figure 4.1: Visual comparison of PMT characteristics for (a) vibrato, (b)
tremolo, (c) trill, and (d) flutter-tongue, in the time–frequency domain
(partially enlarged from Figure 3.2 (a)).

bands of the scalogram; while for PMTs, the harmonic structure of the
modulations, as observed in Figure 4.1, suggests that one harmonic
partial sufficiently captures all the characteristic information: rate,
extent, and shape. Additionally, playing techniques may be performed
on pitches covering the whole tonal range of an instrument or on tones
that a singer can possibly sing; therefore playing techniques require
representations invariant to large frequency-transpositions.

To reduce representation redundancy without losing the discriminative
information and to provide large frequency-transposition invariance, we
propose the adaptive scattering, a variant of the scattering transform
framework (see Section 2.5), for representing PMTs. Instead of decom-
posing all frequency bands of the scalogram, the adaptive scattering
calculates the second-order scattering transform adaptively around the
decomposition trajectory, a one-dimensional time series in the scalogram.
This is how the “adaptive” term comes from. Typical decomposition
trajectories include dominant band, fundamental frequency, and pre-
dominant melody, which we discuss in Subsection 4.2.2. Based on the
characteristics of PMTs, we propose three adaptive scattering represen-
tations in Subsection 4.2.1, the adaptive time scattering, the adaptive
time–rate scattering, and the combination of these two operators.

4.2.1 Adaptive scattering representations

In this section, we introduce the adaptive scattering representations—the
adaptive time scattering, the adaptive time–rate scattering, and their
combination—using the dominant band as the example decomposition
trajectory. Investigation of other decomposition trajectories is described
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in Subsection 4.2.2. From the first-order time scattering coefficients
S1x(t, λ) (see Subsection 2.5.1) shown in Figure 4.2 (b), we extract the
frame-wise index of the frequency band with maximum acoustic energy:

λmax(t) = argmax
λ

(
S1x(t, λ)

)
, (4.1)

where t ∈ R and λ ∈ R are the time variable and the log-frequency
variable of the wavelet filterbank ψλ(t), respectively. ψλ(t) is the wavelet
filterbank dilated from the mother wavelet ψ(t) by a scaling factor of
2−λ. λmax(t) forms the dominant band trajectory.

PMTs are spectro-temporal patterns normally spreading over several
frequency bands. To extract information of the full modulation pat-
tern, we introduce an L-band tolerance centred symmetrically at the
decomposition trajectory. L is the total number of frequency bands
decomposed. We then define the expanded decomposition trajectory as:

Λ(t) =

{
λmax(t) + l

∣∣∣ − L

2
≤ l ≤ L

2

}
. (4.2)

We locate the L-band decomposition trajectory of the scalogram by
expressing its log-frequency axis in local coordinates with respect to the
dominant band trajectory:

XΛ(t, l) = X
(
t,Λ
)
. (4.3)

Convolving XΛ(t, l) temporally with another wavelet filterbank ψvt(t),
applying complex modulus, and averaging locally with ϕT (t), we obtain
the adaptive time scattering (AdaTS):

SAdaTS
2 x(t, l, vt) =

(∣∣XΛ
t∗ψvt

∣∣ t∗ ϕT

)
(t, l). (4.4)

The wavelet filterbank ψvt(t) is also dilated from the mother wavelet
ψ(t) by a scaling factor of 2−vt . ϕT (t) is the lowpass filter providing a
time-shifting invariance up to T . In the equation above, SAdaTS

2 x(t, l, vt)

is a three-dimensional representation along t, l, and vt. On the flip side,
its number of log-frequency bands l is equal to L, i.e., much less than
the number of log-frequency bands λ of the second-order time scattering
S2x(t, λ, vt). The reason is that PMTs are modulations bound to stable
pitches rather than large frequency changes; a few frequency bands
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expanded around the decomposition trajectory sufficiently cover the full
modulation pattern.

To capture only the temporal variation regardless of the absolute
energy of the waveform, we normalise the adaptive time scattering
coefficients SAdaTS

2 x(t, l, vt) over the corresponding first-order time scat-
tering coefficients S1x(t, l) = S1x(t, λ) | λ=l

and take the logarithm of
the normalised coefficients (Andén and Mallat, 2014) to mimic auditory
perception. Similarly to Subsection 2.5.1, we derive the log-normalised
adaptive time scattering :

S̃AdaTS
2 x(t, l, vt) = log2

(
SAdaTS
2 x(t, l, vt)

S1x(t, l) + ε

)
, (4.5)

where ε is a small additive offset that avoids division by zero. Figure 4.2
(c) shows the log-normalised AdaTS decomposed from the dominant
band trajectory in Figure 4.2 (a).

Besides the difference on the fundamental modulation rate, the AdaTS
of PMTs exhibits different spectral characteristics along the modulation
rate axis, as observed from Figure 4.2 (c). Tremolo has only the funda-
mental modulation rate while trill and vibrato carry upper harmonic
partials. Trill has a richer harmonic structure than vibrato. These
characteristics may provide additional information for the recognition
of PMTs. Therefore, we propose to apply frequency scattering along
the modulation rate axis of S̃AdaTS

2 x(t, l, vt) and define the resulting
representation as the adaptive time–rate scattering (AdaTRS):

SAdaTRS
2 x(t, l, vt, vf) =

(∣∣S̃AdaTS
2 x

vt∗ ψvf

∣∣ vt∗ ϕF

)
(t, l, vt). (4.6)

ψvf (vt) is a wavelet filterbank dilated from the mother wavelet ψ(vt) by
a scaling factor of 2−vf . ϕF (vt) is a lowpass filter along the modulation
rate axis. The frequency scattering has a similar form as the time
scattering where the former generally applies a wavelet filterbank along
the acoustic frequency axis, i.e., ψvf (λ), such as the joint time–frequency
scattering and the separable time–frequency scattering introduced in
Subsection 2.5.2. In such cases, it generates representations that are
invariant to frequency-transpositions and captures modulation infor-
mation along the log-frequency axis of the scalogram. In this chapter,
the proposed AdaTS itself is invariant to large frequency-transpositions
due to the adaptive operation. Applying frequency scattering on top of
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Figure 4.2: Extracting the adaptive scattering representations for PMTs:
vibrato, tremolo, trill, flutter-tongue, variable rate trill, variable extent
trill, variable pitch flutter-tongue: (a) scalogram; (b) dominant band
trajectory in the first-order time scattering; (c) adaptive time scattering
obtained by localising and decomposing scalogram trajectories; (d)
adaptive time–rate scattering obtained by applying a spectral filterbank
and averaging. The AdaTS+AdaTRS is the frame-wise concatenation
of (c) and (d).

the AdaTS is to capture its characteristics along the modulation rate
axis. Figure 4.2 (d) displays an example of the AdaTRS by applying
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frequency scattering on top of Figure 4.2 (c).
We define AdaTS+AdaTRS as the concatenation of outputs from

Eq. (4.5) and Eq. (4.6):

SAdaTS+AdaTRS
2 x(t, l, vt, vf) ={

S̃AdaTS
2 x(t, l, vt),S

AdaTRS
2 x(t, l, vt, vf)

}
. (4.7)

We compare the performance of the AdaTS, AdaTRS, and AdaTS+
AdaTRS on PMT recognition in Section 4.3.

We have introduced in Subsection 2.5.2 that the scattering transform
has a similar structure as convolutional neural networks (CNNs) but
using predefined wavelets as the filters. The hyperparameters of these
wavelets provide a way to encode the prior knowledge of the task at
hand. From the analysis in Section 4.1, the core information for PMT
recognition lies in the modulation rate, extent, and shape. We explain in
detail on how this information can be encoded into the adaptive scatter-
ing representations using the examples in Figure 4.2. The figure shows,
respectively, (a) the scalogram, (b) the first-order time scattering, (c)
the adaptive time scattering, and (d) the adaptive time–rate scattering
representations of a series of PMT examples in the CBFdataset (see
Section 3.4). The first four are modulations based on stable pitches or
constant parameters: vibrato, tremolo, trill, and flutter-tongue. The last
three are cases with time-varying parameters: trill with variable rate,
trill with variable extent, and flutter-tongue with time-varying pitch.

As can be seen from Figure 4.2 (c), flutter-tongue is the most dis-
criminative PMT with the highest modulation rate. Dominant band
decomposition also captures trills because of their large modulation
extent. This can be interpreted by filters with a bandwidth larger than
one semitone, which blurs other subtle modulations. To specifically
detect vibratos and tremolos, we can use filters with bandwidth less
than one semitone and concatenate the decompositions of multiple fre-
quency bands in the scalogram. Assume we have frequency bands of
1/16 octave bandwidth in scalogram; ideally, the adaptive time scat-
tering of tremolo should display only the fundamental modulation rate
with no upper harmonics since tremolo is an AM. This is verified by
the second example in Figure 4.2 (c). However, vibratos are FMs with
modulations spread over neighbouring frequency bands. Decomposing
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neighbouring frequency bands above or below the dominant band pro-
vides additional information to distinguish vibratos from tremolos. All
this discriminative information can be visualised from the fundamental
modulation rate and the richness of the harmonics in the adaptive time
scattering in Figure 4.2 (c). Although the last example is flutter-tongue
with time-varying pitch, the modulation rates shown in Figure 4.2 (c)
are relatively stable. The variable rate of the trill from 12 to 17 sec
is captured by the gradually increased fundamental modulation rate.
The variable extent information of the trill from 18 to 19 sec could be
captured when multiple frequency bands around the dominant band are
decomposed. To capture the spectral structure along the modulation
rate axis of the AdaTS (Figure 4.2 (c)), we apply frequency scattering
and obtain the AdaTRS (Figure 4.2 (d)), which provides additional
information for discriminating the PMTs.

4.2.2 Decomposition trajectories

The dominant band trajectory discussed above corresponds to the fre-
quency band with maximum acoustic energy, which may not be stable
due to octave jumps, i.e., frequency switches between harmonic partials,
as observed from the trill example at around 18 sec in Figure 4.2 (b).
To suppress the influence of such frequency switches, we preprocess
the dominant band trajectory by interpolation and smoothing. Zero
frequency values of the trajectory are linearly interpolated according
to the non-zero frequencies of neighbouring frames. A median filter is
then applied to the trajectory to reduce the influence of frequency band
switches. Comparing the dominant band trajectory before (Figure 4.3
top) and after (Figure 4.4 top) preprocessing, we notice that the latter
exhibits higher stability, with the aforementioned octave jumps being
smoothed out. Besides improving the dominant band trajectory as
above, we also explore other possible decomposition trajectories for the
adaptive scattering such as fundamental frequency and predominant
melody.

Fundamental frequency The fundamental frequency (F0) is defined
for periodic or nearly periodic sounds only, as the inverse of its period
(Klapuri, 2003). The F0s in this thesis are extracted using the pYIN
pitch estimation algorithm (Mauch and Dixon, 2014), which guarantees
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Figure 4.3: Comparison of three adaptive scattering decomposition tra-
jectories in the scalogram of the PMT examples in Figure 4.2: dominant
band, fundamental frequency (F0), and predominant melody (melody),
all before preprocessing.

Figure 4.4: Comparison of three adaptive scattering decomposition tra-
jectories in the scalogram of the PMT examples in Figure 4.2: dominant
band, fundamental frequency (F0), and predominant melody (melody);
the dominant band is preprocessed by interpolation and smoothing while
the last two result from interpolation only.
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temporal smoothness of the final F0 track using a hidden Markov model
to track the candidates with their associated probabilities. The algorithm
is commonly used for estimating the F0s of solo instrument playing or
singing voice, which is the case of our dataset, comprising monophonic
recordings of the Chinese bamboo flute (see Section 3.4).

Predominant melody The predominant melody refers to a sequence
of frequency values corresponding to the pitch of the dominant melodic
line in polyphonic music (Salamon and Gómez, 2012). The predominant
melody is included here to explore its performance as a decomposition
trajectory as compared to the dominant band and the F0. We extract
the predominant melody using the salience-based melody estimation
method proposed by Salamon and Gómez (2012). The main idea is to
create pitch contours grouped from fundamental frequency candidates
and then select the main contour based on a set of musical features.
The features include pitch mean, pitch deviation, contour mean salience,
contour total salience, contour salience deviation, contour length, and
vibrato presence (true or false).

To localise F0 and predominant melody trajectories in the scalogram,
we allocate the bands with the closest frequency values to both cases.
Figure 4.3 middle and bottom display these two trajectories in the
original form, respectively. To deal with zero frequency values and missed
estimations, we also preprocess these trajectories by linear interpolation
and obtain the corresponding trajectories shown in Figure 4.4 middle and
bottom. We compare the performance of the adaptive scattering using
the three decomposition trajectories for playing technique recognition
in Subsection 4.4.5.

4.3 Playing Technique Recognition

In this section, we build an automatic system for detecting and classify-
ing PMTs based on the proposed adaptive scattering representations:
the adaptive time scattering (AdaTS), the adaptive time–rate scattering
(AdaTRS), and their combination (AdaTS+AdaTRS). The system com-
prises four binary classifiers, each for one type of PMTs, i.e., vibrato,
tremolo, trill, and flutter-tongue. This enables us to set the scatter-
ing hyperparameters according to the characteristics of each type of
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playing technique and to fine-tune the hyperparameters of the corre-
sponding classifier. We investigate a multiclass classification scheme in
Subsection 5.5.2 which recognises all playing techniques simultaneously.

4.3.1 Feature extraction

Figure 4.2 shows the extraction process of the adaptive scattering fea-
tures of PMTs using dominant band as the example decomposition
trajectory. Starting from a waveform, we first extract the decomposition
trajectory from (b) the first-order time scattering transform. Localising
the decomposition trajectory in (a) the scalogram and decomposing
L frequency bands centred symmetrically around the dominant band
trajectory, we obtain (c) the AdaTS. (d) the AdaTRS is obtained by
applying frequency scattering along the modulation rate axis of (c). The
AdaTS+AdaTRS is the frame-wise concatenation of (c) and (d).

Table 4.2 gives the adaptive scattering hyperparameters that capture
discriminative information for PMT recognition. The averaging scale
T is useful for discriminating modulations with large differences on the
modulation rate, for example, distinguishing flutter-tongue from other
low-rate PMTs. Averaging scales covering at least four unit patterns are
recommended for reliable estimation of the modulation rate. According
to the rate range of PMTs (see Table 4.1), we use T = 213 (in samples;
corresponding to 186 ms at a sampling rate Fs = 44.1 kHz) for flutter-
tongue, and T = 215 (743 ms) for the other three types of PMTs. The
range M (in Hz) of the modulation rate narrows the adaptive scattering
to the part that contains core information of the playing technique. An
interval larger than the modulation rate range provides some harmonics
in the modulation representation. For example, we set M = [0, 150] Hz
for flutter-tongue, and M = [0, 100] Hz for vibrato, tremolo, and trill.

Q
(t)
1 is the filters per octave of the temporal filterbank in the first-order

time scattering. Since the modulations discussed here are all oscillatory
patterns, setting Q1 should ensure that each of the modulations are
not blurred in the first-order wavelet modulus transform. Here, we
use Q

(t)
1 = 16 to support subtly-modulated vibratos and tremolos, of

which the modulation extent is less than one semitone. Higher Q
(t)
1

creates better frequency resolution but the support of the wavelets
will have large overlaps in the time domain, providing less accurate
temporal information and requiring higher computational cost. We set
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Hyperparameter Notation Characteristics

Averaging scale T Modulation rate
Temporal filters per octave Q

(t)
1 Modulation extent

Number of bands decomposed L
= 1, temporal shape
> 1, spectro-temporal shape

Feature dimension reduction M Modulation rate range

Table 4.2: Hyperparameters of the proposed adaptive scattering represen-
tations which capture discriminative information for pitch modulation-
based techniques (PMTs).

Q
(t)
1 = 16 for vibrato and tremolo detection according to a tradeoff

between computational cost and accuracy. Q
(t)
1 = 12 is applied to trill

due to its note-level nature. Since the most distinct feature of flutter-
tongue is the modulation rate, we set a small Q(t)

1 = 4 for computation
saving.

L is the number of decomposed frequency bands symmetrically centred
at the dominant band in the scalogram. For all modulations, we use
L = 7 according to experimental results. Q

(t)
2 is the filters per octave

of the temporal filter bank in the second-order time scattering. We use
smaller Q(t)

2 as compared to Q
(t)
1 due to the less oscillatory nature of the

signals to be decomposed in the second-order, i.e., the frequency bands
around the decomposition trajectory in the scalogram. All adaptive
scattering representations operate with Q

(t)
2 = 1 and Q

(t)
2 = 4 filters

per octave for flutter-tongue and the other three types of techniques,
respectively. Besides the shared hyperparameters with the AdaTS above,
the AdaTRS uses frequency scattering with Q

(f)
1 = 1 filters per octave

and an averaging scale corresponding to the entire modulation rate axis
of the AdaTS.

As introduced in Section 2.5, the scattering coefficients are the results
of convolving the wavelet modulus transform with a lowpass filter. The
original frame size of the scattering coefficients equals the averaging scale
T , i.e., 186 ms for flutter-tongue and 743 ms for the other three types
of playing techniques. To compensate for the low temporal resolution
resulting from the large averaging scales, we use an oversampling pa-
rameter α (Andén and Mallat, 2014) which introduces overlaps between
averaging windows. The frame size h is then inversely log-proportional to
the oversampling parameter by h = T/(2αFs). We set α = 2 consistently

62



4.3. Playing Technique Recognition

for all classifiers, which results in the frame sizes for flutter-tongue, trill,
vibrato, and tremolo of 46, 186, 186, and 186, respectively (all in ms),
as shown in Table 4.3. Table 4.3 also lists the dimensionality of each
adaptive scattering representation for each type of playing technique.

Representation FT Trill Vibrato Tremolo

AdaTS 42 133 133 133
AdaTRS 42 70 70 70
AdaTS+AdaTRS 84 203 203 203

Frame size (ms) 46 186 186 186

Table 4.3: Frame sizes and dimensionalities of the proposed adaptive
scattering representations for flutter-tongue (FT), trill, vibrato, and
tremolo in the binary classification scheme.

4.3.2 Recognition system

With the adaptive scattering features calculated, we build in this section
a recognition system comprising four binary classifiers, each for one
type of playing technique. We use support vector machines (SVMs)
(Hastie et al., 2009) with Gaussian kernels as classifiers due to their good
generalisability based on a limited amount of training data (Albu and
Martinez, 1999). The SVM hyperparameters to be optimized during
training are the error penalty parameter C and the width of the Gaussian
kernel γ. We use consistent parameter grids of 2{3:1:8} and 2{−12:1:−7}

for C and γ, respectively, for training all the classifiers, and select
the best hyperparameters for testing. The classifiers take as input the
adaptive scattering features and output frame-wise predictions of playing
technique type. All features are z-score normalised.

In the recognition process, the CBFdataset (see Section 3.4) is split
into training and test sets according to an 8:2 ratio by performers
(performers are randomly initialised). We conduct 5 splits in a circular
way, with no performer overlap between the test sets across splits and
between the training-test sets in each split. Within each split, we run a
3-fold cross-validation, sampling on the training dataset in a way that
ensures each fold includes approximately the same ratio of positive and
negative class instances for a given playing technique. This is to avoid
the cases that there is no instance or there are too few instances of a
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given playing technique class in the validation set if we further split the
training set based on performer identity.

4.4 Evaluation

In this section, we present the evaluation dataset, metrics, baseline
method, and results for recognising the four types of PMTs, i.e., vibrato,
tremolo, trill, and flutter-tongue.

4.4.1 Dataset

To the author’s knowledge, there is not yet any dataset of real-world
performances with annotations covering all the four types of PMTs.
We evaluate the proposed methodology on the CBFdataset introduced
in Section 3.4. The CBFdataset comprises recordings of 20 full-length
performances on the Chinese bamboo flute (CBF), isolated playing
techniques, and annotations of seven types of playing techniques. Besides
the four types of PMTs discussed in this chapter, there are also other
three types of playing techniques which we will explore in Chapter 5.
The total duration of the CBFdataset is 2.6 hours.

4.4.2 Metrics

Playing techniques are typically music events with certain durations.
We conduct both frame- and event-based evaluation for the recognition
results using the precision P , recall R, and F-measure F , introduced in
Subsection 2.2.3. In the frame-based evaluation, labels assigned by the
classifier are compared to the ground truth in a frame-wise manner. The
frame sizes are different from technique to technique. When evaluating
for a specific technique over different methods, we resample the detection
results to the same frame sizes that we use for CBF technique evaluation,
as listed in Table 4.3.

In the event-based evaluation, we merge frame labels into events
and evaluate each type of playing technique based on the onset and
duration of its instances in the test set. The merging of frame labels into
events is implemented using the Python library mir_eval (Raffel et al.,
2014). Considering the duration range of each type of playing technique,
the events are postprocessed by minimum duration pruning and gap
filling. We fill the gaps between neighbouring events when the gaps are
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shorter than the shortest event in the training set; and prune the events
that have smaller duration than the minimum duration event in the
training set. The minimum duration is automatically calculated subject
to the technique and the training-test data split during recognition.
Onsets of the obtained events are also evaluated using the Python
library mir_eval (Raffel et al., 2014), which computes a maximum
match between reference and estimated onsets, subject to a window
constraint. An event is considered to be detected only when its onset
falls within a 200 ms window of the ground truth and its duration is at
least 50% of the ground truth duration.

4.4.3 Baseline

To the author’s knowledge, there does not yet exist any general frame-
work for detecting all the four types of PMTs in real-world performances.
We compare the proposed system against the state-of-the-art approach
originally proposed for vibrato detection: a system based on the filter
diagonalisation method (FDM) (Yang, 2017). The system takes the
frame-wise fundamental frequency estimated by the pYIN pitch detec-
tion algorithm (Mauch and Dixon, 2014) as input. The FDM feature
is then computed and fed into a naive Bayes classifier for vibrato de-
tection. Besides using the FDM as a baseline for vibrato detection in
the CBFdataset (see Section 3.4), we also extend its application to the
recognition of the other three types of PMTs: flutter-tongue, trill, and
tremolo. To have fair comparisons, we resample the detection results
into the same frame sizes as that we use for CBF playing technique recog-
nition shown in Table 4.3. Different ranges for the hyperparameters, i.e.,
ranges of rate and extent, are experimented for the FDM according to
PMT characteristics (see Table 4.1). The best frame-based F-measures
obtained for flutter-tongue, trill, vibrato, and tremolo are 26.2%, 72.5%,
67.7%, and 38.8%; the corresponding event-based F-measures are 3.2%,
54.2%, 58.9% and 39.3%, respectively.

4.4.4 Comparative studies

Apart from the comparison with the baseline method, we also compare
the performance of the proposed adaptive scattering representations
using different decomposition trajectories; and compare the adaptive
scattering with existing scattering representations introduced in Sec-
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tion 2.5 for PMT recognition: the frequency-averaged time scattering,
the standard time scattering, and the standard time scattering with
principal component analysis. We present each of these comparisons in
the following paragraphs.

Decomposition trajectories We compare the proposed adaptive
scattering representations—AdaTS, AdaTRS, and AdaTS+AdaTRS—
calculated from the three decomposition trajectories introduced in Sub-
section 4.2.2: dominant band, F0, and predominant melody. To evaluate
the performance of the preprocessing step on the dominant band tra-
jectory, we also include the original dominant band trajectory in the
comparison. The original dominant band trajectory is extracted directly
from the first-order time scattering as shown in Figure 4.3 top. Replac-
ing zero frequency values with linear interpolation and smoothing it by
median filtering, we obtain the preprocessed dominant band trajectory
(see Figure 4.4 top).

We implement F0 estimation using the Librosa Python package (McFee
et al., 2015) and predominant melody extraction using the Essentia li-
brary (Bogdanov et al., 2013) with the same frame size of 3 ms. For these
two trajectories, we fill zero frequency values and missed estimations
also with a linear interpolation (see Subsection 4.2.2). To localise F0 and
predominant melody trajectories in the scalogram, we allocate the bands
with the closest frequency values to both cases. Since both trajectories
have higher temporal resolution (3 ms) than that of the dominant band
trajectory (46 ms for flutter-tongue and 186 ms for the other three
playing techniques), we use the median value of a set of F0 and melody
values (16 for flutter-tongue and 62 for the other three playing tech-
niques). This enables consistent frame sizes for the adaptive scattering
features based on different decomposition trajectories. We discuss the
recognition results using these trajectories in Subsection 4.4.5.

Standard time scattering To evaluate the performance of the pro-
posed adaptive scattering representations, we compare it with the stan-
dard time scattering (see Subsection 2.5.1). Since the standard time
scattering has fewer hyperparameters as compared to the proposed adap-
tive scattering representations, we set the shared hyperparameters of the
former the same to those of the latter, i.e., T = 213, Q

(t)
1 = 4, Q

(t)
2 = 1 for

flutter-tongue; T = 215, Q
(t)
1 = 12, Q

(t)
2 = 4 for trill; and T = 215, Q

(t)
1 =
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16, Q
(t)
2 = 4 for vibrato and tremolo. This results in the standard time

scattering features with dimensionalities of 222, 1725, 2074, and 2074
for flutter-tongue, trill, vibrato, and tremolo, respectively; and the corre-
sponding frame sizes are 46 ms, 186 ms, 186 ms, and 186 ms, as shown
in Table 4.4. We also explore the effectiveness of the standard time
scattering for identifying performers in polyphonic orchestral music in
Section 6.1.

Standard time scattering with principal component analysis
Considering the redundancy of the standard time scattering which
decomposes all frequency bands in the scalogram, we conduct a principal
component analysis (PCA) (Bishop, 2006) on the coefficients before
classification and denote the resulting representation as standard time
+ PCA. This is to compare the performance of the standard time
scattering with redundancy reduced in two different ways: a linear
dimension reduction using PCA and a nonlinear one achieved by the
adaptive operation. The latter case is the adaptive time scattering,
which calculates the second-order time scattering only for a small set
of frequency bands in the scalogram, i.e., the frequency bands around
the decomposition trajectory. We take dimensionality into account in
the representation comparison in that a representation with a lower
dimensionality extracts the core characteristic information of the playing
techniques but also reduces the computational cost of the classification
stage, which we discuss in detail in Subsection 4.4.5.

We set the amount of variance to be explained by PCA as 95%,
which results in the feature dimensionalities of 94, 603, 760, and 760
for flutter-tongue, trill, vibrato, and tremolo, respectively, as shown
in Table 4.4. Although the dimensionalities are still higher than the
proposed adaptive scattering representations, they are reduced by more
than half as compared to the original dimensionalities of the standard
time scattering. The corresponding frame sizes are the same as those of
the proposed adaptive scattering representations (see Table 4.4).

Frequency-averaged time scattering Apart from the invariance
to local time-shifts and time-warps, the frequency-averaged time scat-
tering processes the second-order time scattering coefficients with a
lowpass filter along the log-frequency axis (see Subsection 2.5.2), which
introduces frequency-transposition invariance. Therefore, besides the
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averaging along the entire log-frequency axis, the frequency-averaged
time scattering has the same set of hyperparameters as the standard
time scattering, i.e., T = 213, Q

(t)
1 = 4, Q

(t)
2 = 1 for flutter-tongue;

T = 215, Q
(t)
1 = 12, Q

(t)
2 = 4 for trill; and T = 215, Q

(t)
1 = 16, Q

(t)
2 = 4 for

vibrato and tremolo. This returns the lowest feature dimensionalities
among all the considered scattering representations: 10, 33, 32, and 32
for flutter-tongue, trill, vibrato, and tremolo, respectively, as shown in
Table 4.4. The corresponding frame sizes are the same to those of the
other scattering representations.

Representation FT Trill Vibrato Tremolo

AdaTS 42 133 133 133
AdaTRS 42 70 70 70
AdaTS+AdaTRS 84 203 203 203
Frequency-averaged 10 33 32 32
Standard time 222 1725 2074 2074
Standard time + PCA 94 603 760 760

Frame size (ms) 46 186 186 186

Table 4.4: Frame sizes and dimensionalities of the proposed adaptive
scattering and the existing scattering representations for CBF flutter-
tongue (FT), trill, vibrato, and tremolo.

4.4.5 Results

In this section, we analyse the recognition results of the four CBF
PMTs using the adaptive scattering representations based on different
decomposition trajectories and those using the existing scattering repre-
sentations presented in Subsection 4.4.4. To provide an intuition of the
computational cost of the recognition system, we compare the runtime
of the feature extraction and classification using the trill technique as an
example. The effect of SVM hyperparamters at the classification stage
is also discussed.

Comparison of decomposition trajectories Table 4.5 and Ta-
ble 4.6 display the frame- and event-based results of our proposed
recognition system for the four types of PMTs using different decompo-
sition trajectories: original dominant band, smoothed dominant band,
F0, and predominant melody. We compare these results from four
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fronts: the overall performance of all decomposition trajectories, the
performance of the three adaptive scattering representations (AdaTS,
AdaTRS, and AdaTS+AdaTRS), the original and the smoothed dom-
inant band trajectories, and the performance of these trajectories on
different types of playing techniques. For all decomposition trajectories,
the F0 achieves the best overall performance measured by the average
F-measure over the four playing techniques. It yields the highest average
F-measure of 73.9%, as compared to 73.5%, 72.6%, and 70.8%, the best
ones obtained by the other three decomposition trajectories, i.e., original
dominant band, smoothed dominant band, and predominant melody,
respectively, in the frame-based evaluation. Similar trends take place in
the event-based evaluation.

With regard to the comparison among the three adaptive scattering
representations, the AdaTS+AdaTRS returns the highest average F-
measure as compared to the AdaTS only and the AdaTRS only, although
the AdaTS exhibits comparable performance as the AdaTS+AdaTRS,
for both evaluation methods. This verifies our analysis in Subsection 4.2.1
that the AdaTRS provides additional information for the recognition
of PMTs. Comparing the performance of the AdaTS+AdaTRS using
the original and the smoothed dominant band, we notice that the
former outperforms the latter for all the four playing techniques, with
F-measure increase of 0.6%, 1.2%, 1.2%, and 0.4% for flutter-tongue,
trill, vibrato, and tremolo, respectively, in the frame-based evaluation;
and the respective F-measure improvement in the event-based evaluation
are 0.8%, 2.8%, 1.2%, and 2.0%. This may be attributed to the fact
that the preprocessing step also flattens short note changes with PMTs
when smoothing out octave jumps. For example, it moves the trajectory
below and above the true dominant bands at around 20 sec and 25
sec, respectively, in Figure 4.4 top, where the flutter-tongue techniques
are both performed on two short notes. When such note changes are
more frequent than the octave jumps, it is expected that the smoothing
operation of the dominant band trajectory fails to improve the overall
performance of the adaptive scattering representations.

Examining the performance of all trajectories on different playing
techniques, we see that the original dominant band achieves the highest F-
measures for flutter-tongue and trill recognition while the F0 outperforms
all the other representations for vibrato and tremolo detection in the
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Trajectory Representation FT Trill Vibrato Tremolo Average

Dominant
band original

AdaTS 88.8 89.8 71.2 42.6 73.1
AdaTRS 80.6 83.6 60.6 30.0 63.7
AdaTS+AdaTRS 89.2 90.4 72.0 42.2 73.5

Dominant
band smoothed

AdaTS 88.8 88.2 70.2 40.6 72.0
AdaTRS 81.0 82.8 60.0 30.4 63.6
AdaTS+AdaTRS 88.6 89.2 70.8 41.8 72.6

Fundamental
frequency

AdaTS 88.2 89.6 72.2 43.8 73.5
AdaTRS 80.8 84.4 62.0 32.4 64.9
AdaTS+AdaTRS 88.2 90.0 72.2 45.2 73.9

Predominant
melody

AdaTS 85.8 85.2 66.8 45.0 70.7
AdaTRS 77.2 77.4 57.2 31.6 60.9
AdaTS+AdaTRS 85.6 85.6 67.4 44.6 70.8

Table 4.5: Comparison of frame-based recognition results for flutter-
tongue (FT), trill, vibrato, and tremolo techniques in the CBFdataset
(see Section 3.4) using different decomposition trajectories: original
dominant band, smoothed dominant band, fundamental frequency, and
predominant melody. All numbers are F-measure scores (%). “Average”
refers to the average F-measure over the four playing techniques.

Trajectory Representation FT Trill Vibrato Tremolo Average

Dominant
band original

AdaTS 72.0 71.5 50.1 25.2 54.7
AdaTRS 54.3 56.2 35.9 16.7 40.8
AdaTS+AdaTRS 71.3 73.3 50.1 25.9 55.2

Dominant
band smoothed

AdaTS 71.3 68.5 47.2 24.7 52.9
AdaTRS 55.6 52.5 34.2 18.3 40.2
AdaTS+AdaTRS 70.5 70.5 48.9 23.9 53.5

Fundamental
frequency

AdaTS 70.9 72.0 51.8 27.1 55.5
AdaTRS 55.6 60.8 38.6 17.1 43.0
AdaTS+AdaTRS 70.1 72.9 53.0 31.3 56.8

Predominant
melody

AdaTS 68.7 60.5 48.7 31.7 52.4
AdaTRS 50.2 45.7 35.8 15.6 36.8
AdaTS+AdaTRS 67.8 63.5 47.3 34.4 53.3

Table 4.6: Comparison of event-based recognition results for flutter-
tongue (FT), trill, vibrato, and tremolo techniques in the CBFdataset
(see Section 3.4) using different decomposition trajectories: original
dominant band, smoothed dominant band, fundamental frequency, and
predominant melody. All numbers are F-measure scores (%).
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frame-based evaluation. This also happens to the event-based evaluation
except the highest F-measure of tremolo detection which is obtained
by the predominant melody trajectory. According to the performance
comparison above, we use the F0 as the decomposition trajectory for the
proposed adaptive scattering representations in the following sections of
this chapter and in Chapter 5 due to its best overall performance.

Comparison of different representations Table 4.7 and Table 4.8
show the frame- and event-based binary classification results in terms of
F-measure for flutter-tongue, trill, vibrato, and tremolo recognition using
the proposed adaptive scattering, three existing scattering representa-
tions, and the FDM baseline. The adaptive scattering representations—
AdaTS, AdaTRS, and AdaTS+AdaTRS—are all decomposed from the
frequency bands around the F0 trajectory in the scalogram. We com-
pare these results from four perspectives: the overall performance of
all representations, recognition results of different playing techniques,
the three adaptive scattering representations, and pair-wise comparison
of the proposed adaptive scattering with the existing scattering repre-
sentations. As can be seen, among all representations, the proposed
AdaTS+ AdaTRS achieves the best overall performance in both frame-
and event-based evaluation, yielding average F-measure scores of 73.9%
and 56.8%, respectively. All three existing scattering representations,
i.e., the frequency-averaged time scattering, the standard time scattering,
and the standard time scattering with PCA, exhibit comparable overall
performance and outperform the FDM baseline in terms of average
F-measure score for both evaluation methods.

Comparing the recognition results of the same playing technique across
different methods, one can observe that although the AdaTS+AdaTRS
attains the highest average F-measure score, it does not outperform
all the other representations for all the playing techniques. In the
frame-based evaluation, it achieves the highest F-measures for trill
and vibrato recognition while underperforming the frequency-averaged
time scattering and the standard time scattering with PCA for flutter-
tongue detection, and have poorer performance on tremolo detection
as compared to the frequency-averaged time scattering. In the event-
based evaluation, the AdaTS+AdaTRS considerably outperforms all the
other representations for trill recognition. However, it underperforms
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Method FT Trill Vibrato Tremolo Average

AdaTS 88.2 89.6 72.2 43.8 73.5
AdaTRS 80.8 84.4 62.0 32.4 64.9
AdaTS+AdaTRS 88.2 90.0 72.2 45.2 73.9

Frequency-averaged 92.0 82.8 63.8 50.8 72.4
Standard time 91.6 85.6 65.0 48.8 72.8
Standard time + PCA 92.0 85.6 66.0 49.2 73.2

FDM 26.2 72.5 67.7 38.8 51.3

Table 4.7: Frame-based performance comparison of binary classification
for flutter-tongue (FT), vibrato, tremolo, and trill in the CBFdataset
(see Section 3.4) using the proposed adaptive scattering representations
(AdaTS, AdaTRS, AdaTS+AdaTRS), three existing scattering represen-
tations (frequency-averaged time scattering, standard time scattering,
standard time scattering with PCA), and the baseline method (FDM).
“Average” refers to the average F-measure over all playing techniques.

Method FT Trill Vibrato Tremolo Average

AdaTS 70.9 72.0 51.8 27.1 55.5
AdaTRS 55.6 60.8 38.6 17.1 43.0
AdaTS+AdaTRS 70.1 72.9 53.0 31.3 56.8

Frequency-averaged 83.5 33.6 22.6 16.1 39.0
Standard time 84.5 42.7 32.0 25.1 46.1
Standard time + PCA 84.0 44.9 34.5 24.5 47.0

FDM 3.2 54.2 58.9 39.3 38.9

Table 4.8: Event-based performance comparison of binary classifications
for flutter-tongue (FT), vibrato, tremolo, and trill in the CBFdataset
(see Section 3.4) using the proposed adaptive scattering representations
(AdaTS, AdaTRS, AdaTS+AdaTRS), three existing scattering represen-
tations (frequency-averaged time scattering, standard time scattering,
standard time scattering with PCA), and the baseline method (FDM).
“Average” refers to the average F-measure over all playing techniques.
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the frequency-averaged time scattering, standard time scattering, and
standard time scattering with PCA, for flutter-tongue detection; and
obtains lower F-measures than the FDM baseline for both vibrato and
tremolo detection.

Narrowing the scope with the proposed adaptive scattering represen-
tations, the AdaTS+AdaTRS exhibits better overall performance than
the AdaTS only and the AdaTRS only in both frame- and event-based
evaluation. For all playing techniques, the AdaTS+AdaTRS yields com-
parable or better results as compared to the AdaTS while the AdaTRS
returns the poorest results. This indicates that applying frequency
scattering along the modulation rate axis of the AdaTS provides extra
information for the recognition of PMTs only when the resulting rep-
resentation is combined with the AdaTS. The AdaTRS alone exhibits
high information loss.

We provide more insights on the recognition results in Table 4.7 and
Table 4.8 by comparing the proposed adaptive scattering representations
with the existing ones in a pair-wise manner. The first pair is the AdaTS
and the frequency-averaged time scattering, two representations with
only frequency-transposition invariance introduced on top of the standard
time scattering. The frequency-transposition invariance of the AdaTS is
achieved by the adaptive operation and that of the frequency-averaged
time scattering is realised by applying frequency scattering to the second-
order time scattering. We observe that the former outperforms the
latter, with the average F-measure improved by 1.1% and 16.5% in
the frame- and event-based evaluation, respectively. Another pair of
representations in the comparison is the AdaTS and the standard time
scattering with PCA, both of which are the standard time scattering with
a dimensionality reduction. The dimensionality of the former is reduced
by the adaptive operation while that of the latter is lowered using the
PCA. As can be seen, the former beats the latter with the average
F-measure increased by 0.3% and 8.5% in the frame- and event-based
evaluation, respectively.

Cross checking the detection results with the original audio in the
CBFdataset (see Section 3.4), we find three types of errors: rapid
pitch changes, co-articulations, and play techniques that exhibit similar
patterns as non-techniques. Figure 4.5 top shows the log-frequency
spectrogram of an excerpt in the performance of Morning by Player 9

73



4.4. Evaluation

in the CBFdataset (see Section 3.4); the middle and bottom subfigures
display the detected flutter-tongue events before and after postprocessing,
i.e., gap filling and minimum duration pruning, and the ground truth.
False negatives mostly happen at rapid note changes. The stable pitch
regions are correctly detected while there are missed frames at note
changes such as the gaps at 0.5 sec, 0.9 sec, and 1.2 sec. Although these
three gaps are not filled due to their long duration, the F-measure score
for this excerpt increases 2% after filling the events with duration less
than the minimum duration event in the training set, i.e., the ones at
around 0.7 sec and 2.8 sec. We discuss the other two types of errors
with examples in Subsection 5.5.2.

Figure 4.5: Flutter-tongue detection result for an excerpt in the per-
formance of Morning by Player 9 using the proposed AdaTS+AdaTRS
feature based on the F0 trajectory. Top: log-frequency spectrogram;
middle: comparison between the ground truth and frame-based clas-
sification output (frame-based P=100%, R=55%, F=71%); bottom:
comparison between the ground truth and obtained events after gap
filling and minimum duration pruning (frame-based P=100%, R=58%,
F=73%; event-based P=60%, R=64%, F=62%). The P , R, F values
above are the results on this example.

Computational cost comparison Apart from the comparison of the
recognition performance, we also compare the scattering representations
discussed above in terms of computational expense. Table 4.9 shows the
dimensionality and the runtime (in hours) of both the feature extraction
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stage and the classification stage of the proposed adaptive scattering
and the three existing scattering representations for trill recognition
on the same machine. The representations are listed by an ascending
order of their dimensionalities. It is expected that the extraction of
the three existing scattering representations—frequency-averaged time
scattering, standard time scattering with PCA, and standard time
scattering—exhibit similar runtimes. This is because the first two
representations are both derived from the standard time scattering by
additional operations with low computational cost, i.e., averaging along
the log-frequency axis and PCA. For the proposed AdaTS+AdaTRS,
ideally, the feature extraction computation is lower than that of the
standard time scattering since the former only decomposes L out of λ
frequency bands from the scalogram while the latter decomposes all the λ
frequency bands. The longest runtime of 5.73 h obtained (see Table 4.9)
for extracting the AdaTS+AdaTRS may be attributed to our current
implementation which is different from that of the standard scattering
transform calculation. We regard implementation optimisation for the
adaptive scattering feature extraction as future work.

Representation Dimensionality Runtime (hours)

Extraction Classification Total

Frequency-averaged 33 4.50 0.08 4.58
AdaTS+AdaTRS 203 5.73 0.31 6.04
Standard time+PCA 603 4.61 1.20 5.81
Standard time 1725 4.61 3.04 7.65

Table 4.9: Dimensionality, feature extraction runtime, classification
runtime, and total runtime of the proposed adaptive scattering and the
three existing scattering representations for trill recognition.

With regard to the runtime of the classification stage, we notice that
it positively correlates with the representation dimensionality. The
frequency-averaged scattering which has the lowest feature dimensional-
ity (33) obtains the shortest runtime (0.08 h) while the standard time
scattering with the highest dimensionality (1725) exhibits the longest
runtime (3.04 h). Therefore, for the proposed recognition system, a
lower dimensional representation is preferable when there is not much
degradation on the recognition performance.
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Effect of SVM hyperparameters To investigate the influence of
SVM hyperparameters on the recognition performance, we plot the
F-measure scores obtained by different combinations of the error penalty
parameter C and the width of the Gaussian kernel γ from the hyper-
parameter grids C ∈ 2{3:1:8} and γ ∈ 2{−12:1:−7} (see Subsection 4.3.2).
Figure 4.6 shows the F-measure scores yielded on the training set dur-
ing the cross-validation in the first split for trill recognition using the
AdaTS+AdaTRS, where the recordings of performers 4 and 8 construct
the test set and the remaining recordings form the training set. One
may observe that the results obtained by these hyperparameter grids
are relatively stable. The combination of C = 8 and γ = 2−7 gener-
ates the highest averaged F-measure of 94% for trill recognition during
the cross-validation process on the training set and the corresponding
F-measure on the test set is 96%.

Figure 4.6: Effect of SVM hyperparameters on the training set during
cross-validation (numbers are F-measure scores). The F-measure score
on the test set is 96% with C = 8 and γ = 2−7.

4.5 Conclusions

In this chapter, we have proposed a variant of the scattering trans-
form, the adaptive scattering, which provides representations that
are compact and invariant to large frequency-transpositions for pitch
modulation-based techniques (PMTs). Three adaptive scattering rep-
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resentations, i.e., the adaptive time scattering (AdaTS), the adaptive
time–rate scattering (AdaTRS), and the combination of these two opera-
tors (AdaTS+AdaTRS), are investigated. We compare the performance
of each representation using three decomposition trajectories: domi-
nant band, fundamental frequency (F0), and predominant melody. To
mitigate the missed estimations and instabilities of the decomposition
trajectories, we preprocess them with linear interpolation (and smooth-
ing). Comparing the three preprocessed trajectories and the original
dominant band trajectory, the F0 exhibits the best overall performance
and is used as the decomposition trajectory for the final recognition
systems in this Chapter and in Chapter 5 for representing PMTs.

To gain more insights on the adaptive scattering, we also compare
its performance on PMT recognition with that of three existing scat-
tering representations: frequency-averaged time scattering, standard
time scattering, and standard time scattering with principal component
analysis. Once trained on the proposed adaptive scattering representa-
tions, support vector machine (SVM) classifiers achieve comparable or
better results on PMT recognition in the CBFdataset (see Section 3.4)
as compared to the existing scattering representations and the filter
diagonalisation baseline. Besides the recognition performance, we fur-
ther compare the scattering representations in terms of computational
expense. The findings are that the extraction of the adaptive scattering
exhibits longer runtime than the existing scattering representations for
the current implementation and that a lower dimensionality reduces the
computational cost of the classification stage.

Despite the promising results obtained, there are some limitations
regarding the work conducted in this chapter. Firstly, we have proposed
the adaptive scattering in this chapter for recognising PMTs in mono-
phonic music, which is based on the assumption that the instrument has
PMTs in its playing technique repertoire, i.e., purely harmonic instru-
ments or pitched percussive instruments. In both cases, we could form
a decomposition trajectory when the pitch is stable. For pitched percus-
sive instruments such as piano and guitar, the dominant band strategy
may pick up some irrelevant bands to the fundamental frequency or its
harmonics at the transient stage, whichever is short as compared to the
sustain and decay stages. This assumption may be violated in the case
of polyphonic music, which we will explore in Section 6.1.
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On the other hand, the hyperparameters of the scattering transform
are not comprehensively tuned together with those of the classifiers.
There are two sets of hyperparameters in our proposed recognition
system, the scattering transform hyperparameters and the SVM hyper-
parameters. We tuned the latter using a validation set in the SVM
training process. For the former, we use hyperparameters motivated by
music theory, which offers clear information on what characteristics of
each playing technique have been captured by the proposed scattering
representations. Tuning the hyperparameters of the scattering transform
and the SVM jointly would potentially improve the recognition results.

Potential feature work includes possible applications of the proposed
playing technique recognition system and further investigations of the
proposed adaptive scattering representations. Section 6.1 of this thesis
is an example in the first direction, in which we propose a performer
identification system using vibratos detected by the playing technique
recognition system proposed in this chapter. The local invariance to
time-shifting, time-warping, and frequency-transposition of the adaptive
scattering transforms may also be attractive to other music signal analy-
sis tasks, such as music structure analysis, genre recognition, instrument
recognition, and music transcription. Motivated by the observation in
Figure 4.2 that the second-order scattering transform carries information
on the modulation rate, one may use the scattering transform as a tool
for playing technique modelling.

Playing technique recognition and modelling may also greatly help
music synthesis systems generate realistic sounds that account for acous-
tic variations due to the exercise of a variety of instrumental or vocal
techniques. A music style transformer (Dai et al., 2018) or note ornamen-
tor is also possible since playing techniques carry important information
regarding musical styles. Remodelling a straight note based on a play-
ing technique or articulation of a professional player or synthesising
playing techniques that go beyond real instrument limitations present
other attractive directions for further exploration, for example creating
a flutter-tongue effect for piano.
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Chapter 5

Joint Scattering for Pitch
Evolution-based Technique
Recognition

In Chapter 4, we proposed the adaptive scattering for pitch modulation-
based techniques (PMTs). These playing techniques include vibratos,
tremolos, trills, and flutter-tongue, all exhibiting periodic modulations
in the time–frequency domain. As with the other group of playing tech-
niques introduced in Section 3.2, the pitch evolution-based techniques
(PETs) which contain monotonic pitch changes, the adaptive scattering
may not be applicable. The adaptive scattering decomposes only a
small set of frequency bands of the scalogram, which loses the spectral
variation information that are important to PET recognition. In this
chapter, we modify the joint time–frequency scattering (JTFS) into a
direction-invariant representation, the dJTFS, for PET recognition. Two
recognition systems are built: one detects PETs using binary classifiers
with the hyperparameters fine-tuned for each type of playing technique;
the other classifies PMTs and PETs simultaneously based on a multiclass
classification scheme which takes the concatenation of the adaptive scat-
tering and the dJTFS coefficients as input. Both systems are evaluated
on the CBFdataset (see Section 3.4). To test the generalisability of the
proposed methodology, we further verify the system over three additional
datasets with a variety of instrumental and vocal techniques.

We introduce the characteristics of PETs in Section 5.1. Section 5.2
presents the dJTFS and gives a different interpretation of the JTFS as
compared to the original one defined in Subsection 2.5.2. Two recogni-
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tion systems are then built in Section 5.3, one with binary classifiers and
the other using a multiclass classifier. Section 5.4 proposes a baseline
method for glissando detection, followed by evaluation of both recog-
nition systems in Section 5.5. Section 5.6 tests the generalisability of
the proposed methodology on three additional datasets and Section 5.7
concludes the chapter. This chapter is extended from the associated
publications Wang et al. (2020a) and Wang et al. (submitted) except
Section 5.4, which was published in Wang et al. (2019b) (see Section 1.4
for publication details).

5.1 Characteristics of Pitch Evolution-based

Techniques

Table 5.1 displays the characteristic information of acciaccatura, por-
tamento, and glissando, three typical examples of PETs we consider
in this chapter. The duration range is derived from the CBFdataset
(see Section 3.4), while the other three characteristics are based on the
musical definition of the playing techniques (see Section 3.2). Each type
of these playing techniques has a specific duration range: 0.1-0.4 sec for
acciaccatura, 0.2-1.2 sec for portamento, and 0.2-1.1 sec for glissando.
For temporal variations, although all three types of playing techniques
contain monotonic pitch changes over time, portamento exhibits smooth
pitch changes while the pitch changes within acciaccatura and glissando
are both at the note level. Acciaccatura contains only one note change,
while glissando spans a series of note changes. For spectral variations,
acciaccatura has a noisy attack while glissando and portamento exhibit
clear harmonic structures. The possible directions of their pitch changes
are different: acciaccatura in Chinese bamboo flute (CBF) playing only
occurs downwards, while the other two techniques can exhibit both
upward and downward directions.

5.2 Direction-invariant Joint Time–Frequency

Scattering

Different from the separable scattering (see Subsection 2.5.2) which
calculates time and frequency scattering in separable steps, the joint
time–frequency scattering (JTFS) applies them jointly. The interaction
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Characteristics Acciaccatura Portamento Glissando

Duration (s) 0.1-0.4 0.2-1.2 0.2-1.1

Temporal variation One note Smooth pitch Consecutive
change changes note changes

Spectral variation Noisy attack Harmonic Harmonic
Pitch direction ↘ ↗ or ↘ ↗ or ↘

Table 5.1: Characteristics of pitch evolution-based techniques (PETs).

of the two types of wavelet convolutions captures the joint activation
of temporal and spectral variations. Motivated by the recognition
task for PETs, we interpret the definition of the JTFS introduced in
Subsection 2.5.2 from a new perspective. Rather than formulating a
two-dimensional (2-D) mother wavelet, we consider the temporal and
spectral wavelet convolutions in a sequential manner. This is more
precise in terms of the computations performed and provides explicit
information of what has been captured at each step.

Following the notations in Section 2.5, we denote ψ(t) and ψ(λ) as
mother wavelets along the time and the log-frequency axes, respectively,
with time t ∈ R and log-frequency variable λ ∈ R. ψvt(t) and ψvf (λ)

are temporal and spectral wavelet filterbanks, dilated from the mother
wavelets ψ(t) and ψ(λ) by the respective scaling factors 2−vt and 2−vf . vt
and vf are the log-frequency variables of ψvt(t) and ψvf (λ), and measures
the temporal and spectral variabilities, respectively. An orientation
variable θ = ±1 is introduced to reflect the oscillation direction (up or
down) of the spectro-temporal pattern. θ = −1 flips the centre frequency
of wavelet ψ(λ) from 2λ to −2λ. The resulting temporal and spectral
wavelet filterbanks are respectively:

ψvt(t) = 2vtψ(2vtt) and (5.1)

ψvf ,θ(λ) = 2vfψ(θ2vfλ). (5.2)

The joint wavelet transform of X(t, λ) computes convolutions of the
form: (

(X
t∗ψvt)

λ∗ψvf ,θ

)
(t, λ) =

(
X

t,λ
∗ (ψvt ⊗ψvf ,θ)

)
(t, λ), (5.3)

where the operator ⊗ denotes the outer product between two one-
dimensional (1-D) wavelets, returning a 2-D wavelet. In practice, we
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implement the joint time–frequency convolution via the left-hand side of
the equation above, that is, by a sequence of two 1-D convolutions. This
two-step factorised procedure is more efficient than the one-step 2-D
convolution, described on the right-hand side. However, the right-hand
side of Eq. (5.3) is useful for the theoretical understanding of the JTFS
as involving a joint convolutional operator in the time–frequency domain.
Indeed, we may view the outer product between the temporal wavelet
ψvt(t) and the spectral wavelet ψvf ,θ(λ) as the factorisation of a joint
time–frequency wavelet

Ψvt,vf ,θ(t, λ) = ψvt(t)ψvf ,θ(λ), (5.4)

which captures the local spectro-temporal modulations of X(t, λ) around
time t and log-frequency λ in terms of the temporal variability vt, the
spectral variability vf , and the orientation θ.

For a specific recognition task at hand, we typically focus on a spectro-
temporal pattern smaller than a “time–frequency box” restricted by
some time scale T in samples and frequency interval F in octaves. To
ensure local time-shifting invariance, time-warping stability, frequency-
transposition invariance, and frequency-warping stability, we take the
modulus of the output of Eq. (5.3) and average it by a 2-D lowpass
filter ΦT,F (t, λ). Following Andén et al. (2019), we define the joint
time–frequency scattering of X(t, λ) according to Eqs. (5.3) and (5.4)
as:

SJTFS
2 x(t, λ, vt, vf , θ) =

(∣∣X t∗ψvt

λ∗ψvf ,θ

∣∣ t,λ∗ ΦT,F

)
(t, λ). (5.5)

A diagram of the JTFS calculation process for a glissando example is
shown in Figure 5.1. (b) is the temporal wavelet transform (temporal
WT) operation, i.e., convolving (a) the scalogram X(t, λ) with ψvt(t).
The obtained wavelet transform X

t∗ψvt(t) mainly captures the tempo-
ral variations of each frequency band. To capture correlations across
frequency bands, we apply wavelet convolutions with ψvf ,θ(λ) along
the log-frequency axis of X

t∗ ψvt(t), which is (c) the spectral wavelet
transform (spectral WT) operation, and obtain X

t∗ψvt

λ∗ψvf ,θ. Taking
complex modulus of (c) and averaging it by the lowpass filter ϕT,F (t, λ),
we derive (d) the JTFS, SJTFS

2 x(t, λ, vt, vf , θ). According to Eq. (5.5),
for each “time–frequency” box around (t, λ), the SJTFS

2 x(t, λ, vt, vf , θ) is
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5.2. Direction-invariant Joint Time–Frequency Scattering

a three-dimensional tensor with respect to (vt, vf , θ), which captures the
joint activation of temporal and spectral variations, and its direction, as
shown in (d). The energy of the JTFS concentrates on the θ = −1 side
due to the upward direction of the glissando example.

Figure 5.1: Calculating the joint time–frequency scattering (JTFS) for
a glissando example: (a) scalogram; (b) temporal wavelet transform
(temporal WT) operation by convolving with temporal filterbank ψvt ; (c)
spectral wavelet transform (spectral WT) by applying spectral filterbank
ψvf ,θ; (d) the JTFS, result of complex modulus and averaging with a
2-D lowpass filter ϕT,F .

Figure 5.2 compares the JTFS of acciaccatura, portamento, and
glissando: (a) is the spectrogram; (b), (c), and (d) are the 2-D joint
activations for each respective type of PET. Here we use a spectrogram
in (a) rather than a scalogram to clearly visualise the spectro-temporal
patterns of the playing techniques. As observed, although both acciac-
catura and glissando have high-energy regions in the JTFS, their energy
distributions along the variation scales are different. From (b) and (d),
noisy attacks show as diffused energy in the JTFS, and the time and
frequency regularity of glissando results in clear slopes.

As discussed in Section 5.1, each PET exhibits one direction of pitch
change, while according to Eq. (5.5), we obtain information for both
directions. For recognising the type of PETs only, we modify Eq. (5.5)
into the direction-invariant joint time-frequency scattering (dJTFS),
which introduces a pooling operation on the direction variable θ of the
JTFS. This can be either a max-pooling or an average-pooling. We define
the former case as dJTFS-max, extracting only the JTFS coefficients
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Figure 5.2: Visualisation of the joint time–frequency scattering (JTFS)
for pitch evolution-based techniques (PETs). (a) Spectrogram showing
acciaccatura, portamento, and glissando; (b), (c), and (d) are the
corresponding JTFS plots for each case.

corresponding to θmax(t):

SdJTFS−max
2 x(t, λ, vt, vf) = SJTFS

2 x(t, λ, vt, vf , θmax), (5.6)

where θmax(t) is the direction with maximum spectro-temporal energy:

θmax(t) = arg max
θ=1,−1

( ∑
λ,vt,vf

SJTFS
2 x(t, λ, vt, vf , θ)

)
. (5.7)

In the latter case, we average the JTFS coefficients over both directions,
i.e., θ = 1 and θ = −1, and define the resulting representation as
dJTFS-avg :

SdJTFS−avg
2 x(t, λ, vt, vf) =

1

2

∑
θ=1,−1

SJTFS
2 x(t, λ, vt, vf , θ). (5.8)
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We compare the performance of dJTFS-max and dJTFS-avg on PET
recognition in Subsection 5.5.1.

Similarly to Section 4.2, we normalise SdJTFS
2 x(t, λ, vt, vf), i.e., either

SdJTFS−max
2 x(t, λ, vt, vf) or SdJTFS−avg

2 x(t, λ, vt, vf), over the first-order
time scattering coefficients S1x(t, λ) to capture only the temporal and
spectral variations regardless of the absolute energy of the waveform.
We then take the logarithm of the normalised coefficients (Andén and
Mallat, 2014) to mimic auditory perception (see Subsection 2.5.1) and
derive the log-normalised dJTFS :

S̃
dJTFS

2 x(t, λ, vt, vf) = log2

(
SdJTFS
2 x(t, λ, vt, vf)

S1x(t, λ) + ε

)
, (5.9)

where ε is a small additive offset whose role is to avoid division by zero.
Since S̃

dJTFS

2 x(t, λ, vt, vf) is simply a log-normalisation of SdJTFS
2 x(t, λ, vt, vf),

thereafter we also refer to the former, the one we actually use in the
experiments of this thesis, as the dJTFS.

5.3 Playing Technique Recognition

To develop a general framework for recognising playing techniques, we
investigate two classification schemes in this chapter:

1. A recognition system with three binary classifiers, each detecting
one type of PET, which is similar to the recognition system pro-
posed in Section 4.3 for recognising PMTs. Each classifier takes as
input the dJTFS coefficients with the hyperparameters fine-tuned
for each type of playing technique.

2. A recognition system with a multiclass classifier which detects all
seven playing techniques simultaneously: vibrato, tremolo, trill,
flutter-tongue, acciaccatura, portamento, and glissando. The first
four are PMTs explored in Chapter 4 and the last three are PETs
discussed in this chapter. The system takes the concatenation of
the adaptive scattering and the dJTFS coefficients as input.

The binary classification scheme uses features with a lower dimensionality
and is capable of detecting co-articulations, such as the combination of
tremolo and trill, or glissando co-articulated with flutter-tongue. The
multiclass one provides a confusion matrix between playing techniques
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and yields results that are comparable across different methods for
different datasets.

5.3.1 Feature extraction

For the binary classification scheme, we set the hyperparameters of the
dJTFS representations according to the characteristics of each type of
PET, as shown in Table 5.2. The averaging scale T carries duration
information via setting T equivalent to the maximum duration of each
playing technique. According to the duration range of PETs in Table 5.1,
we use T = 213 (in samples; corresponding to 186 ms at a sampling rate
of Fs = 44.1 kHz) for acciaccatura, and T = 214 (372 ms) for portamento
and glissando. The temporal filters per octave in the first-order time
scattering Q

(t)
1 are useful for distinguishing note changes from smooth

pitch changes. For acciaccatura and glissando, we set Q
(t)
1 = 12 due to

their note-change property. To capture the smooth pitch changes within
portamento, Q(t)

1 > 12 is required. Higher Q(t)
1 creates better frequency

resolution while the support of the wavelets would have large overlaps
in the time domain, providing less accurate temporal information. We
set Q

(t)
1 = 16 for portamento detection according to a tradeoff between

computational cost and accuracy. We use Q
(t)
2 = 2 filters per octave in

the second-order time scattering due to the less oscillatory nature of
audio signals at this order of decomposition.

Hyperparameter Notation Characteristics

Averaging scale T Duration
Temporal filters per octave Q

(t)
1 Pitch change

Spectral filters per octave Q
(f)
1 Spectral variation

Orientation variable θ Direction of pitch change
Modulation range M Dimension reduction

Table 5.2: Hyperparameters of the proposed direction-invariant joint
time–frequency scattering (dJTFS) which capture discriminative infor-
mation for pitch evolution-based techniques (PETs).

One may observe from Figure 5.2 (a) the different harmonic structures
between the selected PETs. This timbral information can be captured
by applying frequency scattering with Q

(f)
1 spectral filters per octave

along the log-frequency axis. The spectral averaging scale, F (in octave
units), depends on the frequency-transposition invariance requirement of
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5.3. Playing Technique Recognition

the task. Here we use Q(f)
1 = 2 filters per octave and a spectral averaging

scale covering the entire log-frequency axis. To extract coefficients
which contain most of the spectro-temporal modulation energy, we
narrow the coefficients corresponding to a temporal modulation range
of M = [0, 50] Hz. We then obtain the dJTFS feature of PETs for
each time frame according to Eqs. (5.6) or (5.8), depending on the
direction-invariance strategy used.

The evolutionary nature of PETs suggests the importance of temporal
context. Here we calculate mean and standard deviation of 5 frames cen-
tred at the current frame to represent context information. Similarly to
the recognition of PMTs in Section 4.3, we set the oversampling param-
eter α = 2 consistently for all classifiers, which results in the frame sizes
of 46 ms, 93 ms, and 93 ms, for acciaccatura, portamento, and glissando
recognition, respectively. The corresponding feature dimensionalities
are 366, 410, and 498, as shown in Table 5.3.

Representation Acciaccatura Portamento Glissando

dJTFS 366 410 498
JTFS 1490 1486 1770
JTFS+PCA 67 23 63

Frame size (ms) 46 93 93

Table 5.3: Dimensionalities and frame sizes of the proposed dJTFS, the
JTFS, and the JTFS+PCA for acciaccatura, portamento, and glissando
in the binary classification scheme.

We also compare the dJTFS with the JTFS for recognising PETs.
The JTFS is computed using the same hyperparameters as that we
use for dJTFS calculation, i.e., T = 213, Q

(t)
1 = 12 for acciaccatura;

T = 214, Q
(t)
1 = 16 for portamento; T = 214, Q

(t)
1 = 12 for glissando;

and Q
(t)
2 = 2, Q

(f)
2 = 2, α = 2 and a spectral averaging scale covering

the entire log-frequency axis for all three playing techniques. Therefore
for a specific playing technique, the frame size of the JTFS is the
same as that of the dJTFS; while the dimensionality of the former is
over 3 times that of the latter, as shown in Table 5.3. Similarly to
Subsection 4.4.4, we also apply principal component analysis (PCA) to
the JTFS before feeding it into the classifier and denote the resulting
representation as JTFS+PCA. The PCA operation significantly reduces
the dimensionalities of the JTFS features, leading to dimensionalities of
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67 for acciaccatura, 23 for portamento, and 63 for glissando, which are
also lower than those of the dJTFS for the corresponding techniques
(see Table 5.3). We show in Subsection 5.5.1 how the dimensionality
influences the computational cost of the classification stage.

As with the multiclass classification scheme, we use the concatenation
of the proposed AdaTS+AdaTRS (see Section 4.2) and dJTFS features
as the input. We calculate the AdaTS+AdaTRS using one set of
hyperparameters: T = 215, Q

(t)
1 = 16, Q

(t)
2 = 4, Q

(f)
1 = 1, α = 2,

M = [0, 100] Hz, and an averaging scale covering the entire modulation
rate axis for the AdaTRS component; the dJTFS is computed with
another set of hyperparameters: T = 214, Q(t)

1 = 16, Q(t)
2 = 2, Q(f)

1 = 2,
α = 2, M = [0, 50] Hz, and a spectral averaging scale covering the whole
log-frequency axis. Due to the different averaging scales, T = 215 for
the AdaTS+AdaTRS and T = 214 for the dJTFS, we duplicate the
AdaTS+AdaTRS before concatenation to have the same number of
frames as the dJTFS, with a frame size of h = T/(2αFs) = 93 ms. The
dimensionality of the concatenated feature is 613, higher than those in
the binary classification schemes displayed in Table 4.3 and Table 5.3.

5.3.2 Recognition system

For both classification schemes, we use support vector machines (SVMs)
(Hastie et al., 2009) with Gaussian kernels as classifiers due to their
good generalisability based on a limited amount of training data (Albu
and Martinez, 1999). The SVM hyperparameters to be optimized are
the error penalty parameter C and the width of the Gaussian kernel
γ. We use consistent parameter grids of 2{3:1:8} and 2{−12:1:−7} for C

and γ, respectively, for the classification of all playing techniques during
training, and select the best ones for testing. The classifiers take as
input the JTFS or the concatenation of the AdaTS+AdaTRS and the
JTFS, and output frame-wise predictions of playing technique type. All
features are z-score normalised.

In the recognition process, the CBFdataset (see Section 3.4) is split
into training and test sets according to an 8:2 ratio by performers
(performers are randomly initialised). We conduct 5 splits in a circular
way, with no performer overlap between the test sets across splits and
between the training-test sets in each split. Within each split, we run a
3-fold cross-validation, sampling on the training dataset in a way that
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ensures each fold includes approximately the same ratio of positive and
negative class instances for a given playing technique. This is to avoid
the cases that there is no example or there are too few examples of a
given playing technique class in the validation set if we further split the
training set based on performer identity.

5.4 Baselines

5.4.1 Baselines for binary classification scheme

To the author’s knowledge, there is not yet any prior work on the
recognition of all three types of PETs, i.e., acciaccatura, portamento,
and glissando. In the binary classification scheme, we compare the
proposed dJTFS approach with the state-of-the-art method introduced
by Yang (2017) for detecting portamenti. The method is based on
hidden Markov models (HMMs) (Rabiner, 1989; Xing et al., 2010) and
takes the frame-wise fundamental frequency (F0) estimated by the pYIN
pitch detection algorithm (Mauch and Dixon, 2014) as input. We also
extend the application of this method to acciaccatura recognition. For
fair comparisons, we resample the detection results of this method into
the same frame sizes as that we use for CBF acciacatura and portamento
detection based on the dJTFS features, i.e., 46 and 93 ms, as shown
in Table 5.3. Frame-based F-measures of 25.0% and 30.0%, and event-
based F-measures of 23.5% and 22.4% are obtained for acciacatura and
portamento detection in the CBFdataset (see Section 3.4).

Motivated by the consecutive note changes within glissandi, we propose
in this thesis a baseline method for glissando detection which is also
based on HMMs. The proposed glissando detection method includes
two stages:

1. Rule-based segmentation: A set of rules informed by the char-
acteristics of glissandi (see Section 5.1) is introduced to extract
segments with consecutive note changes in the same direction as
glissando candidates.

2. HMM-based identification: A glissando HMM (G-HMM) is trained
using all ground truth glissandi in the training set. Different
from traditional binary classification, the false positives of the
segmentation stage, which exhibit similar pitch evolution and
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duration as the ground truth, are used to train a non-glissando
HMM (NG-HMM). Glissando candidates in the test set are finally
identified by the two HMMs.

HMMs enable the decoding of note evolution while smoothing outlier
variations within glissandi. We introduce each stage in detail.

Rule-based segmentation

To obtain glissando candidates from the full-piece recordings, we in-
troduce a rule-based segmentation stage using F0 with a hop size of 6
ms as input (see Figure 5.3). The pitch is first smoothed to exclude
noisy variations and quantised to the nearest notes in 12-tone equal
temperament scale, resulting in 16 notes in the CBF tonal range: G4-A6
for the C flute, and D5-E7 for the G flute (we assume that flute types are
known for the current system). Frames with F0s less than 250 Hz and
waveform amplitude less than -20 dB are marked as silence. The sign of
note change is extracted to represent note change direction. Consecu-
tive note changes in the same direction are then extracted as glissando
candidates, which are further pruned by constraints on note numbers
(at least 4 for both upward and downward glissandi) and duration (at
least 0.2 sec for upward glissandi and 0.15 sec for downward glissandi)
based on consultations with the professional performers of the CBF.

HMM-based Identification

Since all glissando candidates extracted in the previous stage share
similar pitch evolution characteristics, the input to the HMMs must
possess sufficient discriminative power to distinguish glissandi from
non-glissandi. Considering the pitch discreteness and long duration of
glissandi, we use a feature set consisting of both short-term (average
pitch change, average intensity, average intensity change) and long-
term (note number, note duration, note range) features (Li et al., 2015;
Peeters, 2004). All features are statistics (mean and standard deviation)
of pitch and intensity with variations on window and hop sizes. Hop size
variations range from 10 to 20 ms at intervals of 2 ms, while window
sizes depend on the glissando direction.

Short-term features To capture pitch and intensity change, the
short-term window varies from 100 to 200 ms at intervals of 20 ms for
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Figure 5.3: Diagram of rule-based segmentation for the proposed glis-
sando detection baseline (UG=upward glissando; DG=downward glis-
sando).

the following three features.

• Average pitch change:

∆pi =
1

W

W∑
k=1

[
pi(k)− pi−1(k)

]
, (5.10)

where pi(k) is the k-th pitch value within the window centered at
the i-th time frame, and W is the window length.

• Average intensity (amplitude in dB scale) (Abeßer and Schuller,
2017):

Ii =
1

W

W∑
k=1

[
20 · log10Ai(k)

]
, (5.11)

where Ai(k) is the amplitude of the k-th sample within the window
centered at the i-th time frame, and Ii is average intensity of this
window.

• Average intensity change: ∆Ii = Ii − Ii−1.

Long-term features To capture the discreteness of pitch evolution
in glissandi, note-level features with long windows are calculated. The
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window sizes vary from 200 to 400 ms at intervals of 50 ms for downward
glissandi with shorter duration, and from 200 to 600 ms at the same
intervals for upward glissandi which have longer duration. The calcula-
tion process for one upward glissando example is shown in Figure 5.4.
With a 400 ms window sliding forward, the number of notes N is 8 (one
more than the number of peaks, highlighted by the red circles) and the
note range (note change between start and end notes) R equals 7. Note
durations D, which refer to the intervals between two note change peaks,
are {80,40,60,40,40,60} ms.

Figure 5.4: Long-term feature calculation for an upward glissando
example in the proposed glissando detection system.

As shown in Figure 5.5, two HMMs with Gaussian mixture emissions
are trained on the training set, with k-means initialisation and iterative
parameterisation by the Expectation-Maximisation algorithm (Murphy,
2012). During the training process, model parameters—the number
of HMM latent states, number of Gaussian mixture components, and
window-hop sizes—are varied and the model with the best performance
on the validation set is chosen as the final one for testing. The emission
used is a Gaussian mixture distribution (Murphy, 2012):

p(xi|π,µ,Σ) =
M∑

m=1

πmN (xi|µm,Σm), (5.12)
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where xi is the observed feature vector of the i-th frame; πm, µm and
Σm are the prior, mean and covariance of the m-th mixture component,
respectively; and π,µ,Σ are the model parameters, each of which is an
M -dimensional vector corresponding to πm, µm, and Σm respectively.

Figure 5.5: Diagram of HMM-based glissando detection baseline
(G=glissando; NG=non-glissando).

Evaluation of glissando detection baseline

We evaluate the proposed glissando detection baseline on a subset of
the CBFdataset (see Section 3.4), which we named as the CBF-glissDB
in Wang et al. (2019b). The CBF-glissDB uses only the recordings
with glissandi from the CBFdataset, i.e., isolated glissandi and 10 full-
length performances of Busy Delivering Harvest «扬鞭催马运粮忙» and
Jolly Meeting «喜相逢» by 10 performers. The total duration of the
CBF-glissDB is 51 minutes. The data is subdivided into three subsets,
namely, training (all isolated glissandi and 6 full pieces), validation
(2 full pieces), and test (2 full pieces), as shown in Figure 5.5. The
segmentation stage is applied to full-piece recordings in all three subsets,
but to different ends. For the training set, segmentation is carried out
conservatively, promoting recall over precision, in order to extract all
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relevant segments, but leading also to the extraction of false positive
segments. False positive segments are then used to train an NG-HMM. In
the validation and test stages, the extracted segments serve as candidates
to be assigned glissando (G) or non-glissando (NG) labels by comparing
the log-likelihoods calculated by the two HMMs. Since the HMMs
are applied directly to the candidate segments, the absolute position
of glissandi in the pieces does not influence the result. The ten full-
piece recordings are randomly allocated to the training, validation, and
test sets in a 6:2:2 ratio at the beginning of experiment. A five-fold
cross-validation is then conducted.

To investigate the influence of automatic pitch detection on glissando
detection, we build two systems: an F0-informed system using the
pitch ground truth as input; and a fully-automated system using pitch
automatically estimated by pYIN pitch detection algorithm (Mauch
and Dixon, 2014) as input. The former is to assess the performance
of the proposed glissando detection system independently of the pitch
estimation performance. The pitch ground truth is created by the author
of this thesis using Sonic Visualiser (Cannam et al., 2010) via a manual
correction of the errors of the F0s estimated by pYIN (Mauch and Dixon,
2014).

Because glissando length ranges approximately from 200 to 1100 ms,
for each system, frame- and segment-based evaluations are implemented.
The frame size used in frame-based evaluation is 20 ms. Segment-based
evaluation compares detected and ground truth glissandi in short-time,
non-overlapping segments (Mesaros et al., 2016). A segment length of
100 ms is adopted. True positives are segments which have overlaps
with both ground truth and detected glissandi; false positive segments
overlap only with detected glissandi; and, false negatives intersect with
ground truth only.

We evaluate the segmentation and detection results using the frame-
based precision P, recall R, and F-measure F introduced in Subsec-
tion 2.2.3 as metrics. Table 5.4 lists segmentation and detection results
for both upward and downward glissandi in the F0-informed detection
system. As can be seen, the segmentation stage performs a conservative
selection of candidate segments with high recall and low precision. The
large number of false positives obtained for NG-HMM training benefits
the data balance in our system. The better identification performance of
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upward glissandi over downward ones can be attributed to their more reg-
ular patterns. As can be seen, the identification F-measure increases by
approximately 60% as compared to the segmentation F-measure, which
verifies our intuition that consecutive pitch changes can be captured by
HMMs.

Stage Glissando
direction

Frame-based (%) Segment-based (%)

P R F P R F

Rule-based
segmentation

Upward 3.1 93.4 5.9 3.1 92.8 6.0
Downward 4.9 83.1 9.0 5.1 86.9 9.9

HMM-based
Identification

Upward 73.4 75.4 73.4 72.0 74.0 72.0
Downward 65.4 67.6 63.2 64.4 70.2 64.2

Table 5.4: Evaluation results of the F0-informed glissando detection
system on the CBF-glissDB based on annotated pitch.

After verifying the glissando detection stage independently, we then
use the automatically estimated pitch to evaluate the fully-automated
glissando detection system. Due to the influence of breathing, some
parts in the CBF recordings have high intensity but no detected pitch.
Thus silence cannot be determined only by pitch presence, and we define
silence segments as parts having both no pitch and intensity below -20
dB. Correctly detected frames are the voiced parts with pitch intervals
less than half a semitone between the ground truth and the detected
pitch. Pitch estimation accuracy refers to the percentage of correctly
detected frames over all voiced frames. Table 5.5 shows the estimated
pitch detection results for both full-piece recordings and ground truth
glissando segments within these pieces. The poorer pitch estimation
performance on glissando segments shows that pYIN works less well on
rapid pitch evolution progressions.

Type Full-length pieces Glissando segments

Southern Northern Upward Downward

Accuracy (%) 80.2 79.5 72.0 74.8

Table 5.5: Pitch estimation accuracy for full-length pieces and glissando
segments in the CBF-glissDB.

The fully-automated glissando detection results are shown in Table 5.6.
Considering the pitch evaluations shown above, it is reasonable to expect
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worse performance when using automatically estimated pitch as input.
Pitch is a main discriminative feature in the proposed glissando detection
method. The presence of undetected pitches or octave errors within
glissandi hinders the G-HMM to capture the consecutive note evolution.
Thus false positives, which exhibit similar pitch evaluation as the ground
truth glissandi and have higher pitch estimation accuracy, may be
assigned with G labels. This is verified by the better identification
performance on downward glissandi over upward ones with lower pitch
estimation results.

Stage Glissando
direction

Frame-based (%) Segment-based (%)

P R F P R F

Rule-based
segmentation

Upward 2.1 84.8 4.1 2.1 86.2 4.4
Downward 3.3 67.3 5.9 3.6 75.0 7.1

HMM-based
identification

Upward 36.4 63.2 44.6 36.8 63.4 45.0
Downward 58.2 48.4 50.4 58.0 51.8 52.6

Table 5.6: Evaluation results of the fully-automated glissando detection
system on the CBF-glissDB based on estimated pitch.

Note that the proposed baseline method is tested on a subset of
CBFdataset (see Section 3.4), i.e., CBF-glissDB, while the proposed
dJTFS approach (see Section 5.3) is evaluated on the complete CBF-
dataset. For fair comparisons, we reimplement this baseline method
on the CBFdataset and resample the detection result into the same
frame size as that we use for CBF glissando evaluation using the dJTFS,
i.e., 93 ms (see Table 5.3). Much lower F-measure scores are obtained:
14.0% for upward glissando and 11.6% for downward glissando detection.
This may be attributed to the hand-crafted rules introduced in this
method which may not be robust when the dataset is expanded with
noisy information only. The expanded part of CBFdataset as compared
to the CBF-glissDB comprises recordings without any glissando exam-
ples. Our proposed recognition system based on the dJTFS aims at
developing a general framework for playing technique recognition rather
than on glissando only. Therefore we use the average F-measure score of
upward and downward glissandi as the final glissando detection results,
i.e., 12.8%, when comparing with the dJTFS, as shown in Table 5.7.
Although this result is low as compared to that of the proposed dJTFS
method, it is still higher than a random baseline which would have
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been the duration ratio of all glissandi over the whole CBFdataset, i.e.,
5.0 min/2.6 hours ≈ 3%.

5.4.2 Baselines for multiclass classification scheme

To detect all seven types of playing techniques simultaneously via the
multiclass classification scheme (see Subsection 5.5.2), we compare the
proposed representations with commonly used features such as mel-
frequency cepstral coefficients (MFCCs) (Abeßer et al., 2010) and mod-
ulation power spectrum (MPS) (Thoret et al., 2017) on the CBFdataset
(see Section 3.4). The MPS is also a representation capable of capturing
spectro-temporal modulation information in audio signals and has been
applied to instrument recognition (Thoret et al., 2017) while not yet been
used for playing technique recognition. Frame-based macro F-measures
obtained by the MFCCs and the MPS for recognising the seven CBF
playing techniques are 35.9% and 52.0%, respectively.

5.5 Evaluation

In this section, we evaluate the binary and multiclass classification
schemes on the CBFdataset (see Section 3.4) using the same evaluation
metrics introduced in Subsection 2.2.3, i.e., precision P, recall R, and
F-measure F scores. Similarly to Subsection 4.4.2, we consider both
frame- and event-based evaluation for the binary classification scheme.
The former evaluation method compares the predictions with the ground
truth in a frame-wise manner while the latter one merges frame labels into
events and postprocess the events by minimum duration pruning and gap
filling. We fill the gaps between neighbouring events when the gaps are
shorter than the shortest event in the training set; and prune the events
that have smaller duration than the minimum duration event in the
training set. The minimum duration is automatically calculated subject
to the technique and the training-test data split during recognition. An
event is considered to be detected only when its onset falls within a 200
ms window of the ground truth and its duration is at least 50% of the
ground truth duration. For the multiclass classification scheme, only
frame-based evaluation is used. This is because the single-label multiclass
classification scheme is not capable of detecting co-articulations, where
merging frame labels into events is not accurate.

97



5.5. Evaluation

5.5.1 Binary classification scheme

Table 5.7 and Table 5.8 display the frame- and event-based binary
classification results, respectively, for acciaccatura, portamento, and
glissando using the proposed dJTFS based on max-pooling (dJTFS-
max), dJTFS based on average-pooling (dJTFS-avg), the JTFS, the
JTFS+PCA, and the HMMs baseline. We compare these results from
three perspectives: the overall performance of all methods, the results
on different playing techniques, and the performance of two dJTFS
representations. Among all the methods, the dJTFS-avg achieves the
best overall performance measured by the average F-measure over the
three playing techniques, i.e., 75.7% and 75.6% in the frame- and event-
based evaluation, respectively. The JTFS performs the second best,
with the average F-measure 1.2% and 0.9% lower than those obtained
by the dJTFS-avg for the two evaluation methods, respectively. All the
four joint scattering representations significantly outperform the HMMs
baseline.

For the recognition results on specific playing techniques, the highest F-
measure scores are obtained by different methods: 66.4% for portamento
detection using the dJTFS-max, 74.8% for acciaccatura recognition
using the dJTFS-avg, and 86.8% on glissando detection using the JTFS,
respectively. The above scores are frame-based F-measures; a similar
trends appear in the event-based evaluation, as shown in Table 5.8. For
both evaluation methods, all the scattering representations—dJTFS-
max, dJTFS-avg, JTFS, and JTFS+PCA—considerably outperform the
HMMs baseline.

Comparing the two types of dJTFS representations, i.e., dJTFS-
max and dJTFS-avg, we notice that the latter outperforms the former
for recognising both acciaccatura and glissando while for portamento
detection, the latter underperforms the former. This may be attributed
to the instability of the dJTFS-max when the direction with maximum
energy, θmax, oscillates between the upward and downward directions.
This may be the case for acciaccatura and glissando due to their noisy
note changes within the technique. Take the glissando technique in
Figure 5.2 (a) for example, although the direction of the glissando is
upward, downward note changes exist inside the playing technique, e.g.
the note change at around 2.5 sec. For such cases, the dJTFS-max
feature may oscillate between θ = 1 and θ = −1 within the playing
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technique and is less stable than the dJTFS-avg. In contrast, the
portamento technique comprises smooth pitch changes where a direction
change within the playing technique is less likely to happen.

Method Acciaccatura Portamento Glissando Average

dJTFS-max 70.4 66.4 81.4 72.7
dJTFS-avg 74.8 66.0 86.4 75.7
JTFS 73.0 63.6 86.8 74.5
JTFS+PCA 70.4 54.6 85.6 70.2
HMMs 25.0 30.0 12.8 22.6

Table 5.7: Frame-based performance comparison of binary classification
for acciaccatura, portamento, and glissando in the CBFdataset (see
Section 3.4) using the proposed dJTFS-max and dJTFS-avg, the JTFS,
the JTFS+PCA, and the HMM-based glissando detection baseline. All
numbers are F-measures (%). “Average” refers to the average F-measure
over the three playing techniques.

Method Acciaccatura Portamento Glissando Average

dJTFS-max 74.1 65.7 75.6 71.8
dJTFS-avg 78.2 65.6 83.1 75.6
JTFS 76.1 63.5 84.6 74.7
JTFS+PCA 73.6 52.0 84.3 70.0
HMMs 23.5 22.4 14.8 20.2

Table 5.8: Event-based performance comparison of binary classification
for acciaccatura, portamento, and glissando in the CBFdataset (see
Section 3.4) using the proposed dJTFS-max and dJTFS-avg, the JTFS,
the JTFS+PCA, and the HMM-based glissando detection baseline. All
numbers are F-measures (%).

Cross checking the detection results with the original audio, we find
another two types of errors besides the repaid note changes described in
Subsection 4.4.5: co-articulation and playing techniques exhibit similar
spectro-temporal patterns as those of non-techniques, for example, short
portamento and note change. Figure 5.6 top shows the log-frequency
spectrogram of an excerpt in performance of Busy Delivering Harvest
by Player 3 in the CBFdataset (see Section 3.4); the bottom subfigure
displays the ground truth portamento and frame-based classification
output. The false negative at around 9 sec is an example of portamento
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and flutter-tongue co-articulation. In such cases, portamento is no longer
smooth but modulated with small ripples, making it hard to detect,
even with 16 filters per octave in the first-order scattering transform.
The false negative at 12.5 sec is an instance of the system misclassifying
a note change into a portamento.

Figure 5.6: Portamento detection result for an excerpt in Player 3’s
performance of Busy Delivering Harvest using the dJTFS-avg. Top:
log-frequency spectrogram; bottom: comparison between the ground
truth (upper half) and frame-based classification output (lower half).
For this example, frame-based P=85%, R=52%, F=65%.

Besides the recognition performance, we also compare the scattering
representations—the proposed dJTFS, the JTFS, and the JTFS+PCA—
in terms of computational expense. Since both the dJTFS and the
JTFS+PCA are derived from the JTFS, where the direction selection
operation, either max-pooling or average-pooling, and the PCA oper-
ation are negligible as compared to the calculation of the JTFS, we
compare only the computation cost at the classification stage. Table 5.9
lists the dimensionalities and the runtimes of these three representations
for recognising the three types of PETs. It can be seen that for all
three playing techniques, the classification using the JTFS is much more
expensive than the other two representations due to its high dimension-
ality; and the runtime is positively correlated with the dimensionality of
the representation. This matches the finding in Subsection 4.4.5 that for
the proposed recognition system, when the performance is guaranteed,
a lower dimensional representation is preferable for computation saving.
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Representation Dimensionality/runtime

Acciaccatura Portamento Glissando

JTFS+PCA 67/0.44 23/0.20 63/0.29
dJTFS 366/1.58 410/1.59 498/1.07
JTFS 1490/7.04 1486/4.36 1770/4.50

Table 5.9: Dimensionality and classification runtime (in hours) of the
proposed dJTFS, the JTFS, and the JTFS+PCA for recognising acciac-
catura, portamento, and glissando in the CBFdataset (see Section 3.4).

5.5.2 Multiclass classification scheme

Although the binary classifiers above detect co-articulations, cases of co-
articulation form only a small portion of the CBFdataset (see Section 3.4).
In the multiclass classification scheme, we discard all co-articulation sam-
ples. This enables us to generate a confusion matrix between techniques,
but also to provide comparable results for different datasets across
different benchmark methods. The system recognises all seven play-
ing techniques simultaneously using the concatenation of the proposed
AdaTS+AdaTRS (see Section 4.2) and the dJTFS-avg (see Section 5.2)
features as input. The dJTFS-avg is used because of its better overall
performance for PET recognition as compared to the dJTFS-max (see
Subsection 5.5.1). We include an extra class ‘other’ to account for frames
that are none of the discussed seven playing techniques.

Figure 5.7 (a) shows the frame-based F-measures of multiclass classifi-
cation for the seven types of playing techniques, i.e., flutter-tongue, trill,
vibrato, tremolo, acciaccatura, portamento, and glissando, using the
proposed scattering representations, the MFCCs baseline, and the MPS
baseline. The macro F-measures over the techniques obtained using
these three representations are 79.5%, 35.9%, and 52.0%. As can be
seen, the proposed scattering representations outperform both baselines
for all playing techniques; the MPS also exhibits better performance
than the MFCCs. Figure 5.8 (a) shows the confusion matrix with the
number of frames detected for each class using the proposed scattering
representations, where the ‘other’ cases form the majority of the CBF-
dataset (see Section 3.4). This is because playing techniques are rare
events in real-world performances. Additionally, among the seven types
of playing techniques, the number of samples for each class is highly
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imbalanced, according the statistical information of the techniques we
obtained in Section 3.4. We then normalise the detection result over
the number of instances per technique class and obtain the normalised
confusion matrix in Figure 5.8 (b). The confusion between vibrato and
tremolo is expected since frequency variations are commonly accompa-
nied with amplitude modulations and vice versa. In the case of CBF,
such co-articulations are common because of the instrument gestures of
vibrato and tremolo. Vibratos can be generated by fingering or tonguing,
while tremolos are commonly produced by breath variations. Performers
also frequently add tremolo effects on top of other playing techniques
for expressivity.

Figure 5.9 and Figure 5.10 show the confusion matrices obtained for
multiclass classification of the seven playing techniques using the MFCCs
and the MPS features on the CBFdataset (see Section 3.4), respectively.
High confusion between the playing techniques and the ‘other’ class is
observed for both baseline features. Both features achieve the best score
for trill recognition. The MFCCs detect none of the tremolos while the
MPS returns the lowest score for acciaccatura recognition. The confusion
between vibrato and tremolo is also found from the recognition results
obtained by the MPS.
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Figure 5.8: Confusion matrices obtained for multiclass classification
of the seven CBF playing techniques using the proposed scattering
representations. (a) confusion matrix with number of frames detected;
(b) normalised confusion matrix with (a) divided by the number of
samples per technique.
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Figure 5.9: Confusion matrices obtained for multiclass classification
of the seven CBF playing techniques using the MFCCs. (a) confusion
matrix with number of frames detected; (b) normalised confusion matrix
with (a) divided by the number of samples per technique.

105



5.5. Evaluation

Figure 5.10: Confusion matrices obtained for multiclass classification of
the seven CBF playing techniques using the MPS. (a) confusion matrix
with number of frames detected; (b) normalised confusion matrix with
(a) divided by the number of samples per technique.
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5.6 Additional Evaluations

To verify the generalisability of the proposed framework for playing
technique recognition, we test it on three existing datasets with a vari-
ety of playing techniques: vibrato/portamento dataset (VPset) (Yang,
2017), Studio On Line (SOL) dataset (Lostanlen et al., 2018), and vocal
technique dataset (VocalSet) (Wilkins et al., 2018). We call these three
datasets the additional datasets and provide details of the content of
each dataset in Subsection 2.2.2. The types of playing techniques and
number of samples in each dataset are summarised in the top subfigures
of Figure 5.7 (b), (c), and (d), respectively. Besides the frame- and
event-based evaluation used in Section 5.5, we consider also the clip-
based evaluation introduced in Subsection 2.2.3 for the playing technique
recognition on the SOL dataset, which comprises only short audio clips
with one technique per clip.

For the additional datasets, we conduct binary classification for the
VPset and multiclass classification for the SOL dataset and the Vo-
calSet. This is because vibrato and portamento techniques are from two
separate subsets in the VPset (see Subsection 2.2.2). All experiments
for the additional datasets use the same settings as the CBF binary or
multiclass classification, i.e., hyperparameters of the proposed scatter-
ing representations and hyperparameter grids of the SVMs classifiers.
However, the ways of splitting data vary according to dataset. For
the VPset, rather than cross-validating within the same performance
as Yang (2017), we take into account the performer identity. We use
one performer’s playing for testing and the remaining three recordings
for training, and repeat this for all four performers. The final result is
the average of frame-based F-measure scores over all performers. After
removing silence from the recordings, a random split ratio of 8:2 be-
tween training and test sets is used for the SOL dataset due to a lack
of performer identity information. Five splits are then conducted in a
circular way. For the VocalSet, we keep the training-test split as that in
the original work (Wilkins et al., 2018). Silence is also removed before
the scattering feature extraction. All samples from 15 singers are placed
in the training set and the remaining 5 singers in the test set.

Similarly to the training process (see Subsection 5.3.2) on the CBF-
dataset, for the additional datasets, we also optimise the SVM hyper-
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parameters via a 3-fold cross-validation on the training set. This is
done by sampling on the training set in a way that ensures each fold
includes approximately the same ratio of positive and negative class
instances for a given playing technique. For the VPset, the frame sizes
and feature dimensionalities of the scattering representations, i.e., the
AdaTS+AdaTRS for recognising vibratos and the dJTFS-avg for de-
tecting portamenti, are the same as those we use for CBF vibrato (186
ms and 203) and portamento (93 ms and 410) recognition in the binary
classification scheme, as shown in Table 4.3 and Table 5.3, respectively.
For the SOL dataset and the VocalSet, the frame sizes and feature
dimensions are the same as those in the multiclass classification of CBF
playing techniques, i.e., 93 ms and 613 (see Subsection 5.3.1).

The baseline methods for the additional datasets are also different
according to dataset. We compare the proposed system with the filter
diagonalisation method (FDM, see Subsection 4.4.3) for vibrato detec-
tion and the hidden Markov models (HMMs, see Subsection 5.4.1) for
portamento recognition in the VPset; and with convolutional neural
networks (CNNs, see Section 2.5) for detecting vocal techniques in the
VocalSet. This is because these methods were originally used for de-
tecting playing techniques in the corresponding datasets. Frame-based
F-measures for vibrato recognition using the FDM and for portamento
detection using the HMMs are 77.7% and 50.6%, respectively, on the
VPset. CNNs were used in Wilkins et al. (2018) for vocal technique
classification with a frame size of 3 seconds. Macro averaged F-measure
of 65.2% for the 10 techniques were reported. For the SOL dataset,
we compare the proposed scattering representations with the MFCCs
and the MPS (see Subsection 5.4.2). Macro averaged F-measures for
detecting the 17 playing techniques in the SOL dataset using MFCCs
and MPS are 27.1% and 26.6%, respectively. All the F-measure scores
above are obtained by resampling the recognition results from the base-
line methods into the frame size of the multiclass classification of CBF
playing techniques for fair comparisons, i.e., 93 ms, except that of the
vocal technique recognition, where the frame size (3 seconds) is much
larger than this value.

The bottom subfigures of Figure 5.7 (b), (c), and (d) display frame-
based F-measures for recognising each type of playing technique in
the VPset, SOL dataset, and VocalSet, respectively. Note that these
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results are based on the same scattering hyperparameters that we use
for the CBFdataset. Parameter tuning for each dataset could potentially
improve the recognition results. In the VPset, the proposed method
achieves comparable results to the FDM on vibrato detection while
considerably underperforms the HMMs for portamento detection. The
most frequent errors found are note changes being detected as portamenti,
which is consistent with the detection errors of CBF portamenti. Our
recognition system achieves comparable overall performance as the CNNs,
with a macro F-measure score of 64.5% against 65.2%. However, the
F-measures from the proposed system over playing techniques is more
stable than those from the CNNs, where the latter failed to recognise
any of the 20 spoken techniques.

A macro F-measure score of 84.4% is obtained for recognising playing
techniques in the SOL dataset. The much better overall performance
of the proposed system than the baselines may be attributed to the
SOL dataset structured with short clips of individual techniques. No
technique is based on the same note of the same instrument, which
offers high intra-class variability for playing techniques. Figure 5.11
and Figure 5.12 show the confusion matrices obtained for multiclass
classification of the playing techniques on the SOL dataset and the
VocalSet, respectively. The recognition results on the SOL dataset
present few confusions between techniques. For playing techniques in
the VocalSet, the lip trill obtains the best score while the inhale technique
obtains the lowest. The straight technique exhibits high confusion with
other techniques.
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Figure 5.11: Confusion matrices obtained for multi-class classification
of playing techniques in the SOL dataset. (a) confusion matrix with
number of frames detected; (b) normalised confusion matrix with (a)
divided by the number of samples per technique.
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Figure 5.12: Confusion matrices obtained for multi-class classification
of the ten vocal techniques in the VocalSet. (a) confusion matrix with
number of frames detected; (b) normalised confusion matrix with (a)
divided by the number of samples per technique.
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5.7 Conclusions

In this chapter, we have presented the direction-invariant joint time–
frequency scattering (dJTFS), a variant of the joint time–frequency
scattering (JTFS), for representing pitch evolution-based techniques
(PETs). To detect PETs regardless of their directions, we have investi-
gated two ways of creating the direction invariance, i.e., max-pooling
and average-pooling, which result in the dJTFS-max and dJTFS-avg
representations. With the dJTFS features extracted, we build a recogni-
tion system with three binary classifiers, each for detecting on type of
PETs, i.e., acciaccatura, protamento, and glissando. The results show
that all the scattering representations, i.e., the proposed dJTFS-avg
and dJTFS-max, the JTFS, and the JTFS with dimensionality reduced
by principal component analysis (PCA), considerably outperform the
hidden Markov model (HMMs) baseline. Among these scattering repre-
sentations, the dJTFS-avg achieves the best overall results in terms of
the average F-measure over all playing techniques. One possible reason
for the better performance of dJTFS-avg over the dJTFS-max may be
the instability of the dJTFS-max when the directions within the playing
techniques oscillates between upward and downward directions.

To detect both pitch modulation-based techniques (PMTs) and PETs
simultaneously, we have developed another recognition system which
takes the concatenation of the AdaTS+AdaTRS (see Section 4.2) and
the dJTFS-avg as input. As compared to the mel-frequency cepstral
coefficients (MFCCs) and the modulation power spectrum (MPS) base-
line features, the proposed scattering representations outperforms both
for all the seven types of playing techniques we have investigated in
Chapter 4 and in this chapter: vibrato, tremolo, trill, flutter-tongue,
acciaccatura, portamento, and glissando. To test the generalisability of
the proposed methodology, we apply this recognition system to three
additional datasets with a variety of instrumental and vocal playing
techniques and obtain promising results.

We list some limitations of the study conducted in this chapter and
present possible directions for improvement. We set the hyperparameters
of the proposed scattering representations, i.e., the adaptive scattering
and the dJTFS, based on the characteristics of the playing techniques
(see Table 4.1 and Table 5.1). Among these characteristics, only the
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averaging scale T is grounded on the duration range of the playing
techniques in the CBFdataset (see Section 3.4). Yet, to the author’s
knowledge, these averaging scales are applicable to the same playing
techniques of other instruments or singing voice. For example, we
use averaging scale T = 215 (in samples, equivalent to 743 ms at a
sampling rate 44.1 kHz) for CBF vibrato recognition. This corresponds
to a modulation rate of 1.35 Hz. All vibratos with modulation rate
above this value can be potentially detected, such as singing vibratos
ranging from 5 to 8 Hz (Prame, 1994), erhu vibratos between 4 and 8
Hz (Yang, 2017), and violin vibratos from 2 to 15 Hz (Zhao et al., 2021).
The other hyperparameters of the adaptive scattering are motivated
by the characteristics of the playing techniques in general, for instance,
Q

(t)
1 = 12 to account for note-level pitch changes and and Q

(t)
1 = 16 for

capturing subtle modulations or smoothed pitch changes.
The motivation of setting the scattering hyperparamters based on

playing technique characteristics in general is to develop an explainable
and generalisable playing technique recognition framework that can be
applied to other instruments and datasets directly without retraining.
The performance of the proposed presentations on the three additional
datasets in Section 5.6 verifies the generalisability of the hyperparameters
that we use on the CBFdataset (see Section 3.4). However, if our target
is to obtain an optimal performance on a specific dataset, automatically
tuning the hyperparameters of the scattering representations and the
classifier jointly would be the best choice.

Since co-articulations form a small portion of the CBFdataset (see
Section 3.4), we conduct single-label multiclass classification during the
recognition. This is done by discarding the samples with more than one
label. In practice, a user may expect a recognition system to detect
all playing technique components in a co-articulation. In this case,
a multilabel classifier should be the most appropriate choice. In this
chapter, we use the mean and standard deviation of a fixed number of
frames centred at the current frame for calculating the dJTFS features.
One may apply recurrent classifiers such as long short-term memory
units (Warrick et al., 2019) to account for temporal context.

The experiments in this chapter all operate on the original datasets
directly without any data augmentation. However, no evidence is found
that the detection result relies highly on the number of samples (see
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Figure 5.7). The techniques with many more samples do not achieve
better results, e.g. portamento in the CBFdataset (see Section 3.4) and
straight in the VocalSet. This points to a robustness of the proposed
representations to learn quickly the discriminative information based
on a small number of examples. For playing techniques across different
datasets, we currently follow the taxonomy of the original datasets. Yet,
playing techniques are musical patterns, which vary over instruments,
regions, styles, and performers and may require a consistent yet flexible
taxonomy. The same technique may exist under a different name in the
context of another instrument or genre. For example, portamento in the
VPset corresponds to glissando in the SOL dataset. The definition of
playing technique may also overlap depending on the player or singer
performing it, e.g. trill and vibrato in the VocalSet (Wilkins et al.,
2018).
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Chapter 6

Scattering Transform
Applications

We proposed the adaptive scattering in Chapter 4 for recognising pitch
modulation-based techniques (PMTs), and modified the joint time–
frequency scattering (JTFS) in Chapter 5 for recognising pitch evolution-
based techniques (PETs), respectively. In this chapter, we go beyond
playing technique recognition and music signal analysis, to further verify
the applicability of the scattering representations to other problems
and domains. We apply the proposed adaptive time scattering (AdaTS,
see Section 4.2) and the standard time scattering (StaTS, see Subsec-
tion 4.4.4) of detected vibratos for performer identification in polyphonic
orchestral music in Section 6.1. This is motivated by the finding in
Chapter 4 that these scattering representations capture the characteristic
information of vibratos. Section 6.2 investigates the JTFS for detecting
and classifying chick calls, which is inspired by the observation that chick
calls exhibit similar spectro-temporal patterns as the PETs investigated
in Chapter 5. Section 6.1 is an improvement of the paper Zhao et al.
(2021) and Section 6.2 is an extension of our recently submitted work
Wang et al. (submitted) (see Section 1.4 for publication details).

6.1 Adaptive and Standard Time Scattering for

Performer Identification

Identifying performers from polyphonic music is a challenging task in
music information retrieval (MIR). Being ubiquitous in both singing
and harmonic instrument playing, vibratos have been used for singer
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identification (Kroher and Gómez, 2014; Nwe and Li, 2007) while being
less explored for performer identification in instrumental music.

The idea of this section is inspired by our recently published work
Zhao et al. (2021), which developed two violinist identification systems
based on vibrato features: the AdaTS system and the VF-DS system.
The former takes the adaptive time scattering (AdaTS) features as input
to a support vector machine classifier and the latter system uses vibrato
feature distribution similarity (VF-DS), for violinist identification. From
the comparison of the identification results, we find that both methods
outperform a random baseline, with accuracy improvement of 19.8% and
13.8%, respectively. The VF-DS method is more explainable than the
AdaTS one in that the former uses four low-level features, i.e., average
vibrato rate, average vibrato extent, standard deviation of vibrato rate,
and standard deviation of vibrato extent, while the feature dimensionality
of the latter is 154. On the flip side, the VF-DS method requires a
certain number of vibrato notes for feature distribution calculation and
is based on the assumption that vibrato segments are available. The
AdaTS method is more flexible as long as there is vibrato in the music
and can be potentially fully automatic because the AdaTS itself is a
vibrato detector. This is the main idea that we investigate in this
section: automating the AdaTS performer identification system in Zhao
et al. (2021) using the vibrato detection system that we developed in
Chapter 4.

Specially, there are five improvements of the performer identification
system proposed in this section as compared to that developed in Zhao
et al. (2021): (1) The system in this section is fully automatic as we
first detect vibratos from full-length recordings and then use the AdaTS
features of these detected vibratos for performer identification; (2) We
compare different decomposition trajectories for the AdaTS besides
the predominant melody trajectory; (3) We created annotations for
all vibratos that are present in the recordings apart from the vibrato
notes used in Zhao et al. (2021); (4) We explain in detail the reason
for the poor performance of the identification systems in Zhao et al.
(2021); (5) We explore also the standard time scattering (StaTS) (see
Subsection 2.5.1) for this task and compare its performance with that
of the AdaTS.

In summary, this section proposes an automatic system using detected
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vibratos for violinist identification from commercial orchestral recordings.
We detect vibratos using the proposed AdaTS and the StaTS presented
in Section 4.2 and Subsection 4.4.4, respectively. The scattering features
of these vibratos are then used as the input to a machine learning
classifier for identifying violinists. To the author’s knowledge, this is
the first attempt to identify violinists in polyphonic music based on the
features of automatically detected vibratos only; and the first work to
apply the StaTS for performer identification.

6.1.1 Background

The diversity of musical expression depends highly on the performers’
interpretation, which may come from playing techniques, articulation,
tempo variation, dynamics, and timbre (Juslin and Laukka, 2003). Jung
(2007) analysed playing styles of three famous violinists, and argued for
instance that the performances of Jascha Heifetz can be described as
“unemotional” and “cold”, whereas that of David Oistrakh always make
listeners feel “warm” and rich in emotion. Among these factors, vibratos
play an essential role in the performance of singing voice, flute and
bowed-string instruments, and are frequently used to enhance selected
notes and make them more prominent (Palmer and Hutchins, 2006). The
information contained in vibratos provides useful clues of the performer’s
identity.

Most prior research on violinist identification used features such as
pitch, timing, energy or vibrato amounts in a music piece, without
considering detailed vibrato characteristics. Ramirez et al. (2011) built
a Celtic violinist classifier taking as input the extracted pitch, timing,
and amplitude features that represent both note-level characteristics
and broader musical context. Molina-Solana et al. (2010) proposed an
approach for identifying violinists in monophonic audio recordings using
a musical trend-based model. Shih et al. (2017) used articulation and
energy features to compare different playing styles of Jascha Heifetz
and David Oistrakh. Additionally, previous research work on vibrato
analysis focused mostly on monophonic music (Yang, 2017; Pang and
Yoon, 2005). In this thesis, we develop an automatic system to identify
violin performers using the proposed AdaTS and the StaTS features
discussed in Section 4.2 and Subsection 4.4.4, which can be potentially
applied to polyphonic scenarios.
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6.1.2 Dataset

The dataset studied is a subset of the Violin dataset presented in
Zhao et al. (2021), which comprises a collection of violin concertos
from commercial CDs. A concerto is a musical work that focuses
on a solo instrument, such as the violin or piano, accompanied by
an orchestra. The complete Violin dataset has 45 recordings with a
total duration of 26 hours. The recordings are 5 concertos written by
five well-known composers: Ludwig van Beethoven, Johannes Brahms,
Felix Mendelssohn, Jean Sibelius, and Pyotr Ilyich Tchaikovsky. Each
concerto has 3 movements and is performed by 9 master violinists:
Jascha Heifetz, Anne Sophie Mutter, David Oistrakh, Itzhak Perlman,
Pinchas Zukerman, Isaac Stern, Salvatore Accardo, Yehudi Menuhin
and Maxim Vengerov. Table 6.1 lists the composer and the name of
each concerto in the Violin dataset.

Composer Concerto name

Ludwig van Beethoven Violin Concerto in D major, Op.61
Johannes Brahms Violin Concerto in D major, Op.77
Felix Mendelssohn Violin Concerto in E minor, Op.64
Pyotr Ilyich Tchaikovsky Violin Concerto in D major, Op.35
Jean Sibelius Violin Concerto in D minor, Op.47

Table 6.1: Composer and name of each concerto in the Violin dataset.

As a proof-of-concept study in this thesis, we use only the second
movement of each concerto for computation saving, which forms a
subset of 6 hours. Hereafter, we refer to this subset as the Violin-
II dataset. To evaluate vibrato detection performance prior to the
performer identification stage, all the vibratos in the Violin-II dataset
were annotated by the author of the thesis. The total duration of the
annotated vibratos is 1.7 hours. Figure 6.1 displays the number of
annotated vibratos for each performer in each of the 45 concertos in
the Violin-II dataset. As can be seen, the number of vibratos for each
performer in the same piece are approximately balanced.

6.1.3 Vibrato detection

In Chapter 4, we compared the proposed adaptive scattering with
other scattering representations for PMT recognition. The adaptive
scattering achieves the best overall performance in the CBFdataset
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Figure 6.1: Number of of annotated vibratos in each recording for each
performer in the Violin-II dataset. The correspondence of the concerto
name to each composer is shown in Table 6.1.

(see Section 3.4), which comprises monophonic Chinese bamboo flute
recordings. For the polyphonic music investigated in this section, the
error-prone stage of decomposition trajectory extraction motivates us
to explore other scattering representations for vibrato detection and
performer identification.

Adaptive and standard time scattering

Similarly to Subsection 4.2.2, for the adaptive scattering, we investigate
the performance of three decomposition trajectories: dominant band,
predominant melody, and fundamental frequency (F0). Specifically,
we explore in this section the adaptive time scattering (AdaTS) which
achieved F-measure scores similar to that of the AdaTS+AdaTRS for
PMT recognition (see Subsection 4.4.5) where the former is half in
dimensionality to the latter. Decomposing frequency bands around these
trajectories should capture the characteristic information of vibratos:
rate, extent, and shape. These are useful cues for both detecting vibratos
and characterising performers.

We extract the dominant band trajectory, i.e., the frame-wise fre-
quency bands with maximum acoustic frequency energy, from the first-
order scattering transform, and localise it to the scalogram. During
the extraction process, we limit all trajectories to the frequency range
of the violin: G3 to A7 (196 to 3520 Hz). This is to increase the pos-
sibility that the decomposition trajectories will correspond to one of
the harmonic partials of the violin, rather than to frequencies produced
by the accompanying instruments, which may have a different range of
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frequencies. To localise predominant melody and F0 trajectories in the
scalogram, we allocate the bands with the closest frequency values to
both cases. Since these two trajectories have higher temporal resolution
(3 ms) than that of the dominant band trajectory (186 ms), we use
the median value of the predominant melodies and F0s per 62 frames.
This enables a consistent frame size of 186 ms for the AdaTS features
calculated from different decomposition trajectories.

The top subfigures of Figure 6.2 to Figure 6.4 show the extracted
dominant band, predominant melody, and F0 trajectories, respectively,
in the log-frequency spectrogram of an example excerpt from the second
movement of Violin Concerto in D minor, Op.47 performed by Isaac
Stern. As can be seen, the dominant band trajectory suffers from octave
jumps (frequency switches between harmonic partials) while the other
two trajectories exhibit missing estimations (false negatives), likewise
the observations in Subsection 4.2.2. We preprocess all decomposition
trajectories by linearly interpolating the missed estimations using the
values of neighbouring frames and also smooth the dominant band
trajectory by a median filter to reduce the effect of octave jumps. The
blue solid line in Figure 6.2 top is the preprocessed dominant band
trajectory, which is much more stable than the non-preprocessed one in
yellow dotted line. Because the predominant melody and fundamental
frequency trajectories are preprocessed only by linear interpolation, for
better visualisation, we show these two trajectories in the original form,
in Figure 6.3 top and Figure 6.4 top, respectively.

As observed from the top subfigures of Figure 6.2 to Figure 6.4, all
three decomposition trajectories are not accurate even after limiting
them to the tonal range of violin and preprocessing the trajectories
by smoothing and interpolation. A typical error is that the frequency
partials of accompaniment are incorrectly detected as the decomposi-
tion trajectory of the violin, for example, the regions from 0 to 4 sec
and from 14 to 17 sec for all trajectories. Such erroneous trajectory
estimations would substantially influence the downstream tasks, i.e.,
vibrato detection and performer identification, where the features used
are both decomposed from the extracted trajectories. Even when we
use the extracted trajectory of annotated vibratos, for example, the
vibrato segments of the two regions above, the AdaTS features calculated
provide misleading information to our performer identification system
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Figure 6.2: Vibrato detection result for an excerpt in the second move-
ment of Violin Concerto in D minor, Op.47 performed by Isaac Stern.
Top: original and preprocessed dominant band trajectories of the adap-
tive time scattering (AdaTS) in the log-frequency spectrogram. Bottom:
comparison of annotated vibrato segments with those detected by the
AdaTS and the standard time scattering (StaTS, see Subsection 4.4.4).

Figure 6.3: Vibrato detection result for the same excerpt in Figure 6.2.
Top: predominant melody trajectory of the adaptive time scattering
(AdaTS) in the log-frequency spectrogram. Bottom: comparison of
annotated vibrato segments with those detected by the AdaTS and the
standard time scattering (StaTS).
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Figure 6.4: Vibrato detection result for the same excerpt in Figure 6.2.
Top: fundamental frequency trajectory of the adaptive time scattering
(AdaTS) in the log-frequency spectrogram. Bottom: comparison of
annotated vibrato segments with those detected by the AdaTS and the
standard time scattering (StaTS).

because of the incorrect decomposition trajectories.
The problem of the error-prone decomposition trajectory extraction

motivates us to consider other scattering representations discussed in
Subsection 4.4.4 that do not depend on a decomposition trajectory: the
frequency-averaged time scattering, the StaTS, and the StaTS with
principal component analysis. These representations decompose all
frequency bands in the scalogram at the expense of having a higher
feature dimensionality. We compare in this section the performance of
the StaTS with that of the AdaTS. Although the StaTS underperforms
the proposed adaptive scattering for detecting vibratos from monophonic
Chinese bamboo flute recordings, for the polyphonic music explored in
this section, it skips the erroneous stage of decomposition trajectory
extraction and may achieve better results than the AdaTS.

Vibrato detection

We extract the AdaTS features by setting hyperparameters according
to the characteristic information of vibratos discussed in Section 4.1:
rate, extent, and shape of the modulation unit. Since the vibrato rate
in violin music ranges from 2 to 15 Hz (Zhao et al., 2021), we use an
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averaging scale T = 215 (in samples; corresponding to 743 ms at a
sampling rate of Fs = 44.1 kHz). Q

(t)
1 are the filters per octave of the

temporal filterbank in the first-order time scattering; Q(t)
1 = 16 filters

per octave are applied to capture modulations smaller than one semitone.
Filters per octave in the second-order time scattering Q

(t)
2 = 4 are used

due to the less oscillatory nature of the signal to be decomposed at this
order. L ⩾ 1 is the number of frequency bands symmetrically centred at
the decomposition trajectory in the scalogram. We use L = 7 according
to experimental results. The range M (in Hz) of the modulation rate is
useful to extract the core part of the scattering coefficients that contain
characteristic information of vibrato. Setting M into an interval, the
AdaTS extracts only the coefficients corresponding to this range. An
interval larger than the modulation rate range provides some harmonics
in the modulation representation. We use M = [0, 100] together with
Q

(t)
1 = 16 and Q

(t)
1 = 4, which results in a feature dimensionality of

133. The frame size h (in samples) is inversely log-proportional to the
oversampling parameter α (see Subsection 4.3.1), whereby h = T/(2αFs).
We use α = 2 for all the experiments which corresponds to a frame size
of h = 186 ms. The StaTS feature is extracted in the same way but
with fewer hyperparameters, i.e., T = 215, Q

(t)
1 = 16, Q

(t)
2 = 4, α = 2.

The resulting frame size of the StaTS is the same as that of the AdaTS
while the feature dimensionality of the former is 2074, higher than that
of the latter.

To detect vibratos from full-length recordings, we build a binary clas-
sifier as introduced in Subsection 4.3.2. The classifier takes as input the
AdaTS or the StaTS features and outputs frame-wise labels of vibratos
or non-vibratos. We fuse neighbouring frames with the same labels into
vibrato events and postprocess the events using gap filling and minimum
duration pruning. The scattering features of these detected vibratos
are then reused for identifying violinists in Subsection 6.1.4. For both
vibrato detection and performer identification stages, we use support
vector machines (SVMs) (Hastie et al., 2009) with Gaussian kernels as
classifiers due to their good generalisability based on a limited amount
of training data (Albu and Martinez, 1999). The hyperparameters to
be optimized are the error penalty parameter C and the width of the
Gaussian kernel γ. We use consistent parameter grids of 10{0:1:2} and
10{−4:1:−2} for C and γ, respectively, during training, and select the best
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SVM hyperparameters for testing. All features are z-score normalised.
Both at the vibrato detection and the performer identification stages,

we use piece-informed data splitting. We divide the Violin-II dataset
(see Subsection 6.1.2) into training and test sets by leaving one piece
out and evaluate 5 splits. This guarantees that there is no overlap of
pieces in the training and test sets in each split. Within each split,
we run a 3-fold cross-validation, sampling on the training dataset in a
way that ensures each fold includes approximately the same ratio of
positive and negative class instances for vibrato or for a given performer
identity. This is to avoid the cases that there is no example or there are
too few examples of a given playing technique or performer class in the
validation set if we further split the training set based on piece.

The bottom subfigures of Figure 6.2 to Figure 6.4 display the anno-
tated vibrato segments and the detected ones by the system using the
AdaTS and the StaTS features. The blue segments in the middle of each
bottom subfigure are the segments detected by the AdaTS using the de-
composition trajectory (blue line) in the corresponding top subfigure. As
can be observed, for the AdaTS, only when the decomposition trajectory
is correctly estimated, is there a possibility for the vibrato to be detected.
For the StaTS, the vibrato detection is more accurate because it does
not depend on a decomposition trajectory and potentially preserves the
vibrato information in the representation.

We evaluate the vibrato detection system using frame-based precision
P , recall R, and F-measure F introduced in Subsection 2.2.3. Table 6.2
shows the vibrato detection results in the Violin-II dataset using the
AdaTS and the StaTS features. The StaTS improves the F-measure
by 36%, 24%, and 28% as compared to the AdaTS calculated from
the three decomposition trajectories, i.e., F0, predominant melody, and
dominant band, respectively. The additional vibratos detected by the
StaTS provide the classifier an opportunity to learn the characteristics of
each violinist’s performance. We compare the identification performance
of the AdaTS and the StaTS in Subsection 6.1.4.

6.1.4 Performer identification

Taking the AdaTS and the StaTS features of the detected vibratos as
input, we build in this subsection a performer identification system that
outputs performer identity. We split each recording in the test set into
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Method Trajectory P R F

AdaTS
F0 58 25 35
Predominant melody 67 36 47
Dominant band 61 34 43

StaTS / 82 63 71

Table 6.2: Results of vibrato detection in the Violin-II dataset using
the proposed adaptive time scattering (AdaTS) and the standard time
scattering (StaTS). The former is calculated from three decomposition
trajectories for comparison: fundamental frequency (F0), predominant
melody, and dominant band. P, R, and F are frame-based precision,
recall, and F-measure (all in %), respectively.

3 segments and use the detected vibratos in each segment to identify
violinists. This is because our dataset is short of piece diversity with only
5 different concertos. Splitting the full recordings into segments increases
the number of samples for each performer in the test set, which may
improve the robustness of the system. Segments from different recordings
may vary in duration due to the unequal length of the recordings. SVMs
take the AdaTS or the StaTS features of the detected vibratos as input
and output frame wise performer identity. To obtain segment level
labels, each segment is labelled based on the majority vote of the frame
labels of the detected vibratos. To analyse the influence of vibrato
detection accuracy on the identification performance, we compare the
identification results based on detected vibratos and annotated vibratos
(ground truth). We evaluate the performer identification result using
frame-based macro precision P, recall R, F-measure F , and accuracy
A introduced in Subsection 2.2.3. To quantify the variation of the
results over performers, we also calculate the standard deviation S of
the F-measures of all performers.

Baseline

To the author’s knowledge, there is not yet any prior work using only
the features of automatically detected vibratos for violinist identification
in polyphonic music. We compare the proposed system with the vibrato
feature distribution similarity (VF-DS) method in Zhao et al. (2021),
which was applied to the Violin dataset (see Subsection 6.1.2). Note that
there are three differences on the data used in this section and that in
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Zhao et al. (2021). Firstly, the annotations in Zhao et al. (2021) include
only stable vibrato notes while in this section, we annotate also the
vibratos performed on variable pitches. Additionally, the annotations in
Zhao et al. (2021) do not cover all the vibratos in the Violin dataset.
Specifically for Violin-II dataset (see Subsection 6.1.2), the total duration
of the annotated vibrato notes in Zhao et al. (2021) is 28.3 minutes, less
than one third of the duration (1.7 hours) of the vibratos annotated
in this thesis. Finally, as a pilot study, we consider only the second
movement of each concerto in the thesis while Zhao et al. (2021) used
the complete Violin dataset. This is because the computation of the
latter was conducted only on the annotated vibrato notes, which forms
a small part of the Violin dataset. In this section, we run the feature
extraction to the full recordings for both vibrato detection and performer
identification.

Different from the proposed performer identification system, the VF-
DS method identified violinists by calculating the feature distribution
similarity of annotated vibrato notes performed by different performers
using the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951).
The KL divergence is an asymmetric measure, quantifying the informa-
tion loss when using the probability distribution Q to approximate the
probability distribution P . Taking the extracted predominant melody
(see Subsection 6.1.3) as input, the VF-DS method (Zhao et al., 2021)
first calculated 4 vibrato features for each annotated vibrato note: aver-
age vibrato rate, average vibrato extent, standard deviation of vibrato
rate, and standard deviation of vibrato extent. Vibratos were then
selected by thresholding these features according to the characteristics
of violin vibratos, for example, keeping only the vibratos with rate in
the range of 2-15 Hz and extent of 10-50 cents (Zhao et al., 2021) .
Histograms are then used to model the feature distributions of these
vibrato notes performed by each violinist in the training set. In the test
set, the feature distributions were modelled per movement (or concerto).
After computing the KL divergence of the feature distributions of each
movement (or concerto) with that of each performer in the training
set, each test movement (or concerto) was labelled with the performer
identify with the minimum KL divergence.

In this section, we use the VF-DS method as a baseline, applying
it to both the annotated and the detected vibratos in the Violin-II
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dataset, and compare its performance with our proposed performer
identification system. Note that the VF-DS method itself cannot detect
vibratos. When applying it to detected vibratos, we use the same
vibrato segments detected by the AdaTS based on the predominant
band trajectory, which achieves the best vibrato detection performance
among the three decomposition trajectories.

Results

Table 6.3 displays the results of the proposed performer identification
system using the AdaTS and the StaTS features, and that of the VF-DS
baseline. The AdaTS features are computed from the three decom-
position trajectories: F0, predominant melody, and dominant band.
We compare the identification results from four fronts: performance of
different methods, different decomposition trajectories of the AdaTS,
results using annotated and detected vibratos, and the stability of the
results over all performers for each method. Among the three methods—
AdaTS, StaTS, and VF-DS—the StaTS outperforms the other two, with
accuracy improved by more than 10% for all the cases: using either
annotated or detected vibrato segments, or the AdaTS with different
decomposition trajectories. As compared to the VF-DS method, the
AdaTS achieves higher accuracy in both cases, i.e., using annotated and
detected vibratos.

Comparing the results of the AdaTS features calculated from the
three decomposition trajectories, we notice that the dominant band
achieves the best performance using either ground truth or detected
vibratos. The lowest accuracy of the AdaTS based on F0 trajectory
is expected because the pYIN pitch estimation algorithm (Mauch and
Dixon, 2014) that we use for F0 extraction was proposed for monophonic
music signals, as discussed in Subsection 6.1.3. The StaTS and the
VF-DS method exhibit better performance when using the feature
calculated from annotated vibratos than those computed from detected
vibratos. In contrast, the AdaTS yields higher accuracy when using the
feature computed from detected vibratos. This may be attributed to
the inaccurate decomposition trajectory extraction which may provide
misleading information at the identification stage, as we investigated
in Subsection 6.1.3. Although the StaTS achieves the highest macro
F-measure, the standard deviation of the F-measures over performers
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are higher than other cases. This indicates that this method may be
less stable as comparable to the AdaTS and the VF-DS methods.

Method
Decomposition

trajectory
Vibrato annotated Vibrato detected

P R F A S P R F A S

AdaTS
F0 29 23 20 23 11 24 24 21 24 10
Predominant melody 25 26 22 26 14 28 30 26 30 18
Dominant band 36 27 26 27 12 30 32 27 32 19

StaTS / 48 46 46 46 26 45 42 43 42 23

VF-DS / 21 21 21 21 11 15 13 13 13 9

Table 6.3: Results of performer identification in the Violin-II dataset
using the proposed adaptive time scattering (AdaTS), the standard
scattering (StaTS), and the VF-DS baseline of detected and annotated
vibratos. The AdaTS are calculated from the three decomposition
trajectories for comparison: fundamental frequency (F0), predominant
melody, and dominant band. P , R, F , A, and S are precision, recall, F-
measure, accuracy, and the standard deviation of F across all performers
(all in %), respectively. ’/’ means not applicable.

As discussed in Subsection 6.1.3, the main problem of the proposed
system using the AdaTS features lies in the inaccurate decomposition
trajectory extraction. Indeed, there are three stages in our proposed
system: decomposition trajectory extraction, vibrato detection, and
performer identification. We have evaluated the vibrato detection and
the performer identification stages separately without assessing the first
stage in the case of AdaTS. This is because we do not have ground
truth for any of these trajectories. This may point out the importance
of separating the target track prior to its decomposition trajectory
extraction when applying the AdaTS to polyphonic music. Extracting
the decomposition trajectory directly from the mixture would produce
a large amount of false negatives, verified by the low recall scores in
Table 6.2. Figure 6.5 top and bottom show the confusion matrices
obtained by the StaTS computed from the annotated and the detected
vibratos, respectively. High confusion between Salvatore Accardo and
other performers is observed for both cases. Performer identity of no
segments is recognised as Itzhak Perlman.
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Figure 6.5: Normalised confusion matrices of performer identification
in the Violin-II dataset based on the standard time scattering (StaTS)
using ground truth vibratos (top) and automatically detected vibratos
(bottom).
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6.1.5 Discussion and conclusions

This section has proposed a fully automatic system for identifying
performers in polyphonic orchestral music using the proposed adaptive
time scattering (AdaTS) and the standard time scattering (StaTS) of
detected vibratos. The system first detects vibratos from full-length
recordings and the scattering features of these detected vibratos are
then reused for performer classification. Comparing the performance of
these two representations with the vibrato feature distribution similarity
(VF-DS) baseline, the StaTS improves the accuracy by more than 10%
than the other two, using either annotated or detected vibratos. The
poor performance of the AdaTS results from its dependency on the
extracted decomposition trajectory, an error-prone stage in the case
of polyphonic music. This points out the limitation of applying the
AdaTS directly to polyphonic music, which may suffer from extracting
the harmonic partial of the target track from the mixture. However, the
classification accuracy does demonstrate that the overall identification
performance of the AdaTS is better than that of the VF-DS baseline.
Accuracy values below 50% for all methods may be attributed to the
lack of piece diversity of the current dataset, with only 5 pieces in total.

As future work to mitigate tracking difficulties, we will apply source
separation techniques (Cano et al., 2018; Stöter et al., 2019) or use
multi-pitch detection and instrument recognition methods that would
assign a pitch to a specific instrument (Giannoulis and Klapuri, 2013)
to obtain the target track prior to the AdaTS feature extraction. This
is to ensure that the decomposition trajectory always corresponds to a
harmonic partial of the target instrument. We could also make use of the
score to improve the extraction accuracy of the decomposition trajectory
(Devaney et al., 2012). Finding the solo performance of the same piece
by the same violinists and comparing the performer identification results
with that obtained in this section are also potential ways to verify the
proposed methodology.

For the scattering representations that do not rely on a decompo-
sition trajectory discussed in Subsection 4.4.4, we have only explored
the StaTS. Another direction would be comparing the performance of
the other scattering representations, such as the frequency-averaged
time scattering and the StaTS with principal component analysis, with
those used in this section for identifying performers in polyphonic mu-
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sic. Besides the abundance of vibratos, other pitch modulation-based
techniques, such as tremolos and trills, are also frequently used in violin
music. We can also extend the framework to performer identification
using scattering features of multiple types of playing techniques. We
currently label the performer identity at segment level by majority vote
of its frame labels, which may not capture the temporal changes of
vibrato rate and extent. For example, we observe that some performers
start vibrato with a low rate, gradually increase it, and finally slow down.
In this case, a majority vote of frame labels ignores such variations.
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6.2 Joint Scattering for Chick Call Recognition

Similarly to the application of the time scattering representations to
performer identification, this section investigates the applicability of
the joint time–frequency scattering (JTFS) for recognising chick calls.
This is motivated by the observation that chick calls exhibit similar
spectro-temporal patterns as the pitch evolution-based techniques (see
Section 5.1).

6.2.1 Background

Livestock farming is central for human sustainment. As farming tech-
nologies are booming, the large-scale and breeding-intensive poultry
industries necessitate systems to automatically monitor the welfare of
animals. Livestock vocalisations play a crucial part in such systems,
for example, assessing laying hens’ thermal comfort (Du et al., 2020),
finding avian influenza-infected chickens to prevent the spread of dis-
eases (Cuan et al., 2020), and detecting abnormal sound of broilers
(Liu et al., 2020) as an early warning tool. Vocalisations produced by
animals contain important information about their health, emotion, and
behaviour (Briefer, 2012).

To the author’s knowledge, there is limited computational research on
analysing chick vocalisations and not yet any work on developing fully
automatic systems for detecting and classifying chick calls. Collias and
Joos (1953) grouped calls produced by young chicks into pleasure calls
and contact calls (also known as distress calls), analysed the character-
istics of these calls through displaying them on the spectrogram, and
explored the common features of the sound signals that stimulate the
production of each type of call. It was reported that contact calls are
composed of descending frequencies only, are much louder, reach to lower
frequencies, and are given at a slower rate; while pleasure calls perform
the opposite, i.e., are composed of ascending frequencies, are much softer,
start from higher frequencies, and are produced at a higher rate. Marx
et al. (2001) analysed variations of chick sound patterns under successive
changes in social isolation. Four types of chick calls were all labelled
manually by visual inspection of the spectrogram: contact calls, short
peeps, warbles, and pleasure calls.

The work in this section is a pilot study towards a fully automated
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system for real-time chick-robot interaction, where the robot interactively
plays sounds appropriate to the context, for example, to attract, reassure,
or calm down the chicks. It is a collaborative work between the author of
the thesis and the Comparative Cognition Lab at the School of Biological
and Behavioural Sciences of Queen Mary University of London. There are
four aims with this project: (1) creating a dataset of chick call recordings
and call type annotations; (2) developing an offline automatic system
to detect chick calls in the dataset; (3) improving the detection system
to automatically recognise the type of each chick call; (4) making the
offline systems real-time, i.e., recognising chick calls and producing back
calls to interact with the chick, and analysing the chick-robot interaction
from the biological perspective. The author of this thesis is responsible
for tasks (2) and (3), i.e., developing automatic systems for chick call
detection and classification, which we introduce in Subsection 6.2.3
and Subsection 6.2.4, respectively. Since the content of the dataset
provides useful context for the work, we describe the data collection and
annotations in Subsection 6.2.2.

6.2.2 Dataset

As a pilot study1, we collected data in laboratory conditions with a
schematic shown in Figure 6.6. The arena is an open plastic box of size
60 cm × 92 cm × 52 cm. The walls of the arena are lined with white
plastic, and the floor is lined with paper towels. We divided the arena
into 5 regions—start, far, centre, close, and touch—and place the chick
in the middle of the start region. A test stimulus (an imprinting object
or a robot), was placed in the region furthest from the chick, as shown by
the blue circle in the figure. The experiments used chicks from the Ross
308 strain of the species Gallus gallus. Chicks were hatched in darkness
and in individual boxes so that they had no visual or tactile experience
prior to the experiment. We placed one chick at a time in the arena
within 12 hours after their hatching. The chick was transferred from the
hatchery to the arena using a box of size 15 cm× 15 cm× 15 cm.

For each chick, we recorded their movements and sounds for around
10 minutes by a Microsoft LifeCam Studio Webcam and an AKG P170
microphone with a Behringer U-Phoria UMC204HD audio interface.

1All experiments in this study were approved by the Animal Welfare and Ethical
Review Body (AWERB) committee at QMUL.
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The camera was placed approximately 1 m above the centre of the arena;
and the microphone was 1 m above the outer wall of the arena. All data
was recorded at a sampling rate of 44.1kHz/16bits and we collected one
recording for one chick at a time.

Figure 6.6: Schematic of the laboratory conditions for chick sound
collection. This figure is contributed by the Comparative Cognition Lab,
our collaborator in this project.

In this thesis, we develop a chick call detection system using the
data collected from 12 chicks and a chick call recognition system based
on the data of 4 chicks. This is due to the available annotations we
have currently: start time and end time for 12 chicks and call type
annotations for 4 of them. All the annotations were created by 2
experts experienced with chick sounds from the Comparative Cognition
Lab at Queen Mary University of London. Three types of chick calls
were annotated: pleasure, contact, and uncertain calls. Figure 6.7 top
displays examples of the recorded pleasure and contact calls. As can be
observed, pleasure calls are characterised by upward frequency changes,
low energy, and short duration while contact calls exhibit the opposite,
i.e., downward frequency changes, high energy, and long duration, which
matches the findings in (Collias and Joos, 1953). Uncertain calls are
those calls the annotators are not certain about. The whole repertoire
of chick vocalisations is beyond the scope of this work. We introduce
how the rapid frequency changes of pleasure and contact calls can be
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captured by the JTFS in Subsection 6.2.4.

6.2.3 Chick call detection

The number of calls is an indicator of the state of chicks (Marx et al.,
2001). To facilitate real-time implementation, we develop separately
a casual system for extracting chick call segments and for counting
the total number of calls. The system first detects the onsets of chick
calls and then extracts call segments by removing silence within each
inter-onset interval.

Onset detection

The onsets of chick calls are detected using SuperFlux (Böck and Widmer,
2013), an algorithm outperforming the benchmark spectral flux method
(Masri, 1996) for onset detection. The latter calculates the difference
per frequency band in the magnitude spectrogram, sums up all positive
changes over all bands, and selects the final onsets using peak-picking;
while the former adds a maximum filter along the frequency axis before
summing up the positive changes. This reduces the number of false
positives originated from frequency modulations without missing onsets.

The implementation of the algorithm is based on the Librosa Python
package (McFee et al., 2015), which takes the log-melspectrogram as
input. We use 8 mel bands, ranging from 2048 to 6000 Hz. This is
motivated by the observation in Figure 6.7 that the energy of both
pleasure and contact calls concentrate over this frequency range. We
evaluate the onset detection results using the mir_eval Python library
(Raffel et al., 2014). An onset is correctly detected when it falls in a
tolerance window of 150 ms around that of the ground truth. Figure 6.7
top also displays the detected onsets (dotted lines) of chick calls in the
spectrogram. The onset detection results for the 12 chicks, 7 males and
5 females, are shown in Table 6.4 with a total number of 8599 calls.
We achieve recall scores above 90% for the onset detection of all chicks.
The average precision, recall, and F-measure scores obtained are 84.3%,
97.0%, and 90.0%, respectively.

135



6.2. Joint Scattering for Chick Call Recognition

Figure 6.7: Example visualisation of chick call onset detection and seg-
mentation results. Top: spectrogram with reference onsets in solid lines
and detected onsets in dashed lines; bottom: comparison of reference
call segments and detected call segments. For this example, frame-based
P=96%, R=67%, and F=79%.

Chick ID #calls
Onset detection Segmentation Segmentation

(mir_eval) (frame-based) (event-based)

P(%)R(%)F(%) P(%)R(%)F(%) P(%)R(%)F(%)

85M 442 74 94 83 56 80 66 62 77 69
87M 1255 95 98 97 75 70 72 68 67 67
91M 525 77 97 86 61 86 71 65 81 72
21M 967 72 95 82 57 62 59 33 41 36
70M 647 79 98 87 58 62 60 50 61 55
32M 748 81 98 89 88 70 78 51 58 54
39M 987 98 99 99 97 79 87 94 95 94
89F 789 88 99 93 87 82 84 78 86 81
34F 707 88 97 92 45 46 46 46 47 47
41F 1052 92 93 93 78 76 77 80 80 80
48F 294 86 99 92 46 36 40 31 35 33
72F 186 81 98 89 35 48 40 42 47 44

T/A 8599 84.3 97.0 90.0 65.3 66.4 65.0 58.3 64.4 61.1

Table 6.4: Onset detection and segmentation results for the audio
recording of each chick in the chick call dataset (M=male; F=female;
T/A=total or average).

Segmentation

The intervals between two onsets include a large proportion of silence,
as observed from Figure 6.7 top. We extract chick call segments from
the inter-onset intervals by removing silence where the energy of the
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signal is below a certain threshold. A threshold of -30 dB is used based
on experimenting with different values. Figure 6.7 bottom shows the
comparison of the reference chick call segments and the output segments
of our detection system.

We use both frame- and event-based precision P, recall R, and F-
measure F introduced in Subsection 2.2.3 to evaluate the detected
chick call segments. For event-based evaluation, we use the onset-offset
method, i.e., a segment is correctly detected when its onset falls in
a tolerance window of 200 ms around that of the reference call and
its duration is at least 50% of the reference call duration. We first
use the mir_eval Python library (Raffel et al., 2014) to calculate a
maximum match of the onset times between reference and detected
segments subject to the window constraint; and then compare the
matched segments and reference in terms of duration. As shown in
Table 6.4, average F-measures of 65.0% for frame-based evaluation, and
61.1% for event-based evaluation are obtained. Checking the detection
errors from the audio, we find that the low F-measures for chicks 34F,
48F, and 72F result from the large proportion of pleasure calls. Some of
these calls are too soft to be distinguished from other sounds such as
steps of the chicks as they move in the experiment arena.

6.2.4 Chick call recognition

Motivated by the similar spectro-temporal patterns exhibited by chick
calls and the portamento playing technique (see Section 5.1), we apply
the joint time–frequency scattering (JTFS) features on the detected
segments corresponding to chick calls for classification. Figure 6.8 shows
the log-spectrograms and the frame-wise JTFS features of a pleasure call
and a contact call. The directions of frequency changes are captured by
the clear slopes, as shown by the bottom figures. For pleasure calls, the
energy concentrates on the upward (left) side, while that of the contact
call appears on the downward (right) side. Note that in Section 5.2
for portamento recognition, we use the JTFS of the direction with
maximum spectro-temporal energy or the JTFS averaged over both
directions, which we defined as the direction-invariant JTFS. Aiming at
developing a general framework for playing technique recognition, we
focus only on the playing technique type, e.g. regarding upward and
downward portamenti as one class; while, in this section, chick calls with
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upward and downward frequency changes belong to different classes, i.e.,
pleasure calls and contact calls. Therefore, we use the JTFS of both
directions for chick call classification in this section. Due to the limited
call type annotations in our dataset, we include only 4 chicks for the
evaluation of our recognition system. Table 6.5 lists the number of calls
from each class, which are highly imbalanced.

(a) Pleasure call (b) Contact call

Figure 6.8: Direction of frequency changes captured by joint time–
frequency scattering (JTFS). Top: log-spectrograms of pleasure call and
contact call; bottom: frame-wise JTFS features of pleasure call and
contact call.

Chick Pleasure Contact Uncertain Total

85M 115 315 9 439
87M 613 492 146 1251
89F 47 681 60 788
91M 35 454 34 523

Total 810 1942 249 3001

Table 6.5: Number of pleasure, contact, and uncertain calls produced
by each chick in the chick call dataset.
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Recognition system

We propose a chick call recognition system with three different classifi-
cation schemes:

• Scat-Only: in this scheme, a machine learning classifier takes
the JTFS features of the whole recordings as input and outputs
frame-wise call type labels; neighbouring frames with the same
label are then fused into chick call events. Similarly to portamento
technique recognition in Section 5.5, we postprocess the obtained
chick call events by gap filling and minimum duration pruning.
We fill the gaps between neighbouring events when the gaps are
shorter than the shortest event in the training set; and prune the
events that have smaller duration than the minimum duration
event in the training set. The minimum duration is automatically
calculated subject to the call type and the train-test split during
recognition.

• Seg-Scat: this method builds upon the detection system introduced
in Subsection 6.2.3. A machine learning classifier takes the JTFS
features of the extracted chick call segments as input, outputs
frame-wise labels, and assigns one label to each segment based on
the majority vote of its frame labels.

• Seg-HLF: this scheme also uses the extracted chick call segments
in Subsection 6.2.3 and assigns labels at segment level. Different
from the Seg-Scat, it takes high level features (HLF) calculated
from each segment as input and outputs one label per segment
directly. This is a causal system proposed to facilitate real-time
implementations.

All classification schemes use support vector machines (SVMs) (Hastie
et al., 2009) with Gaussian kernels as classifiers due to their good
generalisability based on a limited amount of training data (Albu and
Martinez, 1999). In the recognition process, we conduct a subject-
independent evaluation, i.e., splitting recording of one chick in the
test set and recordings of the remaining 3 chicks in the training set.
Four splits are conducted in a circular way to increase the validity
of the results. Within each split, we run a 3-fold cross-validation,
sampling on the training dataset in a way that ensures each fold includes
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approximately the same ratio of positive and negative class instances
for a given chick call types. This is to avoid the cases that there is
no example or there are too few examples of a give chick call class in
the validation set if we further split the training set based on chick
subject. The hyperparameters to be optimized are the error penalty
parameter C and the width of the Gaussian kernel γ. We use consistent
parameter grids of 10{0:1:2} and 10{−4:1:−2} for C and γ, respectively,
during training, and select the best SVM hyperparameters for testing.
Both frame- and event-based precision P , recall R, and F-measure F are
used as the evaluation metrics. The frame size is 93 ms for frame-based
evaluation in all classification schemes. For event-based evaluation, we
use the onset-offset method with the same collar as that we use for the
segmentation evaluation in Subsection 6.2.3. We introduce details of the
feature extraction process for each classification scheme in the following
paragraphs.

Scat-Only We calculate the JTFS features of the full recordings using
the same hyperparameters as that we used for portamento technique
recognition in Subsection 5.3.1, i.e., T = 214, Q

(t)
1 = 16, Q

(t)
2 = 2, Q

(f)
1 =

2, α = 2,M = [0, 50] Hz, and a spectral averaging scale covering the
entire log-frequency axis. This is because both pleasure and contact calls
exhibit monotonic frequency changes, similar to that of the portamento
technique. To account for temporal context, we calculate the mean and
standard deviation of 5 frames centred at the current frame. The frame
size and dimensionality of the input feature to the classifier are 92 ms
and 850, respectively.

Seg-Scat Different from the Scat-Only method, this classification
scheme first conducts a segmentation step to extract chick call candidates
using the detection method in Subsection 6.2.3. The JTFS features are
then calculated for each segment using the same hyperparameters above;
therefore the frame size and dimensionality of the features are the same
as that of the Scat-Only method.

Seg-HLF For the purpose of a real-time implementation, we develop a
computationally efficient system based on the HLF to classify the chick
call candidates extracted in Subsection 6.2.3. Both the Scat-Only and
the Seg-Scat methods use the JTFS features only, which requires fine
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resolution filterbanks in the scattering transform to capture variation of
the spectro-temporal patterns, for example, 16 filters per octave in the
first-order time scattering here. When our focus is the call direction only
rather than variation of the whole spectro-temporal pattern, fewer filters
and a larger frame size can be used, which would potentially improve
computational efficiency.

Motivated by the characteristics of chick calls (see Subsection 6.2.2),
we propose 6 high level features for the Scat-HLF classification scheme:
duration, direction, frequency range, average frequency slope, average
frequency slope change, and number of high energy frequency bands.
Therefore we obtain a 6-dimensional feature vector for each segment,
which is calculated from the JTFS transform except the duration S of
the extracted chick call segments. We define the other five high level
features as follows:

1. Direction (D): Rather than taking one side of the JTFS fea-
tures (see Figure 6.8) as the Scat-Only and Seg-Scat, the Seg-HLF
sums up the energy on each side and returns only two values per
time frame: dup(n) and ddown(n). dup(n) and ddown(n) roughly
measure the confidence of upward and downward directions, re-
spectively, where n = 1, 2, ..., N is the n-th time frame and N

is the total number of time frames in the call segment. The
frame-wise direction information can be expressed as the difference
d(n) = dup(n)− ddown(n). We take the average of the frame-wise
direction information as the direction feature of the segment:

D =
1

N

N∑
n=1

d(n). (6.1)

D > 0 suggests that the direction of the segment is upward; and |D|
is the confidence of upward as compared to downward directions.
To have comparable results, we calculate the direction information
using the same JTFS hyperparamters in all three classification
schemes. Note that in real-world applications, fewer filters and
larger frame size are recommended for the Scat-HLF classification
scheme.

2. Frequency range (Fr): Besides duration and direction, we ob-
serve that the discriminative information between pleasure and
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contact calls also exists in the frequency range, average frequency
slope, average frequency slope change, and number of high energy
frequency bands, as observed from Figure 6.8. This information
can be extracted from the first-order scattering transform. To
have a finer temporal resolution, we use a smaller T = 212 and
calculate only the first-order time scattering coefficients, which
results in a frame size of 23 ms. For each call candidate, we extract
the dominant frequency bands in the first-order time scattering
and denote the corresponding centre frequency as fdom(n). The
frequency range of the call is calculated as

Fr = max
(
fdom(n)

)
−min

(
fdom(n)

)
, (6.2)

with the unit Hz, where n=1,...,N.

3. Average frequency slope (Fas): We define the frame-wise fre-
quency slope fslope(n) as the first-order difference of the dominant
frequency:

fslope(n) =
fdom(n)− fdom(n− 1)

h
, (6.3)

with the unit Hz/s, where n=2,...,N and h is the frame size. The
average frequency slope of the call segment is then

Fas =
1

N − 1

N∑
n=2

fslope(n). (6.4)

4. Average frequency slope change (Fasc): The frame-wise fre-
quency slope change fsc(n) is defined as

fsc(n) =
fslope(n)− fslope(n− 1)

h
(6.5)

with the unit Hz/s2, where n=3,...,N. We use the average to
estimate the slope change over time for the call segment

Fasc =
1

N − 2

N∑
n=3

fsc(n). (6.6)

5. Number of high energy frequency bands (Nh): We count the
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number of high energy frequency bands (Nh) from the first-order
time scattering where the energy of the band is more than 50% of
dominant band energy.

Baseline

We compare the JTFS features with commonly used spectral features,
the mel-frequency cepstral coefficients (MFCCs) (Abeßer et al., 2010),
for chick call recognition. Similarly to the proposed recognition system,
we conduct two classification schemes for the MFCCs, i.e., MFCC-Only
and Seg-MFCC. The former calculates the MFCCs of the full recordings,
outputs frame-wise labels of chick call type, and fuses neighbouring
frames with the same labels into chick call events. The latter first
conducts a segmentation step to extract chick call candidates using the
detection method in Subsection 6.2.3 and then extracts the MFCCs for
each segment. The frame size and dimensionality of the MFCC features
are 25 ms and 24, respectively.

Results

Table 6.6 and Table 6.7 list the frame- and event-based F-measures
for chick call recognition in different classification schemes using the
scattering features and the MFCCs: Scat-Only, Seg-Scat, Seg-HLF,
MFCC-Only, and Seg-MFCC. Note that only the classification schemes
with ‘Seg-’ use features calculated from the detected chick call segments
(see Subsection 6.2.3) while the Scat-Only and the MFCC-Only schemes
recognise chick calls directly from full-length recordings. To show how
the onset detection and segmentation performance affect the ‘Seg-’
classification schemes, we also compare the recognition results using
the annotated segments to those using the detected segments. ‘A-D’ in
tables refers to the averaged F-measure over all chicks using the detected
segments while ‘A-A’ corresponds to that using the annotated segments.

We compare the recognition results in Table 6.6 and Table 6.7 from
four fronts: the scattering features versus the MFCCs; the three classi-
fication schemes using the scattering features; the recognition results
using detected versus annotated chick call segments; and the results
for different types of chick calls. Comparing the Scat-Only with the
MFCC-Only method, we observe that they achieve comparable results in
the frame-based evaluation, both with macro F-measures of 32.1%; while
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6.2. Joint Scattering for Chick Call Recognition

in event-based evaluation, the former underperforms the latter, with
macro F-measures of 12.7% against 23.8%. For the comparison of the
scattering features and the MFCCs using the detected segments, both
Seg-Scat and Seg-HLF outperform Seg-MFCC, with macro F-measures
improved by 10.1% and 4.7%, respectively, in the frame-based evaluation;
the corresponding improvements in the event-based evaluation are 9.1%
and 6.3%, respectively.

Narrowing the scope with the recognition results using the scattering
features—Scat-Only, Seg-Scat, and Seg-HLF—the Seg-Scat achieves
the best performance in both frame- and event-based evaluation. The
Seg-Scat increases the macro F-measure by 6.2% and 5.4% as compared
to that of the Scat-Only and the Seg-Scat, respectively, in the frame-
based evaluation; macro F-measure improvement of 16.7% and 2.8%
appears correspondingly in the event-based evaluation. It is expected
that the Scat-Only scheme achieves comparable frame-based but much
lower event-based macro F-measures in contrast to the Seg-Scat method,
where the latter makes use of chick call segments, either detected or
annotated.

As can be seen from both tables, all ‘Seg-’ methods, i.e., Seg-Scat,
Seg-HLF, and Seg-MFCC, exhibit much better performance using the
annotated chick call segments as compared to using the detected chick
call segments. In the frame-based evaluation, macro F-measures increase
by 20.9%, 16.5%, and 10.6% for the three methods, respectively; the
improvement is even higher in the event-based evaluation, with 26.2%,
20.8%, 14.3% correspondingly. This verifies the potential of the JTFS
features (in the Seg-Scat scheme) or high level features (in the Seg-HLF
scheme) for chick call classification. Inspecting the F-measures of each
type of calls, we notice that all five methods exhibit better performance
on contact call classification than that on recognising pleasure and
uncertain calls. This may be attributed to the small amount of samples
for the latter two types of calls. Yet, the scattering features are less
sensitive to data imbalance as compared to the MFCCs. For example,
the Seg-Scat and Seg-HLF achieve F-measures of 60.3% and 56.0%
against 17.0% from the Seg-MFCC for recognising pleasures call in the
frame-based evaluation, although all three methods have comparable
results on contact call classification. The Seg-Scat method is the most
robust to data imbalance.
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6.2.5 Discussion and conclusions

As a pilot study aiming at developing a real-time interaction system for
chick and robot, this section has proposed a chick call detection system
and a chick call recognition system based on the joint time–frequency
scattering (JTFS). This is motivated by the observation that chick
calls have similar spectro-temporal patterns as the portamento playing
technique, both exhibiting continuous frequency changes with temporal
modulations, as shown in Figure 6.8 top and Figure 5.2 (a), respectively,
We introduce three classification schemes for recognising chick calls:
using the JTFS features of full recordings (Scat-Only); segmenting audio
into chick call candidates and classifying each segment using the JTFS
features (Seg-Scat); and, segmenting audio into chick call candidates and
classifying each segment using high level features (Seg-HLF). The results
show that the scattering features, either the JTFS or high-level features,
outperform the MFCCs for recognising chick calls. The Seg-Scat method
achieves the best result and is the most robust to data imbalance. The
Seg-HLF underperforms the Seg-Scat method while the former may
potentially reduce computation with less filters and a larger frame size
in practical applications. The comparison between the classification
results using detected and ground truth chick call segments verifies the
potential of the JTFS feature for chick call recognition.

Four limitations exist in the current study. We conduct experiments
in a laboratory where the collected data is much cleaner as compared to
real living conditions of the chicks. For the latter case, prepossessing the
recordings by a denoising method to remove noise prior to the application
of the JTFS features would be useful. We place one chick at a time in
the experiment arena while in a practical case there may be many chicks
vocalising simultaneously. For example, a pleasure call produced by one
chick may overlap with a contact call produced by another chick. In
such cases, we could apply a source separation technique (Stöter et al.,
2019) to separate the sound of multiple chicks before calculating the
JTFS features. The other two limitations include the the small amount
of data we have used for evaluating the recognition system and the
highly imbalanced number of samples for each class.

One direction for future work will be using semi-supervised learning
with limited annotations or unsupervised learning without annotations
for recognising chick calls. The latter may also potentially discover new
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chick call patterns. Based on the detection and classification system,
a close-loop interaction between a robot and the chicks (Lerch et al.,
2011) could be designed. Using methods that handle imbalanced data
may improve the recognition performance of chick calls. We could also
compare the proposed systems to vocalisation detection and classification
systems developed for other animals in the literature, for example, the
broiler stress detection system proposed in Jakovljević et al. (2019).
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Chapter 7

Conclusions and Future Work

In this thesis, we have proposed a general framework for playing tech-
nique recognition, with generalisability evaluated over different datasets
with a variety of instrumental and vocal techniques, and applicability
tested on additional audio classification problems. In this chapter, we
summarise the contributions in Section 7.1, discuss the strengths and
weaknesses of the proposed methodology in Section 7.2, and present
possible directions for future research in Section 7.3.

7.1 Summary of Contributions

With limited data available for a classification problem, a possible way
to guarantee performance without sacrificing generalisability is to find a
compact and informative representation that removes variabilities irrele-
vant to the task. This thesis provides such a way based on the scattering
transform for playing technique recognition, a problem suffering from
the scarcity of data. Identifying the variabilities of playing techniques,
we find that the irrelevant ones include time-shifts, time-warps, and
frequency-transpositions, which are indicated by the independence of
playing techniques to performer, piece, instrument, genre, and pitch (see
Section 2.2).

The scattering transform is a flexible framework with various combina-
tions of temporal and spectral wavelet decompositions, each combination
providing certain invariance properties. Based on the spectro-temporal
patterns of playing techniques, we propose the adaptive scattering
and the direction-invariant joint time–frequency scattering (dJTFS),
each for representing one family of playing techniques. The adaptive
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scattering is a variant of the scattering framework, providing repre-
sentations such as the adaptive time scattering (AdaTS), the adaptive
time–rate scattering (AdaTRS), and the combination of these two opera-
tors (AdaTS+AdaTRS). All these representations are invariant to large
frequency-transpositions besides the invariance to time-shifts and time
warps. These invariance properties are desirable for representing pitch
modulation-based techniques (PMTs), a group of periodic modulations
elaborated on stable pitches. The dJTFS differs from the adaptive scat-
tering in that the former applies frequency scattering along the acoustic
frequency axis, which captures spectro-temporal modulations. This
fits the characteristics of pitch evolution-based techniques (PETs), a
group of playing techniques exhibiting monotonic pitch changes. Besides
the invariance properties, the adaptive scattering are more compact
as compared to the standard time scattering; and the dJTFS captures
the joint activation of PETs with the dimensionality reduced in half in
contrast to the original joint time-frequency scattering.

The methodology is first tested on a newly created dataset of Chi-
nese bamboo flute performances (CBFdataset), followed by evaluations
over three additional datasets with a variety of instrumental and vocal
techniques. For the verification on the former, we focused on seven com-
monly used playing techniques in music signals: vibrato, tremolo, trill,
flutter-tongue, acciaccatura, portamento, and glissando; and group them
into PMTs (the first four) and PETs (the last three). We begin with
designing two recognition systems with binary classification schemes,
each focusing on one family of playing techniques (see Section 4.3 for
PMT recognition and Subsection 5.5.1 for PET recognition), and set the
scattering hyperparameters according to the characteristics of each type
of playing technique. This is followed by another recognition system with
a multiclass classification scheme (see Subsection 5.5.2) which classifies
all playing techniques simultaneously and provides confusion matrices
between playing techniques. The system with a multiclass classification
scheme forms the prototype for evaluating the methodology on the
additional datasets (see Section 5.6). All systems achieve comparable
or better results compared to the start-of-the-art. We provide a formal
interpretation of the role of each component in the scattering feature
extractors, confirmed by explanatory visualisations.

Motivated by the invariance properties, we further test the appli-
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cability of the proposed representations to other audio classification
problems. We first apply the adaptive time scattering and the standard
time scattering for identifying violin performers in polyphonic orchestral
music (see Section 6.1) using vibratos detected by our proposed playing
technique recognition system. Another system is developed for detecting
and classifying chick calls (see Section 6.2), such as pleasure and contact
calls, using the joint time–frequency scattering. This is inspired by the
observation that the chick calls exhibit similar spectro-temporal patterns
as certain playing techniques.

As an endeavour to enrich the available data for analysing playing
technique in context and for computational research on non-Western
instruments, we create and publicly release the CBFdataset to the
community, which is the first dataset on the Chinese bamboo flute (CBF).
Containing full-length CBF performances and expert annotations of
playing techniques, it can be used for computational music performance
analysis for this particular instrument.

7.2 Discussion

Despite the potential of the proposed framework, we also present some
other perspectives and limitations regarding the work conducted in this
thesis. The introduction of PMTs and PETs presents a perspective of
analysing playing techniques in groups. Techniques addressed are not
limited to the seven playing techniques investigated. For example, the
current work only considers four types of PMTs, i.e., vibrato, tremolo,
trill, and flutter-tongue; the methodology is applicable to other periodic
patterns, such as tonguing. The recognition performance on other
types of playing techniques in the additional datasets validates the
generalisability of the proposed methodology.

A consistent yet flexible taxonomy for playing techniques, either for
instrumental or vocal techniques, is under-explored. Robustness to
minor alternations of the taxonomy remains a challenge for playing
technique recognition systems. The same technique may exist under
a different name in the context of another instrument or genre. Take
the playing techniques in the additional datasets (see Subsection 2.2.2)
for instance, portamento in the VPset corresponds to glissando in the
SOL dataset. The definition of a playing technique may also overlap
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depending on the player or singer performing it, for example, trill and
vibrato in the VocalSet (Wilkins et al., 2018).

The experiments in this thesis all operate on the original datasets
directly without any data augmentation. In real-world applications
where the music may be processed in various ways, augmenting the
data with sound effects such as reverberation and flanger (Ramires and
Serra, 2019) may improve the robustness of the proposed recognition
system. Another observation is that data imbalance may not significantly
influence the detection results. The techniques with many more samples
do not achieve better results, for example, the portamento technique
in the CBFdataset and the straight technique in the VocalSet. This
points to a robustness and compactness of the proposed representations
to learn quickly the discriminative information based on a small number
of examples.

We use in this thesis only the supporter vector machine classifier, other
classifiers such as convolution neural network classifiers or recurrent
classifiers, could be investigated. The recurrent classifiers like long short-
term memory units (Warrick et al., 2019) account for temporal context,
which might be useful for playing technique recognition. Since co-
articulations form a small portion of the CBFdataset, we conduct single-
label multiclass classification during the recognition. This is done by
discarding the samples with more than one label. In practice, a user may
expect a recognition system to detect all playing technique components
in a co-articulation. In this case, a multilabel classifier should be the
most appropriate choice with a modification of the evaluation metric
simultaneously.

During the recognition of PMTs in Chapter 4, we notice that the
dominant band trajectory exhibits instabilities resulting from octave
jumps, i.e., frequency switches between harmonic partials. Preprocessing
the trajectory by a median filter improves its stability but also smooths
out short note changes bound with PMTs. To avoid the latter case,
one may improve the system by decomposing a certain number of
frequency bands with harmonic relationships to the dominant band. As
we have investigated in Section 6.1, the adaptive scattering suffers from
the inaccurate extraction of the decomposition trajectory when being
applied to polyphonic music. The information loss at this error-prone
stage cannot be recovered for subsequent processing. However, the entire
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pipeline is potentially applicable to polyphonic cases if we preprocess
the music by a source separation technique (Stöter et al., 2019) or use
a multi-pitch detection and instrument recognition method that would
assign a pitch to a specific instrument (Giannoulis and Klapuri, 2013) to
obtain the target track prior to the decomposition trajectory extraction.
This may increase the possibility that the decomposition trajectory
always corresponds to a harmonic partial of the target instrument.

7.3 Future Work

We summarise the potential directions for future research into two groups:
improvement of the methodology itself and other possible applications
of the methodology. Trainable scattering (Cotter and Kingsbury, 2019)
is a potential future direction in the first group. In this thesis, we set
the hyperparameters of the scattering representations motivated by the
characteristics of the playing techniques in general. This is to develop an
explainable and generalisable playing technique recognition framework
that can be applied to other instruments and datasets directly without
retraining. Indeed, this manual setting of scattering hyperparameters
may not lead to an optimal performance for a specific dataset. As future
work, we could automate this process by tuning the hyperparameters of
the scattering transform and the classifier jointly for each type of playing
technique, or for a specific instrument or genre. The explainability of the
scattering transform may provide trainable scattering a promising way
to develop explainable deep learning models for audio signals. Finding
the meanings of the obtained hyperparameters from music perspective
and identifying the change of regions in the representation caused by
hyperparameter variation would boost our understanding of the task at
hand. The proposed adaptive scattering and dJTFS representations are
two examples of the possible variants of the scattering transform. The
flexibility of the scattering transform suggests that another direction
would be to expand the framework by developing new operators or
adding other existing operators to make the system as general-purpose as
possible. For example, the spiral scattering (see Subsection 2.5.2) which
captures variations across harmonics, may provide useful information
for the recognition of playing techniques characterised by harmonic
variations, such as multiphonics.
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The investigation of the scattering transform and the proposed playing
technique recognition framework may benefit a wide range of applica-
tions. The invariance properties provided by the different scattering
representations may be attractive to other music signal analysis tasks,
such as music structure analysis, genre recognition, instrument recogni-
tion, and music transcription. There could be some future development
work towards a system that provides an automatic transcription of
playing techniques in a way that is easy to understand for a user who
is not a computer science expert, for example, by developing a VAMP
plugin. Motivated by the observation in Figure 4.2 that the second-order
scattering transform carries information on the modulation rate, we can
use the scattering transform as a tool for playing technique modelling.
Figure 7.1 shows an example of modelling the modulation rate of a
trill played on G6-A6. A clear harmonic partial appears between 5 and
8 Hz, which indicates the range of the modulation rate. The modulation
extent can be implicitly estimated by the decomposition of the expanded
frequency bands around the decomposition trajectory (see Section 4.2).

Figure 7.1: Example of a trill modelling played on G6-A6 using adaptive
scattering. Top: log spectrogram; bottom: adaptive time scattering
feature before log-normalisation.

Playing technique recognition and modelling can greatly help music
synthesis systems generate realistic sounds that account for acoustic vari-
ations due to the exercise of a variety of instrumental or vocal techniques.
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A music note ornamentor is also possible since playing techniques carry
important information regarding musical styles. Remodelling a straight
note based on a playing technique or articulation of a professional per-
former or synthesising playing techniques that go beyond real instrument
limitations present other attractive directions for further exploration,
for example, creating a flutter-tongue effect for piano.

We conclude that the scattering transform offers a versatile and
explainable representation for analysing playing techniques in real-world
music performances, and opens up new avenues for audio signal analysis.
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