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Abstract 

Two-way coupled simulations of the solids-liquid flow in a lab-scale mixing tank operating at a Reynolds 

number of 4,000 and a solids volume fraction of 10% have been performed. The simulations keep track of 

individual particles, including their collisions. Upon a collision a particle is broken if the magnitude of the 

momentum exchanged in the collision exceeds a threshold value. The latter value is a measure for the 

strength of the particle. We observe how the flow systems, with ever decreasing particle sizes, evolve in time 

and quantify which collisions at what location primarily lead to breakage. The revolving impeller is the 

major source of breakage, either directly through particle-impeller collisions or by high-impact particle-

particle collisions in the impeller-swept volume. 
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Introduction 

Manufacturing of particulate materials through precipitation in a supersaturated liquid solution is common in 

the process and pharmaceutical industries. For achieving high levels of heat and / or mass transfer, fluid 

flow, often turbulent, is an essential part of such crystallization operations. From the perspective of the 

crystals, the interaction between solids and liquid has impact on their growth or dissolution, their 

aggregation and their breakage (of primary particles or aggregates).  

This paper focuses on particle breakage and does so by means of numerical simulations. Breakage in 

agitated solids-liquid suspensions has been studied extensively with important papers on experimental work 

by Mersmann and co-workers [1-3] and Asakuma et al [4]. They identified collisions of crystals as the 

predominant cause of their breakage. The intensity of collisions experienced by particles moving through a 

liquid phase depends upon fluid, particle, and flow properties. The mechanical strength of a particle 

determines if it breaks upon colliding with a certain intensity. For non-colloidal particles, i.e. particles large 

enough not to be influenced by Brownian motion, collisions are largely driven by inertia as well as fluid 

velocity gradients. The key dimensionless quantity in this respect is the Stokes number Stk p fτ τ=  with 

pτ  the (inertial) relaxation time of the particle and fτ  a dominant flow time scale. In solids-liquid flow 

systems with Stokes numbers Stk 1≥  collisions occur due to particles diverging from streamlines and so 

encountering other particles [5]. If Stk 1≪  particles follow the flow and velocity gradients on length scales 

comparable to particle size are required for collisions [6]. For Stk 1≫ , collisions are mostly determined by 

the dynamics of the solids, less so by the fluid dynamics [7]. However, different from solids-gas systems, 

agitated solids-liquid systems do not reach very high Stokes numbers.  

It is thus clear that particle behavior in liquids – and specifically particle collisions and breakage – are 

intimately related to flow. For that reason, computational fluid dynamics studies involving the behavior of 

solid particles in liquid have been undertaken to complement and guide experimental work [8-11]. Including 

breakage phenomena in such simulations often goes through population balance modeling. The evolution of 

the particulate system in physical space as well as property space (which most often involves particle size) is 

then described by a population balance equation (PBE) [12,13].  Changes in particle size are modeled in the 
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PBE with “kernel functions”. These function contain the physics of flow and solids behavior responsible for 

particles changing size, not necessarily only as a result of breakage but also due to e.g. growth/dissolution 

and aggregation [13]. The quality of results generated through a PBE approach are thus highly depended on 

the ability of the kernels to capture the essential physics and the accuracy of model parameters that often are 

derived from experimental results. 

In this paper we try out a different approach of keeping track of the evolution of an agitated particulate 

system with breakage. Instead of solving a population balance, we monitor the motion of individual 

particles, including their collisions. The intensity of a collision (more precisely defined below) determines if 

it results in breakage of a particle. An advantageous aspect of this approach is that collisions are dealt with 

from first, classical mechanical, principles and do not need to be modeled based on statistical (local) flow 

and particle properties. A disadvantage is that for computational reasons we need to restrict ourselves to 

small systems while having an appreciable solids volume fraction. This is mainly to limit the number of 

particles to be tracked in a simulation. We want to study high solids loading suspension given their relevance 

in industry and to have systems for which particle-particle collision are an important factor in their overall 

behavior. 

The aim of this paper is (1) to present our numerical approach and apply it in a small-scale agitated 

tank, (2) to quantify the types of collisions (among particles, with the impeller, with the container wall) that 

most likely lead to breakage, and (3) to study how the evolving particulate system with particles gradually 

getting smaller in size feeds back to the behavior of the two-phase system as a whole. At this stage of our 

research we have made the strong assumption that if particles break that they break in two equal parts. This 

is not essential for our methodology. However, it does help us limiting the parameter space to be studied.  

This paper has been organized in the following manner. The next section characterizes the flow 

system: geometry, (dimensionless) parameters characterizing the flow and particulate system, including 

breakage criteria. We then describe the numerical methodology with an emphasis on breakage modeling. 

Physical and numerical settings of the simulations are discussed next. The results comprise of qualitative 

impressions of the two-phase flow and the way the system evolves in time, including its particle size 
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distribution for a range of particle strengths. The final section provides conclusions and an outlook to future 

work. 

Flow system characteristics 

The lab-scale flow system we consider is a rectangular mixing tank with a square footprint with side-length 

L, liquid height H L= , and volume 2V L H=  see Figure 1 that also defines the Cartesian coordinate system 

to be used throughout the paper. The contents of the tank are stirred by an impeller with diameter D. The 

impeller consists of four flat blades, placed under an angle of 45o and mounted on a hub. This so-called 

pitched-blade turbine is set to rotate with a rotational velocity N (revolutions per unit time) in such a way 

that it pumps the liquid in a downward direction (the negative z-direction). The tank contains a Newtonian 

liquid and spherical solid particles. The liquid density is ρ , its kinematic viscosity is ν . Initially all 0n  

particles have the same diameter 0d . The material the particles are made of has density sρ ρ> . The overall 

solids volume fraction in the tank then equals 
3

0 0

6

n d

V

π
φ = . The Reynolds number associated with the 

impeller motion is defined as 2Re ND ν= .  

The particles feel a net gravity force in the negative z-direction. The competition between gravity 

pulling the particles to the bottom and the flow generated by the spinning impeller suspending the particles is 

quantified through the Shields number which here is defined as 
2 2

0

N D

g d

ρ
θ

ρ
=
∆

 with g gravitational 

acceleration and sρ ρ ρ∆ = − . With the Shields number in this form it is assumed that inertial stress (that 

scales with 2 2N Dρ ) is more relevant than viscous stress for suspending the particles.    

As stated in the introduction, the main aim of this paper is to assess how the two-phase flow dynamics 

promotes breakage of the solid particles. It is assumed that collisions are the only reason for breakage of 

particles. We consider three types of collisions that can cause breakage: with another particle, with the 

impeller and with the container walls. The main independent variable in this study is the strength of the 

particulate material. That strength has been defined and quantified in terms of a speed. It is the minimum 

speed of impact cu  of a particle of diameter 0d  with a rigid solid wall that would lead to breakage. The 
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advantage of this definition is that it allows for easy experimentation. If the particle is dropped (in vacuum) 

on a horizontal solid wall, 2c cu gh=  with ch  the smallest height that results in breakage. In the next 

section – on computational methods – we will show how this definition is used in the simulations to assess if 

a collision leads to breakage of a particle. Simulation results will be presented in non-dimensional terms 

where the minimum speed of impact has been scaled with the tip  speed of the impeller vtip NDπ= . 

Numerical methods 

Fluid flow & particle dynamics 

The liquid flow has been solved by the lattice-Boltzmann (LB) method [14,15]. For this the tank volume has 

been divided in cubic cells that all have the same size. In each cell the LB method keeps track of a 

discretized version of the velocity distribution function. Local fluid velocity and pressure are derived from 

summations over all velocity directions [14]. In order to account for the presence of solid particles, a variant 

of the LB method has been used that solves the volume-averaged continuity and Navier-Stokes equations 

[16]  

 ( ) ( ) 0c c

t
ρφ ρφ∂ + ∇ ⋅ =

∂
u  (1) 

 ( ) ( ) su uu π fc c c

t
ρφ ρφ φ∂ + ∇ ⋅ = ∇ ⋅ +

∂
 (2) 

where u is the interstitial liquid velocity, 1cφ φ= −  the local liquid volume fraction (and φ  the solids 

volume fraction), π  the stress tensor, and sf  the force per unit volume exerted by the solid particles on the 

fluid. Since at every moment in time the location of the particles is known, φ  and thus cφ  can be determined 

by mapping the particles on the Eulerian (LB) grid [16]. Mapping of Lagrangian (particle-related) 

information on the Eulerian grid as well as mapping Eulerian information on the particles makes use of a 

mapping function for which we use a clipped fourth-order polynomial [17]. It has a near-Gaussian shape and 

has the advantage over a Gaussian that it is computationally more efficient and is zero outside its (finite) 

width. In earlier work [18] we shown favorable results if the half-width of the mapping function is equal to 
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1.5 times the particle diameter. Therefore the width of the mapping function of a particle is a function of its 

size.    

The dynamics of the particles is accounted for by solving there linear equations of motion with the 

particles feeling gravity, drag and contact forces. The drag force model takes into account the particle-based 

Reynolds number as well as the local solids volume fraction: ( ) ( )3 Re ,pd FD pF u uπρν φ= −  with pu  the 

velocity of the particle and d its diameter. The function F is written as ( ) ( ) ( )Re , Rep pF p qφ φ= . Here 

( ) ( )0.687Re 1 0.15Rep pp = +  is the Schiller-Naumann [19] drag correlation with ( )Re 1p dpu uφ ν= − − , and 

( ) ( ) 2.65
1q φ φ −= −  Wen & Yu [20] drag. 

The contact force is assumed to be radial. For a particle-particle contact this implies that it works on 

the line connecting the centers of the particles. For a particle-impeller or particle-wall contact the contact 

force is in the direction normal to the impeller or wall surface. The contact force has a repulsive linear elastic 

part that is proportional to the overlap distance and a lubrication part that is proportional to the relative 

velocity [21]. The lubrication force gets activated before particles touch or overlap; it represents the effect of 

the liquid film being squeezed out between two approaching solid surfaces (repulsive force) or sucked in 

between separating surfaces (attractive force). The presence of a lubrication force does not imply inelasticity 

in the actual “dry” collision. Settings of contact force parameters are the same as in [16].   

Breakage modeling 

A collision between two particles i and j  having mass im  and jm  respectively is described as 

im*
p,ip,i

u u J= +  and jm*
p,jp,j

u u J= − . The * indicates post-collision velocities. The momentum exchange 

vector J generally has a normal and tangential component with in the majority of collisions the normal 

(radial) component significantly larger than the tangential components [22]. We therefore only consider  the 

radial component of  J, i.e. we assume nJJ n=  with n the unit vector pointing from particle i to j and [22] 

 
( ) ( )1

1 1n
i j

e
J

m m
p,j p,in u u+ ⋅ −

=
+

. (3) 
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The restitution coefficient has been set to 1e =  (dry collisions are assumed to be elastic). Note that 0nJ <  

since only two approaching particles do collide. We assume that breakage occurs if nJ−  exceeds a critical 

value that we derive from the critical velocity cu  introduced above. For a particle with diameter 0d  and mass 

3
0 06 sm dπ ρ=  falling on a horizontal wall with velocity cu  the normal momentum exchange is 02n cJ m u=  so 

that 02 cm u  is the critical momentum exchange value for breakage.  

In the simulation we determine for every detected collision the normal momentum exchange according 

to Eq. 3 (with 1e = ). If the collision is between particle i and the tank wall then jm → ∞  and p,ju 0= . If the 

collision is between particle i and the impeller then jm → ∞  and p,ju Ω r= ×  with the angular velocity 

vector of the impeller 2N zΩ eπ=  and r the location of the collision. 

Once a breakage event has been identified the following assumptions apply: (1) a particle with 

diameter id  breaks into two equal fragments with diameter 3 2id ; (2) if two particles of unequal size 

collide only the larger particle  breaks; (3) if two particles of equal size collide only one of them – randomly 

picked – breaks. From (1) it is clear that we assume the breakage fragments are spherical – which admittedly 

is a quite a strong assumption.  

It is important, specifically in flow regions with high solids volume fraction, to carefully place the 

fragments in order to avoid as much as possible large overlap with surrounding particles. Figure 2 illustrates 

how this placement has been done. 

Simulation settings 

The base-case system has a Reynolds number of Re=4,000, a Shields number of 260θ= , and an overall 

solids volume fraction of 0.098φ = . The initial diameter of the particles relative to the impeller diameter 

is 0 0.021d D=  and the initial number of particles is 250,000. The density ratio is 2.23sρ ρ= . The 

number of grid cells in each coordinate direction is 110. The impeller makes one revolution in 1600 time 

steps. The initial particle size 0d  is equal to the grid spacing. In [16] we have shown that the numerical 
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procedure is well capable of dealing with particles of sizes comparable to or even larger than the grid 

spacing by demonstrating grid convergence. 

Although the base-case has been fully defined in terms of dimensionless numbers, it might help the 

interpretation of the results if we also describe it in physical units. Then the volume of the tank is 

110 110 110× ×  mm3  (1.33 liter); the impeller has a diameter of D=48 mm, and the initial particle diameter 

is 0d =1 mm. The impeller makes 37 rev/s (∼2000 rpm). The density of the liquid is 1000 kg/m3 and its 

kinematic viscosity is ν = 2.1⋅10-5 m2/s (∼20 times water). Gravitational acceleration is g=9.8 m/s2. 

The strength of the particles is the main independent variable. It has been varied such that the critical 

velocity divided by the tip speed of the impeller is in the range 0.1 v 0.5c tipu≤ ≤ . In the physical base-case 

vtip =5.6 m/s so that cu  would be in the range of 0.56 to 2.8 m/s.  

At the start of a simulations, the particles (all of diameter 0d ) are at rest and form a loosely packed bed 

of thickness 016d on the bottom of the tank. At that moment also the liquid has zero velocity. At time 0t =  

we start the impeller and slowly increase its angular velocity until it reaches its final, steady value N. This 

start-up phase is such that over its duration of 2 N  the impeller completes one revolution. The simulations 

run over at least 200 impeller revolutions which is – in the physical system – a duration of only 5.4 s. 

Given that the simulation is started with all particles of the same size and that if particles break they 

break in two equal parts, there only is a small number of particle diameters in a simulation. In most 

simulations we keep track of 6 particle diameters. This means that a particle can break up to 5 times and 

acquire a volume of 5 3
062 dπ− . The breakage criterion makes it increasingly hard to break smaller particles 

given the way nJ  depends on the mass of the particles (Eq. 3) and the rule that in a collision between two 

unequal particles only the larger one breaks. 

Results 

Impressions  

In Figure 3 we show a time sequence of one of the simulations – the base case with particle strength so that  

v 0.2c tipu = . It shows particle locations with the particles colored according to their size, as well as 
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instantaneous liquid velocity magnitude contours in a vertical plane through the center of the tank. In order 

to be able to look into the two-phase mixing system, in the later stages of the suspension process (from 

tN=10 onward) only particles present in a mid-slice are shown in the figure. We see the suspension process 

starting up as a result of the mostly downward stream of liquid coming off the impeller penetrating the 

particle bed. Already in the initial stages ( 5tN ≤ ), breakage occurs as witnessed form the appearance of red 

particles. The flow generated by the impeller does not reach the region directly underneath the hub (the 

cylinder on which the blades are mounted) very well leading to a relatively stagnant zone there from which 

particles hardly get suspended. This zone persist for at least 50 impeller revolutions. 

Over time, breakage shifts the particle size distribution to smaller sizes. As can be seen, this leads to a 

more homogeneous distribution of particles over the tank volume. If one compares the snapshots at 50 and 

200 impeller revolution one sees that regions void of particles (the “holes” in the particles slices in Figure 3) 

have become substantially smaller at the later moment. These holes are due to larger particles avoiding high-

vorticity regions and preferentially concentrating at the edges of vortices. This effect scales with the Stokes 

number [23]. A meaningful estimate of the Stokes number is based on the flow time scale set equal to the 

reciprocal of the blade passage frequency. With four blades: ( )1 4f Nτ = . The particle relaxation time is 

2

18
p

p

dρ
τ

ρ ν
=  so that 

22
Stk

9
p Ndρ

ρ ν
= . The initial Stokes number (with 0d d= ) is 0Stk =0.85. As we will 

see when we discuss how the Sauter mean diameter evolves in time, after 200 impeller revolutions this has 

reduced to Stk≈0.45.   

Figure 4 gives a different perspective of the particle suspension process. It shows the short-term 

averaged solids volume fraction – indiscriminate of particle size – in a vertical cross section at four moments 

in time. The first frame at tN=10 is in the start-up phase with still no solids in large regions in the top of the 

tank. Then – at tN=50 – we see the solids “cone” underneath the hub in the center of the tank. The particle 

size reduction due to breakage and the easier suspension of the smaller particles contributes to the 

disappearance of the cone at later times. Eventually the system gets well suspended with in the bulk a fairly 

homogeneous solids volume fraction and some preferential concentration at the walls. 
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A more detailed view of particles in the direct vicinity of the impeller at tN=100 is given in Figure 5. It 

shows the presence of particles of sizes down to 4 3
02d d−=  (black). The smallest size particles in the 

simulation with 5 3
02d d−=  are not present in Figures 3 and 5. A minute number of them does get generated 

in the simulations and will be discussed when particle size distributions are being presented. 

Temporal evolution 

We are dealing with an inherently unsteady two-phase flow system because of the gradual decline in particle 

sizes due to breakage. We ultimately would reach a steady state when particles have become so small that 

none of them breaks anymore. In this paper, however, we are primarily interested in transient behavior. 

Figure 6 shows the evolution of the total number of particles as well as their average size, the latter in the 

form of the Sauter mean diameter 32d , over a time span of 200 impeller revolutions. Over this time, the 

number of particles increases by a factor of more than 5 for the weaker particles with strength v 0.1c tipu = , 

and by a factor of two if v 0.4c tipu = . The time series of 32 0d d  shows that breakage obviously results in 

the particles on average getting smaller to an extent that is a function of their strength.  

The way breakage is distributed over the three types of collisions (particle-particle, particle-impeller 

and particle-wall) strongly depends on particle strength as well as on the moment in time, see Figure 7. In all 

cases shown, particle-wall collisions contribute only marginally to the breakage frequency. Breakage 

requires a minimum relative velocity between the two elements taking part in a collision. With low liquid 

velocities in near wall regions and Stokes numbers that do not exceed unity, the chances of a particle hitting 

the wall with a speed sufficiently high for breakage are small.  

For the weakest particles (with v 0.1c tipu = ) the contribution of particle-particle and particle-impeller 

collisions to the total number of breakage events are of a comparable magnitude. Stronger particles, 

however, are mostly broken by the impeller. For v 0.4c tipu =  more than 90% of the breakage in the time 

period of 200 revolutions is directly due to the impeller. The dominance of the impeller in promoting 

breakage is even more pronounced when we study the location of the breakage events, see Figure 8. The 
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color contours in Figure 8 represent 
0

bvn
x

n V
= . This means that the number of particles broken per unit 

volume at a certain location per impeller revolution is x times the – on average –  number of particles per 

unit volume present at that location.   

Breakage due to particle-particles collisions is almost exclusively confined to the volume swept by the 

impeller. Particles having gained high velocities by the action of the impeller, either due to direct contact 

with the impeller or due to transmission via the liquid flow, are able to break other particles in their direct 

surroundings. Some breaking of particles by other particles outside the impeller swept volume takes place in 

the impeller outstream, relatively close to the impeller.  

After reaching peak values at 20 to 30tN ≈ , the total numbers of breakage events per impeller 

revolution decays in time, see Figure 7. This has two reasons. In the first place because smaller particles 

need higher relative velocities to be broken, see Eq. 3. In the second place because smaller particles more 

closely follow the liquid flow leading to a reduction of relative velocities among particles and between 

particles and the impeller blades and thus to a reduction of impactful collisions.  

Figure 8 also shows the locations on the impeller where particles preferentially break. These are the 

top edges and the inner corners where the blades are attached to the hub. The top edges are the leading edges 

of the blade and in the “front line” for encounters between impeller blades and particles. The high breakage 

frequencies at the inner corners are a less obvious phenomenon. It likely is the result of a small vortex in 

front of the blades at the corner location, see Figure 8. The vortex creates a dead zone that traps particles, i.e. 

particles there are not carried away by the high speed flow of liquid around the impeller blades. These 

trapped particles have a significant chance of being hit and subsequently broken by the impeller.   

A set of overall, time-averaged liquid flow characteristics in the vertical center plane are shown in 

Figure 10. The three quantities depicted there (velocity magnitude u , kinetic energy contained in the 

velocity fluctuations – periodic plus random – k, and the energy dissipation rate ε ) all point to a very 

inhomogeneous flow with strong activity in the impeller swept volume and in the impeller outstream and 

mild conditions elsewhere. As we have seen, particle breakage is confined to these high activity regions and 
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virtually absent elsewhere in the mixing tank. From a practical perspective, impeller design is crucial in 

controlling (enhancing or avoiding) particle breakage. 

Size distribution 

Particle size distributions are shown in Figure 11. We distinguish between 6 particle classes 0 5q = …  with 

0q =  the initial particles with diameter 0d  and the subsequent classes such that the particle volume is half 

that of the volume in the previous class.  

The shape of the size distributions strongly depends on the particle strength. Where for v 0.1c tipu =  

the initial particles almost all have been broken after 200 impeller revolution, the initial particles still make 

up 40% of the total particle volume for v 0.4c tipu = .  

Six particle classes is sufficient for the flow system we have been simulating given that for none of the 

particle size distributions shown in Figure 10 the smallest class ( 5q = ) represents an appreciable solids 

volume. As noted above, in most cases breakage due to collisions with the impeller is the dominant 

mechanism. For such collisions (given Eq. 3 with one of the masses – the impeller – going to infinity) 

( )2 2n i i rnJ m m uimp p,in u u= ⋅ − =  with rnu  the normal relative velocity of particle and impeller. Particles 

break if 02n cJ m u≥ . For a particle in size class q to be broken by the impeller we thus need a normal 

relative velocity of 2q
rn cu u> . It thus is unlikely that even the weakest particles in this study – those with 

v 0.1c tipu =  – would break to class 5q =  particles as it would require a relative velocity of at least 

42 1.6vrn c tipu u= = . 

Summary, conclusions & outlook 

The paper presents results of simulations of solids-liquid flow in a lab-scale agitated tank with the solid 

particles breaking as a result of collisions. The main purpose of the paper is to quantify the relative 

importance of breakage mechanisms in relation to the mechanical strength of the particles. The focus is on 

systems with relatively high solids loadings (solids volume fraction of ~10%) with frequent collisions 

between particles and between particles and the revolving impeller.  
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In most cases investigated, the impeller is the major cause of breakage, either directly when a particles 

hits an impeller blade, or indirectly through breakage as a result of two colliding particles in the impeller 

swept volume. Only for very low-strength particles breakage through particle-particle  collisions contributes 

appreciably to breakage.  

The simulations clearly show the impact of particle size reduction due to breakage on the two-phase 

flow characteristics. As a result of the Stokes number falling well below one in the course of the mixing 

process the homogeneity of the spatial distribution of particles increases as does their level of suspension in 

the liquid flow.    

From a practical perspective there are clear limitations to the simulations presented here that require 

further work to be overcome. The assumption that particles break in two parts of equal volume is a major 

simplification. It will be interesting to study the sensitivity of this assumption by including a probabilistic 

model that captures the statistics of the fragment size distribution upon breakage [1], or – better – to involve 

experimental data on fragment size distributions of particles that break in a collision. We do not feel that the 

assumption that breakage products are considered spherical particles is a major simplification. This in light 

of other approximations such as the levels of spatial resolution of the liquid flow. The shape of the particles 

is mainly represented by a drag coefficient, i.e. the liquid flow is not resolved such as to capture the shape of 

the particles.  

Our results mainly apply to a lab-scale tank given the relatively low (transitional) Reynolds number 

(Re=4,000) and the particle being large relative to tank size. This needs to be extended to more practically 

relevant scales but – at the same time – could be helpful when devising small scale experiments for 

validation purposes. These are not only essential for validation but also for guiding the simulation research 

by identifying sensitivities and physical effects of key importance that the simulations should focus on. 
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Figures 

Figure 1. Flow geometry and coordinate system. Left: top view; right: side view. The pitched-blade turbine 
pumps liquid in the downward direction. 
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Figure 2. Left: moment of collision between particle a and b. Right: particle a breaks in two particles a1 and 
a2 that are placed as shown oriented with a random angle θ  around the line connecting the centers of the 
original particles a and b. 
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Figure 3. Impressions of particle locations and velocity field in the mixing tank at different moments in 
time. The contours in the mid plane represent the liquid velocity magnitude. Particle color coding: blue 

0d d= , red 1 3
02d d−= , yellow 2 3

02d d−= , white 1
02d d−= , black 4 3

02d d−= . The top two panels 

contain all particles; the bottom four only show particles in a center layer with thickness 0.1L. Base-case 
conditions with particle strength such that v 0.2c tipu = . 
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Figure 4. Solids volume fraction distribution in the vertical center plane. Averages over 5 revolutions 
around (from left to right) moments tN=10, 50, 100, and 200. 
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Figure 5. A view of particles close to the impeller. This is a detail from the panel at 100 impeller revolutions 
in Figure 3. Same particle color coding as in Figure 3. 
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Figure 6. Time series of the number of particles in the tank (relative to the initial number) 0n n  (top) and 

Sauter mean diameter (relative to the initial diameter) 32 0d d  (bottom) for particles of different strength as 

indicated. Base-case conditions. 
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Figure 7. Time series of the number of breakage events per impeller revolution bn  (divided by 0n ). Particle 

strength vc tipu  as indicated. Breakage type as specified: p-p breakage due particle-particle collision, p-i 

particle-impeller collision, p-w particle-wall collision, and all is the total number.   
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Figure 8. Distribution of the number of breakage events per unit volume and per impeller revolution bvn  

normalized by the initial number concentration of particles 0n V  in the center vertical mid-plane of the tank. 

Data averaged over 150 impeller revolutions with averaging starting 50 revolution after start up. Left: 
breakage due to particle-particle collisions; right due to particle impeller collisions. Base-case conditions 
with vc tipu =0.2. 
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Figure 9. Instantaneous liquid velocity vector fields in the vertical center plane with an impeller blade 
passing through. From left to right the blade centerline is 18o behind the center plane, in the center plane, 
and 18o in front of the center plane. The dashed green circle in the left panel highlights the corner vortex in 
front of the blade. 
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Figure 10. Time average flow characteristics in the center mid-plane. From left to right: velocity magnitude 
u , kinetic energy k contained in the fluctuations, and energy dissipation rate ε ; all scaled as indicated. 

Averaging time 14 impeller revolutions; base case with vc tipu =0.2. 
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Figure 11. Particle size distribution by volume (d ptV V  is the solids volume contained in particles with 

diameter d over the total solids volume). Evolution in time and effects of solids strength as indicated. 
 

 
 


