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Abstract

In [1], B. Klopsch proved that the Nottingham group over a finite field is verbally

elliptic. We prove a similar result for fields of zero characteristic. We also prove

that the Virasoro Lie algebra and some its subalgebras are polynomially elliptic.
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1. Introduction

Let ω(x1, ..., xk) be an element of the free group on k free generators x1, ..., xk.

We will refer to elements of free groups as words.

Let G be a group. The verbal subgroup ω(G) is the subgroup of G generated

by the verbal set

ω[G] = {ω(g1, ..., gk) | gi ∈ G, 1 ≤ i ≤ k}.

The word ω is said to have finite width in the group G if there exists d ≥ 1

such that every element g in the verbal subgroup ω(G) can be expressed as5

g = g±1
1 ...g±1

d , where gi ∈ ω[G].
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If a word ω has finite width in a group G, we say that the group G is ω-

elliptic. If all words have finite width in the group G, then the group G is called

verbally elliptic.

It is clear that every word ω has finite length in a finite group G and the10

verbal width of ω over G is upper bounded by | G | (see [2]).

Martínez and Zelmanov [3] and, independently, Saxl and Wilson [4] proved

that for any natural number n, there is a function N = N(n) such that the

width of the word τ = xn in any finite simple group is bounded by N .

An important result related to verbally elliptic groups was proved by P.15

Stroud [5]: Every finitely generated abelian-by-nilpotent group is verbally ellip-

tic.

Rhemtulla [6] poses the question of the existence of nontrivial words having

finite verbal width in every group G. He proved that a word ω in the free group

Fk has finite width in every group G if and only if there exist relatively prime20

integers i1, ..., ik such that ω ∈ xi11 ...x
ik
k F

′

k.

Romankov [7] proved that every finitely generated virtually nilpotent group

is verbally elliptic. Segal proved in [2] a more general result using the Prüfer

rank of a group defined as

rk(G) := sup{d(K) | K is a finitely generated subgroup of G}.

Here, d(G) denotes the minimum possible number of generators of the group25

G. So in [2] it is proved that every virtually nilpotent group with finite Prüfer

rank is verbally elliptic.

J.P. Serre [8] considered the same question for profinite groups and Brian

Hartley [9] proved that a word ω has finite width in a profinite group G if and

only if the verbal subgroup ω(G) is closed in G.30

Andrei Jaikin-Zapirain ([10]) proved that p-adic analytic pro-p-groups are

verbally elliptic.

In [11] C. Martinez proved that if Γ is a finitely generated residually-p-

torsion group and G is its pro-p-completion, then the group G is verbally elliptic
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(understanding that a word ω is an arbitrary element in the free pro-p-group on35

countably many variables).

For a good survey of what is known about verbal subgroups we refer to

the book [2]. In this paper we will prove that the Nottingham group in zero

characteristic is verbally elliptic. The same result was proved by B. Klopsch in

[12] for the Nottingham group over a finite field. In the paper we will consider40

a similar question for Lie algebras, proving that the Virasoro algebra and some

of its subalgebras, that are related to the Nottingham group, are polynomially

elliptic.

2. Lie algebras

Let φ be an associative commutative ring. Consider an absolutely free alge-45

bra φ〈X〉 on the set of free generatorsX = {x1, x2, . . .}. Let f(x1, .., xk) ∈ φ〈X〉.

For a φ-algebra A consider the set f [A] = {f(a1, .., ak)|a1, . . . , ak} ∈ A and the

φ-linear span Spanφf [A].

Definition 2.1. (see [11]) A polynomial f has finite width in the algebra A if

there exists d ≥ 1 such that

SpanΦf [A] = f [A] + ...+ f [A]︸ ︷︷ ︸
d

.

In other words, every element a ∈ Spanφf [A] can be written as

a = f(a
(1)
1 , ..., a

(1)
k ) + ...+ f(a

(d)
1 , ..., a

(d)
k ),

where a(j)
i ∈ A, 1 ≤ i ≤ k, 1 ≤ j ≤ d.

We will define now a stronger notion for multilinear polynomials.50

Definition 2.2. A multilinear polynomial f(x1, . . . , xk) is strongly elliptic

in A if there exists a finite set of (k − 1)-tuples, M ⊂ A× ...×A︸ ︷︷ ︸
k−1

such that

f [A] ⊂
∑

(a1,...,ak−1)∈M

f(A, a1, ..., ak−1).
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Lemma 2.1. If a multilinear polynomial f(x1, . . . , xk) is strongly elliptic in A

then f has finite width in A.

Proof. It is enough to consider the expression

SpanΦf [A] =
∑

(a1,...,an−1)∈M

f(A, a1, ..., an−1),

and note that the number of terms to the right is always less than or equal to

|M |.

Fix a field F of zero characteristic.55

The centerless Virasoro algebra, V ir, is the algebra over F having a basis

{ei | i ∈ Z} with the multiplication [ei, ej ] = (i− j)ei+j .

Theorem 2.2. An arbitrary multilinear polynomial is strongly elliptic in V ir.

Proof. Consider f(x0, x1, ..., xn−1) a multilinear element of the free Lie algebra.

We have that

f =
∑

π∈Sn−1

απ[x0, xπ(1), ..., xπ(n−1)], απ ∈ F,

where [x0, x1.x2] = [[x0, x1], x2] and inductively,

[x0, x1, ..., xt+1] = [[x0, x1, ..., xt], xt+1].

Let M be the finite set given by

M = {(ei1 , ..., ein−1
) | 0 ≤ i1, ..., in−1 ≤ n}.

We want to prove that

V ir =
∑

(ei1 ,...,ein−1
)∈M

f(V ir, ei1 , ..., ein−1
).

Notice that for an arbitrary s ∈ Z, we have that

f(es−i1−...−in−1
, ei1 , ..., ein−1

) = h(s, i1, ..., in−1)es,
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where

h(s, i1, ..., in−1) =

=
∑
απ(s− i1 − ...− in−1 − iπ(1))(s− i1 − ...− in−1 + iπ(1) − iπ(2))...

...(s− i1 − ...− in−1 + iπ(1) + iπ(2) + ...+ iπ(n−2) − iπ(n−1)),

is a homogeneous polynomial in s, i1, ..., in−1 of degree n− 1.

If f = 0 is an identity in V ir, then there is nothing to prove. So we will60

assume that f(V ir) 6= (0). Then SpanFf [V ir] is a non-zero ideal of V ir and

V ir is simple, what implies that V ir = SpanFf [V ir].

If there is an integer s such that

es /∈
∑

(ei1 ,...,ein−1
)∈M

f(es−i1−...−in−1 , ei1 , ..., ein−1),

then h(s, i1, ..., in−1) = 0 for every (n− 1)-tuple (i1, ..., in−1) ∈ [0, n]n−1.

But this implies that the polynomial g(x1, ..., xn−1) = h(s, x1, ..., xn−1) (non

homogeneous) has degree at most n−1 and it is 0 over [0, n]n−1. Consequently g65

is the zero polynomial, or equivalently, h(s, x1, ..., xn−1) is the zero polynomial.

But es ∈ SpanFf [V ir], so there are integers j1, ..., jn−1 such that

f(es−j1−...−jn−1 , ej1 , ..., ejn−1) = λes,

with λ = h(s, j1, ..., jn−1) 6= 0. This contradiction proves the theorem.

Let k ≥ −1. Then V ir(k) =
∑∞
i=k Fei is a subalgebra of V ir.

Theorem 2.3. An arbitrary multilinear polynomial is strongly elliptic in V ir(k).70

Proof. Let

f(x0, x1, ..., xn−1) =
∑

π∈Sn−1

απ[x0, xπ(1), ..., xπ(n−1)], απ ∈ F,

be a multilinear element of the free Lie algebra that is not identical on V ir(k).
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As above,

f(es−i1−...−in−1 , ei1 , ..., ein−1) = h(s, i1, ..., in−1)es,

for arbitrary integers i1, . . . , in−1, s ∈ Z.

Consider the finite set M1 = {(ei1 , ..., ein−1
) | k ≤ i1, ..., in−1 ≤ k + n}.

We will show that

V ir((k+n)(n−1)+k) ⊆
∑

(ei1 ,...,ein−1
)∈M1

f(V ir(k), ei1 , . . . ein−1
).

Indeed, if s ≥ (k + n)(n− 1) + k and (ei1 , ..., ein−1
) ∈M1 then

s− i1 − · · · − in−1 ≥ k.

If for all (ei1 , ..., ein−1
) ∈M1 we have

f(es−i1−···−in−1
, ei1 , ..., ein−1

) = h(s, i1, · · · , in−1)es = 0,

then arguing as above we conclude that h(s, i1, · · · , in−1) is the zero polynomial.

For every k ≤ j < (k + n)(n− 1) + k such that ej ∈ SpanF f [V ir(k)] choose75

elements aj0, . . . , a
j
n−1 ∈ {ei | i ≥ k} such that ej = f(aj0, . . . , a

j
n−1).

Let M2 = M1 ∪ {(aj1, . . . , a
j
n−1)}. Then

SpanF f [V ir(k)] =
∑

(a1,...,an−1)∈M2

f(V ir(k), a1, . . . , an−1).

This completes the proof of the theorem.

The following theorem concerns ideals I of a Lie ring V ir(k), k ≥ −1. It

means that we do not assume, a priori, that I is an F -vector subspace.80

Theorem 2.4. An arbitrary nonzero ideal of a Lie ring V ir(k), k ≥ −1, con-

tains V ir(l) for some l ≥ k.

Proof. Let I 6= (0) be an ideal of the Lie ring V ir(k). Let 0 6= a = α1ei1 +

α2ei2 + ... + αmeim ∈ I; 0 6= αi ∈ F , 1 ≤ i ≤ m; k ≤ i1 < · · · < im and m a

minimal integer with this property.85
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If m ≥ 2 then

0 6= [a, ei1 ] = α2(i2− i1)ei1+i2 +α3(i3− i1)ei1+i3 + · · ·+αm(im− i1)ei1+im ∈ I,

which contradicts minimality of m. Hence m = 1, the ideal I contains an

element αei, 0 6= α ∈ F , i ≥ k. It is easy to see that in this case V ir(i+k) =

[αei, V ir
(k)] ⊆ I. This completes the proof of the theorem.

3. Nottingham Group in Characteristic 0

Given a field F, consider the set of infinite series90

NF(t) := {t+
∑
k≥1

αkt
k+1 | αk ∈ F k ∈ N}.

with the group multiplication

fg := g(f); f, g ∈ NF(t)

For a finite field F = GF (pk), the group NF(t) is a finitely generated pro-p

group that has been widely studied in the literature.

As always O(tn) stands for a formal series lying in tnF [[t]].

Lemma 3.1. [13]

1. If f = t + αtn + O(tn+1), g = t + βtn + O(tn+1), where α, β ∈ F, n ≥ 2,95

then fg = t+ (α+ β)tn +O(tn+1).

2. If f = t+ αtn +O(tn+1),0 6= α ∈ F, then f−1 = t− αtn +O(tn+1).

3. If f = t+αtn+O(tn+1), g = t+βtm+O(tm+1), where α, β ∈ F, n,m ≥ 2,

then [f, g] = t+ αβ(n−m)tn+m−1 +O(tn+m).

Notice that the Nottingham group over a field of characteristic 0 is torsion100

free.

Lemma 3.2. Let charF = 0. Then for an arbitrary integer n ≥ 1 and an

arbitrary element g ∈ NF(t) there exists a unique element h ∈ NF(t) such that

hn = g.
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Proof. It is easy to see that for any n ≥ 2 there exist polynomials Pk(x1, . . . , xk−2),105

k ≥ 3, such that the n-th power of an element t+
∑∞
i=2 αit

i ∈ NF(t) is equal to

t+ nα2t
2 +

∑∞
k=3(nαk + Pk(α2, . . . , αk−1))tk.

Let g = t+
∑∞
i=2 βit

i. Define a sequence

α2 =
1

n
β2, . . . , αk =

1

n
(βk − Pk(α2, . . . , αk−1)), k ≥ 3.

Let h = t +
∑∞
i=2 αit

i. Then hn = g. It is easy to see that the element

h is the unique element with this property. This completes the proof of the

lemma.110

For n ≥ 1 consider

Kn := {t+O(tn+1)}

In particular, K1 = NF(t). Lemma 3.1 implies that Kn is a normal subgroup of

NF(t) and the mapping

θ : Kn → F, θ(t+ αtn+1 +O(tn+2)) = α

is a homomorphism into the additive group of the field F, Kerθ = Kn+1. Hence

Kn/Kn+1 ' F.

For a group G let γn(G) denote the n-th term of the lower central series:

G = γ1(G) ≥ γ2(G) ≥ · · · ,

γn(G) = [γn−1(G), G], n ≥ 2.

Lemma 3.3. ([13]) For every n ≥ 1, we have that γn = γn(NF(t)) = Kn.

Recall that the Lie ring associated with the lower central series of a group

G is the N-graded abelian group

L(G) =
⊕
n≥1

γn(G)/γn+1(G)

with multiplication

[aγn+1(G), bγm+1(G)] = [a, b]γn+m+1(G),

8



for a ∈ γn(G), b ∈ γm(G).115

The isomorphisms Kn/Kn+1 ' F define a structure of F-vector space on

L(NF(t)). Lemma 3.1(3) implies that multiplication on L(NF(t)) is F-bilinear,

hence L(NF(t)) is a Lie algebra over the field F.

Again from Lemma 3.1(3) it follows that L(NF(t)) ' V ir(1)

Definition 3.1. A group G is said to be residually nilpotent if

∩n≥1γn(G) = (1).

Taking the system of subgroups γn(G), n ≥ 1, for the basis of neighbourhoods120

of 1 we define a topology on the group G.

If this topology is complete then we say that the group G is pronilpotent.

By Lemma 3.3 the pronilpotent topology on the group NF(t) coincides with

the degree topology. Hence NF(t) is a pronilpotent group.

Lemma 3.4. Let g ∈ Kn \Kn+1, g = t+ αtn+1 +O(tn+2), 0 6= α ∈ F. Then125

1. K2n+1 = [g,Kn+1].

2. For any s, n < s < 2n, we have Ks = [g,Ks−n]K2n.

Proof. Denote fi(β) = t+ βti+1, i ≥ 1, β ∈ F.

We claim that for an arbitrary s > n, s 6= 2n,

Ks = [g,Ks−n]Ks+1 (C)

Indeed, choose an arbitrary element h = t + γts+1 + O(ts+2) ∈ Ks. Let

β = γ
(2n−s)α .130

By Lemma 3.1(3)

[g, fs−n(β)] = t+ (2n− s)αβts+1 +O(ts+2) = t+ γts+1 +O(ts+2).

By Lemma 3.1, [g, fs−n(β)]−1h ∈ Ks+1, which implies the claim.

Now choose an arbitrary element h ∈ K2n+1. We will construct a sequence

of elements ai ∈ Kn+i, i ≥ 1, such that

h ∈ [g, a1 · · · ai]K2n+1+i for any i ≥ 1.
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For i = 1, by (C), there exists an element a1 = fn+1(β) ∈ Kn+1 such that

h ∈ [g, a1]K2n+2.

Suppose that elements a1, . . . , ai satisfying that h ∈ [g, a1 · · · ai]K2n+1+i

have been found. Then [g, a1 · · · ai]−1h ∈ K2n+1+i.135

By (C) there exists an element ai+1 ∈ Kn+i+1 such that

[g, a1 · · · ai]−1h = [g, ai+1] mod K2n+i+2.

Hence, h = [g, a1 · · · ai][g, ai+1] mod K2n+i+2.

Using Hall identity:

[x, zy] = [x, y][x, z][[x, z], y]

we get [g, a1 · · · ai][g, ai+1] = [g, a1 · · · aiai+1] mod K2n+i+2.

We have completed the construction of a sequence a1, a2, . . . , am, . . . with

the required properties.

Let a = limi→∞a1 · · · ai ∈ Kn+1. Then h = [g, a].140

Let’s prove the second assertion. Consider s any number satisfying n < s <

2n and h′ ∈ Ks Arguing as above and using (C) we find elements ai ∈ Ki,

1 ≤ i ≤ n− 1, such that

h′ = [g, a1 · · · ai] mod Kn+i+1.

For the element a = a1 · · · an−1 we have h′ = [g, a] mod K2n. This completes

the proof of the lemma.

Corollary 3.5. An arbitrary non-identical normal subgroup of NF(t) contains

a subgroup Km for some m ≥ 1.

Proof. Let H be a non-identical normal subgroup of NF(t). Let 1 6= g ∈ H,145

then there is an n such that g ∈ Kn \Kn+1.

Then, by Lemma 3.4(1) K2n+1 = [g,Kn+1] ⊆ H. This completes the proof,

taking m = 2n+ 1.

Let p(x1, ..., xm) be a non-zero polynomial over F. Suppose that

p = p0(x2, ..., xm) + x1p1(x2, ..., xm) + xd1pd(x2, ..., xm),
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where pd(x2, ..., xm) 6= 0. Let P = {p(α1, ..., αm) | α1, ..., αm ∈ F}.

Lemma 3.6. F = ±P ± P ± ...± P︸ ︷︷ ︸
2d

. That is, every element in F is the sum of150

2d elements, each of them lying in P or −P.

Proof. Introduce d new variables, y1, ..., yd and consider the polynomial

p̃(y1, . . . , yd, x2, . . . , xm) = p(y1 + ...+ yd, x2, ..., xm)−

d∑
i=1

p(y1+...+ŷi+...+yd, x2, ..., xm)+

d∑
1≤i<j≤n

p(y1+...+ŷi+...+ŷj+yd, x2, ..., xm)+

...+(−1)d−1
d∑
i=1

p(yi, x2, ..., xm)+(−1)dp(0, x2, ..., xm) = d!y1...ydpd(x2, ..., xm).

Every element from the field F is a value of the polynomial

d!y1...ydpd(x2, ..., xm)

which implies the assertion of the lemma.

Theorem 3.7. Let F be a field of characteristic zero. Then, the Nottingham

group NF(t) is verbally elliptic.

Proof. Let ω(x1, ..., xm) be an element of the free group Fm onm free generators155

x1, ..., xm.

Let G = NF(t). Suppose that ω[G] ⊆ Kn and n is maximal with this

property.

If ω /∈ [Fm,Fm] then ω(G) = G. Indeed, if ω /∈ [Fm,Fm] then

ω = xn1
1 xn2

2 ...xnm
m ω′,

where ω′ ∈ [Fm,Fm] and some ni 6= 0. Suppose that n1 6= 0. Choose x2 = 1,...,

xm = 1. Then ω(x1, 1, ..., 1) = xn1
1 .160

Using Lemma 3.2 we can extract roots in NF(t) so for every f ∈ NF(t),

f = gn1 = ω(g, 1, ..., 1) ∈ ω[G].

Hence, without loss of generality, we assume that ω ∈ [Fm,Fm], hence n ≥ 2.

Choose an element g ∈ ω[G], g ∈ Kn \Kn+1.
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There exists a polynomial p(xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n) such that

ω(t+

n∑
j=1

α1jt
j+1, t+

n∑
j=1

α2jt
j+1, ..., t+

n∑
j=1

αmjt
j+1) = t+p(αij)t

n+1 +O(tn+2).

Let d be the maximum of (total) degrees of monomials from p(xij). By165

Lemmas 3.1(1) and 3.6, an arbitrary element u from ω(G) is a product of not

more than r = 2d elements from ω[G]±1 modulo Kn+1. Hence there exist

elements g1, ..., gr ∈ ω[G]±1 such that u = g1...gr modulo Kn+1.

By Lemma 3.4(2) there exists an element b ∈ G such that

(g1...gr)
−1u = [g, b] mod(K2n).

On the other side, since the element [g, f1(1)] lies in Kn+1 \Kn+2, we can

use again Lemma 3.4(2) to get an element b1 ∈ Kn such that170

[g, b]−1(g1 · · · gr)−1u = [[g, f1(1)], b1] mod(K2(n+1)).

By Lemma 3.4(1) there exists an element b2 ∈ Kn+1 such that

[[g, f1(1)], b1]−1[g, b]−1(g1 · · · gr)−1u = [g, b2].

Now, u = g1 · · · gr[g, b][[g, f1(1)], b1][g, b2].

A commutator [g, bi] is a product of two elements (g−1 and gbi = b−1
i gbi)

of ω[G]±1. The commutator [[g, f1(1)], b1] is a product of four elements from

ω[G]±1. Hence the verbal width in the group G = NF(t) is at most r + 8.

This completes the proof of the Theorem.175

Authors are grateful to the referee who provided useful comments.
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