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Abstract

In [I], B. Klopsch proved that the Nottingham group over a finite field is verbally
elliptic. We prove a similar result for fields of zero characteristic. We also prove
that the Virasoro Lie algebra and some its subalgebras are polynomially elliptic.
Keywords: Group; Lower central series; Graded Lie algebra; Nottingham

group; Virasoro algebra; Witt algebra; Verbal width; Ellipticity.

1. Introduction

Let w(zx1, ..., x) be an element of the free group on k free generators x1, ..., Tk.
We will refer to elements of free groups as words.

Let G be a group. The verbal subgroup w(G) is the subgroup of G generated
by the verbal set

The word w is said to have finite width in the group G if there exists d > 1

such that every element g in the verbal subgroup w(G) can be expressed as

g=git..g7", where g; € w[G].
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If a word w has finite width in a group G, we say that the group G is w-
elliptic. If all words have finite width in the group G, then the group G is called
verbally elliptic.

It is clear that every word w has finite length in a finite group G and the
verbal width of w over G is upper bounded by | G | (see [2]).

Martinez and Zelmanov [3] and, independently, Saxl and Wilson [4] proved
that for any natural number n, there is a function N = N(n) such that the
width of the word 7 = 2™ in any finite simple group is bounded by V.

An important result related to verbally elliptic groups was proved by P.
Stroud [5]: Every finitely generated abelian-by-nilpotent group is verbally ellip-
tic.

Rhemtulla [6] poses the question of the existence of nontrivial words having
finite verbal width in every group G. He proved that a word w in the free group
Fi. has finite width in every group G if and only if there exist relatively prime
integers i1, ..., 7 such that w € lelxzk}',;

Romankov [7] proved that every finitely generated virtually nilpotent group
is verbally elliptic. Segal proved in [2] a more general result using the Priifer

rank of a group defined as

rk(G) := sup{d(K) | K is a finitely generated subgroup of G}.

Here, d(G) denotes the minimum possible number of generators of the group
G. So in [2] it is proved that every virtually nilpotent group with finite Priifer
rank is verbally elliptic.

J.P. Serre [8] considered the same question for profinite groups and Brian
Hartley [9] proved that a word w has finite width in a profinite group G if and
only if the verbal subgroup w(G) is closed in G.

Andrei Jaikin-Zapirain ([I0]) proved that p-adic analytic pro-p-groups are
verbally elliptic.

In [II] C. Martinez proved that if T is a finitely generated residually-p-
torsion group and G is its pro-p-completion, then the group G is verbally elliptic



35 (understanding that a word w is an arbitrary element in the free pro-p-group on
countably many variables).

For a good survey of what is known about verbal subgroups we refer to
the book [2]. In this paper we will prove that the Nottingham group in zero
characteristic is verbally elliptic. The same result was proved by B. Klopsch in

2 [I2] for the Nottingham group over a finite field. In the paper we will consider
a similar question for Lie algebras, proving that the Virasoro algebra and some
of its subalgebras, that are related to the Nottingham group, are polynomially
elliptic.

2. Lie algebras

a5 Let ¢ be an associative commutative ring. Consider an absolutely free alge-
bra ¢(X) on the set of free generators X = {x1,za,...}. Let f(x1,..,2x) € ¢(X).
For a ¢-algebra A consider the set f[A] = {f(a1,..,ar)|ai,...,ar} € A and the
¢-linear span Span, f[A].

Definition 2.1. (see [I1)/) A polynomial f has finite width in the algebra A if
there exists d > 1 such that

Spang f[A] = fIA] + ... + f[A].

d

In other words, every element a € Spany f[A] can be written as
a= f(a(ll), ey afcl)) + f(agd), ey a,(gd)),
whereagj)eA, 1<i<k,1<j5<d.
50 We will define now a stronger notion for multilinear polynomials.

Definition 2.2. A multilinear polynomial f(x1,...,xx) is strongly elliptic

in A if there exists a finite set of (k — 1)-tuples, M C A x ... x A such that
k—1

flA] C Y fAar . ak).



Lemma 2.1. If a multilinear polynomial f(z1,...,zk) is strongly elliptic in A

then f has finite width in A.
Proof. 1t is enough to consider the expression
Spang f[A] = Z F(A ar,..an_1),
and note that the number of terms to the right is always less than or equal to
| M |. O

55 Fix a field F of zero characteristic.
The centerless Virasoro algebra, Vir, is the algebra over F having a basis

{e; | i € Z} with the multiplication [e;, e;] = (i — j)eit;.
Theorem 2.2. An arbitrary multilinear polynomial is strongly elliptic in Vir.

Proof. Consider f(xg,x1, ..., 2p—1) & multilinear element of the free Lie algebra.

We have that

f = Z aﬂ[x07xﬂ(1)7 "'axﬂ'(n—l)]a Qr € F7

TESH -1
where [zg, 21.22] = [[*0, 71], x2] and inductively,
[0, 1, ..y 1] = [[To, 1, o0y Be], Tesa ]

Let M be the finite set given by
M= {(eil,...,ein_l) | 0 é il, ...,Z.n,1 é TL}
We want to prove that

Vir = Z f(Vir ey ... e, _y).

(€iqyens€ipy_1)EM

Notice that for an arbitrary s € Z, we have that

f(eS*ilf-ufin—l?eilv ceny ein—l) = h(svilv "'77;71*1)687
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where

h(&il,...,in,l) =
= ZOL,T(S — 0] — . — Tp—1 — iﬂ(l))(s — 41 — . —lp_1 + iﬂ(l) — in(2))---

(8 =01 — s =1 Fir) Fin@) o Fin(n—2) — ix(n—1));
is a homogeneous polynomial in s, i1, ...,4,_1 of degree n — 1.

If f = 0 is an identity in Vir, then there is nothing to prove. So we will
assume that f(Vir) # (0). Then Spangf[Vir] is a non-zero ideal of Vir and
Viir is simple, what implies that Vir = Spang f[Viir].

If there is an integer s such that

es ¢ Z J€sminvmmin 1 €iys ey €iy 1),
(€iqseens€ip,_1 JEM
then h(s,i1,...,in—1) = 0 for every (n — 1)-tuple (i1, ...,i,_1) € [0,n]" L.

But this implies that the polynomial g(z1, ..., 2p—1) = h(s,z1, ..., Zn—1) (non
homogeneous) has degree at most n—1 and it is 0 over [0, n]"~!. Consequently g
is the zero polynomial, or equivalently, h(s, 21, ...,2,_1) is the zero polynomial.

But e; € Spang f[Vir], so there are integers ji, ..., jn—1 such that

f(esfjlfmfjnfl’ejl’ RS ejn—l) = )‘657

with A = h(s, j1, ..., jn—1) # 0. This contradiction proves the theorem.

Let k > —1. Then Vir(®) = Z;’ik Fe; is a subalgebra of Vir.
Theorem 2.3. An arbitrary multilinear polynomial is strongly elliptic in Vir(*)

Proof. Let

f(waxlv ~-~7xn—1) = Z a‘ﬂ'[x07mﬂ'(1)7 ~-~7xw(n71)]a Qn € Fa
TESn—1

be a multilinear element of the free Lie algebra that is not identical on Vir®),



As above,

J(€s—ismmip 15 €ins o €ip_y) = (8,01, 0y in—1)eEs,

for arbitrary integers i1, ...,ip—1,5 € Z.
Consider the finite set My = {(eiy, ..y €ip,_,) | B <1y eiyin_1 < k+n}.
We will show that

Vip((ktn)(n=D+k) ¢ Z FVir® e, e ).

(€iqseens€iy, 1) EM

Indeed, if s > (k+n)(n — 1) + &k and (e, ...,€;, ,) € My then
S—il—'~'—7;n_1 Zk‘
If for all (e;y,...,€i, ,) € My we have

f(es—il—---—infueip sy ein,I) = h(S,il, e 7in—l)es = Oa

then arguing as above we conclude that h(s, 41, ,4,—1) is the zero polynomial.
5 For every k < j < (k+mn)(n — 1) + k such that e; € Spang f[Vir®)] choose
elements a)),...,a’ | € {e;|i >k} such that e; = f(al,...,al ).

Let My = M, U{(a],...,a’_,)}. Then
S’panpf[Vir(k)] = Z f(Vir(k), A1y ey Up_1).
(a,..., an—1)EMa

This completes the proof of the theorem.
O

The following theorem concerns ideals I of a Lie ring Vir(k), k> —-1. It

so means that we do not assume, a priori, that I is an F-vector subspace.

Theorem 2.4. An arbitrary nonzero ideal of a Lie ring Vir® k> —1, con-

tains Vir® for some l > k.

Proof. Let I # (0) be an ideal of the Lie ring Vir®). Let 0 # a = aje;, +
o€y + ...t ame;, €L 0#0 € F,1<i<m;k<i < - <1y and ma

ss minimal integer with this property.
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If m > 2 then
0 # [a,e4,] = az(ia —i1)eq, i, +a3(iz —i1)eq viy + -+ Qm(im —i1)€i, 44, € I,

which contradicts minimality of m. Hence m = 1, the ideal I contains an
element ae;, 0 # o € F, i > k. Tt is easy to see that in this case Vir(itk) =

[oe, Vir(®)] C I. This completes the proof of the theorem. O

3. Nottingham Group in Characteristic 0

Given a field F, consider the set of infinite series

Ne(t):={t+ > oapt*™ |ar €F keN}
E>1

with the group multiplication

fg:=9(f); f,g € Ne(t)

For a finite field F = GF(p*), the group Nr(t) is a finitely generated pro-p
group that has been widely studied in the literature.
As always O(t") stands for a formal series lying in t" F'[[t]].

Lemma 3.1. [15]

L Iff=t+at"+0@"), g=t+Bt" +O(t" ), where a, 3 € F, n > 2,
then fg =t+ (a+ B)t" + O(t" ).

2. If f=t4+at"+0@"™),0# a €F, then f~1 =t — at™ + O(t" ).

3. If f =t+at™+O(t" M), g = t+Btm+O(t™ 1Y), where o, B € F, n,m > 2,
then [f,g] =t + af(n —m)t"tm=1 4 O(t"+tm).

Notice that the Nottingham group over a field of characteristic 0 is torsion

free.

Lemma 3.2. Let charF = 0. Then for an arbitrary integer n > 1 and an
arbitrary element g € Np(t) there exists a unique element h € Ng(t) such that
h™ =g.
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Proof. 1t is easy to see that for any n > 2 there exist polynomials Py (z1,...,Tk—2),
k > 3, such that the n-th power of an element ¢ + >, a;t* € N(t) is equal to
t + naot? + 22023(”0% + Pr(g, ..., 1))tk

Let g =t+ > .-, Bit'. Define a sequence

1 1
Qg = Eﬂg,...,@lk = ﬁ(ﬂkfpk(a%"wak—l))? k’23

Let h = t + > ooy a;t’. Then h™ = g. It is easy to see that the element
h is the unique element with this property. This completes the proof of the

lemma. O

For n > 1 consider

K, = {t+ 0"}

In particular, K7 = Np(t). Lemma implies that K, is a normal subgroup of
Np(t) and the mapping

0:K, =T, 0t+at"™ 4 0(t"?)) =«

is a homomorphism into the additive group of the field F, Kerf = K,,;1. Hence
K, /K, ~F.

For a group G let v,(G) denote the n-th term of the lower central series:
G =7(G) = 7(G) = -
Y (G) = [Vn-1(G), G], n > 2.
Lemma 3.3. ([I3]) For every n > 1, we have that v, = v, (Np(t)) = K,,.

Recall that the Lie ring associated with the lower central series of a group

G is the N-graded abelian group

L(G) = @ ’Vn(G)/PanLl(G)

n>1

with multiplication

[@Yn+1(G), bYmt1(G)] = [a, bl vntm+1(G),
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for a € v,(G), b € Y (G).

The isomorphisms K, /K,+1 ~ F define a structure of F-vector space on
L(Ng(t)). Lemma [3.1|(3) implies that multiplication on L(Ng(t)) is F-bilinear,
hence L(Ng(t)) is a Lie algebra over the field F.

Again from Lemma 3) it follows that L(Np(t)) ~ Vir(")

Definition 3.1. A group G is said to be residually nilpotent if
Mn>17n(G) = (1)

Taking the system of subgroups v, (G), n > 1, for the basis of neighbourhoods
of 1 we define a topology on the group G.
If this topology is complete then we say that the group G is pronilpotent.

By Lemma 3.3 the pronilpotent topology on the group Ng(t) coincides with
the degree topology. Hence Np(t) is a pronilpotent group.

Lemma 3.4. Let g€ K, \ Kpt1, g =t +at"™ + O(t"™2), 0 £ a € F. Then

1. K2n+1 = [gyKn+1]'
2. For any s, n < s < 2n, we have Ky = [g, Ks_ ]| Kaop.

Proof. Denote f;(8) =t + Bt i >1, 3 €F.

We claim that for an arbitrary s > n, s # 2n,
Ks = [gaKs—n]Ks-i-l (C)

Indeed, choose an arbitrary element h = t + yt*t! + O(t*72) € K. Let

ﬂ = (ans)a'
By Lemma 3.1(3)

[9, fsn(B)] =t + (2n — $)apt*T + O(t*T?) = t + t*T1 + O(t°+?).

By Lemma 3.1, [g, fs—n(8)]"'h € K411, which implies the claim.
Now choose an arbitrary element h € Ko,11. We will construct a sequence

of elements a; € K4, @ > 1, such that

h€lg,a1---a;] Kapt14i for any i > 1.
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For i = 1, by (C), there exists an element a3 = f,4+1(8) € K41 such that
h € [g,a1] Kanyo.

Suppose that elements a1, ...,a; satisfying that h € [g,a;1 - a;] Kopt14i
have been found. Then [g,a; - --a;]"*h € Kopi14i-

By (C) there exists an element a; 1 € K, ;41 such that
[9,a1 -+ a;]""h = [g,ais1] mod Ko yito.

Hence, h = [g,a1 - - - a;][g, ai+1] mod Koptita-

Using Hall identity:
[1‘7 Zy} = [.’E, y] [SL‘, Z] [[CC, Z], y]

we get [g,a1 - - a;][g, aiv1] = [g9, a1 - a;a;41] mod Kopyito.

We have completed the construction of a sequence ai,as,...,am,... with
the required properties.

Let a = lim;_yo00a1 -+ a; € Kyy1. Then h = [g,a).

Let’s prove the second assertion. Consider s any number satisfying n < s <
2n and h' € K, Arguing as above and using (C) we find elements a; € K;,

1 <i<n—1, such that
h = [97(11 e ‘ai] mod Kn+i+1'

For the element a = a; - - - a,—1 we have b’ = [g, a] mod Ks,,. This completes

the proof of the lemma. O

Corollary 3.5. An arbitrary non-identical normal subgroup of Nr(t) contains

a subgroup K, for some m > 1.

Proof. Let H be a non-identical normal subgroup of Np(¢). Let 1 # g € H,
then there is an n such that g € K, \ Kp41.

Then, by Lemma (1) Kont1 = [g, Knt1] € H. This completes the proof,
taking m = 2n + 1. O

Let p(z1,...,2m) be a non-zero polynomial over F. Suppose that

D =po(T2y .oy Tim) + T101 (T2, ooy Tpy) + xilpd(xg, ey T,

10
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where py(z2,...,2m) # 0. Let P = {p(aq,...,am) | a1, ...,y € F}.

Lemma 3.6. F=+P + P+ ...+ P. That is, every element in F is the sum of
2d
24 elements, each of them lying in P or —P.

Proof. Introduce d new variables, y1, ..., yq and consider the polynomial

ﬁ(yla <o Ydy L2 7xm) :p(yl + o+ Ya, T2, -~'71'm)7

d d
> ottt AYd T2 )+ > Pt Gt AT Y T2, T )+
i=1 1<i<j<n

d
"'+(_1)d71 Zp(yi75'327 7xm)+(_1)dp(07 T2, ,me) - d!yl-"ydpd(xQ) --~7$m)-
=1

Every element from the field F is a value of the polynomial

Ay1..yapa(T2, ..., Tm)
which implies the assertion of the lemma. O

Theorem 3.7. Let F be a field of characteristic zero. Then, the Nottingham

group Ny(t) is verbally elliptic.

Proof. Let w(xy, ..., ;) be an element of the free group F,,, on m free generators
Ty ey Ty

Let G = Ngp(t). Suppose that w|[G] C K, and n is maximal with this
property.

If w ¢ [Fin, Fm] then w(G) = G. Indeed, if w ¢ [Fp, Fin| then

ny .n2

_ N, ,
w =] Ty

mw7

where w’ € [Fp,, Frn] and some n; # 0. Suppose that ny # 0. Choose x5 = 1,...,
T = 1. Then w(xq,1,...,1) = a7".

Using Lemma we can extract roots in Np(t) so for every f € Ng(t),
f=g" =wlg1,..,1) e wG].

Hence, without loss of generality, we assume that w € [F,,, Fy], hence n > 2.

Choose an element g € w[G], g € K,, \ Ky 41.

11



There exists a polynomial p(ajij, 1 <i<m,1<j<n)such that
n n n
Wlt+Y ot Tt Y gt T Yt ) =t p(a T O ().
j=1 j=1 j=1
Let d be the maximum of (total) degrees of monomials from p(x;;). By
Lemmas [3.1(1) and an arbitrary element v from w(G) is a product of not
more than r = 29 elements from w[G]*! modulo K, ;. Hence there exist

elements gi, ..., g» € w[G]*! such that u = g;...g, modulo K, .

By Lemma[3.4(2) there exists an element b € G such that

(g1.--gr) " tu = [g,b] mod(Ka,).

On the other side, since the element [g, f1(1)] lies in K41 \ K42, we can

use again Lemma [3.4(2) to get an element by € K, such that

[g,b]_l(gl - ‘gr)_lu = [lg, 1(1)], b1] mod(Ky(n1))-

By Lemma (1) there exists an element by € K, 11 such that
(g, 1 (D)), 1] g, 0] (g1 -+ - gr) " ru = [g, ba).

Now, u = g1---gr[g, b][[g, f1(1)], b1][g, b2].

A commutator [g,b;] is a product of two elements (¢~* and g% = b; 'gb;)
of w[G]*!. The commutator [[g, f1(1)],b:1] is a product of four elements from
w[G]*!. Hence the verbal width in the group G = Ng(t) is at most r + 8.

This completes the proof of the Theorem. O
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