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Abstract: A shared ground shared radiator with wide angular coverage for mmWave 5G smartphones
is proposed in this paper. A four-element corporate-fed array with conventional impedance matched
power divider is designed. Stepped impedance transformers are integrated with the corner most
elements to achieve pattern diversity with wide angular coverage without significant compromise
in gain. The proposed three-port shared radiator conformal commercial antenna could be easily
integrated with commercial mmWave 5G smartphones. All the three ports’ excitations operate in the
28 GHz band. Radiation pattern bandwidth of the multi-port system is high. The gain variation is
from 6 to 11 dBi amongst the ports and across the operating spectrum. The highest mutual coupling
is 10 dB, in spite of the electrically connected structure. The proposed shared radiator element has
a wide angular coverage of 100◦, maintaining high front-to-back ratio when the respective port is
excited. Simulation and measurement results for the proposed structure are illustrated in detail.

Keywords: shared radiator; conformal; mmWave 5G; 28 GHz band

1. Introduction

Due to the tremendous growth in the smartphone data traffic, it is expected that
millimeter waves would be useful for decongesting the current communication channels
in the microwave domain [1–3]. Experimental characterizations have proved that higher
frequency carriers could be well suited for cellular communication links [4,5]. Thus,
exploration of hardware design centered at 28 GHz would be an important design topic.
As per the Friis transmission formula [6], millimeter wave frequencies would experience
additional losses due to the nature of the transmission link. It must also be noted that the
real-world 28 GHz signal would suffer from additional losses due to the building materials
and multipath effects [4]. Hence, high-gain antennas on the mobile phone are the only
sensible choice to realize a mmWave link, given the constraints of the receiver sensitivity in
the Ka-band.

Numerous articles and conference proceeding papers have been reported in the past
decade. A high-gain corporate fed array is reported in [7], the electrical footprint is high
and hence might not be suitable for direct integration with commercial 5G devices. Phased
array presented in [8,9] is complex to fabricate and has low-gain yield for the electrical size
occupied. Printed dipole of [10] would occupy a large footprint within the smartphone
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limits, proving to be unsuitable for the application at hand. The design reported in [11]
lacks gain switch ability and is incompatible with the modern commercial smartphones.

Gain switch ability is required in mmWave 5G systems to cater to broadcast and
data link modes. In the broadcast mode, a low-gain or wide-beam antenna is required
and in the data link mode, a high gain or narrow beam is required. The same could be
realized using phased arrays by selectively firing up the designated ports [10,11]. The
CPW (coplanar waveguide)-fed antenna design of [12] works in the microwave band, the
authors have demonstrated an orthogonal polarization system, but the same concept might
not be applicable in the mmWave regime. Similarly, the design concept of [13] would
lead to bidirectional radiation patterns, when the antenna is scaled up to millimeter wave
frequencies. The corporate-fed array illustrated in [14] would occupy a larger physical
footprint, when designed for the 28 GHz band. The MIMO concept illustrated in [15]
might not be scaled down to Ka band. However, the design and deployment of phased
arrays would be expensive. Therefore, an electrically compact three-port-wide angular
coverage shared ground antenna system is proposed in this paper. The novel features of
the proposed antenna design are listed below:

• Shared radiator design with minimal physical footprint.
• Shared ground design which is compatible with the system ground plane of the typical

commercial device.
• Conformal shared radiator design which could be panel mountable with commercially

available smartphones.
• Wide angular coverage with three ports without the use of phase shifters.
• Achievement of high gain for the respective port for a minimal occupied physical footprint.

2. Proposed Pattern Diversity Antenna

The multiport electrically connected antenna system is displayed in Figure 1a. It is
a corporate-fed, inset-fed patch antenna array [16–19] with multiple ports. The dielectric
used to realize this microstrip-fed design is Rogers 5880, which has a dielectric constant
of 2.2 ± 0.02 with a corresponding loss tangent of 0.0009. Lower dielectric constant is
necessary to facilitate radiation, especially in the higher frequency of operation. It must also
be noted that the forward gain loss due to higher dielectric loss tangent could be avoided
by this substrate. Rogers substrate is not very flexible as the dielectric composition is rigid,
but with a thickness of 20 mil, flexibility could be expected. However, this substrate cannot
be bent and planarized multiple times as this would fracture the substrate and hamper the
dielectric and metal integrity of the design.
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Figure 1. (a) Proposed three-port electrically connected antenna, (b) Corner bent antenna (All
dimensions are in mm).

The proposed design is an electrically connected multiport radiator with an electrically
large ground with a conventional microstrip feeding technique. A 1.2 mm feed line has
been incorporated to closely match the characteristic impedance SMA (sub-miniature A)
connector. The entire structure is based on the corporate-fed array concept. Here, a four-
element array is designed to achieve wide angular coverage as well as reasonably high gain
for the available physical aperture. The feed line connects to a two-way non-Wilkinson-
based power divider. A Wilkinson-based power divider would have enhanced the isolation
between the terminated loads of the corresponding lines, the inset-fed patch antennas in
this case. However, implementing a Wilkinson-based power divider at higher frequencies
would be difficult due to the size of the miniature resistors and the requirement of a thin-tip
solder. The notch at the T-junction of the power divider facilitates in impedance matching
of the patch radiators and the feeding network. The primary radiators are spaced at an
approximately half-wavelength distance on the substrate.

The outermost elements of the corporate-fed array are also connected to the ports, as
observed in Figure 1a. These ports are connected to the edge along the Y axis of the corner
most elements. The 50 Ω lines originating from ports 2 and 3 are impedance matched to
the shorter edge of the radiator through two low impedance-stepped transformers. The
2.2 mm × 0.6 mm slot, displayed in the inset of Figure 1a, does not contribute to radiation
due to the electrically small size of the slot. When port 2 is excited, the right corner element
contributes to radiation and hence a low gain and wide beam is observed. The same
phenomenon is observed when the connected structure is excited with port 3. As the corner
elements are electrically away from the phase center of the corporate-fed array, beam tilt is
expected for the corresponding port excitation.

The current design of Figure 1a would not be suitable for direct integration with the
mobile terminal, as this would be a broadside radiator and the signal strength would
drastically reduce when it is blocked by a human torso. Hence, the topology of placement
of the proposed shared radiator must be such a way as to reorient radiation away from
the user, when the antenna module is mounted on the mobile device. Hence, corner bent
topology is investigated as illustrated in Figure 1b. Here, the height of the corner bent
radiator is 6.2 mm, which is compliant with the industry standard height of 7 mm. It
must also be noted that the proposed design has an electrically massive system ground
plane; hence, it would be favorable for integration with commercial smartphones. The
feeding network of the proposed topology is in the orthogonal plane as that of the radiating
aperture. Hence, the geometry itself acts as an isolating network between the feed and
the active radiating aperture. The design could be further miniaturized by bending the
portion of the feeding structure of ports 2 and 3. A photograph of the fabricated prototype
is illustrated in Figure 2.
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Figure 2. Photograph of the electrically connected antenna.

The input impedance bandwidth corresponding to port 1 is 11.4%, centered at 28.1 GHz,
as seen in Figure 3. The wideband characteristics are realized due to the topology of the
feeding network and the impedance transformers at ports 2 and 3.
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Figure 3. Input reflection coefficient of Port 1.

|S11| for ports 2 and 3 is graphed in Figure 4 and both are operational in the 28 GHz
band. All the S-parameters measurements were performed using Agilent E8364C. It must
be observed that the S-parameters’ measurements are difficult in the present context, as the
connectors used are electrically large and are in close proximity with the antenna structure.
The clearance for the connector cables is also very minimal; hence, the deviation between
simulated and measured results are pretty evident. Additionally, the fabrication errors due
to bending has resulted in the deviation between simulated and measured results.
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The composite radiation patterns when the respective ports are activated are demon-
strated in Figure 5. When port 1 is activated, the high-gain, low-beamwidth mode is
activated. All four elements have in-phase E-fields which aid in beamforming leading
to narrow beams. However, ports 2 and 3 have a wider beam, as the radiators on either
edge are the primary contributors to the wide beam. The higher back lobe specifically for
excitation of port 3 is due to the following reasons: Dual bending of the substrate which
creates cracks within the copper trace of the feeding network, hence leading to radiation
leakages from the discontinuities. Faulty assembly of the electrically large connector with
the feeding line corresponding to port 3, leading to poor transition from the trace pin of
the connector to the feed line. The overall angular coverage is 100◦ indicating a pretty
wide angular coverage. The front-to-back ratio is greater than 10 dB and is maintained
throughout the operating spectrum indicating minimal radiation towards the user.
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Figure 5. Radiation patterns of the proposed shared radiator.

The measured mutual coupling is less than 15 dB, as observed in Figure 6, in spite
of the electrically connected geometry. The low mutual coupling is primarily due to the
design of impedance transformers at ports 2 and 3. The forward gains of the designed
antenna system is illustrated in Figure 7a, the radiation efficiency is shown in Figure 7b.
The wider beams for ports 2 and 3 result in lower gain compared to its counterpart of
port 1. An example placement of the proposed design with a commercial smartphone is
demonstrated in Figure 8.
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Table 1 illustrates various figures of merit of the proposed dual conformal antenna
system in comparison to previously published designs. It is clear that the proposed system
has wide angular coverage with a panel height less than 7 mm.

Table 1. Comparison of the proposed antenna with previously reported articles.

Ref Frq AS MC AE AC ERV GS MI Con SG

[17] 28 15 × 12 NA NA 70 0.138 Yes No No Yes
[10] 28 45 × 15 <10 NA 90 0.207 Yes No No Yes
[20] 28 20 × 20 <15 NA 80 0.05 No No No Yes
[21] 28 42 × 12 <10 97 90 0.006 No No No Yes
[22] 28 60 × 70 <7 90 NA 0.027 No Yes No Yes
[23] 28 5 × 5 NA 68 90 0.005 Yes No No Yes
[24] 28 14 × 12 NA 78 NA 0.026 No No No -NA-
[25] 26 22 × 11 <15 NA NA 0.192 No No No Yes

PRW 28 24 × 6.2 <10 97 100 0.07 Yes Yes Yes Yes

Ref = Reference, Frq = Frequency (GHz), AS = Antenna size (in mm × mm), MC = Mutual coupling (dB),
ERV = Effective Radiating Volume (λ0

3), AE = Antenna Efficiency (%), AC = Angular coverage (◦), G = Gain (dBi),
GS = Gain Switchability, MI = Mobile Integration, Con = Conformal, SG = Shared Ground, PRW = Proposed Work.

3. Conclusions

A three-port conformal antenna system operating in the 28 GHz is proposed, wherein
a standard 50 Ω line is fed to the two-way power divider, which in turn is connected to
the four-way power divider. The four-way power divider is loaded with four inset-fed
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patch antennas operating in the 28 GHz band. The corner elements of the corporate-fed
array are in turn connected to the two ports through impedance transformers. Port 1
excitation would lead to a high-gain–narrow-beam mode preferable for a data link and
ports 2 or 3 excitation would lead to a low-gain–wide-beam mode preferable for broadcast
application. A wide angular coverage of 100◦ is achieved for various excitations of the ports
within the shared radiator antenna system. Mutual coupling is less than 10 dB across the
spectrum and across the ports, in spite of the electrically connected structure. The proposed
antenna could be a potential candidate for future 5G applications.
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