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ARTICLE

Whole-genome analysis of Nigerian patients with
breast cancer reveals ethnic-driven somatic
evolution and distinct genomic subtypes
Naser Ansari-Pour 1,2,24, Yonglan Zheng 3,24, Toshio F. Yoshimatsu 3, Ayodele Sanni4,

Mustapha Ajani 5, Jean-Baptiste Reynier3, Avraam Tapinos6, Jason J. Pitt7, Stefan Dentro8,9,

Anna Woodard3,10, Padma Sheila Rajagopal3, Dominic Fitzgerald11, Andreas J. Gruber1,6, Abayomi Odetunde12,

Abiodun Popoola13, Adeyinka G. Falusi12, Chinedum Peace Babalola 14, Temidayo Ogundiran15,

Nasiru Ibrahim16, Jordi Barretina 17, Peter Van Loo 18, Mengjie Chen 19,20, Kevin P. White21,

Oladosu Ojengbede22, John Obafunwa4, Dezheng Huo 23, David C. Wedge 1,6✉ &

Olufunmilayo I. Olopade 3✉

Black women across the African diaspora experience more aggressive breast cancer with

higher mortality rates than white women of European ancestry. Although inter-ethnic

germline variation is known, differential somatic evolution has not been investigated in detail.

Analysis of deep whole genomes of 97 breast cancers, with RNA-seq in a subset, from

women in Nigeria in comparison with The Cancer Genome Atlas (n= 76) reveal a higher rate

of genomic instability and increased intra-tumoral heterogeneity as well as a unique genomic

subtype defined by early clonal GATA3 mutations with a 10.5-year younger age at diagnosis.

We also find non-coding mutations in bona fide drivers (ZNF217 and SYPL1) and a previously

unreported INDEL signature strongly associated with African ancestry proportion, under-

scoring the need to expand inclusion of diverse populations in biomedical research. Finally,

we demonstrate that characterizing tumors for homologous recombination deficiency has

significant clinical relevance in stratifying patients for potentially life-saving therapies.

https://doi.org/10.1038/s41467-021-27079-w OPEN

A full list of author affiliations appears at the end of the paper.
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B lack women of African ancestry worldwide face breast
cancer at younger ages, experience more clinically
aggressive disease, present with more advanced disease at

diagnosis and suffer higher mortality relative to women of other
ancestries1,2. While socioeconomic and structural barriers
explain some of this disparity, women of African ancestry also
experience higher rates of estrogen receptor-negative (ER−)
and progesterone receptor-negative (PR−) [hormone receptor-
negative, HR−] or human epidermal growth factor receptor 2
(ERBB2)-amplified [HER2+] subtypes of breast cancer3–5. At
least 40% of this subtype distribution is estimated to be due to
heritable factors6.

Studies of breast cancer genomes reveal population-specific
differences in germline predisposition mutation frequency,
somatic mutation landscapes, and mutational signatures,
mirroring population differences in molecular subtypes7–10.
Breast cancer patients of African ancestry demonstrate more
TP53 alterations and fewer PIK3CA alterations6,8, and Nigerian
HR+ /HER2− tumors are characterized by increased homo-
logous recombination deficiency (HRD) signature8. Tumors from
patients of African ancestry have also previously been shown to
demonstrate increased intra-tumor heterogeneity (ITH)11.

Whole genome sequencing (WGS) with paired germline tissue
can be used to reconstruct the evolutionary “life history” of breast
tumors, providing a detailed roadmap for early or late clonal and
subclonal genomic events that help prioritize therapeutic
targets12–14. To date, however, the evolutionary and clonal
structure of breast cancers have only been derived using tumors
predominantly of non-African ancestry. We hypothesized that
studying the evolutionary trajectory of tumors from indigenous
African women would provide insight into population-specific
genomic features relevant to the breast cancer burden in pre-
viously understudied populations.

Here, we perform life history analysis on an indigenous Black
African population, underscoring the critical paucity of genomic
data previously available from breast cancer patients of African
ancestry15,16.

Results
High-depth WGS was performed on 100 breast tumors
(90 × depth; of which 49 had complementary RNA-seq) and
paired normal tissue (30 × depth) from women with breast cancer
from Nigeria as previously described8. Key events in the somatic
evolution of these tumors were identified and compared with a
similar analysis of WGS from 76 breast cancer cases from The
Cancer Genome Atlas (TCGA). Three samples from Nigeria were
excluded due to low purity estimates (<10%), resulting in a final
set of 173 samples comprising Nigerian Black (Nigerian for short,
n= 97), White TCGA (White for short, n= 46), and Black
TCGA (Black for short, n= 30) groups (Supplementary Table 1
and Supplementary Fig. 1). Epidemiological risk factors for
Nigerian cases are presented in Supplementary Table 2. The
genetic ancestry information of breast cancer patients from
TCGA was obtained from our previous study (Methods)6.

Detection of coding and non-coding bona fide drivers. We
observed a higher insertion and deletion (indel) burden in the
Nigerian group compared with the White and Black groups
(P= 6.5 × 10−5 and P= 2 × 10−4 respectively), which remained
significant after adjusting for clinical subtype. However, the single
nucleotide variant (SNV) rate did not significantly differ between
races/ethnicities. Somatic coding drivers were identified with
cDriver17 (recurrence ≥ 2%, false discovery rate [FDR] < 0.01) and
MutSigCV18 (FDR < 0.05) independently. In total, thirteen driver
genes were identified (Supplementary Table 3). Using the 20/20

principle19, driver genes were classified into oncogenes (ONC)
and tumor suppressor genes (TSG). GATA3 showed the strongest
TSG signal and, of the five previously unreported driver genes
detected; three showed a TSG signal (Supplementary Fig. 2). The
cancer cell fraction (CCF) distribution of mutations showed that
most drivers occurred clonally, i.e., in all tumor cells (Supple-
mentary Fig. 3), with no significant difference in the CCF dis-
tribution of top mutated drivers (>10%) among the three groups
(Supplementary Fig. 4). However, BCLAF1, a transcription reg-
ulator involved in DNA damage response20 which also displayed
a strong TSG score, was found to occur predominantly subclonal.
Based on the union set of previously identified breast cancer
drivers8,21 and those identified here, 30 were identified in our
samples, and 93.6% of all samples were mutated in at least one
known driver (Fig. 1).

Driver enrichment analysis identified GATA3 as the only driver
significantly enriched in the Nigerian group (FDR= 0.038, odds
ratio [OR]= 6.3, 95% confidence interval [CI] 1.8–34.3).
This enrichment remained significant after adjusting for clinical
subtype (generalized linear model, P= 0.0032). Subtype stratifi-
cation identified LAMB3 enriched in HER2+ tumors (OR=
13.7), although lacking significance following multiple testing
correction (FDR= 0.15). LAMB3 occurred only in Nigerian
HR−/HER2+ patients. TP53 was enriched in ER-patients
(FDR= 0.0021, OR= 3.8, 95% CI 1.9–7.8). Interestingly,
although GATA3 has been reported to be strongly enriched and
unique to ER+ tumors22, we did not observe such an enrichment
(OR= 2.7, FDR= 0.17) in the Nigerian group, which included
ten GATA3 mutants, ER− tumors (see Supplementary Figs. 5
and 6 for the distribution of GATA3 mutations). We also
examined whether any of the ten pan-cancer canonical
pathways23 was enriched in any of the three groups. Mutation
recurrence was first computed in each pathway for all three
groups based on the associated genes (Supplementary Figs. 7–9)
and then compared among the three groups. Although no
pathway was significantly enriched in a particular group, we did
observe a significant positive cline of mutation recurrence in the
HIPPO pathway from White to Black to Nigerian groups
(proportion trend test P= 1.7 × 10−5; Supplementary Fig. 10).

We identified hotspots for non-coding mutations by compar-
ing the Nigerian, Black, and White groups. Two regions across
the genome showed significant differences (FDR < 0.1) in
mutation rates between the Nigerian and White groups (Fig. 2),
both over-represented in the Nigerian group. No significant
differences were identified between the Nigerian and Black
groups. The strongest signal (42.3% [95% CI 32.6%-52.0%] versus
4.3% [95% CI 0%-10.2%], FDR= 0.037) was found at 20q13.2
where mutations clustered immediately upstream of ZNF217, a
gene encoding a transcription factor which is a key regulator of
tumorigenesis24 and previously associated with clinical outcomes
in breast cancer25. The second hotspot (28.9% versus 0%,
FDR= 0.097) was found at 7q22.3 within and flanking SYPL1
(Synaptophysin-like 1). Although there is no evidence of its
association with breast cancer, this gene has been previously
associated with clinical outcomes in hepatocellular carcinoma26

and pancreatic ductal adenocarcinoma27. Interestingly, we saw a
significant positive cline in the prevalence of mutations in both
genes from White to Black to Nigerian groups (proportion trend
test; P= 3.4 × 10−6 for ZNF217 and 3.3 × 10−4 for SYPL1),
suggesting an association with African ancestry. Whole-
transcriptome data were available in a subset (n= 49) of Nigerian
WGS samples. We examined the effect of non-coding mutations
on the expression of these two genes in the Nigerian and Black
groups, where this comparison was statistically informative. We
observed elevated expression in mutant tumors for both genes;
however, none were found to be statistically significant
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(Supplementary Fig. 11). The functional consequences of the
identified non-coding mutations are yet to be established.

Enrichment of a previously unreported indel mutational sig-
nature in African tumors. Somatic mutational signatures may

provide an etiological explanation for both exogenous and
endogenous risk factors of breast cancer. Mutational signature
analysis identified 13 single-base substitution (SBS) COSMIC
signatures (Fig. 3a–b). Those observed in >5% of samples have
been previously reported with a similar order of prevalence22,
with the exception of SBS39, which is a recently detected
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signature28. The rare SBS signatures (SBS17a/b, SBS7b, SBS15,
and SBS28) were observed primarily in Nigerian and Black
groups, with the mean prevalence of these signatures at 2.8 and
3.3%, respectively. The HRD signature SBS3 was observed in all
groups. However, compared with the White group, the Black
(OR= 2.74, P= 0.048) and Nigerian (OR= 1.87, P= 0.13)
groups had slightly higher activity. Nine double-base substitution
(DBS) signatures were also identified, of which five were pre-
viously unreported (Supplementary Fig. 12). Although DBS-B

was observed in similar frequencies across the groups (OR~1.3,
P > 0.58), DBS-B showed a higher contribution in Nigerians than
in the White (1.55-fold, P= 0.0035) and Black (1.42-fold,
P= 0.018) groups.

Twelve INDEL signatures were detected, of which ID8 and
INDEL-B were the most frequent. Of note, previously
unreported signature INDEL-B was not only significantly
depleted in the White group compared with the Nigerian
(P= 1.1 × 10−18) and the Black groups (P= 1.2 × 10−4), but it
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also showed a clear positive cline from White to Black to
Nigerian groups both in prevalence (proportion trend test
P= 3.9 × 10−18; Fig. 3c) and activity (proportion trend test
P= 2.6 × 10−6; Fig. 3d). Moreover, unlike common INDEL
signatures such as ID6, which are composed of short deletions,
this signature comprises short insertions (Supplementary
Fig. 13). Although the etiology of this signature remains to be
elucidated, the data suggest a strong association with recent
African ancestry. This association was not observed for any
other INDEL signature. Notably, the indel burden in Nigerians
was bimodally distributed (Supplementary Fig. 14), suggesting
greater activity in a subset of patients. Assessment of the high
burden samples identified ID2, ID4, and ID6 as the dominant
signatures, all of which showed at least 2-fold higher mean
activity than in low burden samples.

A comparison of hormone subtypes (Supplementary Fig. 15)
revealed that SBS3, ID6, and ID8 were more active in the HR−/
HER2− subtype while INDEL-B and DBS11 had the highest
activity in the HER2+ subtype.

Indel and structural variant (SV) signatures better classify
tumors for HRD. The HRD SBS signature (SBS3) was detected in
4/7 and 7/8 germline and somatic BRCA-positive tumors,
respectively. While four samples with either germline or somatic
BRCA variants lacked SBS3, all four samples exhibited high
activity of INDEL signatures ID6 and ID8 (Supplementary Data 1
and Supplementary Fig. 16), both of which are associated with
DSB repair by non-homologous end-joining28. It seems likely
that, due to the high similarity of ‘flat’ SBS signatures (Supple-
mentary Fig. 17), SBS3 activity may have been misassigned
mainly to SBS39 during signature deconvolution, an interpreta-
tion supported by the mutual exclusivity of these two signatures
(Supplementary Fig. 16).

To shed further light on the classification of tumors for HRD,
we applied CHORD29 to the entire dataset and found 34% of
tumors to be HR-deficient (Fig. 4 and Supplementary Fig. 18).
No significant enrichment of HRD was observed in any ethnic
group or clinical subtype (Supplementary Fig. 18); however,
Nigerian HR+ /HER2− tumors had elevated HRD compared
with Black and White groups, which is consistent with our
previous finding8. Unlike SBS3, all BRCA-positive tumors were
classified as HR-deficient by CHORD. Further, we observed a
strong positive correlation between ID6+ ID8 signature activ-
ity and CHORD HRD score (R= 0.93, P < 2.2 × 10−16) and
identified a clear cluster of tumors with high ID6+ ID8 activity
(>0.5) and high CHORD score (>0.75), of which 34 (67%) were
BRCA-negative tumors (Supplementary Fig. 19). This shows
that both metrics can be used to identify HR-deficient tumors
and a higher cut-off (i.e., 0.75) for CHORD score is
recommended to confidently classify tumors for HRD. Next,
we predicted BRCA-type using CHORD and examined its
correlation with driver mutations. All BRCA1- and BRCA2-
positive tumors were correctly classified by CHORD. Consis-
tent with Nguyen et al.29, HR-deficient tumors with PALB2
were also classified as BRCA2-type. Of those tumors with no
mutation in an HRD-associated gene but in the high-score
cluster, 70% were BRCA1-type, which showed significant
enrichment in the Nigerians compared with non-Nigerians
(OR= 9.2, P= 0.049). In addition to CHORD, to confirm the
presence of the two BRCA-types, SV signature analysis was
undertaken, and we extracted seven SV signatures (S1–S7;
Supplementary Figs. 20 and 21). Similar to Nik-Zainal et al.22,
we identified distinct BRCA1- and BRCA2-associated signatures
(S3 and S2 respectively), which matched well with CHORD-
based BRCA-type classification of tumors (94% and 84%

respectively; Fig. 4 and Supplementary Fig. 22), showing
significant enrichment of S2 activity in BRCA2-type tumors
(2.8-fold; P= 4.5 × 10−5) and S3 activity in BRCA1-type tumors
(14.5-fold; P= 1.1 × 10−11). These results together suggest that
(1) SBS3 is a poor classifier of HRD and (2) the combination of
INDEL and SV signatures along with CHORD HRD score is not
only superior in identifying HR-deficient tumors, but such
information can also be used to infer their BRCA-type.

Loss of 14q is highly enriched in HER2+Nigerian tumors. The
CNA landscape of the Nigerian group (Fig. 5a) was very similar
to that of the Black group, with all enriched CNA regions in the
Nigerian group also observed in the Black group. We, therefore,
compared the CNA landscape only with the White group. The
key enriched CNA events unique to the Nigerian group were
5p15.33–13.3 Gain, 7p22.1–14.2 Gain, 17p13.3 Gain, and 14q
LOH. We further analyzed these enriched CNAs at the clinical
subtype level and found that clonal 14q LOH was highly enriched
in the Nigerians in the HR−/HER2+ subtype (0.58 versus 0.07,
8.6-fold, P= 7 × 10−4; Fig. 5b) even though the proportion of this
subtype was comparable between the two groups (43.8% and
33.3% respectively, P= 0.358). This enrichment was corroborated
when we compared the Pan-cancer Analysis of Whole Genomes
(PCAWG) HER2+ breast cancer patients of White European
descent (n= 22; ~90% of all HER2+) with HER2+Nigerians
(3.2-fold, P= 0.0034).

14q LOH enrichment in the Nigerian group is an interesting
observation since it is known to be associated with aggressive
breast cancer progression30,31. Its effect may be particularly
exacerbated in Nigerian patients as HR−/HER2+ has been
reported to be enriched within younger Nigerian patients for
reasons that are poorly understood8. 14q LOH has been reported
in BRCA2 mutation carriers using array-CGH32,33. We also
observed 14q LOH in all BRCA2 carriers; however, the presence
of 14q LOH in BRCA2-negative tumors suggests that this CNA
event is present more widely in breast cancer than previously
described.

Higher Genomic Instability (GI) in Nigerian tumors. GI is a
known hallmark of cancer which manifests as whole-genome
duplication (WGD), chromosomal instability (CIN), and kataegis.
We observed a 3-fold higher rate of WGD in Nigerians compared
with the White group (FDR= 0.02) but no significant difference
was observed between either group and the Black group. Inter-
estingly, we observed a significant positive trend in WGD rate
from White to Black to Nigerian groups (proportion trend test,
P= 0.004).

The proportion of the genome altered adjusted with the number
of CNA segments (PGAn) was calculated for all samples as a
measure of CIN. We observed a 1.8-fold higher PGAn in WGD
tumors compared with non-WGD tumors (P= 3.3 × 10−7), with
HR−/HER2− tumors showing this pattern only in the Nigerian
group (FDR= 3.4 × 10−6; Supplementary Fig. 23). PGAn was
also significantly correlated with mutation burden (R= 0.55,
7 × 10−15; Supplementary Fig. 24).

We observed kataegis, a phenomenon of localized hypermu-
tations often associated with genomic rearrangements34, in
64.2% (111/173) of samples (Supplementary Data 2), with 3.6%
of these, all Nigerian, harboring more than ten kataegis events
(Supplementary Fig. 25). The majority of SNVs at kataegis foci
were C > T and C > G mutations, associated with APOBEC
mutational signatures SBS2 and SBS13. At the group level,
the Nigerian group exhibited a higher number of foci
(Supplementary Fig. 26) compared with the White (2.1-fold,
P= 6.4 × 10−4) and Black groups (2.8-fold, P= 0.002);
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however, after adjusting for subtype, NRPCC and multiple-
testing, it was only significantly higher than the White group
(FDR= 0.017). No association was observed between the
number of foci and subtype or age at diagnosis.

Chronological ordering of genomic aberrations. The Plackett-
Luce probabilistic framework was used to reconstruct the most
likely chronological order of genomic aberrations across all tumors.
Genomic aberrations included in the analysis were enriched CNAs,
WGD, and common mutational drivers, all of which were ordered
based on clonality. Figure 6 depicts the relative timing of genomic
events for the Nigerian dataset. Mutations in both GATA3 and
TP53 were found to be early drivers. In addition to known early
events such as 8p LOH and 17p LOH, 9q34.2 LOH, 14q LOH,
15q14-q21.3 LOH, and 19p13.3 LOH were among the early dri-
vers. In contrast, in the White group, 19p13.3 (STK11) LOH did
not occur pre-WGD (Supplementary Fig. 27), but 8p11.21 gain did
occur pre-WGD. This gain event and 19p13.3 LOH encompass
ANK1 and STK11 genes, respectively, both of which have been
implicated in tumorigenesis14,35, and copy number loss of STK11
has been reported in metastatic breast cancer36. Ordering just the
HR−/HER2+ subtype, 13q LOH, 14q LOH, and 8p11.21 gain
occurred as early as the known early drivers (8p LOH and 17p

LOH), of which 14q LOH is virtually absent in the White HR−/
HER2+ group.

Higher intra-tumoral heterogeneity (ITH) in the Nigerian
group. ITH was assessed using weighted cancer cell fraction
(wCCF), a metric that incorporates both the number and CCF of
subclonal mutations. Significantly higher ITH was observed in
cancers from the Nigerian than the White group (generalized
linear model, P= 0.005; 3.4% increase) and Black (P= 1.7 × 10−4;
5.7% increase) groups after adjusting for clinical subtype and the
higher sequencing depth of Nigerian samples. No significant dif-
ference was observed between White and Black groups (P= 0.13).
The five samples with the highest subclonality (wCCF range
0.66–0.73) were all Nigerian. One of these samples had subclonal
mutations in known driver genes MAP2K4 and RB121, and a
second sample in the previously unreported driver gene F5. The
remaining three samples carried possible driver mutations in
COSMIC tier 1 genes ATR, ATRX, and KMT2D, respectively.
Further, mutations in PRDM14, an epigenetic regulator associated
with an increase in ITH37, were observed in two of the five
samples (Supplementary Fig. 28).

Identification of distinct genomic subtypes. We analyzed the
mutational and CNA drivers for potential pairwise interactions

TP53

GATA3

9q34.3

17p

19p13.3

15q14 21

8p

4q31 35

11q14 25

16q22.2 23.2

5q35.2

17q_LOH

14q

3p

4p

22q11.22 13.32

5q

12q21 24

7q36.1_CNTNAP2

13q

9p24 22

WGD

17p13.3 13.2

8p11.21

8q

17p11.2_MAP2K3

7p22.1 14.2

1q

18q12.2 23

17q_Gain

5p15.33 13.3

16p

6p25.3 21.31

20q

10p15.3 12.31

3q26.2 29

10q23.2_PTEN

8p23.2

9p21.3 11.2

Relative Timing

Event

Gain

LOH

HD

Mut

WGD

Early Late

Fig. 6 Chronological ordering of genomic events in Nigerian breast tumors. Clonality-based ordering of significantly enriched copy number events
(FDR < 0.05), whole-genome duplication (WGD), and key frequent mutational drivers (TP53 and GATA3). A Plackett-Luce model was used to order the
events by sampling from all possible tumor phylogenies across the entire dataset (1,000 iterations). Violins represent the 95% confidence interval of the
relative timing estimate for each event. The events are ordered early to late by the mean value of the relative timing estimates. The vertical dotted line
represents the mean timing estimate of WGD across all samples. LOH loss of heterozygosity, HD homozygous deletion, Mut mutational driver.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27079-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6946 | https://doi.org/10.1038/s41467-021-27079-w |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and identified the majority to be co-occurrences of CNA events
(Fig. 7). However, GATA3 and TP53 mutations were found to be
almost mutually exclusive (P= 2.46 × 10−7, OR= 0.065, 95% CI
0.012–0.24) across groups and clinical subtypes (Supplementary
Fig. 29). TP53 and GATA3 mutations had similar CCF
distributions (Kolmogorov–Smirnov test, P= 0.24) and were
predominantly clonal (95% and 96%, respectively). In addition,
the timing model identified both genes as pre-WGD drivers. To
assess likely gene function, we combined the CNA and mutation
data to assess the rate of double-hits (biallelic inactivation) of
these two genes. In total, 74 tumors had both clonal LOH and
mutation at TP53. Half (49.5%) of these double-hit tumors had
missense mutations; however, no difference was observed in their
rate of WGD with those carrying loss-of-function mutations
(OR= 1.04; P= 1), all TP53 mutations were treated as equally
deleterious in this context. WGD was significantly enriched in
this double-hit subtype (FDR= 5.08 × 10−5; Supplementary
Fig. 30), but not the single-hit group. In contrast, of the
23 samples that carried clonal LOH at the GATA3 locus, none
had a GATA3 mutation (Fisher’s exact test, P= 0.047),

suggesting that either biallelic inactivation of GATA3 is lethal for
cells and therefore selected against or that loss of one GATA3
copy causes haploinsufficiency. GATA3 gene dosage was not
associated with WGD.

The early, clonal, near mutually exclusive occurrence of TP53
and GATA3 suggests that they define distinct genomic subtypes
of breast cancer, at least in Nigerian patients. We, therefore,
proceeded to further characterize these subtypes in the Nigerian
cohort. Interestingly, patients in the GATA3 mutant subtype were
diagnosed with an average of 10.5 years younger (42.9 versus
53.4 years, P= 4.8 × 10−4). From the chronological ordering of
CNA events in each subtype (Supplementary Fig. 31), 5q35.1 gain
was observed as an early event only in the TP53 subtype. In
contrast, HD at 9p21.3-p11.2 was an early event in the GATA3
subtype, albeit with high variance due to the small number of
samples with this event. The latter is an interesting observation
given that HDs are reported to appear generally late in tumor
evolution38,39. We observed no overall difference in the wCCF
distribution of the two subtypes (Kolmogorov–Smirnov test,
P= 0.8), suggesting no significant difference in ITH patterns.
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With respect to mutational signatures, we observed statistically
significant increases in SBS1, SBS18, ID5, and the previously
unreported INDEL-B in the GATA3 subtype, while SBS8, SBS39,
previously unreported DBS-D, ID8, and ID9 signatures were
significantly over-represented in the TP53 subtype (Supplemen-
tary Fig. 32). A higher prevalence of kataegis (OR= 6.79,
P= 0.057) was observed in the GATA3 subtype, which also
affected more foci (1.53-fold, P= 0.033). In contrast, the TP53
subtype showed greater GI in general with significantly higher
mutation burden (1.84-fold, Wilcoxon test, P= 0.007) and WGD
(OR= 7.28, P= 0.004), consistent with previous studies40,41.
Mean PGA and PGAn were also both higher in the TP53 subtype
(P= 7.6 × 10−4 and P= 0.012).

In the Nigerian cohort, 20.6% of tumors (n= 20) were not
mutated at either TP53 or GATA3 (Fig. 8). These samples had
lower mutation burden (P= 5 × 10−4), WGD rate (P= 0.007),
PGA (P= 0.0013) and PGAn (P= 0.0014) than the TP53
subtype, and a lower rate (P= 0.007) and prevalence (P= 0.02)
of kataegis foci compared with the GATA3 subtype. Common
clonal coding drivers were PIK3CA (25%; 28 and 5% in TP53 and
GATA3 subtypes, respectively) and RB1 (10%; 3 and 0% in TP53
and GATA3 subtypes, respectively) while 35% of these tumors
had neither clonal mutations in known mutational drivers nor
non-coding variants in either ZNF217 or SYPL1. We therefore
further explored this subset of ‘quiet’ genomes. We observed no
difference in tumor purity between this subtype and the GATA3
and TP53 subtypes (P > 0.24; 0.42 versus 0.44 and 0.48,
respectively), suggesting that the observation of lower GI in this
subtype is not due to lower tumor content. Similar to the GATA3
subtype, we observed an enrichment of INDEL-B compared with

the TP53 subtype (FDR= 0.011) and a lower rate of enriched
CNA events (Fig. 8). However, HD of 17p11.2 (MAP2K3) was an
early event in the quiet tumors, present in 15% (3/20) of samples,
while absent in the GATA3 and late occurring in one tumor in the
TP53 subtypes respectively (Supplementary Fig. 31). Comparison
of the whole-transcriptomes of a subset (n= 49) of samples from
the three subtypes did not show a distinct cluster for the quiet
genomes (Supplementary Fig. 33). However, this subtype
demonstrated significant overexpression of genes (FDR < 0.05;
Supplementary Fig. 34) previously associated with breast cancer
including casein (CSN1S1, logFC= 7.7, Padj= 0.005)42 and
Nectin-4 (PRR4, logFC= 4.1, Padj= 1.75 × 10−8), Myomesin-2
(MYOM2, logFC= 2.77, Padj= 0.02)43, estrogen-related receptor
beta (ESRRB, logFC= 2.51, Padj= 0.03)44 and neurotrophic
receptor tyrosine kinase 3 (NTRK3, logFC= 2.45, Padj= 0.04)45,
as well as genes associated with epithelial development
(SPRR2G/SPRR2E, logFC ≥ 5.4, Padj < 0.02), mucin production
(MUC7, logFC= 4.7, Padj < 0.03)46, and metastatic potential
(LOXL4, logFC= 2.63, Padj= 0.002, and SERPINE2, logFC= 2.3,
Padj= 0.006)47,48.

Discussion
Previous genomic landscape studies have sketched out evolu-
tionary trajectories of cancers including breast cancer, primarily
focused on White patients of European ancestry ascertained in
the US, Canada and Europe12,14. We used deep WGS to char-
acterize the genomic landscape of somatic events and reconstruct
the chronological ordering of events in breast tumors from 97
indigenous Nigerian women and compared the findings with
tumors from White and Black patients in TCGA. We observed
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key differences in somatic events occurring during the evolution
of breast cancer in our Nigerian cohort, but these patients were
not treated according to globally accepted clinical guidelines and
lacked access to affordable cancer medicines. Nonetheless, we
were able to gain improved understanding of breast cancer het-
erogeneity across populations.

First, genomic instability, a hallmark of cancer49,50, was
observed at a higher rate in the Nigerians in the form of WGD,
PGA and kataegis, all of which may provide raw material for
aggressive tumor behavior. Second, a higher level of ITH was
observed in the Nigerian group. Given that ITH can serve as an
indicator of tumor fitness for evolutionary adaptation and
impinge upon the efficacy of therapeutic treatments51, this may
in part explain the biologically aggressive behavior of
these tumors and poor clinical outcome in an unscreened
population. Third, key somatic events were enriched in the
HR−/HER2+ subtype, which may point to etiology but could
also potentially impact response to HER2-targeted therapies. Of
note, 14q LOH, which encompasses breast cancer genes
such as SERPINA1 and DICER1, was highly enriched in
HR−/HER2+Nigerian women. Loss of the former has been
shown to be associated with poor outcome in this subtype31 and
that of the latter is associated with tumor progression and
recurrence in this subtype30. Other enriched events include
LAMB3 (regulator of the PI3K/Akt signaling pathway in mul-
tiple cancers52) and the previously unreported INDEL-B
(unknown etiology). Fourth, recent studies have demonstrated
that WGS-based mutational signatures and HRD scores can
reliably identify tumors with ‘BRCAness’ phenotype and these
measures can be predictive biomarkers to guide treatment53–55.
We were not only able to confidently stratify HR-deficient
tumors by INDEL ID6/ID8 activity, CHORD HRD prediction
and SV signatures, we were also able to delineate tumors into
BRCA1- and BRCA2-types which fully correlate with BRCA
driver mutations. Nigerian breast cancers with high frequencies
of germline mutations7 and over 30% HR-deficient tumors,
therefore, constitute an identifiable ‘BRCAness’ population that
could benefit from poly ADP-ribose polymerase inhibitors or
platinum-based chemotherapy.

Lastly, epidemiological studies have shown a younger age of
onset in women of African ancestry56. The significant enrichment
of the early clonal driver GATA3 in the Nigerian group and a
positive trend in its recurrence with African ancestry (proportion
trend test, P= 0.0035) along with a significantly lower age at
diagnosis in patients with tumors carrying GATA3 mutations is
likely to be an underlying genomic event associated with young
onset breast cancer. Furthermore, non-coding mutation hotspots
at ZNF217 and SYPL1, which are both associated with poor
outcomes, and the previously unreported INDEL-B showed a
strong positive trend with African ancestry, suggesting that these
genomic features may also be associated with different evolu-
tionary patterns of breast cancer in Nigeria.

Substantial progress has been made in unraveling the genomic
complexity of breast cancer12,22, one key improvement being the
development of genomic classification of breast cancer57,58. In
our cohort, we identified three genomic subtypes, of which the
GATA3 subtype was strongly enriched in the Nigerian group.
These genomic subtypes presented distinct mutational properties.
In the TP53 subtype, all of which were double-hit TP53 tumors,
mutation burden was higher and WGD was significantly enri-
ched. A recent study has shown that loss of both copies of TP53
drives the poor outcome of patients with myelodysplastic syn-
dromes, and different evolutionary trajectories were evident
between single-hit and double-hit tumors59. In contrast, kataegis
was more frequent in the GATA3 subgroup. The quiet genome
subtype displayed low genomic instability and demonstrated

associations to genes previously incorporated across breast cancer
subtyping, prediction and prognostication approaches to date
without a clearly consistent, previously described pattern. That a
large proportion of the tumors had no known clonal driver and
that a number of breast cancer related genes were highly upre-
gulated suggests that tumor evolution in this subtype is complex
and remains to be fully elucidated.

It is worth noting that our present study has a few limitations.
We acknowledge the modest samples sizes reported here and
that both TCGA and the present study are conducted on con-
venient and purposive samples ascertained in hospitals and may
not reflect the origin populations. While starting to redress the
imbalance with larger European cohorts, it will also supplement
existing studies of tumor evolution in breast cancer. Nigerian and
coastal West African populations contributed a significantly
large proportion of genetic makeup of African Americans and
African Caribbeans60. Compared with White women, Nigerian
women with breast cancer have different epidemiological and
genetic risk factor profiles, such as younger age at diagnosis, later
age at menarche, higher parity, and a relatively high germline
mutation rate in BRCA1 and BRCA2 genes7,23. Future studies
integrating germline and somatic genetics, as well as epigenetic
and environmental factors will extend our understanding of the
dynamic nature of breast tumor evolutionary trajectories in
African ancestry populations. Innovative science and technology
when fully deployed can accelerate progress in tailoring screen-
ing for early detection to individuals at high risk. Com-
plementary and agile liquid biopsy strategies61–63 for known and
de novo somatic alterations detection in oncogenic drivers
(especially the early drivers) can be incorporated to immune
surveillance strategies for prevention, early detection, and pre-
cision oncology care.

Methods
Patient cohort, ethics, and pathological assessment. This study was embedded
within the Nigerian Breast Cancer Study (NBCS) and approved by the Institu-
tional Review Board of all participating institutions: The University of Chicago,
University College Hospital, Ibadan (UCH), and Lagos State University
Teaching Hospital (LASUTH)1,7,9,64. A grand total of 493 subjects were
recruited from UCH (n= 284) and LASUTH (n= 209) between February 2013
and September 2015. Each patient gave written informed consent before parti-
cipation in the study. Six biopsy cores and peripheral blood were collected from
each patient. Two biopsy cores were used for routine formalin fixation for
clinical diagnosis and the remaining four cores were preserved in PAXgene
Tissue containers (Qiagen, CA) for subsequent genomic material extraction. In
addition, 27 mastectomy tissues were preserved in RNAlater. Complete
pathology assessment was performed centrally by study pathologists. Tumor
burden was assessed based on cellularity, histology type, and morphological
quality of tissue using TCGA best practices57. IHC on ER (rabbit monoclonal
antibody, clone SP1 [Thermo Scientific, Cat# RM-9101]; 1:100 dilution), PR
(rabbit monoclonal antibody, clone SP2 [Thermo Scientific, Cat# RM-9102];
1:100 dilution), and HER2 (rabbit anti-human antibody, HercepTest Kit [Dako,
Cat# K520421-5]; no dilution) were performed centrally in Nigeria and further
reviewed in the United States. Cases with discordant results were again reviewed
and resolved by the study pathologists. IHC scoring variables for Allred scoring
algorithm were captured according to the 2013 ASCO/CAP standard reporting
guidelines. Briefly, for ER and PR testing, immunoreactive tumor cells <1% was
recorded as negative and those with ≥1% were reported positive. All the positive
ER and PR cases were graded in percentages of stained cells and further scored
in line with the Allred scoring system. Percentage of tumor staining for HER2
test were also reported along with a score of 0 and 1+ as negative, 2+ as
equivocal, and 3+ as positive case. HER2 equivocal cases were further confirmed
with genomic copy number calls.

Sample selection and genomic material preparation. Tumor samples containing
>60% tumor cellularity were selected for DNA extraction using PAXgene Tissue
DNA kit (Qiagen). Gentra Puregene Blood Kit (Qiagen) was used to extract
genomic DNA from blood. Extracted DNA was quality controlled for its purity,
quantity, and integrity. Identity of each extracted DNA sample was tested using
AmpFlSTR Identifiler PCR Amplification Kit (Thermo Fisher Scientific). Samples
that match >80% of the short tandem repeat profiles between tumor and germline
DNA were considered authentic. RNA was extracted from PAXgene fixed tissues
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using the PAXgene Tissue RNA kit (Qiagen). RNA integrity (RIN) was determined
for all samples by the RIN score given by the TapeStation (Agilent) read out. RNA
samples that had RIN scores of 4 and above were included in downstream
sequencing analysis.

Next-generation sequencing data generation. A total of 100 WGS were per-
formed at the University of Chicago High-throughput Genome Analysis Core
(HGAC) and at the New York Genome Center (NYGC). Libraries were prepared
using the Illumina Truseq DNA PCR-free Library Preparation Kit and were
sequenced on an Illumina HiSeq 2000 sequencer at HGAC using 2 × 100 bp paired-
end format and HiSeq X sequencer (v2.5 chemistry) at NYGC using 2 × 150 bp
cycles. Mean coverage depth tumor was at 103.2× and normal was at 35.1×. A total
of 103 RNA-seq were carried out at the Novartis Next Generation Diagnostics
facility. Average number of mapped reads per sample was 97 million. Seven
samples failed QC and were excluded. Among the remaining 96 samples, 49 have
WGS data available from the same patients. Total RNA were constructed into poly-
A selected Illumina-compatible cDNA libraries using the Illumina TruSeq RNA
Sample Prep kit. Passing cDNA libraries were combined in equimolar pools with
other libraries of compatible adapter barcodes and later sequenced on the Illumina
HiSeq 2500 sequencer.

Alignment of DNA sequence to reference genome. WGS reads were aligned to
GRCh37 from GATK data bundle (v2.8; https://software.broadinstitute.org/gatk/)
using BWA-MEM (v0.7.12; http://bio-bwa.sourceforge.net/). Duplicate reads were
removed using PicardTools MarkDuplicates (v1.119; https://broadinstitute.github.io/
picard/).

Calling germline SNVs and indels. Both SNVs and indels were called using
Platypus65 (v0.7.9.1; https://github.com/andyrimmer/Platypus) in single-sample
mode. Only variants passing the Platypus ‘PASS’ filter were considered for
downstream analysis.

Calling somatic SNVs and indels. SNVs were called using both MuTect66 (v1.1.7;
https://software.broadinstitute.org/cancer/cga/mutect) and Strelka67 (v1.0.13; ftp://
strelka:@ftp.illumina.com/v1-branch/v1.0.13/) with default parameters. Variants
were called on the entirety of the genome in order to detect and retain any high-
quality off-target calls. Any variant call that did not meet ‘PASS’ criteria for either
algorithm was discarded. For a given tumor-normal pair, only SNVs called by both
MuTect and Strelka were retained. Furthermore, we constructed a panel of 1,088
Nigerian and TCGA normal samples8. For a given normal sample, a site needed to
be covered by a minimum of ten reads to be included. Any SNV that was supported
by 5% or more of reads (MAPQ [MAPping Quality] ≥20; Base quality ≥20) in two
or more samples was removed. SNVs were later annotated with Oncotator68

(v1.5.3.0; https://software.broadinstitute.org/cancer/cga/oncotator) and those that
met the required criteria (“COSMIC_n_overlapping_mutation >1” AND
“1000gp3_AF ≤ 0.005” AND “ExAC_AF ≤ 0.005”) were considered likely to be
somatic and were retained. Small indels were called using cgpPindel (v3.0.1) within
cgpWGS container (v2.0.1; https://dockstore.org/containers/quay.io/wtsicgp/
dockstore-cgpwgs:2.0.1?tab=info) with default filters implemented. In addition,
any indel calls found in the 1000 Genomes Project Phase 3 release69 (http://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.wgs.phase3_shapeit2_
mvncall_integrated_v5b.20130502.sites.vcf.gz) or the dbSNP70 (b151; ftp://
ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/All_
20180423.vcf.gz) were removed, unless they were found in the Catalog of Somatic
Mutations in Cancer71 (COSMIC v91; https://cancer.sanger.ac.uk/cosmic/
download/CosmicCodingMuts.vcf.gz).

Variant annotation. SNVs and indels at both germline and somatic levels were
annotated by ANNOVAR72 (version May2018; http://
annovar.openbioinformatics.org/) for functional consequence. In addition, variants
were identified based on dbSNP (v150) and population frequency of variants were
reported based on the Exome Aggregation Consortium dataset (ExAC v0.3; http://
exac.broadinstitute.org/) and the Genome Aggregation Database (gnomAD v2.1.1;
https://gnomad.broadinstitute.org/)73,74.

Clonality of somatic variants. To measure clonality, we calculated cancer cell
fraction (CCF) of each variant by adjusting the variant allele frequency (VAF)
for copy number aberration (CNA) status, tumor purity and multiplicity of the
variant75. Given that VAF of indels are reference-biased in standard variant
calling algorithms, we used vafCorrect76 (v5.7.0; https://github.com/cancerit/
vafCorrect) to obtain accurate VAF from BAM files directly by leveraging
unmapped reads. These re-estimated VAFs were used to calculate accurate CCF
for coding indels. To assign coding mutations as clonal or subclonal, the CCF of
all SNV and indel coding mutations were statistically assessed for clonal status.
Briefly, the observed VAF was modeled using a binomial distribution and values
representing the 95% interval were used to generate the 95% confidence interval
(CI) of the observed CCF. Any variant with an upper CI above 1 was considered

to not deviate from a clonal state and, in turn, was assigned a CCF of 1.
Otherwise, variants were considered subclonal and the original CCF value was
retained. This allowed us to assess the clonality of coding mutations without
introducing an arbitrary CCF cut-off.

Somatic drivers. cDriver17 (v0.4.2; https://github.com/hanasusak/cDriver) was
used to identify cancer drivers by not only taking into account the recurrence
against the background mutation rate and functional impact (CADD score v1.6;
https://cadd.gs.washington.edu/)77, but also the CCF of each variant. In addition,
MutSigCV18 (v1.3; https://software.broadinstitute.org/cancer/cga/mutsig) was used
independently to identify drivers based on recurrence given background mutation
processes. The 20/20 principle19 was applied to all detected drivers to classify,
based on mutation patterns in the dataset, which are tumor suppressor gene (TSG),
oncogene (ONC) or both. Enrichment analysis was undertaken for all mutational
drivers (detected and previously known; n= 30) across ethnic groups, clinical
subtypes and ER status using Fisher’s exact test to identify differential prevalence of
drivers. The mutational landscape plot was generated using Maftools78 (v2.6.05;
https://www.bioconductor.org/packages/release/bioc/html/maftools.html).

Non-coding hotspots. We partitioned each chromosome in the genome into
discrete bins of 100 kb and undertook a genome-wide screening of variant recur-
rence in each of the non-overlapping bins. Similar to a genome-wide association
study construct, we compared the Nigerian group with both the White and Black
groups using pairwise Fisher’s exact test followed by multiple testing correction for
differential prevalence to detect potential non-coding mutation hotspots in or near
coding genes enriched in the Nigerians. This analysis was based only on SNVs
since overall rate of SNV was not significantly different between Nigerian and the
other two groups. Therefore, no overall bias is present in the rate of SNVs and local
over-representation signals are likely to be genuine ethnicity-specific hotspot
signals.

Mutational signatures. De novo extraction and decomposition to known cosmic
mutation signatures in single-base substitution (SBS), double-base substitution
(DBS), as well as small insertion and deletion (ID) formats were implemented
based on a non-negative matrix factorization (NNMF) framework using
SigProfilerExtractor28 (v0.0.5.77; https://github.com/AlexandrovLab/
SigProfilerExtractor). Because NNMF is more accurate with a larger number of
samples79, we increased our sample set by adding 128 additional breast cancer
WGS samples from the Pan-cancer Analysis of Whole Genomes (PCAWG) study80

and eight TCGA (Asian and unassigned ancestries) WGS samples8. Our final input
dataset for SigProfilerExtractor thus included a total of 309 samples. Signatures
identified as singletons in the entire dataset were removed from analysis.

Structural variant (SV) calling. Three different algorithms were used to identify
structural variants in BAM files aligned to the hg19 human genome: Manta (v1.1.0;
https://github.com/Illumina/manta)81, DELLY (v0.7.0; https://github.com/
dellytools/delly)82 and the lumpy-express function of Lumpy (v0.2.13; https://
github.com/arq5x/lumpy-sv)83. Calls from blacklisted regions (http://
cf.10xgenomics.com/supp/genome/hg19/sv_blacklist.bed) and segmental duplica-
tion regions (http://cf.10xgenomics.com/supp/genome/hg19/segdups.bedpe) were
filtered out using SURVIVOR (v1.0.6; https://github.com/fritzsedlazeck/
SURVIVOR)84. The SVs from all three algorithms were then merged with SUR-
VIVOR, using a 2-vote consensus approach to generate the final set of variants,
ensuring an improved precision on the SVs called85.

Homologous recombination deficiency (HRD) prediction. Prediction of HRD
from somatic mutations was performed with the machine-learning model CHORD
(v2.0; https://github.com/UMCUGenetics/CHORD)29. Generated VCF files for
SNVs, indels and SVs were provided as input to the classifier. HR-deficient samples
were labeled as either BRCA1-like, BRCA2-like or unknown.

SV signatures. Breast cancer SV signatures were obtained using
signature.tools.lib86. For the SV signatures extraction, ten bootstraps per catalog
were used in conjunction with brunet non-negative matrix factorization (NMF)87,
and clustering with matching algorithms. Clustering with matching prevents sig-
natures from the same NMF run being assigned to the same cluster86. To determine
the actual number of SV signatures within our dataset, rearrangement catalogs were
clustered multiple times, using different cluster numbers. Each attempt was eval-
uated based on the clustering average silhouette width and the average difference
between the reconstructed signature catalogs and the original catalogs, resulting in
seven SV signatures. Six out of the seven signatures extracted are highly comparable
to the rearrangement signatures reported by Nik-Zainal et al.22. Signature 6 (S6) is
likely to be a previously unreported signature in our African-centric dataset that has
not been identified previously. A minimum of 10% contribution was used to call a
signature active in a sample.
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Calling somatic CNA. Genome-wide copy number profiles of all samples in the
entire dataset were obtained by Battenberg (v2.2.8; https://github.com/Wedge-lab/
battenberg)22,39. In addition to calling clonal and subclonal allele-specific CNAs, it
was also used to estimate purity and average ploidy of each tumor. As part of
quality control analyses, in the entire dataset, we detected three samples in the
Nigerian group which had very low purity estimates based on copy number
analysis (<10%). However, one sample did not show a consistent low mutation
burden (nSNV= 4,285, nSNV of other two samples <100). An SNV-centric VAF-
based purity estimation analysis was undertaken to independently evaluate the
purity estimate for this sample. Briefly, all SNVs within diploid regions were
identified and VAFs were calculated. In the VAF density distribution, the local
peak with maximum VAF was considered as the clonal peak. The purity, calcu-
lated as 2*clonalVAF, was consistent with that based on the CNA analysis. These
samples were thus removed from subsequent analyses in the Nigerian cohort (final
n= 97). To call recurrent CNA events, first, CNA of each type (i.e. Gain, LOH and
HD) were aggregated across all samples along the chromosomes to obtain the
frequency landscape of each CNA type based on all observed breakpoints. Next, a
permutation test (n= 1,000) followed by multiple testing correction was under-
taken to identify regions that were significantly enriched above the random
background copy change rate. The enriched regions that encompassed the HLA
region (6p21), or specific to telomeric ends or present as a singleton were
excluded.

Genomic instability analysis. Whole-genome duplication (WGD) was called in
samples where the proportion of the genome with balanced 2:2 copy number status
was larger than that with 1:1 diploid copy number. Samples were also manually
inspected to see WGD features such as multiple copy losses post-WGD (3:1 copy
number status) and LOH events with 2:0 status. For the reconstruction of the
chronological ordering of somatic events, WGD, as an event, was called in samples
that had an average ploidy greater than three39. Proportion of genome altered
(PGA), which is the proportion of genome bases encompassed by CNAs, was
calculated for all samples based on the Battenberg output. In WGD samples, PGA
was calculated as the proportion of genome that did not have a balanced tetraploid
copy number state (i.e. 2:2). PGA does not take into account the number of CNA
events. A modified metric (PGAn) was calculated as the geometric mean of PGA
and number of breakpoints to not only take into account length of CNA segments,
but also the number of CNA segments to allow for genomes with focal or global
shattering. We followed previous studies in defining kataegis events22,79. Katae-
gisPCF (v1.0; https://github.com/nansari-pour/KataegisPCF) was used to detect the
kataegis loci and visualize the kataegis events based on SNVs. A minimum of six
consecutive SNVs with mean distance ≤1 kb were required for kataegis events,
which were identified systematically by applying piecewise constant fitting (PCF)88

on inter-variant distance of all SNVs across the genome.

Timing model of ordering events. To reconstruct the chronological ordering of
somatic events, we developed a timing model to order the occurrence of mutational
drivers and enriched CNAs based on the clonality of the events. Briefly, for CNAs,
Battenberg copy number calls were used to assign clonality (whether CCF= 1 or
<1) and describe their type (i.e. gain, LOH and HD). CCF of each variant was
estimated by adjusting VAF according to the CNA status of the locus and purity of
the tumor sample75. Variants were then classified as clonal (CCF= 1) and sub-
clonal (CCF < 1). All events were combined per sample and ordered based on CCF.
Where more than one tree could be inferred based on subclonal events, all possible
trees were generated and randomly chosen in each iteration of ordering events. To
time the events based on the entire dataset, events were ordered based on clonality
(randomized clonal events followed by a sampled tree of subclonal events) in each
sample. To classify events with respect to WGD, we used major/minor copy
number status and the estimated number of chromosomes bearing the mutation
(NCBM) to call pre-WGD and post-WGD CNA and mutations respectively by
using logical rules for CNA39 and extended them here for mutations. For instance,
in a tumor with WGD, a clonal coding mutation with NCBM ≥ 2 was considered as
a pre-WGD event while that with NCBM= 1 was defined as post-WGD. The
Plackett-Luce model89,90 for ordering partial rankings was implemented using the
PlackettLuce package in R (v0.3.0; https://github.com/hturner/PlackettLuce) based
on the ordering matrix of the entire dataset to infer the order of events at the
population level while allowing for unobserved events in individual tumors. This
analysis was undertaken for 1,000 iterations to obtain the 95% CI of the timing
estimate of each event. In this implementation of the Plackett-Luce model, the
clonality level of an event across the population dictates the overall ranking.
However, its frequency affects the variance of the timing estimate, such as rarer
events show higher 95% CI. We repeated this analysis within each clinical and
genomic subtype.

ITH analysis. To infer subclonal architecture of each tumor, a Bayesian Dirichlet
process algorithm was implemented (DPClust v2.2.2; https://github.com/Wedge-
lab/dpclust), to cluster somatic SNVs based on CCF75,91. Mutation clusters were
identified as local peaks in the posterior mutation density obtained from DPClust.
In addition to the clonal cluster, the number of subclonal clusters and their
respective mutation burden were also estimated. To quantify subclonality, we

calculated weighted CCF (wCCF) which is defined by the mean of the CCF of
mutation cluster peaks adjusted by the mutation burden of clusters. The ability to
detect subclones depends, not on the number of detected SNVs, but on the number
of reads per chromosome copy (NRPCC)92. This metric takes tumor purity, ploidy
and sequencing coverage into account. We control for this effect by including only
tumors with NRPCC ≥ 10. In these tumors, we should be sufficiently powered to
detect subclones with CCF > 0.3.

Somatic interactions. To test for somatic interactions, we undertook mutual
exclusivity and co-occurrence analysis by using pairwise Fisher’s exact test to detect
significant pairing within and among mutational driver and CNA events. Negative
associations with an odds ratio (OR) between 0 and 1 (exclusive) were considered
mutually exclusive and positive associations with OR > 1 were considered co-
occurring with the magnitude of OR being inversely and directly proportional to
the strength of the association respectively.

Estimating genetic ancestry of study population. DNA samples from blood or
normal breast were genotyped using Affymetrix SNP 6.0 arrays. For patients with
both blood and normal breast samples, we utilized the genotype data from blood
only. Uncorrelated single nucleotide polymorphisms from the TCGA cohort and
the International HapMap Project were included in the principal component
analysis. The top two eigenvectors from principal component analysis were plotted
and the three known continental ancestry groups from the HapMap were used as
anchors. The proportion of ancestry relative to the reference continental groups for
each patient was estimated by projecting the eigenvectors onto each of the three
axes defined by the three anchors. The genetic ancestry information of breast
cancer patients from TCGA was obtained from our previous study6. Briefly, we
estimated the ancestry of breast cancer patients from TCGA using principal
component analysis. According to the estimated proportion of ancestry, patients
were grouped into genomic Black (≥50% African ancestry), genomic White (≥90%
European ancestry), and genomic Asian (≥90% Asian ancestry). All Nigerian
patients were assumed to be 100% African with little to no admixture with other
populations.

RNA-seq and differential gene expression analysis. Read alignment of RNA-seq
to GRCh37 (hg19) as reference genome and GENCODE93 (v19; https://
www.gencodegenes.org/human/release_19.html) for gene annotation was per-
formed using STAR94 (v2.4.2a; https://github.com/alexdobin/STAR) and HTSeq95

(v0.6.1p1; https://github.com/htseq/htseq). Quality control metrics were calculated
using RNA-SeQC96 (v1.1.8; https://software.broadinstitute.org/cancer/cga/rna-
seqc), featureCounts97 (v1.5.1; http://subread.sourceforge.net/), PicardTools
(v1.128; https://broadinstitute.github.io/picard/), and SAMtools98 (v1.3.1; http://
www.htslib.org/). Differential expression analysis of raw read counts of protein-
coding genes from HTSeq was then performed using DESeq299 (v1.24.0; https://
bioconductor.org/packages/release/bioc/html/DESeq2.html), with subtype infor-
mation based on immunohistochemistry to maintain consistency with genomic
data. Analysis was performed with ancestral populations only to avoid batch effect
artifacts. PAM50 molecular subtyping was performed100.

Statistical methods. All statistical calculations were implemented in R (v3.4.3;
https://www.r-project.org/). For categorical data, we used Fisher’s exact test (®sh-
er.test) and for continuous data, we used wilcoxon rank test (wilcox.test) or Stu-
dent’s t-test (t.test) wherever appropriate. Where applicable, P-values were adjusted
for multiple testing (p.adjust) based on the false discovery rate (FDR) proposed by
Benjamini and Hochberg101 with FDR < 0.05 considered significant, unless stated
otherwise. This was done to not only reduce type I error, but to also minimize type
II error102.

Given the difference in coverage between Nigerian and TCGA WGS samples, to
detect true differences in ITH, a generalized linear model (glm) was used to model
the association of the ITH metric (wCCF) with ethnicity while adjusting for the
confounding effect of the covariable NRPCC. The Cochran-Armitage trend test
(prop.trend.test) was used to assess whether proportions of a variable across the
three groups were monotonic with the ordered variable (i.e. increasing African
ancestry proportion). The two-sample Kolmogorov–Smirnov test (ks.test) was
implemented to detect significant differences in the distribution of a variable across
different groups.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data and the processed genomic data from Nigerian cases have been
deposited in dbGaP under Study Accession phs001687.v1.p1. TCGA raw sequencing data
are available in dbGaP under Study Accession phs000178.v11.p8. Data access to dbGaP
can be obtained by contacting National Cancer Institute Data Access Committee
(NCIDAC@mail.nih.gov). Access to TCGA variant calls that support the findings of this
study are available on request to the corresponding author (O.I.O) from the requestor
who has approved authorized access to TCGA controlled data. The remaining data are
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available within the Article and Supplementary Information. Source data are provided
with this paper.
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