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Magneto‑hydrodynamics 
of multi‑phase flows 
in heterogeneous systems 
with large property gradients
T. F. Flint1*, M. C. Smith1 & P. Shanthraj2

The complex interplay between thermal, hydrodynamic, and electromagnetic, forces governs the 
evolution of multi‑phase systems in high technology applications, such as advanced manufacturing 
and fusion power plant operation. In this work, a new formulation of the time dependent magnetic 
induction equation is fully coupled to a set of conservation laws for multi‑phase fluid flow, energy 
transport and chemical species transport that describes melting and solidification state transitions. 
A finite‑volume discretisation of the resulting system of equations is performed, where a novel 
projection method is formulated to ensure that the magnetic field remains divergence free. The 
proposed framework is validated by accurately replicating a Hartmann flow profile. Further validation 
is performed through correctly predicting the experimentally observed trajectory of Argon bubbles 
rising in a liquid metal under varying applied magnetic fields. Finally, the applicability of the 
framework to technologically relevant processes is illustrated through the simulation of an electrical 
arc welding process between dissimilar metals. The proposed framework addresses an urgent need for 
numerical methods to understand the evolution of multi‑phase systems with large electromagnetic 
property contrast.

Magneto-hydrodynamics (MHD) describes important physical phenomena spanning many length scales from biologi-
cal systems to astrophysical phenomena such as stellar interiors, solar flares, and planetary magnetic field  generation1–4. 
MHD also describes technologically important applications such as the magnetic confinement of fusion plasma, the 
interaction of fusion plasma’s with proposed liquid metal blankets, and lower temperature applications such as electric 
arc welding and joining  processes5–8. The governing equations in MHD describe the conservation of mass, momentum 
and energy transfer, and the transport of the magnetic field intensity through augmentation with the low-frequency 
approximation of Maxwell’s  equations9–11. These systems are strongly coupled, highly nonlinear and characterised by 
coupled physical phenomena that span a very large range of length and timescales. These characteristics make the scal-
able, robust, accurate, and efficient computational solution of these systems extremely  challenging9,11,12. The influence 
of magnetic fields on free-surface liquid metal flows is extremely important in advanced manufacturing; these processes 
are governed by a combination of electro-magnetic, thermal and fluid-dynamic driving forces.

In metal additive manufacturing, or electric arc welding, an electrical arc is generated through a partially insulating 
gas phase between an electrode and the substrate  material13,14. The arc discharge causes a rapid increase in temperature 
through the plasma column and substrate; causing melting, topological changes due to fluid motion, mixing in the case 
where dissimilar metallic phases are present, and the generation of highly complex flow patterns due to the interplay 
between the induced magnetic field, temperature field and velocity  field15. Once the electrical arc is extinguished, the 
portion of the metallic substrate that melted will begin to solidify and any changes caused by the melting events will be 
inherited by the  substrate14,16. Mathematically describing this metal additive manufacturing scenario, or any scenario 
with spatial gradients in electromagnetic properties requires a formulation of the conservation law for magnetic field 
strength that captures these gradients properly; it is worth highlighting that large property gradients usually pose serious 
computational challenges. Such a magnetic induction equation could be used to supplement the conservation of mass, 
momentum and energy transfer equations that describe the evolution of a system containing a mixture of chemical 
components. With such a mathematical framework it would be possible to accurately predict the evolution of material 
systems subjected to hydrodynamic and electromagnetic driving forces. Such a complete framework describing 
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these systems is absent from the literature as there is no description of the magnetic induction equation, derived to 
capture scenarios where large spatial gradients in electromagnetic properties  exist9,11,12,17–21.

In the vast majority of MHD research in the literature, single phase flow is considered, where naturally there are no 
gradients in electrical conductivity or magnetic permeability in the system; in these cases it is possible to simplify the 
magnetic induction  equation7,22. When gradients in material properties are considered, and the full form of the magnetic 
induction equation is used, it is possible to mathematically capture the effect of these property gradients when they vary 
 smoothly9. Where the time variation of the magnetic field is negligible, it is again possible to simplify the induction 
equation, here the frameworks used consider the electric potential as the main electromagnetic  variable10,23–28; limiting 
the applicability of such frameworks to steady processes. For cases where the magnetic field is known to oscillate, such 
as alternating current joining  processes11,13,15,29, and oscillations of the liquid metal coolant in fusion reactors, a time 
dependent and complete form of the induction equation should be  used8,19.

Electromagnetic phenomena are most commonly formulated and solved using the finite element method 
(FEM)12,17,20; although many finite volume method (FVM) formulations and solution schemes are now present in the 
 literature18,30,31; including popular implementations in commercial packages such as Ansys-Fluent32–34. FVM is often 
the favoured solution approach for conservation laws, although obtaining high order schemes is more cumbersome 
than in the  FEM18.

In this work, we formulate a MHD framework derived from the continuum Maxwell’s equations for the descrip-
tion of multi-phase fluid mixtures under the influence of magnetic fields. We consider the gradients in electromag-
netic properties during the derivation of the magnetic induction equation to produce a general framework capable of 
describing multi-phase magneto-thermal-hydrodynamic systems. This approach not only permits the simulation of 
cases with electromagnetic property contrast, but also scenarios where the applied magnetic field varies in time. The 
projection method is utilised to ensure that the derived magnetic induction equation remains solenoidal within machine 
accuracy at all times. A multi-phase volume of fluid approach is utilised to describe the evolution of a heterogeneous 
mixture of chemical species, both metallic and atmospheric, in the computational domain. Melting and fusion state 
changes are captured within the framework. This paper is organised as follows: in “Results”, representative examples are 
used to benchmark the proposed method with known analytical and experimental solutions, as well as to showcase its 
applicability. Representative boundary conditions were applied on the computational domains, which include fluid and 
solid phases. The field equations are solved over the entire domain, so no special treatment of the fluid-solid bound-
ary is required. The simulation results are discussed, and the conclusions are summarised in “ Discussion”. Finally the 
MHD model formulation for state transitions in multi-phase mixture systems is presented in “Methods”, followed by 
an outline of its numerical implementation in “Numerical implementation”. Additional details of the implementation 
can be found in the Appendix.

Results
A multi-phase description of the conservation of magnetic field strength is developed and supplemented with a descrip-
tion of the thermal-fluid dynamics for multi-phase mixtures. In this section, the developed framework is first validated 
against a well known analytical solution for single phase flow subjected to a transverse magnetic field. For the case 
of multi-phase flows with externally applied magnetic fields, experimentally measured Ar bubble trajectories, in a 
Ga–In–Sn liquid metal, are used to further validate the framework. Finally the developed framework is applied to the 
technologically relevant scenario of the electric arc welding of two dissimilar ternary Ni–Al–Fe alloys under an Ar 
atmosphere. The thermo-physical properties used in the validation and simulation contained within the remainder of 
this work are shown in Table 1.

Single phase hartmann flow. The most appropriate method by which to validate any numerical framework is an 
analytical solution. Therefore a well known MHD problem of single phase flow in the presence of a magnetic field, for 
which an analytical solution exists, was investigated in the first instance. In this scenario, an electrically conducting fluid 
flows between two parallel plates, with a magnetic field applied perpendicular to the flow direction. This scenario is 
known as the Hartmann flow, and is well documented, as is the analytical solution to the flow profile and often 
used as a benchmark solution for validation of MHD  codes40. For brevity, in this case the density, viscosity, elec-

Table 1.  Thermo-physical properties used in the thermal-fluid dynamics  simulations35–39.

Ni Fe Al Ga–In–Sn Ar

ρ
[

kg m−3
]

8908 7874 2710 6360 1.2

ν
[

m2 s−1
]

1× 10−7 2.5× 10−7 2× 10−7 3.4× 10−7 1.4× 10−5

ksolid
[

kg m s−3 K−1
]

90.9 80.4 237 − –

kfluid
[

kg m s−3 K−1
]

100 30 150 – 1.7× 10−2

cpsolid
[

m2 s−2 K−1
]

440 450 897 − –

cpfluid
[

m2 s−2 K−1
]

730 820 1180 – 530

Tm [K] 1728 1809 932 − –

β
[

K−1
]

6.6× 10−5 1.54× 10−5 5× 10−5 1× 10−5 1× 10−4

σE
[

kg−1 m−3 s3 A2
]

1.43× 107 1.00× 107 3.77× 107 3.46× 106 1.0

µM

[

kg m s−2 A−2
]

1.26× 10−4 6.3× 10−3 1.256× 10−6 8.0× 10−7 1.256× 10−6
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trical conductivity and magnetic permeability are all set to unity, such that the characteristic Hartmann number (Ha) 
becomes equal to the magnitude of the applied magnetic field. A two dimensional domain was considered; the parallel 
plates were separated by a distance of 2 m, and a flow length of 20 m was simulated. 200 cells were present in the flow 
direction, and 80 cells bridged the distance between the plates for a total of 16,000 cells in the computational domain. 
Figure 1 shows the comparison between the analytical  solution40, and the numerically computed flow profile along a 
line at the mid-length of the domain, normal to the flow direction.

As the strength of the applied magnetic field is increased from 2 to 20 T, the magnitude of the Lorentz force increases, 
opposing the flow and reducing the peak velocity magnitude from 1.42 to 1.05 m s −1 . At Ha = 20 , the flow profile is 
almost constant through the channel (except very close to the walls so the solution satisfies the no slip boundary condi-
tion). It can be seen from Fig. 1 that the framework is in strong agreement with the analytical solution for a range of 
applied magnetic field strengths.

Bubble rise in a magnetic field. For multi-phase mixture MHD flows analytical solutions are not available. 
Therefore, to further validate the framework for scenarios where property gradients exist, the scenario of Ar gas bubbles, 
rising in Ga–In–Sn liquid metal with increasing applied magnetic field strength are investigated. Many experimental 
studied on gaseous bubble rise in magnetic fields have been  performed41–43. We have chosen to validate against the work 
of Richter et al, which is fully described  elsewhere43, due to the larger number of experimental cases, and greater mag-
nitude of applied magnetic field. In summary, a transverse magnetic field is applied, normal to the direction of gravity, 
through a liquid column of Ga–In–Sn alloy. Ar bubbles are introduced at the base of the column, and rise through the 
liquid metal. The positions of the bubbles as they rise through the alloy were measured by an ultrasound transit time 
technique and X-ray radiography. The dimensions of the experimental vessel were 144 mm deep, 144 mm wide, and 
12 mm thick; with bubbles of diameter ∼ 5.2 mm introduced at the base of the domain. Given that the thickness of 
the domain was 12 mm, presumably for better signal detection in the experiment, the motion of the bubbles as they 
rise through the column was found by Richter et al. to be planar, indeed in the authors conclusions they remark “The 
bubbles performed a planar zigzag motion with a lateral drift during the rise”. For this reason, in this work the compu-
tational domain has been simplified to a two dimensional representation of the experimental set up. In the future, more 
complex validation cases will be investigated in three dimensions, where appropriate.

A computational domain of 80 mm in depth, and 20 mm wide, is discretised into 25,600 computational cells to 
simulate this process. In the simulations a non-uniform magnetic field strength H was initialised at t = 0 s, in such a 
manner as to create a uniform magnetic field B at t = 0 s equal to the applied B experimentally. The fields in the domain 
then evolve over time. Four of the cases reported by Richter et al. are simulated, namely the cases with 0 mT, 99 mT, 
242 mT and 505 mT applied magnetic field. In order to capture the low magnitude velocity field perturbations that would 
have been present in the experimental liquid column, due to the passage of the previous bubbles in Richter’s experi-
ment, at t = 0 s small transverse velocity perturbations are initiated in the domain; this removes the requirement for 
simulation of the entire experimental domain. The same initial velocity perturbation is applied in all cases. Figure 2a,b 
show the initial velocity profile, and Ar volume fraction for all cases, as well as the initial H field for the 505 mT case.

The evolution of the Ga–In–Sn–Ar system as a function of time is shown in Fig. 3 for the 99 mT and 242 mT cases. 
Also shown in Fig. 3 are the magnitudes of the Lorentz force, J × B , at 0.4 s.

As can be seen in Fig. 3, the Ar bubble rises through the Ga–In–Sn due to the density difference between the bubble 
and the alloy. The surface tension force, acting at the interface of the bubble and the liquid metal, acts to reduce the 
bubble surface area and prevent break-up during the rise. In the 99 mT case, the tumbling behaviour of the 
bubble is much more pronounced, as was documented in the experimental observations. The vorticity in 

Figure 1.  Analytical solution and numerically computed solution to Hartmann flow problem, at t = 2 s.
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Figure 3.  Simulated single Ar bubble rise through Ga–In–Sn liquid with 99 mT and 242 mT applied magnetic field 
with |B| and U vectors. The simulated behaviour of the system strongly agrees with that observed experimentally. 
With no applied magnetic field, the bubble rises and instabilities develop causing oscillations. As the magnitude of 
the applied horizontal magnetic field is increased, the Lorentz force, J × B , dampens out the magnitude of these 
instabilities to a greater degree, until at 505 mT the bubble rises through the liquid metal almost perfectly linearly. 
Animations of these simulations accompany this work, and show this oscillation very clearly.

Figure 2.  Initial Ar fraction and velocity perturbation used in the bubble rise simulations. The initial H field 
is also shown for the 505 mT case. In all four cases the initial H field is set such that B is uniform at t = 0 s and 
equal to the magnitude of the applied field.
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the wake of the bubble decreases as the applied field intensity is increased; it can be seen that the velocity 
field is significantly dampened in the liquid metal, due to the increase in the magnitude of the Lorentz 
force, from 1.2 m s−1 in the 99 mT case to 0.63 m s−1 in the 242 mT case. The magnitude of the Lorentz 
force is observed to increase from 6.9× 103 N m−3 at 99 mT to 9.9× 104 N m−3 at 505 mT. The Lorentz 

Figure 4.  Comparison between numerically computed, and experimentally measured Ar bubble trajectories in 
Ga–In–Sn liquid metal, for various applied magnetic field strengths.
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force opposes the buoyancy of the Ar bubble, reducing its effective vertical rise velocity to 0.124 m s−1 , 
0.123 m s−1 and 0.088 m s−1 for applied fields of 99 mT, 242 mT and 505 mT, respectively. In addition to 
reducing the effective velocity, the Lorentz force also stabilises lateral oscillations with the oscillation 
amplitude reducing from 9 mm at 0 mT to 7 mm at 99 mT and 1.7 mm at 242 mT. At 505 mT, no lateral 
oscillations were observed. The computed bubble behaviours, using the presented framework are in very 
good agreement with those experimentally measured.

Figure 4 shows the comparison between the numerically computed, and experimentally measured 
bubble trajectories. Also shown is the solenoidal property of the numerically computed magnetic field, 
demonstrating the the magnetic conservation equation is upheld by the proposed framework. This prevents 
the generation of spurious magnetic currents affecting the flow field and deviating the simulation from 
an accurate description of the  system44. As can be seen, ∇ · B in the domain is maintained at negligible 
levels, comparable with those reported in similar  work9.

As can be seen in Fig. 4, as the magnitude of the applied magnetic field is increased, the lateral oscil-
lation magnitude of the rising bubble decreases, due to the increasing magnitude of the Lorentz force.

Electrical arc welding. One of the most exciting areas where the presented framework may be used 
to predict system evolution, is in advanced manufacturing scenarios, where high energy density electrical 
sources are used to induce state change in metallic substrates. Although arc welding of metallic compo-
nents has been performed for over a century, the complex velocity, momentum and electromagnetic fields 
involved means that the process is still poorly understood from a physical perspective. This has meant that 
the development of welding technologies has largely been based on experimental trial and error. In this 
section, we use the derived framework to predict the behaviour in a dissimilar metal arc weld. Here, two 
alloys are present in the domain under an inert argon atmosphere. The alloys investigated both contain 
Fe, Al and Ni with differing compositions. Alloy 1 is composed of 30% Ni, 65% Al and 5% Fe; alloy 2 is 
composed of 90% Ni, 8% Al and 2% Fe. The computational domain, highlighting the initial regions of the Ar 
region and alloy regions, is shown in Fig. 5a. An exploded view of the electrode, and the boundary condition in 
H at the electrode surface are also shown in Fig. 5b. The domain is 20 mm deep, 30 mm wide, and 30 mm long. 
The domain is decomposed into 490,057 computational cells. In the electrical arc simulation, the domain was 
decomposed into 512 processors.

The boundary condition for H at the electrode surface, is found using Ampere’s law, for a known current. In 
this work a current of 33.5 A is arbitrarily assumed to minimise heat input and allow a smaller computational 
domain to be used, therefore the magnitude of H at the electrode surface is 5.3× 103 A m−1 as the electrode has 
a maximum radius of 1mm . This is applied as a vortical boundary condition at the electrode surface, as shown 
in Fig. 5b. This highly vortical H field at the electrode surface induces a large current density, (J = ∇ ×H) 
in the vicinity of the electrode. This large current density is the primary mechanism of heat generation in the 
simulation domain, through the Ohmic heating term, J · J/σE , in Eq. (3). In this arc welding scenario, the tem-
perature of the inlet gas is assumed to be 300 K, with an inlet velocity of 3ms−1 through the gas-cup (shown in 
Fig. 5a), which are applied as boundary conditions.Additionally the boundary conditions on the bottom wall 
and four bounding walls for U  were assumed to be slip conditions (note that the metallic substrate did not melt 

Figure 5.  Computational domain for the electric arc welding case (a), showing an exploded view of the 
electrode and the boundary condition in H applied at the electrode surface (b).
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to the domain boundary and the momentum damping term dominates the momentum equation in solidified 
substrate). Furthermore, the boundary conditions for H applied at the remaining domain boundaries were of 
the Neumann type. A thermal extraction boundary condition was applied at the bottom domain boundary with 
a value of dT/dX = −1× 103 K m −1 to simulate thermal conduction out of the domain. The evolution of the 
H , U  and T fields inside the computational domain are shown in Fig. 6. At t = 0.52 s the magnitude of H at the 
electrode surface was reduced to 0 A m−1 , in order to capture the cooling and solidification behaviour of the 
metallic substrate.

As can be seen from Fig. 6; the magnetic field propagates from the electrode, through the Ar phase and, after 
some time, into the lower magnetic diffusivity metallic substrate. The heat generation at the electrode surface 
is transported towards the metallic substrate. This heating causes the temperature to rise rapidly in the vicinity 
of the electrode and causes localised melting and fluid flow between the two alloys. The alloy with the higher 
Al content begins to melt at a lower temperature, and experiences a greater degree of melting. As the two alloys 
melt, a combination of surface tension, incident gas velocity at the interface, and buoyancy forces generate veloc-
ity fields within the molten substrate that aid in the mixing of the two alloys; in conjunction with the diffusive 
mixing. Following the extinction of the arc (when H falls to zero at the electrode surface), the current density 

Figure 6.  Evolution of the U  , H and T fields inside the computational domain. The magnitude of the H field, 
initially set to 5.3× 103 A m−1 is set to 0 A m−1 at t = 0.52 s. As the current density rapidly decreases after this 
time, so does the Ohmic heating effect, and therefore the temperature in the vicinity of the weld-pool decreases. 
Here U  glyphs are plotted, along with stream lines for the H field.
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in the vicinity of the electrode rapidly falls. As the Ohmic heating effect vanishes, the molten metallic substrate 
begins to solidify, as heat is lost to the solid regions, and to the domain boundaries. Following the arc extinc-
tion, the magnetic field in the domain rapidly diffuses away; the magnetic field induced in the metallic substrate 
takes longer to dissipate, as can be seen in Fig. 6, as the magnetic diffusivity is lower in the metallic regions. The 
evolution of the Ni volume fraction is shown at a cross section of the computational domain, for various time-
steps in Fig. 7a–c. As the alloys flow together and mix, the distribution of the electrical conductivity, σE , and 
magnetic permeability, µM also evolves,together with the other hydrodynamic variables. Figure 7d–f show the 
final distributions of the Ni, Al and Fe respectively following complete solidification.

The various forces in the liquid metal flow act to homogenise the component distributions, as can be seen in 
Fig. 7. As the solidification front advances, the homogenisation caused by the mixing in the weld-pool is frozen 
into the domain. In this work, it is assumed that no diffusion occurs in the solid state, and at t = 1.67 s the metal-
lic substrate is once again fully solidified.

It is interesting to note that the amount of chemical homogenisation between the two alloys, as shown in 
Fig. 7, is not uniform. This is due to the highly transient nature of the advancing melt, and subsequent solidifica-
tion fronts, meaning regions of the domain experience varied times in the liquid state. Although no experimental 
validation of the particular arc welding case is available, qualitatively the asymmetry in the fusion zone is in 
agreement with dissimilar welding cases reported in the literature as the alloy with the lower melting range 
experiences a greater degree of melting and  dilution45,46.

Discussion and conclusions
The availability of a multi-phase magneto-hydrodynamic framework allows the high-fidelity description of 
many interesting, and challenging physical phenomena at multiple length scales; from advanced manufacturing 
and fusion plasma’s, to astrophysical plasma and solar physics scenarios. In this work we present a multi-phase 
magneto-hydrodynamic formulation that can be used to simulate the behaviour of mixtures with large property 
gradients. An interface compression technique is used in a hybrid volume of fluid methodology that allows for 
the simulation of miscible and immiscible components using a one-fluid approach in the momentum equation. 
In the first instance the framework is validated against a single phase Hartmann flow analytical solution. It is 
shown that the framework faithfully matches the analytical solution for the Hartmann flow over a range of applied 
magnetic field strengths. The framework is further verified against experimentally measured Ar bubble rise trajec-
tories subjected to various horizontally applied magnetic field strengths, as measured experimentally by Richter 
et al.43. The framework provides good agreement with the experimentally measured data both qualitatively and 
quantitatively; replicating the magnitude of the bubble oscillations and the distance between the directional 
inflection points of the bubbles. In the future, the proposed framework will be applied to more complex three 
dimensional validation cases for additional validation; however at the present time the authors believe the case 
of Richter et al. serves as an appropriate validation of the framework. Finally the framework is applied to the 
technologically relevant scenario of electrical arc welding of a dissimilar metal substrate. For the first time, a 

Figure 7.  Temporal evolution of the phase fractions at a cross section through the mid plane of the domain, 
normal to the initial boundary between alloys 1 and 2. The boundary between the solid and fluid regions is 
shown in yellow. As more of the substrate melts, and the convective flow is established in the metal, the two 
alloys begin to mix together, prior to solidification. Note that the difference in melting temperatures is evident 
from the melt-pool shape.
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simulation of an electrical arc welding scenario is presented where no phenomenological fitting has occurred; 
the thermodynamic, and magneto-hydrodynamic evolution of the system is entirely determined by the boundary 
conditions of the respective fields, which are known quantities in advanced joining and deposition scenarios.

In this work the derived induction equation is fully coupled to the Navier–Stokes, phase, and energy transport 
equations. It is shown that through the projection method, the predicted magnetic (B) field is maintained diver-
gence free to machine accuracy. During the course of this study, two divergence cleaning approaches were inves-
tigated; the advection approach (where the non-zero magnetic divergence is advected out of the domain), and the 
projection method. The projection method was preferred by the authors, despite its slightly higher computational 
cost, as the solenoidal error magnitude could easily be maintained at negligible levels (∼ ×10−12 T m−1) .

While the formulation may be used to simulate important advanced manufacturing processes such as electri-
cal arc welding, plasma deposition processes, and to better understand the behaviour of fusion plasma interac-
tions with liquid metal breeder/coolant blankets; for a more accurate prediction of these processes, the material 
properties, particularly the electrical conductivity, should be made a function of temperature in future work. 
The temperature dependence of the properties could be readily implemented, as the governing equations already 
account for position dependent properties through the various operators using the product rule. Similarly in 
the future, the solidus and liquidus temperatures, and thermal conductivity of any alloys investigated could be 
read from a coupled thermodynamic database, or lookup table; the current approach of linearly interpolating 
the pure-substance values to determine the mixture properties is known to work well for properties such as the 
density, but can over-predict the thermal conductivity.

Specific conclusions gleaned using the proposed framework are as follows:

• A robust mathematical description of multi-phase magneto-hydrodynamic flows is presented. Large property 
gradients, and the effect of these gradients on the system, are fully captured by the proposed framework. 
Melting and solidification state changes, as well as mass diffusion between the phases present is incorporated 
into the framework

• The framework is validated against well known analytical solutions, and experimentally measured multi-
phase magneto-hydrodynamic flows. Excellent agreement is seen with comparison to the Hartmann flow 
analytical solution. The framework accurately predicts the multi-phase MHD flow of bubbles rising through 
a conducting liquid metal, for various applied field strengths, as measured by Richter et al.43.

• The framework is applicable to advanced manufacturing scenarios. The mixing behaviour in a dissimilar 
metal weld is observed, where Joule heating of the metallic substrate causes melting. Advanced joining and 
deposition processes may be understood without the requirement to fit a phenomenological heat source.

Methods
In this section a magneto-thermal-hydrodynamic framework for describing multi-phase transport of heteroge-
neous mixtures with state transitions is outlined. Describing the evolution of a multi-phase magneto-thermal-
hydrodynamic system requires equations that describe the fluid flow, energy transport, species transport, and 
finally magnetic field evolution in the entire domain. While the main focus of this work is the formulation of a 
multi-phase magnetic induction equation, that describes how the magnetic field evolves due to intrinsic veloc-
ity fields in multi-component substrates; for completeness the entire framework including the momentum and 
energy transport equations is shown below. The thermal and fluid dynamics will first be described, including the 
magnetic coupling terms, before a full derivation and implementation of the magneto-dynamics. The proposed 
framework fully describes multi-phase fluid flows and state change under the influence of magnetic fields.

Thermal‑fluid dynamics. The thermal-fluid dynamics of a multi-phase mixture is fully described by the 
fluid velocity, pressure, chemical species fraction and temperature fields through the conservation laws for lin-
ear momentum, composition and energy transport. This results in the following one-fluid formulation of the 
Navier–Stokes equation for the fluid velocity, for more details  see22,47,48:

where U  is the velocity, ρ is the mass density, P is the fluid pressure, and τ is the viscous stress tensor and is 
given by,

In Eq. (1), the Lorentz force, J × B , is included. The Lorentz force is a body force exerted on a fluid in the pres-
ence of a magnetic field, B , where J is the electrical current density. Additional effects, such as buoyancy, surface 
tension and momentum damping due to solidification, are also included in Φ . Details are provided in Appendix 1.

An energy transport equation is used to solve for the temperature in the domain, and incorporates source 
terms resulting from the latent heat of fusion as well as Joule heating. Viscous dissipation and pressure transport 
are assumed negligible compared to the large convective, conductive and Ohmic heat fluxes typically encountered 
during MHD  processes12,49. The energy transport equation is given by:

(1)
∂(ρU)

∂t
+∇ · (ρU ⊗ U) = −∇P +∇ · τ + (J × B)+Φ .

(2)τ = µ

[

∇U + (∇U)T
]

−

2

3
µ(∇ · U)I .

(3)
∂ρcpT

∂t
+∇ ·

(

UcpρT
)

−∇ · (k∇T) =
J · J

σE
+ Sh
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where cp , k, and σE are the specific heat, thermal conductivity and electrical conductivity of the multi-phase 
mixture respectively. Sh captures the latent heat effects due to melting and solidification of the substrate. In Eq. (3) 
J · J/σE is a source term that causes heating due to electrical conduction, known as Joule heating. This joule 
heating term similarly couples the evaluation of the electro-magnetic fields and the energy transport equation.

A system of advection–diffusion transport equations is utilised to describe the evolution of the multiple 
chemical mass fractions, αk , present in the mixture:

The mixture effective diffusion coefficient Dk is found from a weighted summation over the cross diffusion 
pairs, using the generalised Fickian  model50. No geometric interface reconstruction or tracking is performed. A 
compressive velocity field, U c , is instead superimposed in the vicinity of the interface to counteract numerical 
diffusion between the gaseous and metallic  phases51. Additional details of the implementation can be found 
 elsewhere47. The thermodynamic and transport properties of the heterogeneous mixture are computed using 
the mass phase fraction as a weighting factor, e.g. ρ =

∑

k ρkαk for the mixture density. It is known that the 
treatment of interfaces with large property gradients can pose serious computational challenges, in the future 
the implementation of a harmonic interpolation approach for transport properties displaying the greatest spatial 
contrast will  investigated52.

Note that total mass conservation is a consequence of Eq. (4), and is not solved additionally. For a detailed 
discussion of different blending and interpolation schemes and their applicability, please refer  to48,53. Additional 
details of the thermal-fluid dynamics formulation of this framework are provided in Appendix 2.

Magneto‑hydro dynamics. The magneto-dynamics for a multi-phase fluid mixture, is completely 
described by Maxwell’s equations. In this section, we begin by stating the relevant Maxwell’s equations before 
applying simplifying assumptions and their rationale. The Ampere–Maxwell law, magnetic Gauss law, Faraday’s 
law and Ohm’s law for dynamic electro-magnetic fields are respectively given by: 

 where D is the electric flux density, E is the electric field intensity, J is the electric current density, U  the fluid 
velocity, and σE the electrical conductivity of the medium. Also required is the constitutive relation between 
the magnetic field, B , the magnetic field strength, H , and the magnetisation, M ; B = µMH +M , with µM the 
magnetic permeability of the medium, and µ0 the permeability of free  space54. Materials considered in this work 
are free of electric polarisation, magnetisation and impressed currents, and thus have linear B vs H relations. 
Flows considered in this work also have a negligible velocity compared to the speed of light, |U | ≪ c . Under these 
model assumptions, it can be shown that the Ampere–Maxwell law simplifies to ∇ ×H = J , and the constitutive 
relation for the magnetic flux density simplifies to B = µMH55.

The induction equation is derived from Eq. (5a-5d); usually in terms of B . First the curl of Eq. (5d) is taken, 
and then substituting Eqs. (5c) and (5a) resulting in the following expression:

In previous work, on homogeneous systems, i.e. where µM and σE are constant, Eq. (6) can be reduced  to8,11,12:

However, in heterogeneous systems with strong contrast in µM and σE across phase boundaries, a simpli-
fied form of the magnetic induction equation (Eq. 6) is not readily available due to a lack of identities that can 
transform the left hand side of Eq. (6) into a form that can be exploited by implicit solvers. Numerical solution 
of Eq. (6) in heterogeneous systems will result in severe time step restrictions, due to the left hand side of Eq. (6), 
which must be treated explicitly to guarantee a bounded solution. Certain identities can be used to expand these 
explicit terms with limited success as these will again lead to large magnitude ∇µM and ∇σE terms in the resulting 
expressions that must again be treated explicitly.

As previously stated, the multi-phase nature of systems considered here means that material properties, 
such as σE and µM , display large spatial discontinuities at the boundaries between phases, such as the interface 
between a gaseous and metallic phases. For example, in the context of a dissimilar electrical arc welding process, 
the electrical conductivity, σE , of the metallic substrate is ≈ 104 times that of the shielding plasma. Similarly the 
magnetic permeability, µM , of the metallic substrate is ≈ 102 times that of the shielding plasma.

(4)
∂(ρkαk)

∂t
+∇ · (ρkαkU)+∇ · (U cαk(1− αk)) = ∇ ·

(

ρDk∇

(

ρkαk

ρ

))

(5a)
∂D

∂t
+ J = ∇ ×H ,

(5b)0 = ∇ · B,

(5c)
∂B

∂t
= −∇ × E,

(5d)J = σE[E + U × B],

(6)∇ ×

(

1

σE
∇ ×

B

µM

)

= −

∂B

∂t
+∇ × (U × B)

(7)
∂B

∂t
−∇ · (B⊗ U − U ⊗ B)+

1

µMσE
∇

2B = 0.
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In this work, the magnetic induction equation is instead formulated in terms of the magnetic field strength, 
H . The resulting field equation is given by:

Details of the derivation are provided in Appendix 3. The formulation of the induction equation in terms of H 
permits more of the resulting terms in the expression to be treated implicitly, and therefore the overall numerical 
implementation is more robust, with less stringent time-step limitations. The diffusive term in Eq. (8) is treated 
implicitly, while the term containing the gradient transpose is treated  explicitly56 .

The coupling terms between the induction equation and the momentum and energy transport equations, 
namely the Lorentz force and Joule heating terms, are implemented explicitly in this work. The Lorentz force 
term as J × B = (∇ ×H)× µMH , and the Joule heating term as (∇ ×H) · (∇ ×H)/σE.

Numerical implementation. The governing PDE’s for the magnetic field strength (Eq. 8), fluid velocity 
(Eq. 1), temperature (Eq. 3) and mixture fractions (Eq. 4), are discretized within the OpenFOAM library using 
a cell centred finite volume  approach22. The discretised PDE’s are solved semi-implicitly at every time step. First 
the velocity and pressure fields are solved iteratively until convergence of the incompressibility constraint is 
reached using a PISO (pressure implicit with splitting of operators) approach with the temperature and com-
position fields updated within each PISO  iteration22. The pressure-Poisson equation, constructed to correct the 
velocity field in the PISO approach is given by,

where 1/AD are the diagonal entries of the momentum matrix equation. This is followed by the solution of the 
modified magnetic induction equation (Eq. 8) for the field strength, H . While the magnetic solenoidal constraint, 
∇ · B = 0 , is exactly satisfied at all times with a consistent initial condition in H . Numerical time stepping meth-
ods can introduce non-solenoidal perturbations to the solution. A non-solonoidal component in B can introduce 
an erroneous force, parallel to the magnetic field in the momentum equation, causing nonphysical effects in the 
 flow57. In the multi-phase cases presented here this would be particularly damaging to the solution around the 
regions where gradients in µM exist. In order to eliminate any spurious non-solenoidal component of the mag-
netic field, introduced by numerical time stepping, a scalar Lagrange multiplier field, PH , analogous to the fluid 
pressure, P, is introduced. An approach, very similar to the approach used by Rhie and Chow for the velocity and 
pressure field  coupling58, is then used to correct the magnetic field strength solution at the end of every time step.

Given a magnetic field solution, B∗
= µMH∗ , containing a spurious non-solonoidal component, can be 

decomposed unambiguously into the sum of a curl and a gradient

where the curl of the vector potential A contains the physically meaningful, solonoidal part of B∗ . Taking the 
divergence of both sides results in a Poisson equation, �PH = ∇ · B

∗ , that can be readily solved for the scalar 
field PH . The numerical divergence of B∗ will be exactly zero if the Laplace operator in �PH is evaluated in two 
steps as a divergence of a  gradient21. It is then easy to correct the magnetic field by the gradient of this scalar field, 
B = B∗

−∇PH , to ensure a divergence free magnetic  field21. As found by previous  authors21, the choice of the 
divergence cleaning approach is inconsequential, as long as the solonoidal constraint is maintained. Alternative 
approaches to maintain the divergence free B field include advecting the non-zero B divergence contributions 
out of the boundaries of the computational domain. Recalling that H = B/µM , is used as the primary solution 
field in the present formulation, the projection method is modified accordingly:

The projection method utilised in this work is generally preferred, as the error produced in the solenoidal 
constraint is significantly reduced over advection  approaches59. PH holds the divergence error which tends to 
zero as the system of equations are iterated to convergence. However, it need not actually reach zero, as it will 
hold a form of discretisation error representing the difference between the H field fluxes and the face-interpolate 
of the cell-centre H field. Tests have shown this error to be small and therefore PH to be small.

The mixture transport equations for α = [α1,α2, . . . ,αN ] are handled explicitly; requiring extremely small 
Courant numbers. It should be noted that for a single component flow, i.e. one with no variation in µM , the 
divergence of the B field would simply be equal to the divergence of the H field (multiplied by the magnetic 
permeability), as ∇µM would be zero in this case. The multi-dimensionsal limiter for explicit solution (MULES) 
approach is utilised for the solution of the multi-phase mixture transport equation. The J × B term in (1) is 
handled explicitly in the momentum equation. The overall solution procedure used is shown in Algorithm 1.

A semi-implicit approach is used to solve for the momentum and magnetic field evolution as the magnetic 
field in the cases presented evolves at a much slower rate than the momentum field. A second order accurate 
backward Euler scheme is used for the time integration. For the spatial discretisation a second order least-squares 
scheme is utilised. The numerical errors in ∇ · U  and ∇ · (µMH) generally arise as local errors of opposite 
sign which are dealt with through conjugate gradient solvers efficiently. Therefore for the Poisson pressure and 

(8)
∂µMH

∂t
−∇ · [µM(H ⊗ U − U ⊗H)]+∇ ·

[

1

σE

(

∇HT
−∇H

)

]

= 0.

(9)∇ ·

(

A−1
D ∇P

)

= ∇ · U∗

(10)B∗
= ∇ × A+∇PH

(11)
∇ ·

(

A−1
DH∇PH

)

= µM∇ ·H
∗
+∇µM ·H

∗, and

H = H
∗
−

1

µM
∇PH



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18998  | https://doi.org/10.1038/s41598-021-97177-8

www.nature.com/scientificreports/

magnetic pressure problems, these conjugate gradient are utilised in this work. For the energy transport equa-
tion, a smooth solver is utilised.

Appendix 1: Particulars of the momentum equation
The term � in the momentum equation gathers the buoyancy, Fg , surface forces , Fs , and the Darcy source term 
used to dampen the velocity field upon solidification, Sm , Φ = Fs + Fg + Sm . The forms of the expressions used 
for the buoyancy and Darcy source terms in this work are given as, 

 where g is the gravitational constant, β is the thermal expansion coefficient of the mixture, and Tm is the mix-
ture liquidus temperature. ǫ1 is the fluid fraction where a value of 1 corresponds to fully melted, and a value of 
0 corresponds to completely solidified. In the Darcy source term, the constants K1 and K2 are chosen as 109 and 
10−12 respectively to dampen U  to numerically zero in the solidified regions of the  domain60–62. For the surface 
forces, the expression for Fs is given as,

where ψ = αl∇αk − αk∇αl . The surface force term is comprised of two contributions; the normal surface tension 
contribution, and a contribution arising from the temperature dependence of the surface tension. The surface 
tension is implemented using the continuum surface force  model48, 63. The temperature dependence of the sur-
face tension, also known as the Marangoni effect, causes the generation of shear flow at the interface of liquids 
under a temperature gradient, where the flow direction is from the higher temperature region towards the lower 
temperature region. The implementation used in this work is validated against a well known analytical  solution64.

Appendix 2: Particulars of the energy transport equation
The latent heat source term for the multi-phase mixture is,

where L is the latent heat of fusion of the mixture. The liquid fraction of the metallic phases, ǫ1 , is determined by 
the local temperature of the mixture relative to the mixture solidus and liquidus temperatures:

where Ts and Tl are the sums of the solidus and liquidus temperatures of the pure materials, weighted by the 
phase fractions of the components present in a given region. The solidus and liquidus temperatures of the pure 
substances is assumed to be ±5K respectively.

Appendix 3: Derivation of the modified magnetic induction equation
Taking the curl of Ohm’s law (Eq. 5d) yields the following:

Substituting in Faradays law, which relates the time derivative of the magnetic flux density to the curl of the 
electric field, the following expression is obtained:

Substituting in the Ampere–Maxwell law for the current density (with the assumption that |U | ≪ c ) and 
recalling that B = µMH , from the constitutive relation between the magnetic flux density B and field strength H:

Finally using the vector identity ∇ × (A× B) = ∇ ·

(

BA
T
− AB

T
)

 , and knowing that BAT
= AB , the induc-

tion equation can be expressed as:

(12a)Fg = ρgβ(T − Tm)

(12b)Sm = K1

(1− ǫ1)
2

ǫ31 + K2

U

(13)Fs = −

N
∑

k=0

N
∑

l �=k

[

σkl∇ ·

(

ψ

|ψ |

)(

ψ

|ψ |

)

+

dσkl

dT

(

∇T −

ψ

|ψ |

(

ψ

|ψ |

· ∇T

))]

|ψ |

(14)Sh = −L

(

∂ρǫ1

∂t
+∇ · (Uρǫ1)

)

(15)ǫ1 =

{

0 T < Ts

(T − Ts)/(Tl − Ts) Ts < T < Tl

1 T > Tl

∇ ×

[

J

σE

]

= ∇ × [E + U × B]

∇ ×

[

J

σE

]

=

−∂B

∂t
+∇ × [U × B]

∇ ×

[

∇ ×H

σE

]

=

−∂µH

∂t
+∇ × [U × µH]

∂µH

∂t
−∇ × [U × µH] = −∇ ×

[

∇ ×H

σE
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