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TO COMPRESS OR NOT TO COMPRESS:
UNDERSTANDING THE INTERACTIONS BETWEEN

ADVERSARIAL ATTACKS AND NEURAL NETWORK COMPRESSION

Yiren Zhao * 1 Ilia Shumailov * 1 Robert Mullins 1 Ross Anderson 1

ABSTRACT
As deep neural networks (DNNs) become widely used, pruned and quantised models are becoming ubiquitous
on edge devices; such compressed DNNs lower the computational requirements. Meanwhile, multiple recent
studies show ways of constructing adversarial samples that make DNNs misclassify. We therefore investigate the
extent to which adversarial samples are transferable between uncompressed and compressed DNNs. We find that
such samples remain transferable for both pruned and quantised models. For pruning, adversarial samples at high
sparsities are marginally less transferable. For quantisation, we find the transferability of adversarial samples is
highly sensitive to integer precision.

1 INTRODUCTION

Deep Neural Networks (DNNs) perform well on a wide
range of tasks, including image classification (Krizhevsky
et al., 2012), object detection (Ren et al., 2015), reading
comprehension (Seo et al., 2016) and machine translation
(Bahdanau et al., 2015). They have proved to be an efficient
method of harvesting information from large amounts of
data and are expected to be ubiquitous in the future. Despite
these successes, two questions remain crucial for deploying
them in embedded systems. First, their substantial compu-
tational and memory requirements can make deployment
challenging on power-limited devices. Second, as they start
to appear in safety-critical applications, their reliability and
security become a serious issue.

In order to compute DNNs efficiently on embedded systems,
researchers have proposed various compression methods.
Pruning directly reduces the number of parameters of DNNs
– this reduction translates to fewer data movements and thus
saves energy directly. Quantisation is another popular com-
pression technique – it simultaneously reduces the memory
footprint and decreases the energy cost of multiplications.
Both compression methods are widely deployed on DNN
accelerators. For instance, Efficient Inference Engines (EIE)
use pruning, quantisation and encoding techniques for en-
ergy efficiency (Han et al., 2016a); the Sparse CNN (SCNN)
accelerator first requires network parameters to be pruned
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and encoded, then performs computations directly using the
encoded data format (Parashar et al., 2017). It seems likely
that pruning, quantisation and other compression techniques
will be used for future DNNs on embedded devices, even
where hardware accelerators are also used.

Over the past five years, research has found DNNs to be
sensitive to small perturbations of the input images, with the
result that they can often be fooled easily using specially-
crafted adversarial inputs (Szegedy et al., 2013). Such ad-
versarial samples are a real concern for safety-critical sys-
tems; attackers might try to manipulate autonomous vehicles
(Eykholt et al., 2018) or break into smart phones by tricking
the speaker recognition system (Carlini et al., 2016).

In this paper, we study the portability of adversarial samples.
Might an attacker learn how to break into widely-deployed
low-cost systems and then use the same adversarial samples
as a springboard to attack other related systems?

We make the following contributions in this paper.

• We investigated the effects of different DNN compres-
sion mechanisms on adversarial attacks.

• We have developed the first compression-aware ma-
chine learning attack taxonomy and used it to evaluate
the transferability of adversarial samples between com-
pressed and uncompressed models.

• As for pruning, we found that adversarial samples are
transferable between compressed and uncompressed
models. However, adversarial samples generated from
uncompressed models are marginally less effective on
compressed models at preferred sparsities, and adver-
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sarial samples generated from extremely sparse models
are no longer effective on the baseline model.

• As for quantisation, we found that adversarial sam-
ples are transferable between compressed and uncom-
pressed models. However, a reduction in integer pre-
cision provides clipping effects and marginally limits
transferability in fast gradient based attacks.

2 RELATED WORK

2.1 Pruning

Pruning directly reduces the number of parameters in a
DNN model, and thus the number of off-chip to on-chip
data transfers on modern DNN accelerators (Chen et al.,
2016). If the architecture allows, pruning may also reduce
the computation cost (Kim et al., 2018). Consider a weight
tensor (Wn); fine-grained pruning is simply performing an
element-wise multiplication (�) between a mask operator
Mn and the original weight tensor (Wn).

Wn
′ = Wn �Mn (1)

Han et al. first proposed pruning a DNN by applying a
threshold to the DNN’s parameters (Han et al., 2016b). In
this case, the mask (Mn) consists of thresholding by a single
value α.

Mn = hk(Wn
(i,j)) =

{
0 if α > |Wk

(i,j)|
1 otherwise

(2)

Using this simple one-shot pruning technique, Han et al.
were able to reduce the number of parameters in AlexNet by
9x and VGG16 by 13x (Han et al., 2016b). In their imple-
mentation, the masking and fine-tuning happen iteratively
but the masked values are not allowed to recover in later
stages.

Guo et al. subsequently proposed dynamic network surgery
(DNS), which allows pruned parameters to recover at later
stages (Guo et al., 2016). The approach is to condition the
mask using the following equation, where α and β are two
constants.

Mn = hk(Wn
(i,j)) =


0 if α > |Wk

(i,j)|
Mn

(i,j) if α ≤ |Wk
(i,j)| ≤ β

1 otherwise
(3)

Values that become bigger at later stages are allowed to re-
join the fine-tuning process. Guo et al. demonstrated higher
compression rates on a large range of networks compared

to Han et al. In this paper, we generate pruned DNNs using
the DNS method.

2.2 Quantisation

Quantisation refers to using fewer bits for parameters in a
DNN than the standard 32-bit single-precision floating-point
representation used on modern CPUs and GPUs. Hubara
et al. showed that low-precision fixed-point numbers can
be used for neural-network inference with nearly no loss
of accuracy (Hubara et al., 2017). In the extreme case, the
parameters of a DNN can be quantised to either binary or
ternary values (Courbariaux et al., 2016; Li et al., 2016).
Such aggressive quantisation can greatly speed up DNN
hardware accelerators but suffers from significant loss of
accuracy. For resource-constrained devices, a low-precision
fixed-point representation can give a balance between ac-
curacy and performance (Lin et al., 2016). The narrower
bitwidth means direct reductions in memory requirement
and fixed-point multiplications are less computationally ex-
pensive compared with standard single-precision floating
point. In this paper, we generate models that use fixed-point
parameters at various levels of precision.

2.3 Adversarial Attacks

Szegedy et al. discovered that, despite generalising well,
models trained on huge datasets are all vulnerable to ad-
versarial samples (Szegedy et al., 2013). Misclassification
can even happen with imperceptible perturbations of the
data samples. All the samples they used were within the
expected data distribution and only a small specially-crafted
amount of noise was added. They observed that models of
different configurations, trained on different datasets, mis-
classify the same samples. Finally, they noted that training
a model on adversarial samples helps make it more robust
against them. However, this defence is not always practi-
cal; their approach based on L-BFGS requires an expensive
constrained optimisation with multiple iterations.

A follow-up paper by Goodfellow et al. (Goodfellow et al.,
2015) explored the underlying reasons for the existence
and generalisability of adversarial samples. They argue
that such samples are an artefact of high-dimensional dot-
products, and attacks are generalisable because different
models learn similar functions when trained to perform the
same task. Additionally, they presented two methods to
generate adversarial samples in a white-box setting, the fast
gradient method (FGM) and the fast gradient sign method
(FGSM). Finally, they discovered that RBF-based networks
are much more resistant to adversarial samples.

Papernot et al. (Papernot et al., 2016b) came up with an-
other way to generate adversarial samples. They use the
gradients of a network to construct saliency maps for the
input to discover which input values are so sensitive that a
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change can drive misclassification. They showed that their
method has the flexibility of being used in both supervised
and unsupervised settings and is capable of generating sam-
ples with a user-given priority on particular properties of
the inputs. Finally, they also observed that adversarial at-
tacks become harder when models have been trained with
adversarial samples.

There is now a growing corpus of research on the transfer-
ability of adversarial samples (Szegedy et al., 2013; Good-
fellow et al., 2015; Papernot et al., 2016a; Tramèr et al.,
2017). Transferability refers to the ability of an adversarial
sample to evade the correct classification on two different
classifiers trained to perform a similar task.

Goodfellow et al. (Goodfellow et al., 2015) and Warde-
Farley & Goodfellow (Warde-Farley & Goodfellow, 2016)
empirically found that adversarial examples usually occur
in large, continuous spatial regions. Tramer et al. (Tramèr
et al., 2017) found out that each of the models differs in the
dimensionality of its subspaces. A higher number of dimen-
sions increases the chance that the subspaces of different
models intersect, leading to transferable samples.

Transferable adversarial samples are a real hazard for model
deployment, as they are ‘break-once, run-anywhere’: attacks
developed on a particular type of classifier can potentially be
deployed everywhere. Papernot et al. (Papernot et al., 2017)
in particular have shown that an adversary can sometimes
perform attacks without any knowledge of a model’s internal
parameters – it can be enough to approximate a model with
another known model and build adversarial samples against
that instead.

3 METHODOLOGY

3.1 Attack Taxonomy and Threat Model

In this paper, we are interested in the interaction between ad-
versarial attacks and model compression, and we investigate
three specific attack scenarios. By ‘compressed models’ we
will mean models that have pruned or quantised, while a
‘baseline model’ means a pretrained network without any
compression that is dense and whose parameters are repre-
sented using full-precision (float32) values.

• Scenario 1: Adversarial attacks occur on each individ-
ual compressed model, with the adversarial examples
generated and applied on the same model.

• Scenario 2: Adversarial samples are generated from
the baseline model but applied on each compressed
model.

• Scenario 3: Adversarial samples are generated from
compressed models but applied on the baseline model.

In the first scenario, adversarial samples are generated from
each compressed model. Attackers can access these com-
pressed models fully, and generate adversarial samples for
each one individually. This is the case where attackers buy
products and figure out how to attack them.

The second scenario makes the assumption that attackers
can only access the baseline model to generate adversarial
samples, which are then used to attack various compressed
models. Attackers are not allowed to fetch any gradients
from compressed models. This is the case where firms
take publicly-available models and compress them to run
more efficiently on edge devices. Attackers can find the
public model and craft adversarial samples to attack derived
proprietary devices.

The third scenario assumes that only compressed models
are visible to attackers, and attackers generate adversarial
samples using compressed models to attack the hidden base-
line model. In practice, companies now deploy various
compressed neural-network models on edge devices that are
exposed to end-users. The assumption is the attackers can
access these models and create adversarial samples from
them to attack the hidden baseline model. This then back
leads to the second scenario; the attacker’s knowledge and
toolkit can be transferred to other compressed products from
the same firm. Figure 1 shows the second and third attack
scenarios.

For example, modern anti-virus (AV) software uses DNNs
to detect malware behaviour. Some AV modules detect such
behaviours offline. When deploying a compressed model
in such an application, how likely is it that malware could
analyse the compressed model, work out how to evade the
full model, and thus defeat the firm’s other AV products?
Similarly, if an alarm company deploys a compressed model
for intruder detection in consumer-grade CCTV equipment,
could an intelligence agency that buys such equipment fig-
ure out how to defeat not just that product but government
products derived from the same full model? The risk is that
just as a new type of software attack such as Heartbleed
or Meltdown can cause widespread disruption by requiring
thousands of disparate systems to be patched, so portable
adverse examples could force upgrades to large numbers of
diverse embedded systems.

3.2 Networks and Compression Methods

We use LeNet5 (LeCun et al., 2015) and CifarNet (Zhao
et al., 2018) for our experiments on MNIST (LeCun et al.,
2010) and CIFAR10 (Krizhevsky et al., 2014) datasets. The
LeNet5 model has 431K parameters and classifies MNIST
digits with an accuracy of 99.36%. The CifarNet classi-
fier (Zhao et al., 2018) has 1.3M parameters and achieves
85.93% classification accuracy.
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Figure 1. Two different attack setups. Attackers only generate adversarial samples based on baseline model (left), or attackers generate
adversarial samples based on compressed models (right).

We implemented two types of compression method:

• Fine-grained pruning on weights;

• Fixed-point quantisation of both weights and activa-
tions.

We used the Mayo tool to generate pruned and quantised
models (Zhao et al., 2018), and fine-tuned these models
after pruning and quantisation. For each pruning density or
quantised bitwidth, we retrain 350 epochs for LeNet5 and
300 epochs for CifarNet with three scheduled learning rate
decays starting from 0.01. For each decay, the learning rate
decreases by a factor of 10.

Applying pruning on a pretrained model shrinks the number
of parameters and thus the memory footprint of future AI
ASICs. We use fixed-point quantisation on both weights
and activations of a DNN. Quantising both weights and acti-
vations means that computations operate in low-precision
fixed-point formats, which cut the time and energy cost both
data moves and computations. For fixed-point quantisation,
we use a 1-bit integer when bitwidth is 4, a 2-bit integer
when bitwidth is 8, and 4-bit integers for the rest of the
fixed-point quantisations.

3.3 Adversarial attacks

In the work reported in this paper we used three popular at-
tacks developed in the research community. We now present
mathematical definitions of the attacks and comments about
their behaviour.

Goodfellow et al. first introduced the fast gradient method
(FGM) and fast gradient sign method (FGSM) to develop
attacks (Goodfellow et al., 2015). For the definitions we
will use the following notation: θ represents the param-
eters of the model, X represents the inputs, while y and
yl represents the outputs and labels respectively. We can

then use J(θ, X , yl) to represent the cost function. The
original FGM and FGSM perturbations are computed as
in Equation (4) and Equation (5) respectively, where ε is a
hyperparameter and the function∇X() computes the first-
order derivative with respect to input X .

η = ε(∇XJ(θ,X, y)) (4)

η = εsign(∇XJ(θ,X, y)) (5)

Kurakin et al. presented an iterative algorithm based on
FGM and FGSM methods (Kurakin et al., 2016). In Algo-
rithm 1, we present an iterative FGSM (IFGSM), where the
adversarial samples Xadv

n are generated for the nth iteration.

During each iteration, the intermediate results get clipped
to ensure that the resulting adversarial images lie within ε
of the previous iteration.

Algorithm 1 IFGSM
Input: data Xin

Initialize Xadv
0 = Xin.

for n = 0 to m− 1 do
N = εsign(∇XJ(θ,Xadv

n , yl))}
Xadv
n+1 = ClipX,ε{Xadv

n +N}
end for

Kurakin et al. also presented an iterative version of FGM
where instead of just using the sign to determine the di-
rection of a gradient, the gradient amplitudes contribute
to the gradient update step. The iterative FGM (IFGM)
is nearly identical to the IFGSM except that N =
ε∇XJ(θ,Xadv

n , yl).

Moosavi-Dezfooli et al. featured another attack called
‘Deepfool’, which is also based on iterative gradient adjust-
ment (Moosavi-Dezfooli et al., 2016). However, Deepfool
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Figure 2. Transferability properties for pruning. The green, red and cyan lines represent the first, second and third attack scenarios
respectively. The blue line show the accuracies of pruned models without any attacks.

is different from IFGSM in that it does not scale and clip
gradients. It is based on the idea that the separating hyper-
planes in linear classifiers indicate the decision boundaries
of different classes. It therefore iteratively perturbs an image
Xadv

0 , linearises the classification space aroundXadv
n and

moves towards the closest decision boundary. The step is
chosen according to the l0, l1 or even the lp norm ofXadv

n

to the last-found decision boundary. The applied step is then
used asXadv

n+1.

In practice Deepfool is found to produce smaller pertur-
bations than the original IFGSM, which makes it a more
precise attack (Moosavi-Dezfooli et al., 2016). In this paper
we used an L2 norm-based version of Deepfool.

It should be noted that in this particular paper we were not in-
terested in the absolute accuracy but the relative behaviours
with a set of fixed parameters for adversarial attacks. We
chose the strongest white box adversary model and picked
three of the strongest iterative attacks. For all the experi-
ments, we did not sweep all the possible hyper-parameters
for the adversarial attacks, but picked empirically sensible
hyper-parameters. The parameters are shown in Table 1 and
were chosen in such a way that they generated perturbations
of a sensible l2 and l0 and caused noticeable classification
change.

Finally, we want to talk about how realistic the scenarios
presented in this paper are and why we chose those partic-
ular attacks. First, we want to mention that not all of the
attacks are transferable – as a matter of fact the attacks we

Network/Attack I-FGSM I-FGM DeepFool
ε i ε i ε i

LeNet5 0.02 12 10.0 5 0.01 5
CifarNet 0.02 12 0.02 12 0.01 3

Table 1. Attack hyper-parameters.

chose are amongst the least transferable ones. We chose
those specific attacks to explore the lower bound of trans-
ferability and show how much of the subspaces actually
survive the compression process (Tramèr et al., 2017). For
DeepFool, we trained two models with different random
initialisation and tested how tranferable the adversarial sam-
ples are. For LeNet5 only 7% of the samples actually went
across, whereas for CifarNet the transferability was better,
but still only 60%. We now describe a slightly different
scenario – the models attacking and defending are the same,
just some of them are compressed.

For all of the attacks we made sure that in each of the
iterations the perturbations stayed within the expected range.

4 EVALUATION

4.1 Pruning

Goodfellow et al. explained the existence of adversarial
samples as follows (Goodfellow et al., 2015). Consider
an adversarial sample as the original input x with an addi-



Understanding the Interactions between Adversarial Attacks and Neural Network Compression

Figure 3. Lenet5 accuracy with IFGSM and IFGM-generated adversarial samples with different epsilon values and number of epochs

tional noise η. When passing through multiple layers of
matrix multiplication, this small noise eventually grows to a
large enough value to shift the decision of the whole model.
Given weights w of a particular layer of a neural network
and adversarial sample x̃ = x + η, the output of that par-
ticular layer is wT x̃ = wTx+wTη, and the adversarial
perturbation causes the the output activations to grow by
wTη.

Figure 2 shows the performance of IFGSM, IFGM and
DeepFool on pruned models under three different attack
scenarios. The horizontal axis shows the densities of DNNs,
effectively the ratio of the number of non-zero values to
the total number of values. The vertical axis presents test
accuracies of DNNs. Apart from showing the accuracies
of pruned networks without any attacks (BASE ACC), we
present the accuracies of the pruned models with three dif-
ferent attack scenarios. The first scenario corresponds to
COMP→ COMP, the second scenario and third scenario
corresponds to FULL→ COMP and COMP→ FULL re-
spectively.

The first thing to note is that samples generated from the
compressed models are transferable to the baseline model
when densities are relatively large. This finding reinforces
the idea that the adversarial samples are not scattered ran-
domly but reside in large and contiguous high-dimensional
spaces, enabling them to survive the effects of pruning. We
suggest that pruning smooths the decision space by remov-
ing DNN weights that have little impact. This ultimately has
an effect on IFGSM – with unimportant parts removed, the
gradients now follow the path towards the most important
and prominent parts of the space (first and fourth plots on
Figure 2). As a result, relatively small perturbations based
on compressed models generalise very well on the uncom-
pressed model when networks are not heavily pruned. For
all of the attacks, adversarial samples generated on networks
with very small densities are not effective on the baseline

networks (increase in the red line and fall of the blue line
near zero in all plots of Figure 2) Heavily-pruned networks
acquire a feature space that is hugely different from the
baseline models, and this limits the transfer of adversarial
samples. However, low-density networks often suffer large
losses in classification accuracy, making them infeasible to
deploy in real life.

When one compressed model is attacking another (Comp to
Comp, green line on Figure 2), we see a general trend that
attacks remain transferable.

Using an uncompressed model to attack a compressed one
(cyan line, Figure 2), we observe a slight increase in accu-
racy occurs when densities are small, but then a rapid drop
when they keep decreasing; this effect occurs when the base
accuracy (blue line) also starts to drop. We view pruning
as a regularization method which removes local minima
from the large optimization space. When the blue line is
just starting to decrease, this turning point is the preferred
density, where the network just stops overfitting. In other
words, the preferred density of a network represents the min-
imal number of parameters needed to accomplish the same
accuracy as the dense model. To further illustrate the effect
of pruning, we present CifarNet with Deepfool and IFGSM
in Figure 4. The horizontal axis shows the accuracy of the
baseline model and the vertical axis has the adversarial ac-
curacy. In terms of adversarial attacks, although limited, we
observe that networks that reach preferred density show a
protective nature in Figure 4.

We observe attacks perform worse on LeNet5 in comparison
to CifarNet. We notice that LeNet5 inherently achieves a
larger accuracy on MNIST, meaning that the loss is smaller
on the evaluation dataset as well. When building attacks,
we often make use of the amplitude of gradients to generate
adversarial samples, and the smaller loss associated with
LeNet5 implies that it is less vulnerable to attack. This phe-
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Figure 4. CifarNet accuracy with IFGSM and DeepFool-generated adversarial samples with corresponding base accuracy.

nomenon becomes more apparent on Deepfool and IFGM,
since these attacks employ the gradients amplitudes to gen-
erate adversarial images.

Intuitively, pruning largely preserves the feature space of a
baseline CNN, so adversarial samples remain transferable.
This empirical observation confirms recent pruning discov-
eries, that pruned networks distil feature spaces (Liu et al.,
2018; Frankle & Carbin, 2018). In addition, our observation
is in line with the suggestions made by Tramer et al.: if the
feature spaces are similar, adversarial samples stay highly
transferable (Tramèr et al., 2017).

Summary

1. The transferability of adversarial samples between
pruned and full models remains when networks are
slightly pruned.

2. For compressed models attacking uncompressed mod-
els, we observe worse transferability when models
are heavily pruned, but the original accuracy of these
sparse models decreases significantly.

3. For uncompressed models attacking compressed mod-
els, the accuracy is maximised, and the transferability
minimised, at the preferred density where the network
stops overfitting.

4.2 Fixed-point Quantisation

Fixed-point quantisation refers to quantising both weights
and activations to fixed-point numbers; for example, for a
bitwidth of four we use a one-bit integer plus a three-bit
fraction. Multiplication is much faster as we can use integer
operations rather than floating point. Figure 5 shows the
performance of adversarial attacks on quantised models un-
der our three different attack scenarios. Attack performance

stays nearly constant at bitwidths higher than 8. When us-
ing fewer bits for both weights and activations, the model
shows defensive behaviour, mainly because of the reduction
in integer precision.

Intuitively, we have two effects when values are quantised to
smaller bitwidths. First, a smaller bitwidth means fewer frac-
tional bits causing a loss in precision, and introducing much
the same effect as pruning. Second, it can mean fewer inte-
ger bits, so weight and activation values are smaller. Thus,
our models in 4-bit fixed-point quantisation have smaller
weight and activation values and contain more zeros than
models at higher precisions. In Figure 6.a, we show the
cumulative distribution function (CDF) of CifarNet with
different fixed-point quantisations. There are clearly more
zeros in the 4-bit CifarNet – its cumulative density reaches
around 0.9 when value is at 0. The clipping effect is also
more obvious in the 4-bit model, since it only has a 1-bit
integer part; we can see the 4-bit model has its weights CDF
reach 1.0 before all other bitwidths in Figure 6.a.

Using the adversarial examples generated by compressed
models to attack the baseline model (red line), we observe
both Deepfool and IFGSM methods become less effective
on LeNet5 and CifarNet. The same phenomenon occurs
when we use adversarial samples generated by the baseline
model to attack quantised models (cyan line). We suggest
that during quantisation, reducing fractional bits will not
hugely impact the attacks’ performance at high bitwidths,
but introduces a similar effect to pruning at low bitwidths.
In addition, reducing integer bits essentially introduces large
differences between the baseline model and the quantised
ones for adversarial attacks. Using FGM to attack LeNet5,
on the other hand, gives very different behavior. We also
noticed that attacking LeNet5 require large epsilon values
and more iterative runs. We suggest this is because of the
accuracy issue with LeNet5 that we’ve addressed earlier
– attacks that rely on gradient magnitudes struggle with
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Figure 5. Transferability properties for quantising both weights and activations. The green, red and cyan lines represent the first, second
and third attack scenarios respectively. The blue line show the accuracy of quantised models without any attacks.

networks that achieve high accuracy.

By reducing the length of the fraction, the rounding process
of fixed-point quantisation becomes more lossy. Uniformly
adding quantisation noise to each individual weight does
not affect attack performance. As we can see in Figure 5,
all three attack scenarios show a stable performance when
bitwidths are higher than 8, where the difference lies in the
length of the fraction. When the network gets quantised
down to 4 bits, quantisation behaves rather like pruning – a
large part of the network gets zeroed out.

By reducing integer bitwidth, we are clipping the numerical
values. Theoretically, clipping weights is different from
clipping activations. For the former, we first consider how
to create an adversarial sample with minimal perturbation.
Intuitively, the way to achieve such a perturbation with min-
imal changes on the input image is tweak pixels with large
weight values that are connected to important activations.
Thus a small change in input image pixels can have the max-
imal effect on activation values. When weights are clipped,
adversarial attacks see more weights as having equal impor-
tance because they saturate to the same maximal value. This
undermines attack transferability between quantised models
and baseline models. For example, on a quantised network,
an adversarial example Xi considers wi = max(Wi) to be
the largest weight associated with the important activations
among all the weights (Wi) associated with activation ai.
This relationship wi = max(Wi) might break on the base-
line model and thus the adversarial sample becomes less

effective. In Figure 6, a 4-bit fixed-point quantisation clearly
shows a clipping effect on weight values, which contributes
to the marginal defensive nature we observed in Figure 5.

When activations are clipped to a smaller maximal value,
transferability between quantised and baseline models be-
comes worse. Figure 6.b shows how activations are clipped
to different maximum values. Consider a simple case, where
an adversarial example overdrives one activation to be larger
than others in the same layer to cause a misclassification.
Clipping the activation values forces the attacker to find
more subtle ways of achieving differential activation, which
is significantly harder.

Clipping weights and clipping activations can both signifi-
cantly affect attack performance. As we can see from the
cyan line in Figure 5, at smaller bit widths, all our attack
scenarios show an increase in accuracy. except for LeNet5
attacked by IFGM. In terms of transferability, adversarial
examples remain transferable between quantised and base-
line models under both IFGSM and IFGM when fractional
bits are lost, but integer bits start to decrease, transferability
becomes worse.

Surprisingly, we find that Deepfool, unlike IFGM and
IFGSM, struggles to generate effective adversarial samples
when models are quantized. Restricting values to discrete
levels mean now an attack has to inject a large enough per-
turbation to the values to push them to the neighbouring
quantizaton level. Since Deepfool is a very fine-grained
attack, it struggles to do this.
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(a) Weights (b) Activations

Figure 6. Cumulative distribution function (CDF) for all weights and activations in quantised CifarNet. Ten randomly chosen input images
from the validation dataset were used for generate CDF of activation values.

Although IFGSM shows slightly higher accuracy at low
precision, this protective behavior is only marginal. Attacks
still show good performance in all three scenarios compared
to both IFGM and DeepFool if we consider the classification
accuracy (Figure 5).

In summary, transferability is still a hazard for quantized
models. But there is some marginal protection when acti-
vation values are quantized. Intuitively, this forces many
activations to saturate and thus makes it harder for the at-
tacker to overdrive certain values.

Summary

1. The transferability of adversarial samples between
quantised and baseline models is not affected by reduc-
ing fractional bitwidth at high precision.

2. Aggressive reduction of fractional bits introduces the
same effect as fine-grained pruning.

3. Smaller integer bitwidths of weights and activations
make it marginally harder to attack the baseline model
using adversarial samples generated from compressed
models. This suggests that the network’s knowledge is
contained in both activations and weights.

4. We hypothesize that clipping activations changes the
feature space of CNNs and thus marginally protects
models from transferability.

5 CONCLUSION

This paper reports an empirical study of the interaction be-
tween adversarial attacks and neural network compression.

Both quantisation and pruning sparsify the network, i.e. a
greater number of activiations and weights are zero. At-
tacks generated from heavily pruned models work effec-
tively against the underlying baseline model. However,
low-density DNNs are somewhat defensive when attacked
by adversarial samples generated from the baseline model
using fast-gradient-based methods. Quantisation is different
in that adversarial samples from fast-gradient-based meth-
ods become marginally harder to transfer when models are
heavily quantised. This defensive behaiour appears due to
the reduction in integer bits of both weights and activations
rather than to the truncation in fractional bits.

The broader implications are that attacks on DNN classifiers
that involve adversarial inputs may be surprisingly portable.
Even if a firm ships only a compressed version of its clas-
sifier in widely distributed products, such as IoT devices
or apps, attacks that people discover on these compressed
classifiers may translate fairly easily to attacks on the under-
lying baseline model, and thus to other compressed versions
of the same model. Just as software vulnerabilities such
as Heartbleed and Spectre required the patching of many
disparate systems, so also a new adversarial sample may de-
feat many classifiers of the same heritage. Firms should be
aware that while shipping a compressed classifier may give
real benefits in terms of performance, it may not provide
much in the way of additional safety or security.

ACKNOWLEDGEMENTS

Partially supported with funds from Bosch-
Forschungsstiftung im Stifterverband.



Understanding the Interactions between Adversarial Attacks and Neural Network Compression

REFERENCES

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. Inter-
national Conference on Learning Representations (ICLR),
2015.

Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr,
M., Shields, C., Wagner, D., and Zhou, W. Hidden
Voice Commands. In 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, 2016.

Chen, Y.-H., Emer, J., and Sze, V. Eyeriss: A spatial ar-
chitecture for energy-efficient dataflow for convolutional
neural networks. In ACM SIGARCH Computer Architec-
ture News, volume 44, pp. 367–379. IEEE Press, 2016.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks: Training deep
neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint, 2016.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati,
A., Xiao, C., Prakash, A., Kohno, T., and Song, D. Ro-
bust Physical-World Attacks on Deep Learning Visual
Classification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1625–
1634, 2018.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. 2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. International Con-
ference on Learning Representations (ICLR), 2015.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery
for efficient DNNs. In Advances in Neural Information
Processing Systems, 2016.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,
M. A., and Dally, W. J. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. SIGARCH Comput.
Archit. News, 44(3):243–254, June 2016a. ISSN 0163-
5964. doi: 10.1145/3007787.3001163.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and Huffman coding. International Confer-
ence on Learning Representations (ICLR), 2016b.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neural
networks with low precision weights and activations. J.
Mach. Learn. Res., pp. 6869–6898, 2017.

Kim, D., Ahn, J., and Yoo, S. Zena: Zero-aware neural
network accelerator. IEEE Design & Test, 35(1):39–46,
2018.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pp. 1097–1105, 2012.

Krizhevsky, A., Nair, V., and Hinton, G. The CIFAR-10
dataset. 2014.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial
examples in the physical world. CoRR, abs/1607.02533,
2016.

LeCun, Y., Cortes, C., and Burges, C. MNIST handwritten
digit database. 2, 2010.

LeCun, Y. et al. LeNet-5, convolutional neural networks.
pp. 20, 2015.

Li, F., Zhang, B., and Liu, B. Ternary weight networks. 1st
NIPS Workshop on Efficient Methods for Deep Neural
Networks (EMDNN), 2016.

Lin, D., Talathi, S., and Annapureddy, S. Fixed point quan-
tization of deep convolutional networks. In International
Conference on Machine Learning, pp. 2849–2858, 2016.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. arXiv preprint
arXiv:1810.05270, 2018.

Moosavi-Dezfooli, S., Fawzi, A., and Frossard, P. Deep-
Fool: a simple and accurate method to fool deep neural
networks. 2016.

Papernot, N., McDaniel, P., and Goodfellow, I. Transferabil-
ity in machine learning: from phenomena to black-box
attacks using adversarial samples. arXiv preprint, 2016a.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. The limitations of deep learning in
adversarial settings. pp. 372–387, 2016b.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z. B., and Swami, A. Practical black-box attacks against
machine learning. pp. 506–519, 2017.

Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkate-
san, R., Khailany, B., Emer, J., Keckler, S. W., and
Dally, W. J. SCNN: An accelerator for compressed-
sparse convolutional neural networks. In 2017 ACM/IEEE
44th Annual International Symposium on Computer
Architecture (ISCA), pp. 27–40, June 2017. doi:
10.1145/3079856.3080254.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. In Advances in neural information processing
systems, pp. 91–99, 2015.



Understanding the Interactions between Adversarial Attacks and Neural Network Compression

Seo, M., Kembhavi, A., Farhadi, A., and Hajishirzi, H.
Bidirectional attention flow for machine comprehension.
arXiv preprint, 2016.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. Intriguing properties
of neural networks. CoRR, abs/1312.6199, 2013.
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