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Abstract
Diverse no-go theorems exist, ranging fromno-cloning tomonogamies of quantum correlations and
Bell inequality violations, which restrict the processing of information in the quantumworld. In a
multipartite scenario,monogamy of Bell inequality violation and the exclusion principle of dense
coding are such theoremswhich impede the ability of the system to have quantumadvantage between
all its parts. In ordered spin systems, the twin restrictions of translation invariance andmonogamy of
quantumcorrelations, in general, enforce the bipartite states to be neither Bell inequality violating nor
dense codeable.We show that it is possible to conquer these constraints imposed by quantum
mechanics in ordered systems by introducing quenched impurities in the systemwhile still retaining
translation invariance at the physically relevant level of disorder-averaged observables.

1. Introduction

Quantummechanics places strict restrictions in the formof ‘no-go theorems’, like no-cloning [1] and
monogamy of quantum correlations [2, 3], on information processing tasks (see also [4]). In this paper, we
concentrate on two restrictions imposed by the quantummechanical principles—monogamy of Bell inequality
violation [5] and the exclusion principle of classical information transmission [6]. In amultipartite scenario,
with a boss and several subordinates, the laws state that if the shared quantum state between the boss and a single
subordinate exhibits quantumness, either by violating Bell inequality or by being dense codeable, then the other
channels between the boss and the subordinates are prohibited frompossessing the same quantumadvantage,
and hence, enforce limitations upon the quantum information processing tasks possible in that scenario.

It is easy to see, therefore, that the two-qubit states obtained from translationally invariant systems, which
include the ground states of one-dimensional translation-invariant quantum spinmodels (without disorder),
neither violate Bell inequality, nor have quantumadvantage in dense coding [7]. The two-pronged restriction
imposed bymonogamy and translation invariance causes all two-qubit states of suchmultiparty systems to be
devoid of the quantum advantages. The same arguments are true for an arbitrary isotropic higher-dimensional
lattice.We now ask the following question: Is it possible to regain the quantum advantages in these two-qubit
states in some physicalmany-body system,while still retaining the translation invariance of the system, at least at
the level of observables under study, i.e. at the level of the amount of Bell-inequality violation and the capacity of
dense coding?We answer the question in the affirmative by using quenched disordered spin systems.

Defects, in general, reduce the physical properties likemagnetization, conductivity, classical correlation, and
quantum correlation of the system [8]. Thereby the systemmay loose its ability to perform in a better way than
its classical counterpart. It has been reported that disorder reduces the fidelity of quantum state transmission as
well as of quantum gate implementation [9]. However, thermal fluctuation or impurities in the systemmay lead
to a counterintuitive enhancement of physical properties, known as ‘disorder-induced order’ or ‘order-from-
disorder’[10–12].We show that defects can give rise tomore radical advantages. Itmay be noted that defects can
appear naturally in physical systems and can also be artificially engineered [13]. Interesting phenomena
obtained in disordered systems include those in [14].
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Weconsider quenched disordered one-dimensional quantum spin-1/2 systems.We show that even though
translation symmetry is present in these systems after quenched averaging, such disorderedmodels can
overcome the hurdle of Bellmonogamy and the exclusion principle of dense coding. First, we show that in the
disordered quantumXY spin glass and in the randomfield quantumXYmodel, the quenched averaged
quantities for the amount of Bell inequality violation as well as the capacity of dense coding, of the nearest-
neighbor zero-temperature state, can attain nonclassical values and thereby overcome themonogamy
constraints, despite the fact that the post-quenched averaged quantities are translation-invariant. The analysis is
carried out by applying the Jordan-Wigner transformation to the disorderedXYmodels [15–17]. The
phenomena observed is potentially generic, in thatwe have also demonstrated them in quenched disordered
quantumHeisenberg spin glasses, which are not analytically tractable, and forwhich the investigation is
performed via the densitymatrix renormalization group (DMRG) technique [18]. Finally,finite-size scaling
analyses are carried out for both the quenched observables in all themodels considered.

2.Monogamy of Bell inequality and dense coding capacity

It is known from the celebrated Bell theorem [19] that the violation of the Bell inequality by a two-party state
guarantees that the state cannot have a local realist description. Given any two-qubit state, ρ, violation of the
Bell-CHSH inequality [20] occurs if and only if [21]

ρ >M ( ) 1, (1)

where ρ = +M u u( ) 1 2, with u1 and u2 being the two largest or the largest and the second-largest eigenvalues of
= ρ ρU T TT . Here, σ σ ρ= ⨂ρT Tr ( )mn

m n are the elements of the corresponding correlationmatrix, ρT . In the
case ofmultipartite states, if the quantum state shared by any two subparts of amultiparty system leads to a Bell
inequality violation, then it precludes its violation for the states which the subparts share with the other parts of the
total system.This is referred to asmonogamy for Bell inequality violation for themultiparty quantum states [5].
We define a quantity δ ρ ρ= −M( ) max{0, ( ) 1}AB AB , which quantifies the amount of Bell inequality violation
for the two-qubit states, and investigate its behaviorwhile exploring different physicalmany-body systems.

On the other hand, the quantumdense coding protocol [22] incorporates a sender-receiver scheme for
communicating classical information over a quantum channel. If we consider that our conventional sender,
Alice, and receiver, Bob, initially share a state ρAB , with dA and dB being the dimensions of theHilbert spaces
corresponding toAlice’s and Bob’s parts respectively, then the dense coding capacity turns out to be [23]

 ρ ρ= +d C( ) log ( ) (2)AB A
adv

AB2

bits. The quantity ρ ρ ρ= −C S S( ) max{0, ( ) ( )}adv
AB A AB is referred to as the ‘quantum advantage’ of dense

coding of the state ρAB over the classical channel. This is justified by the fact that dlog A2 bits of classical
information can be transmitted by sending a dA-dimensional quantum systemwithout using prior shared
entanglement. A bipartite quantum state is said to be dense codeable if it has a positive quantum advantage of
dense coding. In amultipartite scenario, the ‘exclusion principle’ for quantumdense coding demands that if any
two subsystems of amultiparty quantum system shares a dense codeable state, then they can’t share any such quantum
state efficient for dense coding, simultaneously, with other parts of the system [6].

Let us illustrate the above no-go theorems for a three-party state.When a tripartite state ρABC is shared
betweenA, B, andC, themonogamy of Bell inequality violation and the exclusion principle implies that if the
reduced state ρAB violates local realism or has a quantum advantage in dense coding, i.e. if δ ρ( )AB or ρC ( )adv

AB

is positive, then the reduced state at BCwill have δ ρ =( ) 0BC or ρ =C ( ) 0adv
BC , respectively.

3. Themodel and themethodology

TheHamiltonian for the one-dimensional disordered quantumXY spin chain in a random transverse field is
given by

∑ ∑κ γ σ σ γ σ σ σ= + + − +
=

+ +
=

( )H
J h

4
(1 ) (1 )

2
, (3)

i

N
i

i
x

i
x

i
y

i
y

i

N
i

i
z

1

1 1

1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where κJi is the coupling strength between the i
th and +i( 1)th site, κhi represents thefield strength at the i

th site,
and γ is the anisotropy constant. κ is a constant and has the unit of energy, while J h, ,i i and γ are dimensionless.
Here, σ ,j for =j x y z, , , correspond to the Pauli spinmatrices. For the ordered system, all the Ji and hi are
separately equal, and are denoted by J and h, respectively. Here we have assumed the cyclic boundary condition,
so that the +N( 1)th and the 1st sites are equivalent.
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The orderedmodel is exactly solvable via successive use of the Jordan-Wigner, Fourier, andBogoliubov
transformations [15–17], while the disorderedmodel is not.However, the same procedure can again lead us to

the one- and two-site reduced densitymatrices for the disorder case, which is enough for our study. For
completeness, we briefly review themechanismhere. First, wemap the Pauli spin operators to the spinless
fermions via the Jordan-Wigner transformation, so that equation (3) becomes

∑ ∑κ= + +
= =

+( )H c A c c B c h c
1

2
. . , (4)

i j

N

i ij j

i j

N

i ij j

, 1

†

, 1

†
1

†
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

whereA andB are symmetric and antisymmetric real ×N N matrices, respectively, and are given by

δ δ δ γ δ δ= + + = −+ + + +( )A h
J J

B J J
2 2

;
2

, (5)ij i ij
i

i j
j

i j ij i i j j i j1, , 1 1, , 1

with = =A A JN N N1 1 and = − = − γB B JN N N1 1 2
for the cyclic boundary condition.Here, the c c,i i

† are spinless

fermionic operators obtained via the Jordan-Wigner transformation. Defining Φk
T via the eigen-equation

Φ Λ Φ− + =A B A B( )( ) , (6)k
T

k k
T2

with eigenvalue Λk and obtaining the correspondingΨk from the equation

Ψ Λ Φ= +− A B( ) , (7)k
T

k k
T1

we can calculate the correlationmatrixG, defined as

∑ Ψ Φψ ϕ= − = − ( )G , (8)ij

k
ki kj

T

ij

where Φ and Ψ are thematrices ϕki and ψki , with ϕki (ψki ) being the ith element of Φk (Ψk ). Finally, one can
show that themagnetizations and two-point correlation functions of the zero-temperature state can be easily
obtained from the correlationmatrixG.We get = −m Gi

z
ii and = =m m 0i

x
i
y . The diagonal correlations are

given by

= = − = −+ + + + + + + + +T G T G T G G G G; ; , (9)i i
xx

i i i i
yy

i i i i
zz

i i i i i i i i, 1 , 1 , 1 1, , 1 , 1, 1 , 1 1,

while all off-diagonal correlations vanish. The one- and the two-site densitymatrices can nowbe easily
constructed from the one- and two-point correlation functions and consequently, the Bell inequality violation
(equation (1)) and the dense coding capacity (equation (2)) can be computed.

4.Quenched averaging

In the present work, for all purposes, the type of disorder that has been used is ‘quenched’. Spin glass states are
thosewhich emerge due to the presence of such a type of disorder in the system and the term ‘glass’ comes from
the analogywith the chemical glass which is formed by quenching a liquid. The term ‘quenched’ signifies that the
time overwhich the dynamics of the system takes place ismuch smaller than the time scale overwhich there is a
change in a particular realization of parameters governing the disorder in the system. This leads to the fact that
while calculating the quenched averaged value of a physical quantity, we need to perform the averaging of several
expectation values of that quantity, each of which is obtained for a fixed configuration over the relevant
probability distribution of the configurations of the disorder.

5. AnisotropicXY spin glass

Let us now consider the quantumXYmodel ofN spins interacting via site-dependent nearest-neighbor
exchange interactions, Ji, which are identically and independently distributed (i.i.d.) withGaussian probability
distribution, while thefield strength, hi, at each lattice site is kept constant. The correspondingHamiltonian
follows from equation (3) by setting =h hi for all = ⋯i N1, 2, , and by letting Ji follow the probability
distribution

πσ σ
= −

−( )P J
J J1

2
exp

1

2

¯
, (10)i

i
2⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

where J̄ and σ are, respectively, themean and the standard deviation of the distribution.
Let ρAB be a two-party state reduced from theN-party zero-temperature state in the ordered case, which can

be obtained analytically via the Jordon-Wigner transformation. Here A andB are disjoint collections of lattice
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sites of the one-dimensional chain. The translation invariance of the ordered chain (with a periodic boundary
condition forfiniteN) implies that we can alwaysfind a collectionC of lattices that is disjointed frombothA and
B such that the reduced states ρAB and ρBC of the zero-temperature state are equal (see figure 1). The subtle
assumption here is that the chain is sufficiently large, so that C does not overlapwithA or B (cf. [7]). In particular
if ρAB is a nearest-neighbor (two-site) densitymatrix, we only need ⩾N 3. Applying now themonogamy
relations to the state ρABC , we obtain the stated results for the ordered case in the translational invariant scenario.
While we have considered only the zero-temperature states in one-dimensional systems in this paper, the same
arguments hold for any isotropic higher-dimensional lattice, as well as forfinite temperature states. Therefore in

such systems, we have δ = = 0)adv for nearest-neighbor spins.
For the spin glass system, the above line of argument cannot be applied. The properties of the system are

physically relevant only after quenched averaging has been performed, and post-quenching, these properties are

again translationally invariant, just like the ordered case. So  =λ λ
AB BC for any physical property (see figure 1),

, for the reduced states at AB andBC.Note that throughout this paper, we associate the subscript λ to a quantity
if it is quenched averaged. The λ

AB and λ
BC , however, do not correspond to a single state of ABC, and so the

monogamy argument of the ordered case does not carry over to the disordered ones.We are therefore
confrontedwith the possibility that disordered systems can give rise to situations, which, despite being
translationally invariant, will have nearest-neighbor Bell inequality violation and quantumadvantage in dense
coding.Whether this is actually the case, however, requires explicit investigations.

Figure 2 clearly shows that after quenched averaging, the system violates the Bell-CHSH inequality and has
quantumadvantage in dense coding for the nearest-neighbor spins, which is a part of any nearest-neighbor
three-party state of theN-party state. The violation is in an extreme sense, since both the two-party reduced
states of the three-party cluster violate Bell inequality with equal strength. The same is true for dense-codeability.

6. Randomfield quantumXYmodel

Wenow introduce the randomness in the fieldwhile keeping the coupling strength uniform. Similar to the case
of theXY spin glass, wefind quantumadvantage in both the quantities for the set of parameters considered here,
thereby helping to overcome the restriction put by themonogamy relations.

Figure 3 shows the variation of the quantities δλ (figure 3(a)) and λC adv (figure 3(b)) with respect to h J¯ .
Similar to the case of the disorderedXY spin glass, wefind quantum advantage in both the quantities for the set
of parameters considered here. Thus, here too, introduction of the quenched disorder in the systemhelps to
overcome the restriction put by themonogamy relations.

Figure 1.Translational invariance of the ordered and post-quenched disordered systems. An illustration of the fact that for an ordered
system, states of a tripartite system are identical and the corresponding observables can attainmaximal possible values, bounded by
the classical limits.Whereas, for a disordered system, post-quenched properties of reduced states of a tripartite system remain
translationally invariant at the observable level and hence can exhibit quantum advantage.
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7. Scalings for theXYmodels

Weobserve that variation of both the quantities, δλ and λC adv, for large systems,mimic the pattern obtained for
N=20.Hence, the systemswith >N 20 spins can safely be assumed to serve the purpose of infinite spin chains.
We nowperformfinite-size scaling, wherewe use the value forN=50 as for the infinite system. Wefind that

Figure 2.Overcomingmonogamy in quantumXY spin glass. (a) Plot of quenched averaged Bell inequality violation (δλ ) on the
vertical axis against J h¯ on the horizontal axis for nearest-neighbor spins of the zero temperature state in the quantum anisotropicXY
spin glass for differentN. Here we have chosen the uniform field strength h=0.4, the anisotropy constant γ = 0.5, and the disorder
strength σ = 1.0. (b) This is the same as (a), except that the quenched averaged quantum advantage for dense coding, λC adv is plotted
on the vertical axis. All quantities are dimensionless, except λC adv , which is in bits.

Figure 3.Overcomingmonogamy in a random field quantumXYmodel. The considerations here are exactly the same as infigure 2,
except that we are here using the randomfield quantumXYmodel with the hi being i.i.d. Gaussian randomvariables (mean h̄ and unit
standard deviation). Also, the horizontal axes represent dimensionless variable h J¯ .
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δλ max, and λC max
adv
, decay as −N 2.05 and −N 2.30 for the spin glass while −N 3.27 and −N 2.90 for the randomfiledXY

model, respectively. Here the subscript ‘max’ indicates that the scaling is done for themaximumvalues of both
the quantities. The scaling analysis and the overall behavior of the quantities with increasingN clearly indicate
that the violation ofmonogamy and the quantum advantage of classical information transmissionwill be
sustained even in the thermodynamic limit, since for >N 20, the overall behavior of the physical quantities do
not changewith the increase ofN, within the accuracy considered.

8.QuantumXYZ spin glass

The ordered quantumXYmodel is exactly solvable. The corresponding quenched disordered systems are also
analytically tractable up to a certain extent. Tofindwhether the phenomena considered here are generic, we also
consider a non-integrablemodel, viz. the quenched disordered quantumXYZ spin glass. The one-dimensional
quantumXYZHeisenbergHamiltonianwith randomnearest-neighbor couplings is given by

∑ ∑κ γ σ σ γ σ σ Δσ σ σ= + + − + +
=

−

+ + +H J h(1 ) (1 ) . (11)
i

N

i i
x

i
x

i
y

i
y

i
z

i
z

i

i
z

1

1

1 1 1

⎡
⎣
⎢⎢

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦
⎤
⎦
⎥⎥

In order to investigate themonogamy relations for Bell inequality violation aswell as the exclusion principle for
dense coding, the ground state for the system characterized by theHamiltonian in equation (11) is obtained by
the numerical technique called theDMRGmethod [18].

In the present scenario,first, the infinite-sizeDMRGmethod is performed iteratively, where the system size
is increased at each iteration by selectively choosing themost relevant basis states important for describing the
systemwhile truncating the rest. Afterwards, several finite sizeDMRGare also carried out on the disordered
chain in order to increase the accuracy [18]. The quenched averaged values of the physical quantities are
obtained by averaging over 5000–8000 random realizations.

DMRGgivesmuch less accurate results in the case of periodic boundary conditions. However, the advantage
of the open boundary condition comes at the expense of the boundary effects. Nevertheless, an adequate
description of the Bellmonogamy and the exclusion principle for dense coding is possible provided the system
size is not too small and themeasurement of the observables on either fringe are excluded. In order to forego the
boundary effect, we focus on the two adjacent bipartite subsystems at the center, composed of the

−N N( 2 1, 2) and +N N( 2, 2 1) site pairs (see figure 5) and find that the results for the pairs agreewith
each other for all J̄ . The consensus of the results demonstrate that the effective environment is essentially similar
for both the pairs, ensuring the effective translational symmetry near the centre of the chain of the quenched
averaged observables associatedwith these subsystems—a fact that would naturally be followed in the case of the
closed chain. Infigure 6, we show the behavior of the quantities δλ and λC adv between the spins N 2 and

+N 2 1as functions of J h¯ for =N 20, 30, and 50 .Wefind qualitatively consistent results with the
observations previouslymade for the randomXY spinmodels, except that the post-quenched values are an order

Figure 4. Finite-size scaling analysis for Bell inequality violation and advantage in dense coding for the disordered quantumXY
models. The vertical axes represent β (in panels a( ) and c( ), using circles) and η (in panels b( ) and d( ), using diamonds), where
β δ δ= ∣ − ∣λ λN Nln ( ) ( )max max c, , and η = ∣ − ∣λ λC N C Nln ( ) ( )max

adv
max

adv
c, , , for a chain of lengthN.We treat = ≡N N 50c as the

infinite chain.While the panels (a) and (c) are for the quantumXY spin glass, the panels (b) and (d) are for the randomfieldXYmodel.
The quantity β is dimensionless, η ismeasured in ln(bits), and the horizontal axes aremeasured in ln of the number of spins.
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ofmagnitude higher.Moreover, we observe that quenchedBell inequality violation and advantage in dense
coding capacity after quenching increase with the introduction of the zz-interaction, i.e. with the introduction of
Δ.We choose =J̄ 0, where the Bell inequality violation and the dense coding capacity reach their respective
maxima (see figure 6), to illustrate thefinite-size scalings.Wefind that δλ max, decay as −N 1.92 and −N 2.24,
respectively,much slower than in theXYdisorderedmodels (see figure 7).

9.Discussion

Quenched disordered spin chains are considered for investigating themonogamy of Bell inequality violation and
the exclusion principle in dense coding of three-spin nearest-neighbor clusters of large chains in zero-

Figure 5.Bell inequality violation and quantum advantage in dense coding for theXYZ spin glass. Illustration of δλ (in panel (a)) and

λC adv (in panel (b)) between the spin-pairs −N N( 2 1, 2) (blue diamonds) and +N N( 2, 2 1) (red circles) for varying J h¯ . The
data is obtained forN=20, usingDMRG. For all the cases, the parameters γ,Δ, and σ are kept constant at 0.5, 0.7, and 1.0,
respectively. All quantities are dimensionless, except λC adv , which is in bits.

Figure 6. Larger systems. δλ (in panel (a)) and λC adv (in panel (b)) as functions of J h¯ between the spins N 2 and +N 2 1. Circles,
squares, and triangles represent the results for =N 20, 30 and 50, respectively. In both panels (a) and (b), solid lines showpolynomial
fits to the data points. Here, γ = 0.5, Δ = 0.7, and σ = 1.0. All quantities are dimensionless, except λC adv , which is in bits.
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temperature states. In particular, we focus on the zero-temperature states of the randomXY spinmodels and the
randomHeisenberg spin glass. Our analysis reveals that although themonogamy of quantumproperties and the
translational invariance of theHamiltonian in clean systems force the considered quantum characteristics to
attain atmost classical values—leading to no-go theorems—the quantumnature can be resurrected by the
introduction of quenched disorder in the system. TheHamiltonian itself is not translation invariant in the
quenched systembut the physically relevant post-quenched observables are so, and it is then possible for the
system to overcome themonogamy of Bell inequality violation and quantumadvantage for dense coding. The
no-go theorems are at the level of observables, and in quenched disordered systems, it is the post-quenched
quantities (and not the pre-quenched ones) that are physicallymeaningful. Finite-size scaling analysis is
performed for all themodels and for both the quantum characteristics considered, which clearly indicates that
the observations sustain even in the thermodynamic limit.

The quenched averages that we consider show that it is possible to tune the systemparameters of our physical
models so that the quenched avaraged quantities significantly violate Bell inequality. This is becausewe have
checked that in all themodels considered, the limits (the quenched averages) converge to a nonclassical value as
we increase the number of quenched realizations. As is usual in such quenched averaging, we have performed a
scalingwith respect to the number of quenched realizations. But there can also be a situationwhere even the
quenched averaged quantities do not violate Bell inequality.We consider two such instances here.

Thefirst instance is obtained infigure 8(a), which is an extension offigure 3, showing the portion of the
horizontal axis for ⩽ ⩽h J2 5, and forN=50 (for periodic boundary conditions). The two curves correspond
to the quenched averaged Bell inequality violations for the spins 1 and 2, and for the spins 2 and 3 of the chain.
Thefigure clearly shows that for ⩾h J 4 the zero-temperature state does not violate Bell inequality in spite of
being quenched averaged. So, it is not possible to guarantee, a priori, whether the actual physicalmodels that we
consider will violate Bell inequality or not. The second instance is obtained by considering the behavior of the
violation of Bell inequality with variation of the strength of randomness in the system. For specificity, we
consider the variation of the Bell inequality violation and quantumadvantage in dense codingwith respect to the
change in the standard deviation of the distribution of the disorder in the quantumXY spin glass. The plots are
presented infigure 8(b).Wefind that both the quantities are enhancedwith an increase in the standard
deviation.Moreover, there is a thresholdwidth (as quantified by the standard deviation) of randomness below
which the quenched quantities do not show any quantumadvantages. Interestingly, thefinite-size scaling
exponent is almost constant with the variation of the standard deviation inwhich there is a nonzero violation of
Bell inequality. The same holds for quantumadvantage in dense coding.We have observed that the susceptibility
in this case reaches amaximumat the same threshold value of standard deviation of the disorder, belowwhich

Figure 7. Finite-size scaling analysis for Bell inequality violation and advantage in dense coding for the quantumXYZ spin glass. The
circles and the diamonds represent β (in panel (a)) and η (in panel (b)), respectively. All notations are the same as infigure 4, except
that here they are for the quantumXYZ spin glass.

Figure 8. (a)Overcomingmonogamy in a random field quantumXYmodel.Here,N=50.Other parameters are the same as in
figure 3. (b) Variation of Bell inequality violation and quantum advantage in dense coding capacity with the standard deviation, σ, of
theGaussian distribution of theXY spin glassmodel withN=50.Here, =J h¯ 1.6205. Other parameters are the same as infigure 2.
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the disorder-induced leverage is absent for the quenched Bell inequality violation and quantumadvantage in
dense coding.

There is an ongoing effort in conquering no-go theorems in quantummechanics either by going beyond the
static framework of the quantum formalism [24] or by relaxing quantumdynamical postulates like unitarity
[25]. Thework presented in this paper shows another path for overcoming the no-go theorems of ordered
systems, while still remainingwithin the quantum realm, by introducing impurities or defects.
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