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Abstract

Diverse no-go theorems exist, ranging from no-cloning to monogamies of quantum correlations and
Bell inequality violations, which restrict the processing of information in the quantum world. In a
multipartite scenario, monogamy of Bell inequality violation and the exclusion principle of dense
coding are such theorems which impede the ability of the system to have quantum advantage between
all its parts. In ordered spin systems, the twin restrictions of translation invariance and monogamy of
quantum correlations, in general, enforce the bipartite states to be neither Bell inequality violating nor
dense codeable. We show that it is possible to conquer these constraints imposed by quantum
mechanics in ordered systems by introducing quenched impurities in the system while still retaining
translation invariance at the physically relevant level of disorder-averaged observables.

1. Introduction

Quantum mechanics places strict restrictions in the form of ‘no-go theorems’, like no-cloning [1] and
monogamy of quantum correlations [2, 3], on information processing tasks (see also [4]). In this paper, we
concentrate on two restrictions imposed by the quantum mechanical principles—monogamy of Bell inequality
violation [5] and the exclusion principle of classical information transmission [6]. In a multipartite scenario,
with aboss and several subordinates, the laws state that if the shared quantum state between the boss and a single
subordinate exhibits quantumness, either by violating Bell inequality or by being dense codeable, then the other
channels between the boss and the subordinates are prohibited from possessing the same quantum advantage,
and hence, enforce limitations upon the quantum information processing tasks possible in that scenario.

It is easy to see, therefore, that the two-qubit states obtained from translationally invariant systems, which
include the ground states of one-dimensional translation-invariant quantum spin models (without disorder),
neither violate Bell inequality, nor have quantum advantage in dense coding [7]. The two-pronged restriction
imposed by monogamy and translation invariance causes all two-qubit states of such multiparty systems to be
devoid of the quantum advantages. The same arguments are true for an arbitrary isotropic higher-dimensional
lattice. We now ask the following question: Is it possible to regain the quantum advantages in these two-qubit
states in some physical many-body system, while still retaining the translation invariance of the system, at least at
the level of observables under study, i.e. at the level of the amount of Bell-inequality violation and the capacity of
dense coding? We answer the question in the affirmative by using quenched disordered spin systems.

Defects, in general, reduce the physical properties like magnetization, conductivity, classical correlation, and
quantum correlation of the system [8]. Thereby the system may loose its ability to perform in a better way than
its classical counterpart. It has been reported that disorder reduces the fidelity of quantum state transmission as
well as of quantum gate implementation [9]. However, thermal fluctuation or impurities in the system may lead
to a counterintuitive enhancement of physical properties, known as ‘disorder-induced order’ or ‘order-from-
disorder’[10-12]. We show that defects can give rise to more radical advantages. It may be noted that defects can
appear naturally in physical systems and can also be artificially engineered [13]. Interesting phenomena
obtained in disordered systems include those in [14].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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We consider quenched disordered one-dimensional quantum spin-1/2 systems. We show that even though
translation symmetry is present in these systems after quenched averaging, such disordered models can
overcome the hurdle of Bell monogamy and the exclusion principle of dense coding. First, we show that in the
disordered quantum XY spin glass and in the random field quantum XY model, the quenched averaged
quantities for the amount of Bell inequality violation as well as the capacity of dense coding, of the nearest-
neighbor zero-temperature state, can attain nonclassical values and thereby overcome the monogamy
constraints, despite the fact that the post-quenched averaged quantities are translation-invariant. The analysis is
carried out by applying the Jordan-Wigner transformation to the disordered XY models [15-17]. The
phenomena observed is potentially generic, in that we have also demonstrated them in quenched disordered
quantum Heisenberg spin glasses, which are not analytically tractable, and for which the investigation is
performed via the density matrix renormalization group (DMRG) technique [18]. Finally, finite-size scaling
analyses are carried out for both the quenched observables in all the models considered.

2. Monogamy of Bell inequality and dense coding capacity

Itis known from the celebrated Bell theorem [19] that the violation of the Bell inequality by a two-party state
guarantees that the state cannot have a local realist description. Given any two-qubit state, p, violation of the
Bell-CHSH inequality [20] occurs ifand only if [21]

M(p) > 1, (1)

where M (p) = uy + u,, with u; and u, being the two largest or the largest and the second-largest eigenvalues of
U= T/,T T,.Here, T, = Tr (ay Q) a, p) are the elements of the corresponding correlation matrix, 7,. In the
case of multipartite states, if the quantum state shared by any two subparts of a multiparty system leads to a Bell
inequality violation, then it precludes its violation for the states which the subparts share with the other parts of the
total system. This is referred to as monogamy for Bell inequality violation for the multiparty quantum states [5].
We define a quantity 6 (p,5 ) = max{0, M (p,5) — 1}, which quantifies the amount of Bell inequality violation
for the two-qubit states, and investigate its behavior while exploring different physical many-body systems.

On the other hand, the quantum dense coding protocol [22] incorporates a sender-receiver scheme for
communicating classical information over a quantum channel. If we consider that our conventional sender,
Alice, and receiver, Bob, initially share a state p, 5, with d, and dj being the dimensions of the Hilbert spaces
corresponding to Alice’s and Bob’s parts respectively, then the dense coding capacity turns out to be [23]

C(/)AB) = logsz + Cadv (PAB) (2)

bits. The quantity C** (pap) = max{0, S(p, ) — S(p,p)}isreferred to as the ‘quantum advantage’ of dense
coding of the state p, ; over the classical channel. This is justified by the fact that log,d, bits of classical
information can be transmitted by sending a d,-dimensional quantum system without using prior shared
entanglement. A bipartite quantum state is said to be dense codeable if it has a positive quantum advantage of
dense coding. In a multipartite scenario, the ‘exclusion principle’ for quantum dense coding demands that ifany
two subsystems of a multiparty quantum system shares a dense codeable state, then they can’t share any such quantum
state efficient for dense coding, simultaneously, with other parts of the system [6].

Let usillustrate the above no-go theorems for a three-party state. When a tripartite state p, - is shared
between A, B, and C, the monogamy of Bell inequality violation and the exclusion principle implies that if the
reduced state p, , violates local realism or has a quantum advantage in dense coding, i.e. if 5 (p,5 ) or C* (p, )

is positive, then the reduced state at BC will have & (p.) = 0 or C* (p,) = 0, respectively.

3. The model and the methodology

The Hamiltonian for the one-dimensional disordered quantum XY spin chain in a random transverse field is
given by

N N g
H= lZ%((l + 7)ol o, + (1 — }/)61)'0'1}_’,_1) + ZZ—’O}Z , (3)

i=1 i=1

where «J; is the coupling strength between the i and (i + 1) site, kh; represents the field strength at the i site,
and y is the anisotropy constant. k is a constant and has the unit of energy, while J;, ;, and y are dimensionless.
Here, ¢/, for j = x, ¥, z, correspond to the Pauli spin matrices. For the ordered system, all the J;and h; are
separately equal, and are denoted by J and h, respectively. Here we have assumed the cyclic boundary condition,
so that the (N + 1) and the I sites are equivalent.

2
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The ordered model is exactly solvable via successive use of the Jordan-Wigner, Fourier, and Bogoliubov
transformations [15—17], while the disordered model is not. However, the same procedure can again lead us to
the one- and two-site reduced density matrices for the disorder case, which is enough for our study. For
completeness, we briefly review the mechanism here. First, we map the Pauli spin operators to the spinless

fermions via the Jordan-Wigner transformation, so that equation (3) becomes

N | X
H=x« ZciTAij G + > Z (ciTBlj C]T_H + h.c.) , (4)

ij=1 ij=1

where A and B are symmetric and antisymmetric real N X N matrices, respectively, and are given by

)] Jj 4
Aj = hig; + E5i+1,j + Eéi,j+1; B = E(]: Giv1,j — Jj Gij ), (5)
with Ay = Ay; = Jv and Bjy = —Byy = —%]N for the cyclic boundary condition. Here, the ¢, ¢ arespinless

fermionic operators obtained via the Jordan-Wigner transformation. Defining &, via the eigen-equation
(A - B)(A+ B)®] = A{D, (6)
with eigenvalue A; and obtaining the corresponding ¥, from the equation
Vi = A (A + B)@y, (7)

we can calculate the correlation matrix G, defined as

Gj = _Z‘//ki ¢kj == (lPTQ))
k

> (8)
ij

where @ and ¥ are the matrices ¢; and y;, with ¢, (y;) being the ith element of @ (¥ ). Finally, one can
show that the magnetizations and two-point correlation functions of the zero-temperature state can be easily
obtained from the correlation matrix G. We get m? = —G; and m;* = m; = 0. The diagonal correlations are
given by

Li+1 — Gl,l+1> Tz),%—l = = Yi+1,0» i+l — Gl,l G1+1,1+1 _G1,1+1 G1+1,1’ (9)

while all off-diagonal correlations vanish. The one- and the two-site density matrices can now be easily
constructed from the one- and two-point correlation functions and consequently, the Bell inequality violation
(equation (1)) and the dense coding capacity (equation (2)) can be computed.

4. Quenched averaging

In the present work, for all purposes, the type of disorder that has been used is ‘quenched’. Spin glass states are
those which emerge due to the presence of such a type of disorder in the system and the term ‘glass’ comes from
the analogy with the chemical glass which is formed by quenching aliquid. The term ‘quenched’ signifies that the
time over which the dynamics of the system takes place is much smaller than the time scale over which thereisa
change in a particular realization of parameters governing the disorder in the system. This leads to the fact that
while calculating the quenched averaged value of a physical quantity, we need to perform the averaging of several
expectation values of that quantity, each of which is obtained for a fixed configuration over the relevant
probability distribution of the configurations of the disorder.

5. Anisotropic XY spin glass

Let us now consider the quantum XY model of N spins interacting via site-dependent nearest-neighbor
exchange interactions, J;, which are identically and independently distributed (i.i.d.) with Gaussian probability
distribution, while the field strength, h;, at each lattice site is kept constant. The corresponding Hamiltonian
follows from equation (3) by setting h; = hforalli = 1, 2, ---, N and by letting J; follow the probability

distribution
1 (i -TY
P<]’) ~ 7o eXp[_Z( c )} (1o

where J and o are, respectively, the mean and the standard deviation of the distribution.
Let p, 5 be atwo-party state reduced from the N-party zero-temperature state in the ordered case, which can
be obtained analytically via the Jordon-Wigner transformation. Here A and B are disjoint collections of lattice

3
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Translational invariance in ordered chain ~ Quenched averaging preserves translational
invariance at observable level

! 1
AB = BC AB BC
Q Q Q;, =
! !
Bounded to classical limit Quantum advantage

Figure 1. Translational invariance of the ordered and post-quenched disordered systems. An illustration of the fact that for an ordered
system, states of a tripartite system are identical and the corresponding observables can attain maximal possible values, bounded by
the classical limits. Whereas, for a disordered system, post-quenched properties of reduced states of a tripartite system remain
translationally invariant at the observable level and hence can exhibit quantum advantage.

sites of the one-dimensional chain. The translation invariance of the ordered chain (with a periodic boundary
condition for finite N) implies that we can always find a collection C of lattices that is disjointed from both A and
B such that the reduced states p, ; and pg- of the zero-temperature state are equal (see figure 1). The subtle
assumption here is that the chain is sufficiently large, so that C does not overlap with A or B (cf. [7]). In particular
if p,5 is a nearest-neighbor (two-site) density matrix, we only need N > 3. Applying now the monogamy
relations to the state p, 5, we obtain the stated results for the ordered case in the translational invariant scenario.
While we have considered only the zero-temperature states in one-dimensional systems in this paper, the same
arguments hold for any isotropic higher-dimensional lattice, as well as for finite temperature states. Therefore in
such systems, we have § = C* = 0) for nearest-neighbor spins.

For the spin glass system, the above line of argument cannot be applied. The properties of the system are
physically relevant only after quenched averaging has been performed, and post-quenching, these properties are
again translationally invariant, just like the ordered case. So Q4% = Q€ for any physical property (see figure 1),
Q, for the reduced states at AB and BC. Note that throughout this paper, we associate the subscript 4 to a quantity
ifitis quenched averaged. The QfB and Qf C however, do not correspond to a single state of ABC, and so the
monogamy argument of the ordered case does not carry over to the disordered ones. We are therefore
confronted with the possibility that disordered systems can give rise to situations, which, despite being
translationally invariant, will have nearest-neighbor Bell inequality violation and quantum advantage in dense
coding. Whether this is actually the case, however, requires explicit investigations.

Figure 2 clearly shows that after quenched averaging, the system violates the Bell-CHSH inequality and has
quantum advantage in dense coding for the nearest-neighbor spins, which is a part of any nearest-neighbor
three-party state of the N-party state. The violation is in an extreme sense, since both the two-party reduced
states of the three-party cluster violate Bell inequality with equal strength. The same is true for dense-codeability.

6. Random field quantum XY model

We now introduce the randomness in the field while keeping the coupling strength uniform. Similar to the case
of the XY 'spin glass, we find quantum advantage in both the quantities for the set of parameters considered here,
thereby helping to overcome the restriction put by the monogamy relations.

Figure 3 shows the variation of the quantities §, (figure 3(a)) and Cfdv (figure 3(b)) with respect to h/J.
Similar to the case of the disordered XY spin glass, we find quantum advantage in both the quantities for the set
of parameters considered here. Thus, here too, introduction of the quenched disorder in the system helps to
overcome the restriction put by the monogamy relations.
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Figure 2. Overcoming monogamy in quantum XY spin glass. (a) Plot of quenched averaged Bell inequality violation (8, ) on the
vertical axis against J/h on the horizontal axis for nearest-neighbor spins of the zero temperature state in the quantum anisotropic XY
spin glass for different N. Here we have chosen the uniform field strength h = 0.4, the anisotropy constant y = 0.5, and the disorder
strength o = 1.0. (b) This is the same as (a), except that the quenched averaged quantum advantage for dense coding, C /%" is plotted
on the vertical axis. All quantities are dimensionless, except C %, which is in bits.

0.015

0012}

I

0.009

0.006 }-*

0.0 0.5 1.0 1.5 2.0
h/J

Figure 3. Overcoming monogamy in a random field quantum XY model. The considerations here are exactly the same as in figure 2,
except that we are here using the random field quantum XY model with the h; being i.i.d. Gaussian random variables (mean h and unit
standard deviation). Also, the horizontal axes represent dimensionless variable h/J.

7. Scalings for the XY models

We observe that variation of both the quantities, §; and Cfd", for large systems, mimic the pattern obtained for
N =20. Hence, the systems with N > 20 spins can safely be assumed to serve the purpose of infinite spin chains.
We now perform finite-size scaling, where we use the value for N = 50 as for the infinite system. We find that
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Figure 4. Finite-size scaling analysis for Bell inequality violation and advantage in dense coding for the disordered quantum XY
models. The vertical axes represent # (in panels (a) and (c), using circles) and 7 (in panels (b) and (d), using diamonds), where
B =1n |6 max (N) = 8 max (No)|and 7 = In |Cf‘,1,YM (N) — Cf‘ﬂax (N: )|, for a chain of length N. We treat N = N, = 50 as the
infinite chain. While the panels (a) and (c) are for the quantum XY spin glass, the panels (b) and (d) are for the random field XY model.
The quantity fis dimensionless, 7 is measured in In (bits), and the horizontal axes are measured in In of the number of spins.

Spmax and C14 - decayas N~ and N2 for the spin glass while N~>%” and N~2% for the random filed XY
model, respectively. Here the subscript ‘max’ indicates that the scaling is done for the maximum values of both
the quantities. The scaling analysis and the overall behavior of the quantities with increasing N clearly indicate
that the violation of monogamy and the quantum advantage of classical information transmission will be
sustained even in the thermodynamic limit, since for N > 20, the overall behavior of the physical quantities do

not change with the increase of N, within the accuracy considered.

8. Quantum XYZ spin glass

The ordered quantum XY model is exactly solvable. The corresponding quenched disordered systems are also
analytically tractable up to a certain extent. To find whether the phenomena considered here are generic, we also
consider a non-integrable model, viz. the quenched disordered quantum XYZ spin glass. The one-dimensional
quantum XYZ Heisenberg Hamiltonian with random nearest-neighbor couplings is given by

N-1
H=« Z [fi[(l +y)oioi + (1 - }’)O’zyafil] + Aﬁizﬁiil] + hzaiz . (11)
i=1 i

In order to investigate the monogamy relations for Bell inequality violation as well as the exclusion principle for
dense coding, the ground state for the system characterized by the Hamiltonian in equation (11) is obtained by
the numerical technique called the DMRG method [18].

In the present scenario, first, the infinite-size DMRG method is performed iteratively, where the system size
is increased at each iteration by selectively choosing the most relevant basis states important for describing the
system while truncating the rest. Afterwards, several finite size DMRG are also carried out on the disordered
chain in order to increase the accuracy [18]. The quenched averaged values of the physical quantities are
obtained by averaging over 5000-8000 random realizations.

DMRG gives much less accurate results in the case of periodic boundary conditions. However, the advantage
of the open boundary condition comes at the expense of the boundary effects. Nevertheless, an adequate
description of the Bell monogamy and the exclusion principle for dense coding is possible provided the system
size is not too small and the measurement of the observables on either fringe are excluded. In order to forego the
boundary effect, we focus on the two adjacent bipartite subsystems at the center, composed of the
(N/2 = 1, N/2)and (N/2, N/2 + 1) site pairs (see figure 5) and find that the results for the pairs agree with
each other for all J. The consensus of the results demonstrate that the effective environment is essentially similar
for both the pairs, ensuring the effective translational symmetry near the centre of the chain of the quenched
averaged observables associated with these subsystems—a fact that would naturally be followed in the case of the
closed chain. In figure 6, we show the behavior of the quantities 8, and C{® between the spins N/2 and
N/2 + 1asfunctions of J/h for N = 20, 30, and 50 . We find qualitatively consistent results with the
observations previously made for the random XY spin models, except that the post-quenched values are an order
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Figure 5. Bell inequality violation and quantum advantage in dense coding for the XYZ spin glass. Illustration of §, (in panel (a)) and
Cfd” (in panel (b)) between the spin-pairs (N/2 — 1, N/2) (blue diamonds) and (N/2, N/2 + 1) (red circles) for varying J/h. The
data is obtained for N = 20, using DMRG. For all the cases, the parameters y, 4, and o are kept constant at 0.5, 0.7, and 1.0,
respectively. All quantities are dimensionless, except C4%, which is in bits.

bo&
0.05 1 I 1 I 1 I 1 I 1
0 1 2 3 4 5
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0.05 SN
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Figure 6. Larger systems. §; (in panel (a)) and C,‘{d" (in panel (b)) as functions of J/h between the spins N/2 and N/2 + 1. Circles,
squares, and triangles represent the results for N = 20, 30 and 50, respectively. In both panels (a) and (b), solid lines show polynomial
fits to the data points. Here, y = 0.5, A = 0.7,and ¢ = 1.0. All quantities are dimensionless, except C %, which is in bits.

of magnitude higher. Moreover, we observe that quenched Bell inequality violation and advantage in dense
coding capacity after quenching increase with the introduction of the zz-interaction, i.e. with the introduction of
A.Wechoose | = 0, where the Bell inequality violation and the dense coding capacity reach their respective
maxima (see figure 6), to illustrate the finite-size scalings. We find that §; ,,,, decayas N™1%2 and N~224,
respectively, much slower than in the XY disordered models (see figure 7).

9. Discussion

Quenched disordered spin chains are considered for investigating the monogamy of Bell inequality violation and
the exclusion principle in dense coding of three-spin nearest-neighbor clusters of large chains in zero-

7
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Figure 7. Finite-size scaling analysis for Bell inequality violation and advantage in dense coding for the quantum XYZ spin glass. The
circles and the diamonds represent /# (in panel (a)) and 5 (in panel (b)), respectively. All notations are the same as in figure 4, except
that here they are for the quantum XYZ spin glass.
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Figure 8. (a) Overcoming monogamy in a random field quantum XY model. Here, N = 50. Other parameters are the same as in
figure 3. (b) Variation of Bell inequality violation and quantum advantage in dense coding capacity with the standard deviation, o, of
the Gaussian distribution of the XY spin glass model with N=50. Here, J/h = 1.6205. Other parameters are the same as in figure 2.

temperature states. In particular, we focus on the zero-temperature states of the random XY spin models and the
random Heisenberg spin glass. Our analysis reveals that although the monogamy of quantum properties and the
translational invariance of the Hamiltonian in clean systems force the considered quantum characteristics to
attain at most classical values—leading to no-go theorems—the quantum nature can be resurrected by the
introduction of quenched disorder in the system. The Hamiltonian itself is not translation invariant in the
quenched system but the physically relevant post-quenched observables are so, and it is then possible for the
system to overcome the monogamy of Bell inequality violation and quantum advantage for dense coding. The
no-go theorems are at the level of observables, and in quenched disordered systems, it is the post-quenched
quantities (and not the pre-quenched ones) that are physically meaningful. Finite-size scaling analysis is
performed for all the models and for both the quantum characteristics considered, which clearly indicates that
the observations sustain even in the thermodynamic limit.

The quenched averages that we consider show that it is possible to tune the system parameters of our physical
models so that the quenched avaraged quantities significantly violate Bell inequality. This is because we have
checked that in all the models considered, the limits (the quenched averages) converge to a nonclassical value as
we increase the number of quenched realizations. As is usual in such quenched averaging, we have performed a
scaling with respect to the number of quenched realizations. But there can also be a situation where even the
quenched averaged quantities do not violate Bell inequality. We consider two such instances here.

The first instance is obtained in figure 8(a), which is an extension of figure 3, showing the portion of the
horizontal axis for 2 < h/J < 5,and for N= 50 (for periodic boundary conditions). The two curves correspond
to the quenched averaged Bell inequality violations for the spins 1 and 2, and for the spins 2 and 3 of the chain.
The figure clearly shows that for /1/] > 4 the zero-temperature state does not violate Bell inequality in spite of
being quenched averaged. So, it is not possible to guarantee, a priori, whether the actual physical models that we
consider will violate Bell inequality or not. The second instance is obtained by considering the behavior of the
violation of Bell inequality with variation of the strength of randomness in the system. For specificity, we
consider the variation of the Bell inequality violation and quantum advantage in dense coding with respect to the
change in the standard deviation of the distribution of the disorder in the quantum XY spin glass. The plots are
presented in figure 8(b). We find that both the quantities are enhanced with an increase in the standard
deviation. Moreover, there is a threshold width (as quantified by the standard deviation) of randomness below
which the quenched quantities do not show any quantum advantages. Interestingly, the finite-size scaling
exponent is almost constant with the variation of the standard deviation in which there is a nonzero violation of
Bell inequality. The same holds for quantum advantage in dense coding. We have observed that the susceptibility
in this case reaches a maximum at the same threshold value of standard deviation of the disorder, below which
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the disorder-induced leverage is absent for the quenched Bell inequality violation and quantum advantage in
dense coding.

There is an ongoing effort in conquering no-go theorems in quantum mechanics either by going beyond the
static framework of the quantum formalism [24] or by relaxing quantum dynamical postulates like unitarity
[25]. The work presented in this paper shows another path for overcoming the no-go theorems of ordered
systems, while still remaining within the quantum realm, by introducing impurities or defects.
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