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A B S T R A C T   

Algorithmic decision support systems are widely applied in domains ranging from healthcare to journalism. To 
ensure that these systems are fair and accountable, it is essential that humans can maintain meaningful agency, 
understand and oversee algorithmic processes. Explainability is often seen as a promising mechanism for 
enabling human-in-the-loop, however, current approaches are ineffective and can lead to various biases. We 
argue that explainability should be tailored to support naturalistic decision-making and sensemaking strategies 
employed by domain experts and novices. Based on cognitive psychology and human factors literature review we 
map potential decision-making strategies dependant on expertise, risk and time dynamics and propose the 
conceptual Expertise, Risk and Time Explainability framework, intended to be used as explainability design 
guidelines. Finally, we present a worked example in journalism to illustrate the applicability of our framework in 
practice.   

1. Introduction 

A growing number of domain experts find themselves having to rely 
on Artificial Intelligence (AI) or Machine Learning (ML) systems’ 
generated risk assessment scores, predictions, or other types of algo-
rithmic outputs when making decisions. Ensuring that expert users can 
understand, oversee, supervise, and control the process of algorithmic 
decision-making is essential, as Decision Support Systems (DSS) are 
being increasingly deployed to support decision-making in domains that 
are socio-technically rich, economically sensitive, and covering a wider 
range of activities within our society than are currently considered. The 
dangers of letting these systems function without human oversight are 
illustrated by a growing list of real-life examples of algorithmic unfair-
ness and errors causing social harm (see Angwin, Larson, Mattu & 

Kirchner, 2016; Datta, Tschantz & Datta, 2015). Leaving the human 
out-of-the-loop also poses questions of accountability (Bennett Moses & 
Chan, 2018; Diakopoulos, 2015). Accountability in this context refers to 
an obligation to explain or justify algorithmic decision-making, which is 
fundamental to mitigating negative social impacts or harms. Dia-
kopoulos (2015) argued that human roles are already critical compo-
nents in the creation of algorithms, during both the design and 
interpretation stages. Therefore, algorithmic accountability should 
actively reflect individual, group or institutional intent and the level of 
agency decision-makers have, when interpreting algorithmic outputs. 

In practice domain experts are often unable to effectively use DSS 
predictions and simply choose to disregard them by returning to their 
old methods (even if less effective) (Brown, Chouldechova, 
Putnam-Hornstein, Tobin & Vaithianathan, 2019; Lee, Kim & Lizarondo, 
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2017). Spoon-feeding domain experts with algorithmic outputs, but 
depriving them of other important information, can leave them unable 
to understand, explain and justify their decisions and make use of 
algorithm-provided information (G. Klein, Moon & Hoffman, 2006b). 
The introduction of DSS can also disrupt domain experts’ ability to apply 
their natural decision-making strategies, which can cause them to 
disregard algorithmic predictions (Lee et al., 2017), or demonstrate 
automation bias and overly trust them (Skitka, Mosier & Burdick, 1999). 
However, decision-makers are often held accountable for the outcomes 
even when they have little agency in the decision-making process 
(Wagner, 2019). One way to provide more agency is to use explain-
ability techniques and inform decision-makers about the inner workings 
of the DSS and generation of the output. Explainability has received 
increased attention in recent years from researchers across various dis-
ciplines trying to find a way to make opaque AI and ML systems un-
derstandable to humans (Abdul, Vermeulen, Wang, Lim & Kankanhalli, 
2018). Initially intended for ML experts, software engineers and data 
scientists (Arrieta et al., 2020), explainability approaches are now being 
used to support other stakeholders, such as users and domain experts 
(Tomsett, Braines, Harborne, Preece & Chakraborty, 2018). However, 
current explainability approaches lack usability and are not seen as 
effective by domain experts (Bhatt et al., 2020). There is also a risk that 
providing explanations could simply create a sense of unjustifiable trust 
and mislead decision-makers (Kaur et al., 2020). 

We argue that for explainability to be effective, it is essential to 
understand how users interact with algorithms and what information is 
needed to support their decision-making strategies. To ensure that ex-
planations can help decision-makers in maintaining meaningful agency, 
they should be tailored to support unique decision-making and sense-
making strategies of domain experts and novices. Few studies to our 
knowledge have attempted to explore human-algorithm interactions in a 
decision-making context (see De-Arteaga, Fogliato & Chouldechova, 
2020; Green & Chen, 2019), and even fewer have examined factors 
influencing human decision-making and sensemaking strategies (see 
Simkute, Luger, Evans & Jones, 2020). Moreover, despite the many 
explainability techniques available, there are few design guidelines 
showing which method would be the most suitable in which situation, 
based on the decision maker’s needs and contextual factors and 
considering differences in human reasoning or decision-making. There is 
also a lack of guidelines demonstrating how explainability could be in-
tegrated into existing applications that are used in real-world situations, 
for example, what to explain and how to display explanations in the 
interface as well as how to account for real-world constraints (Eiband 
et al., 2018). We suggest that a first step toward overcoming these issues 
should be building a solid understanding of naturally occurring human 
decision-making strategies and essential factors that influence them. To 
this end, we review decision-making literature, with a particular focus 
on decision strategies in naturalistic environments, expert 
decision-making, and decision-making in high-risk contexts. We outline 
several aspects that could help to predict which decision-making stra-
tegies will be followed depending on the level of risk, level of expertise, 
and time available. It is our intention that this knowledge might serve to 
inform which explainability heuristic would best support design strategy 
in any given situation. Based on these dynamics we have developed the 
Expertise, Risk and Time (ERT) explainability framework suitable for 
deployment and iterative development, with the long-term goal of 
supporting the development of effective design heuristics for explain-
able interface design, in a range of contexts. The contribution and pur-
pose of the ERT explainability framework is to identify sensemaking 
strategies, cognitive biases, and attentional resources common to users 
of a predictive system and thereby assess the relevant explainability 
requirements. By offering three clear dynamics, we create a framework 
for designers seeking to scope out the explainability requirements in any 
given context. The scope of this article is not to develop detailed user 
interface (UI) designs, but to empower that design community, and we 
propose the future work needed to translate our insights and 

recommendations into UI design. 
This paper makes three key contributions: 1) A systematic review of 

explainable AI research that highlights a need for more work on 
explainability in decision-making contexts in a much wider range of 
settings, including socio-technical domains that can be consider to have 
’lower-stakes’ and the potential for cognitive psychology and human 
factors literature to contribute useful insights for designing usable 
explanation interfaces; 2) The elaboration of a conceptual framework 
(ERT) to aid development of effective design heuristics for intelligible 
interface design, which could work as a tool to identify sensemaking 
strategies, cognitive biases, and attentional resources common to users 
of a predictive system and thereby assess explainability requirements;3) 
A worked example in the ‘lower-stakes’ context of journalism to 
demonstrate the usefulness of the ERT framework. 

We begin by outlining the research methodology, reviewing moti-
vations for, approaches to, and challenges of designing for explainability 
in algorithmic decision-making systems. We identify a need for further 
work in ‘lower-stakes’ decision-making contexts and draw insights from 
human factors and cognitive psychology literature to support effective 
explainability in decision-making contexts. The paper then describes the 
ERT framework, and elaborates a worked example in journalism of the 
framework’s application. The closing sections discuss the usefulness, 
limitations, and future application of the framework. 

2. Methodology 

2.1. Literature review 

The systematic literature review was structured thematically, 
focusing on three key themes, and related subthemes, that were iden-
tified gradually and searched in three stages. The first theme concen-
trated on current user-focused explainability approaches. 

Stage 1: First, a small number of relevant and influential (most cited) 
papers in the field were identified as the initial bootstrapping stage in 
the structured literature search in an open manner. From these papers 
the author and index keywords were extracted and the most often 
occurring keywords were used as key search terms. The extracted terms 
were ‘intelligible’, ‘explainable’, ‘interpretable’, ‘transparent’ (with a 
condition of AI or ML also appearing in the abstract of the publication). 
The list of papers was manually filtered using set inclusion criteria and 
excluding papers that a) were presenting work in a different focus area; 
b) were only presenting/investigating algorithms, but not investigating 
intelligibility in a context where a human was present; c) did not 
consider a decision-maker as one of the stakeholders; d) were workshops 
or posters; d) were not in English language. 

Stage 2: After conducting the first stage review, five reoccurring 
reasons for explainability from the user perspective were observed. 
Based on the keywords dominant in recognised relevant papers, the five 
themes were synthesised into the following key search terms: ‘algo-
rithmic accountability’, ‘algorithmic fairness’, ‘algorithmic trans-
parency’, ‘human-in-the-loop’ and ‘trust’ (with a condition of AI or ML 
or ‘algorithmic systems’ or ‘decision support systems’ also appearing in 
the abstract of the publication). The list of papers was manually filtered 
using a set inclusion criteria and excluding papers that a) were not 
investigating the decision-maker’s perspective; b) presenting work in a 
different focus area; c) did not involve decision-making in either low- or 
high-stakes domain; d) were not full papers (posters or extended ab-
stracts); e) were not in English language. 

Stage 3: Following the first two stages of the review, the need for 
understanding the human agent was apparent; in particular, a more 
precise understanding of how they make sense of information provided 
and interact with algorithms in a decision-making context. Accordingly, 
during the third stage the focus was on how cognitive psychology sci-
ence can support explainability. An initial review of most influential 
decision-making theories was conducted and cognitive psychology as-
pects relevant in the context of algorithm-supported decision-making 
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were selected and synthesised into four keywords. Key search terms 
‘human reasoning’, ‘mental models’, ‘expertise’, ‘sensemaking’, com-
bined with ‘decision-making’ were used in this stage. The list of papers 
was manually filtered using set inclusion criteria and excluding papers 
that were not investigating human psychology aspects in the decision- 
making context; or findings were not relevant/transferable in the algo-
rithmic decision-making context. 

2.2. Framework development and worked example 

The characteristics recognised as influencing decision-making and 
sense-making strategies were extracted from the literature reviewed in 
the third review stage. Each characteristic then was weighted depending 
on a) the number of times it was mentioned or implied in the literature; 
b) strength of the characteristic (whether it outweighs the other char-
acteristics); c) applicability (whether it is a general characteristic which 
can be determined in advance or an individual characteristic which must 
be measured at a personal level). The three highest weighting criteria 
were distilled: expertise, time-pressure, and task-related risks. Cognitive 
load, motivation, personality traits and uncertainty were the other 
considered characteristics, however, they did not meet the criteria, i.e., 
they were overpowered by the characteristics and were only measurable 
at the individual level. We distilled the decision-making strategies 
linked to each of the three characteristics, provided eight combinations 
of these strategies, for any given situation, and mapped existing 
explainability design approaches matching these combinations. 

2.3. Scenario development 

The final stage in our research methodology is the development of a 
worked case study in the context of journalism, to illustrate applicability 
of the ERT framework in practice. This involved creating two specula-
tive scenarios containing narratives of how journalists could be 
reasonably expected to engage with two different decision-support 
systems and how a designer/design researcher could draw from the 
framework when observing these journalists in order to inform their 
explanation strategies. Scenario-based design methods anticipate and 
leverage scenarios of possible use at an early stage of system develop-
ment and can be useful for understanding specific requirements that 
might arise when XAI systems are deployed into complex settings of use 
(Wolf, 2019). Using abductive reasoning, we developed scenarios in 
collaboration with an experienced journalist to test the potential utility 
of the framework and elicit aspects of the problem space DSSs open up in 
news production. We generated the scenarios by drawing on field data 
from an ongoing qualitative study of explainability and sensemaking of 
AI and algorithmic systems amongst journalists at a public service 
broadcaster. We supplemented this with secondary sources related to 
the case study domain, including (e.g. Diakopoulos, 2020, Gutierre-
z-Lopez et al., 2019). We also drew from the expertise of co-authors; one 
a professional journalist and a further two industry research and 
development practitioners embedded in a media organisation. Plausi-
bility is a central criterion for validating scenarios as representational 
products and ensuring their heuristic effectiveness, i.e. that narratives 
are “derivable or can be arguably inferred or concluded from the initial 
conditions”, making it reasonable to believe that they could happen, are 
trustworthy and are credible (Urueña, 2019, p19). Scenarios are selec-
tive and staged, “both grounded in current situations (as derived from 
field data) but also speculative in their articulations of how those situ-
ations may be changed because of a new system” (Wolf, 2019, p254). We 
tested the plausibility of the scenarios with an expert in the development 
and testing of newsroom technology and several journalists before 
incorporating feedback regarding context, probability and coherence. 

3. Decision-making systems and human-in-the-loop 

DSS are being increasingly used in ‘high-stakes’ domains, for tasks, 

such as predicting homelessness risk (Kube, Das & Fowler, 2019); 
screening for child maltreatment risk (Brown et al., 2019; Choulde-
chova, Benavides-Prado, Fialko & Vaithianathan, 2018); directing food 
donations (Lee et al., 2017); making bail decisions (Angwin et al., 2016); 
organising stop and search policing (Young, Katell & Krafft, 2019); 
navigating maintenance cases in aviation (Wanner, Heinrich, Janiesch & 
Zschech, 2020), or diagnosing illnesses (e.g., Ahmad, Eckert & Ter-
edesai, 2018; Caruana et al., 2015). DSSs are also making inroads into 
areas that have less immediately obvious societal impact but which are 
socially significant nonetheless, such as media production and journal-
ism. Besides the potential to improve the accuracy of decisions, algo-
rithms are often linked to a range of social, ethical, and legal issues 
(Annany & Crawford, 2018), lack of accountability (Diakopoulos, 2015) 
and even unfairness towards certain groups or individuals (Barocas & 
Selbst, 2016). Thus, there is a growing demand for a human to maintain 
a meaningful agency and be able to oversee algorithmic processes. In 
this section, we will outline motivations and challenges related to 
maintaining a human-in-the-loop. We will also discuss the role of 
domain expertise in the algorithmic decision-making context. 

3.1. Importance of a meaningful human agency 

It is generally agreed that algorithms should rarely replace the 
human role completely but should instead be used to enhance people’s 
decision-making (Citron & Pasquale, 2014; Green & Chen, 2020), and 
free up their valuable time for more thorough assessment of complex 
cases (Raghu et al., 2019), or creative work (Diakopoulos, 2019). 
Allowing algorithmic decision-making support systems to function 
without human oversight can lead to discrimination and perpetuation of 
biases. For example, ProPublica’s analysis of the risk assessment system 
COMPAS demonstrated how it was discriminating against black de-
fendants (Angwin et al., 2016). In another example, gender inequality 
was perpetuated by historically biased algorithms, when Google’s job 
search engine showed men ads for jobs with higher pay than women 
(Datta et al., 2015). 

Although so-called “low-stakes” domains are often overlooked and 
under-explored by researchers, consequences of algorithmic errors in 
these domains can also be costly and influence quality of life and well-
being. For example, in journalism the use of news recommender systems 
has prompted concerns about their role in limiting access to diverse 
content by creating filter bubbles and echo chambers that may be 
detrimental to democracy and polarise societies (Helberger, Eskens, van 
Drunen, Bastian & Möller, 2019). Moreover, use of audience analytics 
systems have been shown to shape normative considerations and 
editorial decision-making (Belair-Gagnon & Holton, 2018; Christin, 
2020). 

Without meaningful human input, algorithmic unfairness might 
remain unrecognised until targeted investigation is conducted (Angwin 
et al., 2016) and might lead to replication and even amplification of 
existing biases in society (Zhao, Chen, Wu, Chen & Liu, 2017). It also 
poses a question of who should be held accountable in cases where the 
algorithm misbehaves (Bennett Moses & Chan, 2018; Diakopoulos, 
2015). It has been shown that decision-makers in areas such as auton-
omous driving or social media moderation, were often held responsible 
for the outcomes even when they had little agency to interfere with or 
override the decisions made by algorithms (Wagner, 2019). Having a 
human-in-the-loop has been shown to be an effective way to reduce 
error rates in medicine (Raghu et al., 2019), and to increase fairness in 
recidivism risk predictions (Tan, Adebayo, Inkpen & Kamar, 2018). 
Affected members of society also express a preference for maintaining 
human agency – they believe that humans can better ensure consider-
ation of any unusual or salient factors when making decisions (Brown 
et al., 2019). Moreover, people tend to trust a system more and show 
higher satisfaction with it if they know that the process is not completely 
automated (Lee et al., 2017). Human involvement can also ensure that 
decision-makers can explain and justify their decisions and use of 
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algorithmic outputs as a way to address accountability concerns 
(Wieringa, 2020). 

3.2. Challenges of staying in the decision-making loop 

However, decision-makers are often unable to evaluate the accuracy 
of the algorithms and make informed decisions (Green & Chen, 2019). In 
many instances they are restricted by the circumstances of the specific 
situation in which algorithms are embedded, such as time limitation, 
insufficient qualifications, or inadequate access to the relevant infor-
mation necessary for meaningful human input to be possible (Ananny & 
Crawford, 2018; Shin & Park, 2019; Wagner, 2019). They might also 
lack basic understanding about the system they are using (Wagner, 
2019; Young et al., 2019). For example, Young et al. (2019) observed 
government workers using algorithmic tools for surveillance and re-
ported that they mostly lack knowledge about the system and drastically 
underestimated the complexity of it. Some of the employees were even 
unaware that algorithmic surveillance technologies rely on algorithmic 
or ML systems and assumed that computer vision should be an easily 
achievable task. Without a deeper understanding of a system’s inner 
workings, decision-makers find it difficult to determine whether they 
should rely on algorithmic outputs in their decision-making (Yu et al., 
2017). A decision-maker is considered out-of-the-loop if unable to 
identify irregularities and errors in the system, take corrective action 
when needed, and be held accountable in case the system misbehaves 
(Rahwan, 2018). 

When decision-makers do not have means for building meaningful 
trust in the system, they are also more likely to be susceptible to various 
biases. For example, domain experts often succumb to automation bias 
when assessing reliability of the algorithmic predictions, i.e., they over- 
rely on them. Airline pilots in the study by Skitka et al. (1999) showed a 
tendency to incorrectly follow predictive systems’ advice. They made 
omission errors – failure to react to irregularities and faults if the 
automated system does not detect them; and commission errors – failure 
to properly assess the system’s predictions and followed them despite 
the contradicting information from other sources (Skitka et al., 1999). 
Automation bias persisted even when pilots were accompanied by 
another pilot, were informed about potential risks of automation bias, or 
were trained to verify the automated recommendations and even when 
prompted for verification (Skitka, Mosier, Burdick & Rosenblatt, 2000) 
Automation appeared to simply reduce cognitive efforts put into 
decision-making by experienced pilots. Decision-makers might also ex-
press automation bias if they are not exposed to system’s errors during 
the training process (Sauer, Chavaillaz & Wastell, 2016). In Sauer et al. 
(2016) study participants underwent training where they were exposed 
to either a fully reliable system or one of the three faulty systems: (a) 
faults detected and reported; b) faults detected and not reported; c) and 
faults not detected. When participants were asked to use the system after 
their training, they trained with undetected or unreported faults, were 
making more errors, and trusted system predictions more than their own 
knowledge failing to detect errors. 

On the other hand, decision-makers can express distrust in the al-
gorithms and automation in general, systematically disregarding pre-
dictions or refusing to rely on them (Veale, Van Kleek & Binns, 2018). 
This phenomenon is referred to as algorithmic aversion. It has been 
observed amongst lay users (Dietvorst, Simmons & Massey, 2015), as 
well as experts such as helicopter pilots (Veale et al., 2018). An ethno-
graphic study by Whalen (1995) on emergency dispatchers using a new 
automated despatch decision-making system showed that they were 
reluctant to trust system outputs and checked them manually, even six 
months after the introduction of automation. More recent examples of 
algorithmic aversion by experts, was observed by Lee et al. (2017) who 
studied automation practices in food donation services and interviewed 
various stakeholders. One of the observations was that the community 
manager, making final food allocations based on the algorithmic anal-
ysis, continued using methods (her own heuristics and logic) adopted 

before introduction of automation to make allocation decisions for 1.5 
years. Making decision-makers aware of any performance errors might 
also diminish their trust in the system and make them more likely to 
trust less accurate predictions made by humans instead (Dietvorst et al., 
2015). For example, participants trusted their own less accurate speed 
dating predictions than the more accurate ones made by ML, if they 
observed any inaccuracies (Yin, Wortman Vaughan & Wallach, 2019). 

3.3. Domain expertise in the algorithmic decision-making context 

DSS are deployed in many settings in which human decision-makers 
are required to have a certain level of expertise. For example, air traffic 
controllers using algorithmic predictions to handle air traffic volumes 
must have sufficient experience of these specific tasks. Although in the 
real-world expertise seems to be lost to the expense of automation 
(Skitka et al., 1999), few studies have looked at how experts interact 
with the algorithms in the actual environment they are implemented in 
(e.g., Bussone, Stumpf and O’Sullivan (2015); De-Arteaga et al. (2020); 
Holzinger (2016)). Without providing means for experts to be involved 
in decision-making processes and have meaningful agency, there is a risk 
of losing the benefits of human expertise. 

Although experts demonstrate incredible ability to quickly and 
intuitively spot irregularities in data or notice patterns that at first seem 
insignificant in naturalistic situations (Klein & Chase, 1998), they might 
be unable to apply their expertise when new factors, such as algorithmic 
support, are introduced (Sterman & Sweeney, 2004). Subsequently, 
decision-making in an algorithmically-supported context often suffers 
due to poor contextual fit of the system (Elwyn et al., 2013). 
Decision-makers might also struggle to apply their expertise and effec-
tively use predictive systems due to disruption of their naturally 
occurring decision-making and sensemaking strategies (G. Klein et al., 
2006b). It has been demonstrated that DSS change the nature of 
decision-making by users, and that of experts (De-Arteaga et al., 2020; 
Yang, Steinfeld & Zimmerman, 2019), leaving them feeling restrained 
by the static nature of the predictions (Yang et al., 2019) and unable to 
exercise their skills gained while working without algorithmic support 
(De-Arteaga et al., 2020). 

In this way, changes in a particular setting can reduce effectiveness 
and disable use of the heuristics and other strategies learned with 
experience (Sterman & Sweeney, 2004). Even when the task maintains 
the same logical structure as before DSS are introduced, contextual 
changes might not allow existing skills to be transferred to the new 
environment (Sterman & Sweeney, 2004).  Subsequently, both novices 
and experts, when introduced to that new environment, are likely to rely 
on their common sense or heuristics, thus underestimating other aspects 
and only searching for and accepting evidence that is consistent with 
their existing beliefs, leading to confirmation bias (Nickerson, 1998). 
Failure to appreciate the context in which decisions are normally made 
without the algorithmic support has been shown to be one of the main 
reasons why predictive systems fail in practice (Wagner, 2019). Poor 
contextual fit means that decision-makers might feel limited and resist 
relying on a system’s predictions (Khairat, Marc, Crosby & Sanousi, 
2018; Yang et al., 2019) or simply will not have means or time to make 
an informed decision (Wagner, 2019). Even predictive systems that 
focus on a specific task can fail if contextual factors are being ignored 
(Nickerson, 1998). For example, Veale et al. (2018) interviewed workers 
in public sector organisations and showed that how users interacted 
with algorithms, and whether they relied on them, depended on how 
well the system fit with their natural workflow and organisational 
context. 

Introduction of predictive systems can also disrupt experts’ ability to 
apply their natural decision-making strategies, especially if they are only 
shown the final output of already processed data (Klein et al., 2006a) 
Additionally, being spoon-fed interpretations can be frustrating and 
demotivating (Klein et al., 2006b). Recent studies demonstrated that 
experts felt that the outputs they received did not allow them to see a full 
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picture (Yang et al., 2019). Experts also expressed a preference for 
having access to raw features of the data systems so they could interpret 
it in the way they had been trained without algorithmic support 
(De-Arteaga et al., 2020). Studies showed that experts also sought ways 
to better understand the reasoning chain of the decision model (Bussone 
et al., 2015) and, being unable to apply their decision-making strategies, 
turned to their old methods (even if less effective), did not rely on the 
algorithmic predictions (Lee et al., 2017), or demonstrate automation 
bias. 

In this section we showed that DSS are increasingly used in a wide 
range of domains where errors can have long-lasting societal conse-
quences. Hence, meaningful human agency is important in preventing 
these errors and ensuring accountability in erroneous instances. How-
ever, decision-makers often fail to evaluate algorithmic predictions and 
are susceptible to automation bias and algorithmic aversion. Domain 
experts are also unable to use their unique decision-making abilities and 
expert knowledge when having to rely on DSS outputs. 

4. Explainability in a decision-making context 

Terminology in this domain, whilst important for understanding 
distinct but overlapping concepts, is still nascent and sometimes 
inconsistently defined. Explainability can be defined as the AI/ML 
model’s ability to explain its inner workings and logic behind the output 
in human understandable terms (Doshi-Velez & Kim, 2017; Gilpin et al., 
2018). Here, the term ‘Explainability’ is distinguished from a similar 
(and often interchangeably used) term - ‘Transparency’. In the 
decision-making context the aim of explainability is to make relevant 
information available and understandable to the decision-maker (e.g., 
an experienced journalist), with the goal of supporting their sense-
making process. Here we consider transparency as aiming to inform 
affected stakeholders (e.g., news media audiences) about algorithmic 
processes and methodologies (Diakopoulos & Koliska, 2017), giving 
them an opportunity to evaluate accuracy of the outputs (e.g., news 
stories) (Stark & Diakopoulos, 2016), and revealing the limitations of 
the given model (Coddington, 2015; Diakopoulos, 2014). 

The need for explainability techniques has been growing dramati-
cally (Fuji, Nakazawa & Yoshida, 2020). However, despite the immense 
research efforts, explainability approaches still lack usability and are 
ineffective when applied in a decision-making context (Abdul et al., 
2018). In this section we will outline the ways explainability could 
support decision-makers, raise issues with current approaches, and 
discuss what could be done to make explainability more effective in the 
decision-making context. 

4.1. How can explainability support decision-makers? 

Aspirations for more accurate and powerful predictions have led to 
the widespread application of complex ML techniques, such as random 
forests and deep neural nets (Adadi & Berrada, 2018). Inherently 
interpretable, but arguably less accurate models are often traded for 
opaque, black box models that can be incomprehensible even to ML 
engineers and data scientists (Arrieta et al., 2020). Explaining a black 
box model (global explainability), or its output (local explainability) 
requires an explainability approach that would generate post-hoc ex-
planations. Some cutting-edge approaches involve learning a simple 
local approximation of the underlying models around a particular data 
point (e.g., LIME, Ribeiro, Singh & Guestrin, 2016), and producing an 
additive feature importance score for single predictions (e.g., SHAP, 
Lundberg & Lee, 2017). 

In general, explainability of AI/ML is intended to make the basis 
behind a system’s reasoning in arriving at a prediction comprehensible 
to humans (Fuji et al., 2020). It should also reveal the strengths and 
weaknesses of a decision-making system and enable humans to predict 
future behaviours (Gunning & Aha, 2019). 

Explainability could be an important tool allowing decision-makers 

to understand the logic behind ML predictions and enabling meaning-
ful agency by providing relevant information (Cutillo et al., 2020; 
VanBerlo, Ross, Rivard & Booker, 2021). Explainability could help them 
establish understanding of how a system works, which is necessary for 
trusting a newly introduced ML/AI system (Brennen, 2020). Making 
model behaviour comprehensible to the decision-makers might reduce 
the cognitive load involved in performing the task (Fan et al., 2008), and 
help users overcome algorithmic aversion by providing a comfortable 
sense of understanding (Yeomans, Shah, Mullainathan & Kleinberg, 
2019). Explainability could also give decision-makers a sense of control 
and in turn increase trust in the system (Dietvorst, Simmons & Massey, 
2018; Kulesza, Burnett, Wong & Stumpf, 2015). 

4.2. Issues with current explainability approaches 

However, despite great efforts in explainability research, many of the 
proposed approaches lack usability when implemented in practice 
(Abdul et al., 2018). Lack of usability can result in the explainability 
attempts being ignored or misused by the stakeholders they are intended 
to help. For example, Bhatt et al. (2020) interviewed data scientists and 
other stakeholders across 30 organisations and revealed that explain-
ability was mainly viewed as a tool for debugging the model used by ML 
engineers; users and decision-makers did not see explainability as a 
useful tool for them - they mainly thought of it as a tool designed for ML 
experts. Usability issues could be the result of a lack of appreciation of 
different stakeholders’ explainability needs. Until recently, most 
research effort was focused on supporting ML experts and data scientists, 
often overlooking the needs of a wide range of other stakeholders 
seeking to comprehend the workings of opaque systems (Tomsett et al., 
2018). Nowadays, researchers seem to agree that more attention needs 
to be paid to the needs of various stakeholders to ensure that explain-
ability can be usable when applied in practice (Bhatt et al., 2020; Mil-
lecamp, Htun, Conati & Verbert, 2019; Rosenfeld & Richardson, 2019; 
Srinivasan & Chander, 2020). 

Explainability in a decision-making context should also be used 
cautiously, with a clear goal of enhancing trust rather than just 
improving users’ willingness to use the system and avoid algorithmic 
aversion (Liao, Gruen & Miller, 2020). Otherwise using explainability 
for building trust in the system and its predictions might create a sense of 
unjustifiable confidence (Yeomans et al., 2019) and result in automation 
bias (Kaur et al., 2020). Interviews with data scientists using popular 
explainability techniques revealed that these techniques were often 
misused and over-relied on in practice (Kaur et al., 2020). Some argue 
that explainability enables development of certain heuristics about the 
system, and users stop evaluating each individual decision or explana-
tions (Bansal et al., 2021). Buçinca, Malaya and Gajos (2021) suggested 
using cognitive forcing intervention for people to engage with the 
AI-generated explanations more thoughtfully. Although this technique 
seemed daunting and made the system design less user-friendly, it was 
more effective in reducing overreliance compared to the standard 
explainability techniques (Buçinca et al., 2021). The amount of detail 
and information used in an explanation might also result in either 
automation bias or algorithmic aversion. Bussone et al. (2015) con-
ducted a study with healthcare experts and reported that detailed and 
informative explanations indeed increased trust in the system and its 
outputs at the same time as increasing risk of overreliance. Informative 
and detailed explanation led medics to believe that the system used the 
best available medical knowledge, and similar reasoning processes as 
theirs. However, using less detailed explanations had an opposite effect 
and resulted in algorithmic aversion. 

4.3. How can explainability be made useful for decision-makers relying 
on algorithms? 

To overcome the usability challenges of explainability approaches, 
researchers have sought to find out in a more general way which 

A. Simkute et al.                                                                                                                                                                                                                                



Journal of Responsible Technology 7-8 (2021) 100017

6

explanations different stakeholders would find most useful. Some looked 
for answers by analysing how people use explanations in real-life situ-
ations (De Graaf & Malle, 2017; Eiband et al., 2018; Garcia et al., 2018) 
and explored wider disciplines, such as psychology, philosophy, and 
cognitive sciences (Beaudouin et al., 2020; Hoffman, Miller, Mueller, 
Klein & Clancey, 2018; Miller, 2019; Srinivasan & Chander, 2020). One 
of the most in-depth works, linking multidisciplinary literature con-
cerning explanations and explainability research, was by Miller (2019) 
who surveyed a vast number of empirical studies from the social sciences 
and presented core aspects of explanations. However, even knowing 
which explanations are generally preferred by people does not answer 
the question of how complex and detailed these explanations need to be 
in different instances. 

There are multiple ways in which complexity of explanations can 
vary, making them either more or less comprehensible. For example, 
explanations can differ in a) size, and have a different number of lines 
and terms within the output clause; b) number of cognitive chunks, i.e., 
clauses of the output that may recur throughout the decision set, that 
can be implicitly or explicitly defined; or c) number of times the input 
conditions are repeated in the decision set (Lage et al., 2019). 
Complexity of the explanations can also vary depending on how sound 
(i.e., focused, and detailed explanations) and complete (i.e., explaining 
all the reasons) they are (Garcia et al., 2018). Moreover, explanations 
can be made interactive or conversational so that users can probe deeper 
until satisfactory understanding is achieved (Madumal, Miller, Sonen-
berg & Vetere, 2019; Weld & Bansal, 2018), or submit corrections and 
feedback (Smith-Renner et al., 2020). Tailoring the complexity and the 
content of explanations to the user or a context, might lead to more 
effective ways of explaining (Schaffer et al., 2015). Using tailored 
(case-specific) explanations instead of generic ones could also reduce the 
cognitive load of the task and help to avoid overwhelming users (Nai-
seh, Jiang, Ma & Ali, 2020). However, effective personalisation requires 
establishing what aspects should shape personalisation of explanations 
and how, and predicting the explainability needs of different stake-
holders has proven to be complicated due to the complexity of the topic, 
multiple goals, and wide range of interested parties (Fu et al., 2020; Ras, 
van Gerven & Haselager, 2018). 

We argue that to provide effective explainability, it is necessary to 
reflect on how decision-makers interact with DSS and what design 
choices could support their decision-making. To ensure that explain-
ability can help domain experts and novices to maintain meaningful 
agency, explainability approaches should be tailored to enable their use 
of naturalistic decision-making and sensemaking strategies. Few studies 
to date have explored factors influencing human decision-making and 
sensemaking strategies in human-algorithm interactions (see Simkute 
et al., 2020). Morevoer, there is a lack of design guidelines, that would 
advice which explainability interface design approach would be the 
most suitable in which situation, based on the decision maker’s needs 
and contextual factors. Exceptions include a set of usability guidelines 
by Amershi et al. (2019) and XAI Question Bank by Liao et al. (2020). 
However, the former, although relevant, is not specific to explainability 
and the latter is based on interviews with UX practitioners and de-
signers, suggesting what users would want to know. Neither considers 
differences in human reasoning or decision-making. There is a need for 
guidelines that would demonstrate how explainability could be used to 
support decision-makers, for example, what to explain and how to 
display explanations in the interface as well as how to account for 
real-world constraints (Eiband et al., 2018). 

Overall, explaining the logic behind DSS outputs to decision-makers, 
could provide them with more agency and help to build meaningful 
trust. However, explainability is rarely seen as a technique useful in a 
decision-making context. As we have seen, it can also lead to automation 
bias or algorithmic aversion. We argue that effective explainability 
should be tailored to support naturalistic strategies that domain experts 
and novices employ when processing information and making decisions. 

5. Insights from human factors and cognitive psychology 
research 

We suggest that a first step toward overcoming these issues should be 
building a solid understanding of naturally occurring human decision- 
making strategies and essential factors that influence them. To this 
end, we have conducted a structured, systematic review of cognitive 
psychology literature related to decision-making, with a particular focus 
on decision strategies in naturalistic environments, expert decision- 
making, and decision-making in high-risk contexts. We outline several 
aspects that could help to predict which decision-making strategies will 
be followed depending on the level of risk, level of expertise, and time 
available. It is our intention that this knowledge might serve to inform 
which intelligibility heuristic would best support design strategies in any 
given situation. 

5.1. Decision-making in a high-risk context 

Situations in which decisions are likely to have significant conse-
quences, and/or can result in discrimination, damaged dignity, loss of 
credibility, or even loss of life or property, as well as situations in which 
the decision-maker faces high performance and social pressures can be 
described as high-risk situations (Orasanu, 1997). In high-risk contexts, 
decision-making strategies are dependant on aspects that can accelerate 
stress, in particular uncertainty of information (Orasanu, 1997), 
perceived lack of control (Breznitz, 1989) and time-pressure (Perlow, 
Okhuysen & Repenning, 2002). 

In unfamiliar high-risk situations, where information is ambiguous 
or incomplete, decision-makers are believed to search for cues that 
would link the situation to any past experiences (Orasanu, 2005). The 
effects of stress are particularly high when these cues are unclear, cannot 
be recognised, assessed and matched (Orasanu, 1997). In these situa-
tions, decision-makers proceed with the cognitively demanding process 
of generating and matching multiple solutions, at the same time 
considering potential consequences (Orasanu, 1997). More precisely, 
decision-makers in high-risk contexts reduce uncertainty by matching 
the situation with similar past experiences, then generating and evalu-
ating potential options serially one by one and, if time allows, mentally 
simulate potential scenarios (Lipshitz & Strauss, 1997). This strategy 
places a high load on the decision maker’s working memory, as multiple 
goals and strategies have to be held in working memory while the 
constraints are retrieved and evaluated (Orasanu, 1997). 

Because decision makers have to actively infer from available in-
formation, make predictions, and fill the gaps of missing information, 
they might be prone to overestimate their abilities to do so accurately. 
Decision-makers generally show overconfidence in their decision- 
making and forecasting abilities (Tversky & Kahneman, 1974) and 
make errors by overestimating their impact on the outcome (Langer & 
Abelson, 1983). Thus, they are susceptible to the illusion that their 
predictions are valid and tend to overcommit to their choices (Einhorn & 
Hogarth, 1978). On the other hand, in high-risk situations, the 
decision-maker is more likely to be motivated to employ thorough and 
analytical strategies of decision-making. A highly motivated 
decision-maker is more likely to challenge heuristics and slow down the 
process of decision making (Svenson, 1979). They are more likely to 
spend more time evaluating all available options and avoiding making 
fast and intuitive decisions (Svenson, 1979). 

Decision-makers show better performance and ability to evaluate 
available information in high-risk situations when they can use a certain 
rule-base protocol or a checklist in order to reduce ambiguity (Orasanu, 
1997). Research in a medical setting showed that effects of uncertainty 
could be minimised by helping decision-makers to match the situations 
to a certain rule-based protocol (Dobrow, Goel, Lemieux-Charles & 
Black, 2006). According to study participants, support tools such as 
decision principles and evidence hierarchies were essential in revealing 
important modifiers that they were able to recognise and use for 
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decisioning (Dobrow et al., 2006). Decisions that follow a set of rules or 
a specific checklist are the least susceptible to stress, as they are made by 
linking the cues and patterns to examples or past instances and allow 
decision-makers to retrieve potential solutions from long-term memory 
(Orasanu, 1997). In this way cognitive load is lowered, and an analytical 
decision-making process becomes possible. 

5.2. Decision-making under time-pressure 

Decision-making strategies are highly affected by the time available 
to process the information and come up with the best solution. A strong 
sense of urgency has been shown to influence the pace of decision- 
making (Perlow et al., 2002). In general, time-pressure is believed to 
have a negative effect on decisioning effectiveness, and general perfor-
mance (Oliva & Sterman, 2001). Not pressured by time constraints, the 
decision-maker is likely to apply complex decision strategies in order to 
find the most logically suitable solution (Svenson, 1979). This way the 
decision is made based on thorough and detailed analysis of options, and 
is most likely to be the best available, with the highest probability of 
success. On the other hand, when decisions have to be made quickly due 
to the limited time available, or the high cost of delay, the 
decision-making strategy changes from analytic to intuitive. This way 
decisions are made without conducting a full search of relevant infor-
mation (Svenson, 1979). Decision-makers pressured by time are more 
likely to process information serially by generating and evaluating one 
option at the time until one that is reasonably fitting is accepted (Klein, 
Calderwood & Clinton-Cirocco, 2010). When decision-making is con-
strained by time-pressure, the amount of information presented can 
influence the effectiveness of the decision made and help to regulate 
cognitive demands put on the decision-maker. For example, providing 
multiple alternatives does not help to reach more valid or reasonable 
decisions as, due to sequential processing, these can be cut short as soon 
as an acceptable option is met, leaving the rest of the alternatives un-
considered (Klein & Chase, 1998). Similarly, providing too much in-
formation and/or additional resources can lead to ineffectiveness in 
decision-making (Omodei, Wearing, McLennan, Elliott & Clancy, 
2005). Firstly, there is a limit of how many resources can be assessed 
effectively and how much information can be processed under 
time-pressure. Thus, providing access and guiding the decision-maker to 
all available information resources, as well as providing a huge amount 
of information, can be counterproductive (Omodei et al., 2005). This is 
mainly believed to be due to the overutilising bias – the bias to exploit all 
resources, happening outside conscious awareness (Reason, 1990). 
Decision-makers are intended to believe that they can effectively 
manage information and resources available, however, they do not 
appreciate the limitations of their ability to regulate the related cogni-
tive workload (Omodei et al., 2005). 

Secondly, in time-pressured contexts, the decision-maker might feel 
urgency to use the available resources, whether that would be infor-
mation gathering, opportunity for action, or communication input 
(Omodei et al., 2005). The overutilisation of resources does not stop 
even when the cognitive system of a decision-maker is overloaded and 
damages their ability to make effective decisions. Thus, access to mul-
tiple information sources can indeed be disadvantageous (Seagull, 
Wickens & Loeb, 2001). Besides overutilising bias, the tendency to 
overutilise information also comes from other general biases. For 
example, under time-pressure, commission errors are preferred over 
omission errors, meaning that decision-makers prefer to make mistakes 
when proceeding with action, rather than due to the delay and inaction 
(Kerr, MacCoun & Kramer, 1996). Acting instead of waiting, even if 
ineffectively, also brings an illusion of control over the task, the sense of 
achieving some results (Schmitt & Klein, 1999), and a sense of greater 
self-competence via activity (Dörner, 1990). Due to the illusion of con-
trol (Duhaime & Schwenk, 1985) decision-makers make errors by 
overestimating their abilities and their impact on the outcome (Langer & 
Abelson, 1983). They may assume that through additional effort they 

can make their strategy succeed should problems arise (Langer & 
Abelson, 1983). Lastly, when presented with multiple resources, 
decision-makers express overconfidence bias and overestimate the 
amount of information and how fast they can effectively manage it in 
their working memory (Camerer, Johnson, Rymon & Sen, 1993). 

5.3. Expertise and decision-making 

Experts have been shown to engage in intuitive decision making 
rather than detailed analysis of all the options made available to them 
(Klein & Chase, 1998). With little conscious consideration, experts 
follow the route that intuitively seems most suitable and rarely consider 
more than one option (Klein & Chase, 1998). Intuitive decision-making 
does not mean that experts make important decisions carelessly. Indeed, 
there is evidence that skilled decision-makers often do better when they 
trust their intuitions rather than when they engage in detailed analysis 
(Klein, 2003). For example, Benner, Tanner and Chesla (1992) showed 
that experienced nurses who assessed the situation using their existing 
expertise, with little analytical efforts, were able to identify unusual and 
important information that otherwise might have been ignored. On the 
other hand, novice nurses who had to rely on a protocol-based checklist, 
were only able to diagnose, but not anticipate and prevent illness. They 
were also able to come to the solutions faster by generating fewer op-
tions that need consideration, whereas novices would have to produce a 
number of options and conduct analytical comparison of them (Cesna & 
Mosier, 2005). Experts are also particularly sensitive to the context and 
thus are better at noticing features of situations that could have potential 
implications (Klein et al., 2010). According to the recognition-primed 
decision (RPD) model, experts rely on pattern recognition when mak-
ing decisions (Klein, 2003). They tend to quickly and subconsciously 
recognise patterns and cues in situations (or a data set) and intuitively 
link them to other cues that they expect to appear next (Schmitt & Klein, 
1999). According to this model, high-expertise decision-makers rely on 
their past experiences in order to recognise cue patterns that allow them 
to understand and evaluate the problem or information. The cue 
recognition triggers retrieval of a response, which is drawn from the 
similar past experienced with matching cue patterns (Orasanu, 2005). 
Seeing the noise of the data, not only the main trends, guides expert’s 
intuition and triggers the pattern recognition, which in turn allows them 
to know which cues to monitor and which are important or doubtful 
(Ross, Shafer & Klein, 2006). Experts under time-pressure are also more 
likely to engage into RPD types of decision-making (Klein & Chase, 
1998). However, the RPD decisions are unlikely when decision requires 
justification, as intuitive decisioning is hard to articulate (Orasanu, 
2005). 

When a decision is particularly important, and experts have to test a 
hypothesis in an analytic way, they use schema; a pack of domain- 
specific knowledge they possess (Coderre, Mandin, Harasym & Fick, 
2003). For example, experienced doctors have been shown to use 
knowledge templates built on previous experiences when making 
diagnostic decisions (Sibbald, de Bruin & van Merrienboer, 2013). When 
use of experience is impossible and experts have to search for informa-
tion in order to reduce uncertainty, they benefit from being allowed to 
freely explore the information (Schmitt & Klein, 1999). Their search 
strategy of relevant information depends on material encountered, 
rather than following neat or orderly methods (Camerer et al., 1993). 
Experts decide what further information they need during the process of 
decision-making, not in advance. The static nature of algorithmic pre-
dictions and lack of freedom in exploring raw data has also been criti-
cised by experts in recent studies (De-Arteaga et al., 2020; Yang et al., 
2019).  When the expert is unable to freely explore data, or only receives 
an input without knowing the inner workings of the system, their 
analysis suffers (G. Klein et al., 2006a). Moreover, experts have been 
shown to prefer to be involved and be able to actively question data 
when it is inconsistent with their intuitions. Being able to participate in 
active search, adaptation and mental model building processes allow 
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experts to better exercise their expertise and maintain their motivation 
(G. Klein et al., 2006a). 

Expertise can also lead to types of error that should be considered in 
selecting explainability design heuristics. For example, a high level of 
expertise can lead to “illusion of validity”, i.e., an unjustified sense of 
confidence and hence failure of evaluating different possibilities (Kah-
nemen & Klein, 2009). Experts make errors when over-relying on 
shallow processing and do not question their intuition (Eva & Cun-
nington, 2006). A chance to formulate and test different scenarios and 
see various ways to account for the same data can help experts to 
overcome their bias towards their intuition (Klein, 2003). Whereas 
simply providing digested data outputs or explanations of them, could 
lead to biases towards the most salient or intuitively most likely decision 
(Kahnemen & Klein, 2009). The way in which information is presented 
can also either help or further disrupt the expertise in decision-making. 
Providing more information than is necessary can damage an expert’s 
performance (G. Klein et al., 2006a). Too much information (especially 
under time-pressure) could lead to overconfidence in experts (G. Klein 
et al., 2006a). and place an unreasonable cognitive load on a 
decision-maker (Klein et al., 2010). When rapid decisions are needed, it 
is more effective to provide information sequentially, as only one option 
is being considered at the time. However, RPD should also be encour-
aged in cases when satisfaction criteria for the solution is enough, and 
optimising is not necessary. 

Overall, understanding naturalistic decision-making strategies could 
help to improve explainability potential. Decisions made in high-risk 
contexts are more cognitively demanding and require reducing uncer-
tainty by matching an unclear situation with similar past experiences. In 
these situations, decision-makers perform better if they can follow a 
rule-based protocol as they are more motivated to slow down their 
decisioning and use analytical thinking. Time-pressure can impair 
decisioning and pressure the decision-maker to overutilise all available 
information. Limiting the amount of information can help to overcome 
this overutilisation of resources. Lastly, experts are more likely to make 
decisions intuitively, based on the patterns and salient features they 
recognise in the context. Their decision-making can be aided by 
providing noisy data, allowing them to apply their random decision 
search strategies and actively engage with data. 

6. Contextual ERT framework for explainability 

Despite the attention DSS have received in recent years, little has 
been done to grasp the psychology behind the human-algorithm in-
teractions in a decision-making context. Although explainability re-
searchers have made attempts to consult psychology research literature 
in search for more effective explanations, they only offer very broad 
understanding of the types of explanations people generally find more 
comprehensible (Miller, 2019). Even when proposing more tailored 
explainability approaches, researchers tend to base them on aspects such 
as domain characteristics (Gilpin et al., 2018), relevant legal re-
quirements (Beaudouin et al., 2020) or goals (Hind et al., 2019) rather 
than naturalistic ways of decisioning. We recognise higher-level deci-
sion-making and sensemaking strategies that are domain-agnostic and 
argue that to enable use of expertise and effective decision-making, 
these strategies need to be supported. 

The review of cognitive psychology and human factors research 
literature concerning expertise and decision-making and sensemaking 
strategies revealed several dynamics that are particularly important in 
shaping how people make decisions. More precisely, level of expertise, 
level of contextual risk, and time constraints were recognised as factors 
influencing sensemaking strategies, cognitive biases and attentional 
resources in a decision-making context. Based on the reviewed literature 
we mapped decision-making strategies that are likely to be taken under 
different combinations of these dynamics and developed the ERT 
explainability framework (Fig. 1). The Framework divides the decision- 
making space into four main sections, each representing a combination 
of a high and low levels of expertise and risk. Each section is then 
moderated by the level of time-pressure in each context, dividing 
decision-making space into eight segments. Each segment represents 
different information processing strategies, cognitive biases and atten-
tional resources in a given combination of dynamics (Table 1). The 
framework is intended to help match these aspects with suitable design 
approaches and characteristics of explanations. 

The ERT explainability framework is suitable for deployment and 
iterative development, with the long-term goal of supporting the 
development of effective design heuristics for intelligible interface 
design, in a range of contexts. By offering three clear dynamics, we 
create a framework for designers seeking to scope out the explainability 
requirements in any given context.  The following section offers a 

Fig. 1. Each of the eight segments represents different information processing strategies, cognitive biases and attentional resources that shape an overall decision- 
making process in a given combination of dynamics. 
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Table 1 
Table linking decision-making strategies with design suggestions in the various combinations of ERT dynamics.   

High risk & high time pressure High risk & low time pressure Low risk & high time pressure Low risk & low time pressure 

Expert Decision- 
making 
strategies 
and biases 

Intuitive, fast, highly motivated, disruptedRely 
on pattern recognition and knowledge 
templates built on past experiencesUnder high 
uncertainty,generate and sequentially evaluate 
(mentally simulate) potential scenarios one at a 
time, until one that is reasonably fitting is 
acceptedSearch for salient features that could 
have implicationsOverconfidence biasIllusion 
of validity 

Slow, analytical, highly motivatedRely on 
pattern recognition and knowledge templates 
built on past experiencesApply thorough and 
detailed evaluation of options, looking for the 
most logically suitable solutionSearch for 
salient features that could have 
implicationsOverconfidence biasIllusion of 
validity 

Intuitive, fast, disrupted, low motivationQuickly 
and subconsciously recognise patterns and cues 
in situations (or a data set) and intuitively link 
them to other cues they expect to appear 
nextRarely consider more than one optionUnder 
uncertainty, generate few potential options that 
need considerationOverconfidence biasIllusion 
of validity 

Intuitive, low motivationQuickly and 
subconsciously recognise patterns and cues in 
situations (or a data set) and intuitively link 
them to other cues they expect to appear 
nextRarely consider more than one option. 
Under uncertainty, generate potential options 
that need considerationOverconfidence 
biasIllusion of validity 

Design 
Approach 

Present information sequentiallyUse rule-based 
protocols, checklists, decision principles, 
evidence hierarchies 

Provide flexible ways to explore 
informationShow noise in dataUse rule-based 
protocols, checklists, decision principles, 
evidence hierarchiesProvide interactive ways 
of questioning explanations and providing 
feedback 

Present information sequentiallyEmphasise the 
most important information 

Limit the amount of informationEmphasise the 
most important information 

Non-expert Decision- 
making 
strategies 
and biases 

Analytical, disrupted, highly motivatedApply 
thorough and analytical analysis of all possible 
optionsInability to effectively manage 
information and regulate cognitive 
workloadOverutilisation biasUnable to notice 
patterns in data and recognise salient features 

Slow, analytical, highly motivatedProduce 
multiple possible options and conduct 
analytical comparison of them, looking for one 
with highest possibility of successUnable to 
notice patterns in data and recognise salient 
features 

Analytical, disrupted, low motivationAnalyse all 
possible optionsInability to effectively manage 
information and regulate cognitive 
workloadOverutilisation biasUnable to notice 
patterns in data and recognise salient features 

Slow, analytical, low motivationAnalyse all 
possible optionsUnable to notice patterns in data 
and recognise salient features 

Design 
Approach 

Present only the most important aspects of 
information in a structured wayUse rule-based 
protocols, checklists, decision principles, 
evidence hierarchies 

Present all aspects at the same time but guide 
the decision-maker towards the most important 
features or patterns.Use rule-based protocols, 
checklists, decision principles, evidence 
hierarchies 

Present only the most important aspects of 
information in a structured way 

Information is available to be explored and 
feedback is possible  

A
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description of methods used in the development of the framework and 
detailed explanation of the dynamic aspects, followed by an applied 
example with indicative design considerations. 

6.1. The three dynamics 

The ERT explainability framework divides the decision-making 
space into eight segments (Fig. 1). Each segment refers to the combi-
nation of (1) the extent to which decision-makers rely on their level of 
expertise in the particular task, (i.e., prior experience in making de-
cisions without any algorithmic support), (2) the risk environment in 
which decisions are made (i.e., the cost of error) and (3) time constraints 
(i.e., cost of delay; given time to complete the task). 

Dynamic 1: Expert or a novice 
Firstly, explainability design strategies should be adjusted depending 

on whether the system will be used by an expert or a less experienced 
person. An expert in this context is “a trained professional with experi-
ence in some special domain” (Webster’s New, 1968), whose expertise is 
a result of “a rich instrumental experience in the world and extensive 
and deliberate practice and feedback” (Hoffman, Shadbolt, Burton & 
Klein, 1995). Whether a person is an expert can be established by their 
reported familiarity with the task (Schaffer, O’Donovan, Michaelis, 
Raglin & Höllerer, 2019) or the type and quantity of experience in the 
actual domain or project (e.g., Ericsson & Smith, 1991; Hoffman et al., 
1995). In our framework we only separate two levels of expertise: high 
level, i.e., decision-maker is an expert, and low level, i.e., 
decision-maker is familiar with the domain and/or task but is not an 
expert yet. Although there are varying levels of knowledge in every 
domain, research shows that only after reaching the level of being an 
expert, decision-makers begin to employ significantly different 
decision-making strategies than the people in other knowledge cate-
gories (Dreyfus & Dreyfus, 1986). Progression to expertise happens 
when a person advances from a superficial and literal understanding of 
problems to an articulated, conceptual, and principled understanding 
(Hoffman, 1998). 

A system interface designed for the needs of a less experienced per-
son, but applied for experts, might be demotivating for an expert. It 
could also result in either automation bias or algorithmic aversion, 
encouraging overconfidence and overreliance on heuristics. Failure to 
consider decision-making strategies applied by experts could lead to 
experts’ inability to exercise their unique skills and recognise particu-
larities that they learned to notice over years of accumulated experience. 
However, a system interface designed for an expert could overwhelm 
any novice decision-makers that use it, leading to errors and not 
allowing development of expertise. 

An interface designed for explainability that is tailored for experts’ 
needs should allow them to explore data more freely because when the 
expert is unable to freely explore data, or only receives an input without 
knowing the inner workings of the system, their analysis suffers (G. 
Klein et al., 2006a). For example, expert weather forecasters refused to 
use algorithmic metrics provided by a computer system, as these were 
“too smooth” and only revealed main trends of data but not the noise in 
data (Stuart, Schultz & Klein, 2007), similarly medical experts resist the 
algorithmic support because the static data would not allow them to see 
the full picture of the patients (Yang et al., 2019). An explainability 
interface should uncover these cues and patterns and lead to analysis 
and decision evaluation. For example, via saliency maps showing ‘a 
bigger picture’ and diagrams revealing data patterns, including noise 
and unusual interactions, that do not necessarily qualify as predictive. In 
particular, medical experts showed a preference for seeing which factors 
were most influential towards the predictions, as this would allow them 
to see which factors were modifiable and in turn plan future actions and 
interventions (Yang et al., 2019). De-Arteaga et al. (2020) pointed out 
that it is important to provide access to raw features of the data system 
and values of the features weighting towards the prediction. Expert users 

might be reluctant to use DSS if they are not able to use their intuition 
and understand the system’s limitations and nuances, even when the 
suggestions made by algorithms are in line with their predictions (Hil-
burn, Westin & Borst, 2014). Experts’ preference for flexibility in in-
formation search strategies could also be fulfilled by providing a level of 
interactivity (Weld & Bansal, 2018) or introducing refinement tools, that 
could guide the search process (Cai et al., 2019) and allowing 
decision-makers to correct errors (Kulesza et al., 2015). 

Dynamic 2: Level of risk 
Secondly, explainability design heuristics should be tailored 

depending on the level of risk assigned to the task. The complex nature 
of high-risk situations makes it difficult to draw predefined domain- 
agnostic risk criteria. Broadly, this paper considers the high-risk 
context as involving decisions that can have major consequences and 
high cost of error. The level of risk might depend on aspects such as the 
extent of the consequences (the chain of people affected by the decision 
e.g., journalist decision-maker, news organisation, audience, society), 
the temporality or permanency of the consequences (How long will 
these consequences be present? Is an option to undo the decision or 
adjust available?), and whether the consequences would be external or 
internal to the organisation. Setting up the risk criteria and clearly 
defining high-risk situations in the early stages of design, could help to 
facilitate decision-making (Rundmo, 2001). Individual perception of 
risk has been shown to be unreliable (Marek, Tangenes & Hellesoy, 
1985), depending on subjective feelings about technology (Slovic, 
Finucane, Peters & MacGregor, 2004), and highly varying at an indi-
vidual level, even between individuals with directly comparable grades 
of expertise (Brehmer, 1992; William & Noyes, 2007). 

Designing an interface capable of communicating the risk of the 
decision that is being made could calibrate the decision-maker’s 
perception of risk. For example, an explainability interface could include 
pop-up alerts containing information regarding the risk or by using 
words (e.g., critical) that would indicate the level of severity of the 
situation (Long et al., 2018). Experts show higher consensus for lin-
guistic risk representations than for numeric ones, thus appropriately 
selected words can more directly convey the risk (Atoyan, Robert & 
Duquet, 2008). Risk could also be visualised and indicated by using 
colours or symbols (Rayo & Moffatt-Bruce, 2015). 

Using design approaches to inform decision-makers about the risk of 
the decision could also reduce the decision-maker’s cognitive load. Ex-
perts’ evaluation of risk requires situational awareness, and making 
additional diagnostic decisions (Kaempf, Klein, Thordsen & Wolf, 1996). 
Experts understand current situations by matching observed features 
with their previously learned interpretations of cues and patterns, and 
by mentally simulating a story that would explain how any given situ-
ation has occurred (Lipshitz & Cohen, 2005). Ordering and visualising 
features (cues) by their weight toward the output, could help to facilitate 
building of a coherent story that explains the available evidence (Lieb-
haber & Feher, 2002) Contextualising explanations by using visual ex-
amples could also ease feature matching and story 
generation/evaluation and thus reduce cognitive efforts of experts 
(Kaempf et al., 1996). Finally, using dynamic annotated visualisations 
instead of simple text-based aids, could help to effectively promote 
comprehension and present the risks of all the available decision op-
tions, without disrupting decision-makers’ workflow (Rayo and Mof-
fatt-Bruce, 2015). 

Decisions made in high-risk context, with high cost of error require a 
slower and more analytical approach. In this case the decision-maker 
should be encouraged to gradually inspect information provided 
(Klein et al., 2010). However, the risk of overutilisation bias should be 
considered (the bias to exploit all resources), happening outside 
conscious awareness (Reason, 1990). Decision-makers tend to believe 
that they can effectively manage information and resources available, 
however, they often do not appreciate the limitations of their ability to 
regulate the related cognitive workload (Omodei et al., 2005). Thus, one 
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of the explainability interface design goals should be to slow down the 
decision-making process to avoid heuristics-driven decisions. This can 
be achieved by using interactive interfaces (Cheng et al., 2019), 
requiring acknowledgement of the explanation (Atoyan et al., 2008), or 
including an extra action needed to access the explanation (Rundo, 
Pirrone, Vitabile, Sala & Gambino, 2020). Interactive interfaces could 
also help experts to simulate mental scenarios when evaluating available 
information and determining the best course of action (Cheng et al., 
2019). 

In high-risk situations, decision-makers can also be supported by 
allowing them to identify effective options more easily. These options 
can be detected by comparing the results, situations to provided pro-
totypes (Klein et al., 2010), rule-book protocols or checklists (Dobrow 
et al., 2006; Ross et al., 2006), easing the recognition of atypical situa-
tions that need action and amendments (Klein et al., 2010). This could 
help to reduce stress and related cognitive strain Orasanu (1997). 

Level of risk also affects the motivation of the decision-maker. In 
high-risk situations, the decision-maker is highly motivated, so more 
information could be provided and critically evaluated (Svenson, 1979). 
Moreover, higher motivations also mean that decision-makers are less 
susceptible to biases and are more likely to critically challenge provided 
information and in case of high expertise – challenge their own intuition. 
On the other hand, low-risk contexts might lead to low motivation and 
shallow processing without critically challenging the information 
(Kahneman & Klein, 2009). This could result in automation bias. High 
motivation can be maintained by introducing a level of control to the 
users, e.g., ability to correct errors (Kulesza et al., 2015) or make 
modifications (Dietvorst et al., 2018). 

Dynamic 3: Time-pressure 
Both aspects are moderated by time pressure, as this affects what 

strategies a decision-maker will be able to employ. Under severe time 
constraints, when a slow and analytical approach is not possible, 
decision-makers are particularly susceptible to various biases. Not 
addressing this factor could lead to errors when decision-makers fail to 
judge their ability to accurately fill in the gaps in information and make 
assumptions. 

Time limitations can be addressed by moderating the amount of in-
formation shown to the decision-maker. In high-risk and high time- 
pressure situations the design goals for an explainability interface 
should be to reduce clutter by limiting the number of alternatives shown 
at a time, whilst allowing access to detailed information once a partic-
ular alternative is selected. Too much information may trigger a utili-
zation of simplifying heuristics, where the user can fail to focus the 
attention on important information. When rapid decisions are needed, it 
is more effective to provide information sequentially, as only one option 
is being considered at a time (Klein et al., 2010). In this way, faster and 
more intuitive decision-making strategies can be supported, and cogni-
tive load reduced. 

Visualising information can also reduce cognitive load, especially 
when a large amount of information needs to be processed by the user in 
a short period of time. It has been shown that experts in time- 
constrained situations use mental imagery when considering informa-
tion, recognise cues and visually “paint” possible ways of implementa-
tion and potential outcomes (Klein et al., 2010). For example, visualising 
information in the form of a diagram can reduce the strain put on a 
working memory when processing and speed up the process of 
comprehension. When information is presented in a visual form, the user 
does not have to hold and later recover all the points of information in 
their working memory (Johnson-Laird, Legrenzi, Girotto & Legrenzi, 
2000). Salient visualisations can be used for guiding less experienced 
decision-makers to the critical information (Eick & Wills, 1995) whilst, 
in contrast, experts would benefit from being able to freely explore the 
algorithm through interactive visualisations., i.e., by changing the 
attribute values and observing how the algorithmic decision changes 
accordingly (Cheng et al., 2019). 

Having explained the three dynamics affecting decision-making, and 
suggested aspects of design that might be brought to bear in support of 
them, we use the next section to apply the framework to the practical 
expert craft of journalism. 

6.2. Proposed design goals and examples of design strategies 

Here we propose a list of design goals tailored to the decision-making 
strategies used under various combinations of expertise and risk dy-
namics, moderated by the time-pressure dynamic. Each design goal is 
followed by the potential design strategies that could be used in 
designing explainability interfaces. Examples with no indication of the 
time dynamic are applicable for both types of contexts. 

High level of expertise and high-risk  

• Calibrate the perception of risk: use pop-up alerts and/or linguistic 
indications informing about the risk, using colour and symbols to 
visualise the level of risk (Long et al., 2018)  

• Facilitate pattern recognition, mental simulation/evaluation of 
alternative scenarios, reduce cognitive load: embed explanation in-
formation in the context (Kaempf et al., 1996), enable use of 
rule-based protocols (Dobrow et al., 2006)  

• Support ability to expand information and see ‘noise’ in data: allow 
exploration of multiple variants within categories using refinement 
tools and clustering techniques (Cai et al., 2019)  

• Support slow analytical decision-making in low time-pressure: 
allow interactive manipulation of attribute values and observe how 
the output changes accordingly (Speier & Morris, 2003), provide an 
ability to compare and contrast hypothesis/ features/ categories (Cai 
et al., 2019) 

• Support serial information processing in high time-pressure situa-
tions: provide an option to view a single information point at a time, 
allow an easy transition to the next option (Klein et al., 2010)  

• Support the ability to quickly recognise critical information in high 
time-pressure situations: use visualisations indicating critical in-
formation (Eick & Wills, 1995), indicate the predictive markers that 
are highly valuable (Long et al., 2018)  

• Reduce information clutter in high time-pressure situations: limit 
the amount shown on the interface, instead allow to expand each 
data point by e.g., hovering the cursor over it (Cheng et al., 2019)  

• Effectively promote understandability of weights of all available 
options, without disrupting the workflow: use dynamic annotated 
visualisations (Rayo and Moffatt-Bruce, 2015).  

• Slow down decision-making process and prevent use of heuristics: 
use interactive interface (Cheng et al., 2019) and allow 
decision-maker to actively question the data, require explicit 
acknowledgement of the explanation (Atoyan et al., 2008), or 
require deliberate action to access explanation, instead of it being 
available but unremarkable (Rundo et al., 2020)  

• Support use of flexible information search strategies in low time- 
pressure situations: provide ways to flexibly explore available in-
formation through interactive interface and adjustable inputs, 
allowing detailed information to be obtained by selecting data point/ 
feature (Cheng et al., 2019), or giving explicit control of  which 
hypothesis/ features/ categories to compare and contrast (Cai et al., 
2019) 

High level of expertise and low-risk  

• Facilitate pattern recognition, mental simulation/evaluation of 
alternative scenarios, reduce cognitive load: embed explanation in-
formation in the context (Kaempf et al., 1996), enable use of 
rule-based protocols (Dobrow et al., 2006) 

• Allow flexible information exploration in low time-pressure situa-
tions: use refinement tools to guide the search mechanisms (Cai 
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et al., 2019), allow exploration of features in cases of disagreement 
or uncertainty  

• Make explanation part of the workflow: present explanations in a 
seamless way, avoid interrupting features, use visual aspects such as 
colour-coding and symbols consistently (Yang et al., 2019)  

• Reduce clutter and cognitive load in high time-pressure situations: 
limit the amount of information shown on the interface, instead 
allow to expand each data point by e.g., hovering the cursor over it 
(Cheng et al., 2019) 

• Support serial information processing in high time-pressure situa-
tions: provide an option to view a single information point at a time, 
allow an easy transition to the next option (Klein et al., 2010) 

Low level of expertise and high-risk  

• Calibrate the perception of risk: use pop-up alerts and/or linguistic 
indications informing about the risk, using colour and symbols to 
visualise the level of risk (Long et al., 2018)  

• Facilitate guided exploration of information in high time-pressure 
situations: use visualisations indicating critical information and 
showing the path of information exploration (Eick & Wills, 1995).  

• Reduce cognitive load: enable use of checklists (Lipshitz & Cohen, 
2005; Orasanu, 1997)  

• Support the consideration of time available in high time-pressure 
situations: adjust the length of the explanation depending on how 
much time is available (Lipshitz & Cohen, 2005)  

• Reduce clutter in high time-pressure situations: provide less 
detailed explanations, but clearly highlight the information that is 
critical also illustrating its criticality (Long et al., 2018), use bar 
charts to illustrate the breakdown of the decision and weight of 
different attributes towards the final output, group attributes by the 
colour (Cheng et al., 2019)  

• Support analytical evaluation of all the available options in low 
time-pressure situations: use detailed descriptions of the attributes 
and features (Cheng et al., 2019), visualisation techniques to make it 
easier to compare different options, use dynamic visualisation and 
colour coding to illustrate each feature’s weight towards the output, 
use interactive refinement tools to show changes in the distributions 
after updates (Cai et al., 2019) 

Low level of expertise and low-risk  

• Support structured information search strategies and facilitate 
building of coherent story in high time-pressure situations: order 
the features from the most to the least important (Liebhaber & 
Feher, 2002)  

• Facilitate guided exploration of information in high time-pressure 
situations: use visualisations indicating critical information and 
showing the path of information exploration (Eick & Wills, 1995).  

• Support analytical evaluation of all the available options in low 
time-pressure situations: use detailed descriptions of the attributes 
and features (Cheng et al., 2019), apply visualisation techniques to 
make it easier to compare different options, use dynamic visual-
isation and colour coding to illustrate each feature’s weight towards 
the output, use refinement tool to show changes in the distributions 
after updates (Cai et al., 2019)  

• Facilitate learning: allow interactive questioning of the output and 
provide feedback option 

7. Worked example of the ERT framework: Journalism 

Algorithmic and ML-driven DSS are gaining traction in journalism, 
where journalists increasingly rely on them for the gathering, produc-
tion and distribution of news (Beckett, 2019; Diakopoulos, 2019; 
Marconi, 2020). Recommender engines drive new forms of audience 
personalisation and engagement (Helberger, 2019), audience analytics 

tools drive subscription and monetisation strategies, and 
semi-automated content production systems generate stories, visual-
isations etc. with little human intervention. Crucially, decision-support 
tools now underpin elements of editorial decision-making in the news-
room, such as text and image classification and suggestions, data anal-
ysis, and media monitoring. They have the potential to bring time and 
resource efficiencies (Marconi, 2020), opportunities for wider oversight 
(Diakopoulos, 2020), deeper analysis (Stray, 2019) and greater crea-
tivity (Maiden et al., 2018) but also risk disrupting long-established 
ways of working. Newsworkers consider ‘journalistic intuition’ and 
‘gut instinct’ to be fundamental to their job; specialised knowledge and 
discretion are central to journalistic self-conception (Christin, 2020). 
However, there is evidence that newsroom culture has shifted following 
algorithmic intervention, for instance toward placing more value on 
analytics than professional intuition (Hanusch, 2017). Most journalists 
have little understanding of how these systems work and limited ability 
to critically assess automated outputs or their suitability in context 
(Jones forthcoming). This knowledge and communication gap risks 
leading to journalistic malpractice (Hansen, Roca-Sales, Keegan & King, 
2017) and undermining public confidence in ethical and responsible 
journalism. If this is to be avoided as DSS become more pervasive, there 
will be a need for explainable interfaces that account for the demands of 
the journalistic context. Despite this, there has been little focus on 
explainability in the journalism context and seemingly low levels of 
recognition amongst news organisations that this issue needs tackling. 

The core of a journalist’s job is creating news content in a timely 
manner by making decisions efficiently and exercising expert judgement 
within a framework of laws, regulations, professional norms and socio- 
cultural expectations. In contrast to many of the high-stakes areas often 
prioritised in explainability research where the risk profile is often im-
mediate and extreme (e.g., life and death decisions in defence, medicine 
etc.), the risk of opaque DSS in news production is one of aggregated 
errors, unrecognised biases and cumulative oversights. This can lead to 
inaccuracies and the inability to sufficiently account for and justify 
editorial decisions, which in turn can harm news organisations’ repu-
tation and undermine the legitimacy of journalism in society. Dia-
kopoulos notes that journalists express a “need for ongoing scepticism 
and verification of outputs of data-mining” of the type used in DSS 
(2019, p.89) and points to the challenge of evaluating reliability of re-
sults. Knowledge claims in journalism are subject to varying criteria for 
adequate justification, which complicates the task of communicating the 
role of DSS in decision-making to both editors and the audience. Dia-
kopoulos highlights the importance of building smart interfaces to 
support journalists, including by designing suitable signals to highlight 
relevance and other indicators of newsworthiness, as well as engender 
appropriate trust by reflecting uncertainty. This can include “multi-
modal and interactive interfaces”, “summary sentences of text” 
providing explanation, or “visual evidence and context” (Diakopoulos, 
2019, p82). The ERT framework can contribute to responding to these 
challenges. In the following section, we employ Wolf’s concept of 
explainability scenarios (2019) - a scenario-based design approach to 
provide narrative descriptions of envisaged usage episodes to guide the 
development of a system (Rosson & Carroll, 2003).  We use scenarios 
here to elucidate an example of when journalists interacting with DSS 
could require explanation alongside how designers might deploy the 
ERT framework to help design such explanations. 

7.1. Scenario 1: Image suggestion decision-support tool 

Leila is part of a team designing an explanation interface for an 
image suggestion system that uses ML for facial recognition and image 
quality classification. Journalists will use the system to help identify and 
choose the best images quickly from a wide selection. They need to be 
able to justify to their editor why they chose the images and to trust that 
the system’s suggestions are accurate and appropriate. Leila wants to 
understand which type of explanation will be most useful for the 
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journalist-user, so she observes several who are writing stories for the 
website as they use a prototype of the system, which does not yet include 
an explanation component. While observing, she maps each scenario 
onto the ERT framework, asking herself: what is the level of expertise, 
risk and time-pressure here and what does the framework recommend as 
an appropriate explanation approach? 

The first journalist, Ada, is writing a breaking news story about the 
meeting of political leaders for a G7 summit meeting in Cornwall and is 
expected to get the story live within minutes. An experienced journalist, 
she is comfortable making editorial decisions about which images to use 
but she is not up-to-date with global political leaders and this is the day’s 
top story that millions of people will read on the website homepage so 
any errors could cause reputational damage for the news organisation 
and herself. As Ada types about a meeting between UK Prime Minister 
Boris Johnson, US President Joe Biden and South African President Cyril 
Ramaphosa, the decision-support system identifies keywords to suggest 
a ‘top 5′ selection of images based on relevance and quality of image. 
Ada rapidly scans the images – she is unsure what Ramaphosa looks like 
so she chooses the top-rated picture, of what she believes is the three 
men. Ada wishes she knew why the system was rating this one so highly 
and whether it is sure the third man is Ramaphosa, but there is no 
explanation provided. Ada is used to searching for relevant images in 
picture libraries but has never used this type of DSS, which recommends 
a selection automatically so she feels unsure how accurate it is and how 
much trust to place in the algorithms. Her wariness prompts her to call 
over a colleague in the newsroom to check the image and she searches 
online for pictures of the South African leader to compare. This cross- 
checking reveals that the image is of Johnson, Biden and an unknown 
man – so she removes it from the story and continues to scroll through 
the recommended options until she finds a suitable replacement that she 
can corroborate as being the correct leader. Once submitted for sub- 
editing, she turns to her colleague to discuss why they think DSS made 
the mistake and whether the error might slip past the attention of a less 
experienced journalist. 

Leila refers to the ERT framework and characterises the situation: 
high journalistic expertise but low topic expertise, high time-pressure 
and high-risk of reputational damage. For this combination of factors 
the framework suggests that enabling a more analytical approach and 
that preventing the “illusion of validity” (e.g. by providing a rule-book 
protocol to match and compare her situation against) could help in a 
higher-risk situation like this. Emphasising the most important aspects 
to support quick and intuitive pattern recognition, for example by 
showing feature weights, could be useful for someone with high 
expertise. Finally, in such a time-pressured situation, moderating the 
amount of information provided, ensuring it is presented sequentially, 
supporting mental simulation/imagery and reducing cognitive strain by 
visualising information. 

Using the ERT tool, Leila sees that the goals of explainability inter-
face design in this situation should be to a) support serial information 
processing, b) reduce information clutter, c) calibrate the perception of 
risk, d) facilitate pattern recognition/reduce cognitive load, e) support 
the ability to quickly recognise critical information, and f) slow down 
decision-making process. Guided by the ERT framework Leila decides to 
use an interface design which would allow Ada to view a single infor-
mation point at the time and would have a feature allowing to easily 
transition to the next information point (support serial information 
processing), that would limit the amount of information provided, by 
would allow to hover the cursor over information points and expand 
them (reduce information clutter), the interface would also use visual-
isations to indicate critical information and highly valuable features 
embedding them in the context (support the ability to quickly recognise 
critical information/support pattern recognition/reduce cognitive 
load), and would inform Ada about the level or risk (calibrate the 
perception of risk). 

The second journalist she turns to, Marc, is pulling together a round- 
up photo-gallery of the best images from the Cannes film festival. He is 

new to the job and has no experience working with imagery or enter-
tainment coverage so is happy that the system can help him filter 
through the hundreds of pictures on the system. There is no strict 
deadline so he can take his time. Marc uses his own judgement of what 
makes a good picture coupled with what seems newsworthy, seeking out 
big name stars, surprise winners, and out-of-the-ordinary happenings 
but he also allows the tool’s suggestions to help guide him and clicks 
through its recommendations as they appear. As he types general search 
terms including the festival name, the name of its prizes, certain ce-
lebrities, the system generates a selection of recommended images with 
metadata attached including the photographers description, date taken 
and copyright information. As he does this, he finds himself questioning 
why each image has been picked as it is not always clear the connection 
between terms he has used and the image or how he can assess the ac-
curacy of each suggestion. To double-check, he searches online for de-
tails about the celebrities depicted in the images in order to get a better 
sense of their relevance and importance and to write captions for those 
he chooses to include. Leila notes that this is a situation of low jour-
nalistic and topic expertise, low time-pressure and low-risk of reputa-
tional damage. Because there is low-risk, explaining (or visualising) why 
some of the features are more salient that others, providing explana-
tions/information in a neutral manner (neither negative nor positive) 
could help to prevent a framing effect (leaning to certain decisions due 
to the way information is framed), which is especially likely in low-risk 
conditions (Tversky & Kahneman, 1974). As Marc has low expertise, 
providing more information and supporting guided comparison and 
evaluation of the features (e.g., showing feature weights with accom-
panied explanations/suggestions) may enable practice, learning and 
potential development of expert skills. Because he is under low 
time-pressure, it is advisable to enable slower and more deliberate 
analysis of information by allowing (and encouraging) Marc to question 
and challenge predictions and investigate the importance of features (e. 
g., by being able to ask questions, interactively communicate with the 
system). 

Leila uses the ERT Framework and decides that the goals of 
explainability interface design in this situation should be to a) support 
analytical evaluation of all the available options and b) facilitate 
development of expert skills. Leila decides to use an interface design 
which would allow Marc to see detailed descriptions of the attributes 
and features, apply visualisation techniques to make it easier to compare 
different options, and use dynamic visualisation and colour coding to 
illustrate each feature’s weight towards the output (support analytical 
evaluation). The interface should also be interactive and allow Marc to 
further question the output (facilitate learning). 

The following day, a colleague sends Marc a blog post critiquing how 
his news organisation has “erased black and minority ethnic winners at 
Cannes” by prioritising images of white celebrities. Reflecting back on 
his work process, he realises that only white celebrities were recom-
mended by the system and wonders in what way and to what extent the 
system’s recommendations impacted his decisions about which images 
to include. 

7.2. Scenario 2: Data-mining and visualisation system 

Interface designer Jo has been tasked with considering how to build 
explanations into a new ML-driven data mining and visualisation tool for 
investigative journalists that finds and displays connections between 
data. She is sat with Salim, who is describing his work process as he 
conducts background research on a story. Salim says: “I’m digging into 
the background of a well-known politician to find out more about his 
business dealings and the tool has pulled together this visual map that 
shows links to publicly available documentation that mentions him. See 
here (he points), the image shows clickable nodes denoting the person or 
company or ‘thing’ he’s mentioned alongside links to the source of the 
info. At first glance, it seems to suggest he’s tied to more than 20 offshore 
companies and several criminal figures.” Jo asks if he understands how 
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the system made these connections and if he trusts it. As he clicks on 
various links to published articles, public records, and data sets to 
explore further, he says: “I just treat these like tip-offs or suggestions of 
things I might want to look into. They might come to something after I 
check them out or they might lead nowhere but I don’t take it as given 
that what the system suggests is right. I’ve still got to do all the hard 
work checking out all of these leads and seeing what I can stand up and 
verify.” Salim thinks for a moment and is silent, before adding: “To be 
honest, I don’t know how it works really… I guess the AI is crawling the 
web and finding things and making links between things I haven’t seen 
before, but if a libel suit comes in I could hardly use the defence: ‘the AI 
did it!’” Using the ERT tool, Jo assesses this to be a high risk, high 
expertise, and low time pressure scenario. Though Salim made it clear 
that he was using the tool solely as a stimulus to point him in the di-
rection of potentially interesting information or highlight connections 
he might not have made, Jo notes that he pointed out the risks associated 
with the type of investigative work the tool is designed to support. The 
high-risk of making poorly substantiated claims leading to legal action 
and reputational damage suggests that allowing Salim to actively 
question the data and providing more information would be a good 
explanation strategy. In high-risk, low time-pressure situations like 
these, experts are highly motivated and are more likely to challenge 
their intuitions and explore more information (Svenson, 1979). High 
expertise suggests it would be beneficial to allow information search in 
an expert’s chosen way (e.g., by providing refinement tools) and 
providing access to ‘raw’ and ‘noisy’ data. Because this is a long-term 
project, Salim is under low time-pressure, which means supporting 
slow analytical thinking would be beneficial, by allowing him to 
manipulate the data and make comparisons (e.g., interactive models, 
simulations). 

Using the ERT tool, Jo sees that explainability interface design goals 
in this situation (high-risk, high expertise, and low time-pressure) 
should be to a) slow down decision-making process, b) support flex-
ible information search strategies, c) calibrate the perception of risk, d) 
facilitate pattern recognition/reduce cognitive load and e) support the 
ability to see ‘noise’ in data. Jo decides using an interactive explain-
ability interface where Salim would have to actively engage with the 
explanation would be suitable. This could be achieved, for example, by 
having to take an extra step to access it (slowing down decision-making 
process), being able to manipulate attribute values and observe how the 
output changes accordingly (support slow analytical deliberation), 
accessing additional information by selecting any data point/feature 
(flexible information search), and being given an option to explore 
multiple variants within categories using refinement tools (exploration 
of ‘noise’ in data). 

These scenarios illustrate how the ERT tool can guide designers to-
wards evidence-based assessments of the optimal approaches to plan-
ning explanation interfaces that do not flatten out explanations in a way 
that suggests a single approach is adequate. But it also indicates there is 
a limit to what can be achieved with the tool when situational profiles 
can be dynamic – how can explanations adapt and respond to the 
combination of cognitive aspects we have identified? 

8. Conclusion 

8.1. Future opportunities and limitations 

Having established the ERT tool and design approaches to guide 
expert users, the next steps for developing it as a tool for improved AI 
intelligibility, in the service of more accountable sociotechnical systems, 
involves application and research in the wild. We envisage in-situ 
testing, development and engagement across different contexts, as 
well as evaluation. 

Though it is out of scope in this article to elaborate in detail how a 
user-interface would look and work, we aim to support and strengthen 
the applicability of the ERT framework by conducting further research 

consulting interface designers and ML experts. Through this participa-
tory approach, we hope to distil further concrete design approaches and 
explainability techniques that could be linked to the segments of the ERT 
framework. In the future we also hope to explore the effect of using 
explainability that supports naturalistic decision-making strategies on 
the development of expertise. 

However, it is important to recognise the pressures facing organi-
sations that may wish to develop their own explainability interfaces, as 
these real-world factors can surface challenges and sometimes insur-
mountable constraints to applying frameworks such as the ERT. Time- 
pressures and gaps in expertise can hinder even those design and 
development teams with the best intentions. Though the framework 
offers a ‘shorthand’ for considering pertinent insights from cognitive 
psychology and human factors, any team using it would need to allocate 
time to scoping, in advance, the expertise, risk and time-pressure profile 
(s) of potential users. The ERT framework would also likely be one of 
several tools needed for any holistic analysis of the optimal explain-
ability approaches. 

By trying to replicate human decision-making strategies, we should 
also be careful to not transfer human biases into algorithm-supported 
decisions. Although expert decision-making has unique qualities, all 
humans are susceptible to the use of various imperfect heuristics. In our 
review we touched on several of these heuristics, suggesting how 
explainability could be used to avoid them. However, more research 
should be done to examine how enabling naturalising decision-making 
affects the transfer of these and other types of biases and heuristics 
that we have not covered here. 

8.2. Contribution summary 

This paper identifies several core ways in which the design of algo-
rithmic decision support systems fail to meet the cognitive needs of 
domain experts and argues for the importance of psychology-driven 
differentiated intelligibility support/design for expert users.  In sup-
port of this it highlights three core dynamics that most heavily influence 
the manner and type of explanation required, applies these to a worked 
example of an expert domain, and makes indicative suggestions for how 
designers might begin to think around the issues. 

Our work provides a novel approach to explainability in the decision- 
making context based on tailoring explanations to facilitate the use of 
experts’ naturalistic decision-making and sensemaking strategies. 
Drawing from human factors and cognitive psychology we illustrate 
how these strategies can be determined by the key factors of human 
expertise, risk and time. We develop a domain-agnostic conceptual 
framework that could inform explainability researchers and guide 
interface designers  by providing information about key decision- 
making strategies to be supported in any given decision-making 
scenario. 

The ERT framework was found to be practical and fit for purpose in 
the journalistic application area and potential in other domains. It offers 
a practical means of mapping significant contextual factors to appro-
priate approaches to explanation, and in this way provides a pragmatic 
starting point for interface designers to rapidly incorporate explanations 
that are most likely to meet user needs and improve system under-
standing. This will be of relevance to both explainability researchers and 
practitioners. 
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