

Edinburgh Research Explorer

Propagating Visual Designs to Numerous Plots and Dashboards

Citation for published version:
Khan, S, Nguyen, PH, Abdul-Rahman, A, Bach, B, Chen, M, Freeman, E & Turkay, C 2021, 'Propagating
Visual Designs to Numerous Plots and Dashboards', IEEE Transactions on Visualization and Computer
Graphics, vol. 28, no. 1, pp. 86-95. https://doi.org/10.1109/TVCG.2021.3114828

Digital Object Identifier (DOI):
10.1109/TVCG.2021.3114828

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Visualization and Computer Graphics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://doi.org/10.1109/TVCG.2021.3114828
https://doi.org/10.1109/TVCG.2021.3114828
https://www.research.ed.ac.uk/en/publications/da05fcf2-23d2-42eb-9cfe-d4f1f852db99

Propagating Visual Designs to Numerous Plots and Dashboards

Saiful Khan1*, Phong H. Nguyen2†, Alfie Abdul-Rahman3‡, Benjamin Bach4§, Min Chen1¶,
Euan Freeman5||, Cagatay Turkay6**

1 University of Oxford, 2 Redsift Ltd., 3 King’s College London, 4 Edinburgh University, 5 University of Glasgow, 6 University of Warwick

england, oxford, local_authority, ons, mortality, place_of_death, all_deaths, weekly,
care_home, elsewhere, home, hospice, hospital, other_communal_establishment

Keywords

Reference Visualization New Visualizations

......

Results for Propagation

Search

3
2

1

Fig. 1. Our novel propagation workflow makes it easy to propagate visual designs to numerous datasets. Reference visualizations
are created for data streams, which are associated with several keywords in our ontology. A search and activate process is used to
propagate the reference visualisation to other appropriate data streams. (1) Ontology keywords are used to construct a query in our
search UI for suitable data stream combinations. (2) Search results consist of ranked data stream combinations that match query
parameters, although some results may not be suitable for propagation. (3) A quality assurance step carried out by an expert ensures
the visual design is only propagated to suitable data, resulting in new visualizations that are immediately deployed as web pages.

Abstract—In the process of developing an infrastructure for providing visualization and visual analytics (VIS) tools to epidemiologists
and modeling scientists, we encountered a technical challenge for applying a number of visual designs to numerous datasets rapidly
and reliably with limited development resources. In this paper, we present a technical solution to address this challenge. Operationally,
we separate the tasks of data management, visual designs, and plots and dashboard deployment in order to streamline the development
workflow. Technically, we utilize: an ontology to bring datasets, visual designs, and deployable plots and dashboards under the same
management framework; multi-criteria search and ranking algorithms for discovering potential datasets that match a visual design;
and a purposely-design user interface for propagating each visual design to appropriate datasets (often in tens and hundreds) and
quality-assuring the propagation before the deployment. This technical solution has been used in the development of the RAMPVIS
infrastructure for supporting a consortium of epidemiologists and modeling scientists through visualization.

Index Terms—Visualization system, propagation, infrastructure, ontology, quality assurance, pandemic, emergency response.

1 INTRODUCTION

RAMPVIS [8] is a group of volunteers specialized in Visualization and
Visual Analytics (VIS), who answered a call to support the modeling
scientists and epidemiologists in the Scottish COVID-19 Response Con-
sortium (SCRC). One major challenge identified at the beginning (May
2020) was that there was a huge amount of data that epidemiologists
and modeling scientists in the SCRC needed to access rapidly but could
only do so via data files in a variety of inconsistent formats, requiring
time-consuming processing. In most cases, they had to create simple
plots using spreadsheet facilities, as they lacked the expertise and tools

*e-mail: saiful.khan@eng.ox.ac.uk
†e-mail: phong.nguyen@redsift.io
‡e-mail: alfie.abdulrahman@kcl.ac.uk
§e-mail: bbach@ed.ac.uk
¶e-mail: min.chen@oerc.ox.ac.uk
||e-mail: euan.freeman@glasgow.ac.uk

**e-mail: cagatay.turkay@warwick.ac.uk

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

to create visual designs tailored to their needs. Meanwhile, another
group of volunteers in the SCRC started developing a data infrastructure
for hosting captured data, as well as computational data resulting from
model testing, uncertainty analysis, and model predication. A subset of
VIS volunteers formed a generic support team focusing on providing a
VIS infrastructure coupled with the SCRC data infrastructure, while
other VIS volunteers gathered detailed domain-specific requirements
for analytical, model-developmental, and disseminative visualization,
and developed techniques for supporting these visualization needs.

Although the generic support team managed to bring together a large
cohort of UK-based VIS volunteers who could contribute to the design
and engineering of a VIS system for visualizing thousands of datasets,
the total programming resources in the team was less than one full-time
person. The team thus streamlined their development effort by compo-
nentizing different tasks in the workflow, from obtaining data streams
from the SCRC data infrastructure, to making visualization facilities
available to the end users. By July 2020, the team produced simple
plots and dashboards, and could semi-automatically propagate them to
numerous data streams of similar data types (e.g., propagating a plot
across data from all regions of a country). In this context, propagation
means binding a visualization function to numerous data streams to
deploy new interactive visualizations (as in Fig. 1). This helped shape

ar
X

iv
:2

10
7.

08
88

2v
1

 [
cs

.H
C

]
 1

9
Ju

l 2
02

1

the VIS infrastructure through rapid development with minimal cost.
However, since then, many more datasets have become available

and more complex plots and dashboards have been added to the VIS
infrastructure. The process of propagating these to new data streams
becomes more complex, requiring more advanced support and quality
assurance. While existing systems (e.g., Tableau or Power BI) provide
powerful user interfaces for creating plots and dashboards, they do
not provide a propagation mechanism for transforming the design of
a plot or dashboard with multiple data sources to many hundreds of
plots or dashboards with similar but less-well-defined data sources in
an efficient, scalable, quality-assured manner.

For example, as illustrated in Fig. 1, a stack bar chart was developed
by a VIS volunteer for juxtaposing six time series representing the
fatalities in different location types (e.g., care home, hospital) in a geo-
graphic region. As over 300 regions in the UK have similar time series
data, another VIS volunteer, a dedicated infrastructure manager, used
the existing stack bar chart as a template, searched for all possible sets
of six time series that match with the template, checked for errors in the
search results, and finally activated the propagation individually or in
groups. The result was several new interactive visualizations covering
all regions, created, deployed, and linked to other visualizations with
minimal development time and cost. In this paper, we present the devel-
opment of the VIS infrastructure that enables this cost-effective process
for propagating visual designs to numerous plots and dashboards.

Our main contributions include:
• A novel design of an ontology-based infrastructure for enabling

search for matching data sets;
• A streamlined workflow that helps deploy the limited program-

ming resources cost-effectively;
• A user interface designed for the infrastructure managers to

perform propagation operations;
Perhaps most importantly, we hope that our approach can be utilized
and adapted in future VIS efforts in emergency situations.

2 RELATED WORK

2.1 Automatic Visualization
Zhu et al. [41] presented a review on automatic tools and systems for
generating visualizations. In their review, they divided the tools and
systems into four different types: (i) tools that require programming and
visualization knowledge, such as D3.js [5] and Vega-Lite [30]; (ii) tools
that utilize a visual building step, e.g., Charticulator [28] and Lyra [29];
(iii) systems and tools that are semi-automated are require some form of
user interaction for generating visualizations, such as Voyager [36] and
Show Me [26]; and (iv) automatic visualization generation tools and
systems that are designed for users who are not experts in programming
or visualization, e.g., Text-to-Viz [11] and Click2Annotate [10]. We
extend this classification, contributing a novel infrastructure and visual
design pipeline that takes a visualization created by a designer and
semi-automatically propagates it across a large data infrastructure.

Brodlie et al. [6] presented a survey on a range of visualization appli-
cations requiring infrastructural support. Building on the emergence of
autonomic computing as a new research agenda at that time [19], they
envisaged the need for introducing adaptive and autonomic techniques
for managing VIS infrastructures. They started a discussion around
infrastructure requirements for such systems, which we contribute to
here through our infrastructure design and algorithmic support for visu-
alization. Grammel et al. [16] presented a short survey of visualization
construction user interfaces systems dividing the systems into six dif-
ferent approaches of: visual builder, visualization spreadsheet, textual
programming, visual dataflow programming, template editor, and shelf
configuration. Our propagation pipeline approach is a novel extension
of the “visual dataflow programming” approach in their classification.

Several tools for generating visualizations automatically have been
explored in the literature, of which we give a brief overview. Mackin-
lay [25] presented one of the first tools that automatically generates
visualizations of relational information, such as bar charts, scatter plots,
and connected graphs. Their approach is ideal for domains with easily
defined semantics, although is impractical for a problem domain as
complex and ever-changing as the response to a pandemic. Mackinlay

et al. [26] described Show Me, user interface commands integrated
into Tableau that provide automatic views during the visual design
workflow, part of a user-centric approach to visualization generation.

Falconer et al. [14] presented an approach for generating customized
visualizations through ontology mapping. Sun et al. [33] demonstrated
Articulate, a novel conversational approach to visualization genera-
tion. Their system combined natural language processing and machine
learning methods to enable the translation of imprecise sentences pro-
vided by the user into explicit expressions, which then automatically
create a visualization through a heuristic graph generation algorithm.
This aimed to simplify the visualization process by allowing users
to describe what they wanted to see, without needing to know how
to implement the visualization themselves. Cui et al. [11] also ex-
plored a natural language approach to visualization generation; they
demonstrated an automatic approach for generating infographics from
natural language statements – the statements are converted from simple
proportion-related statistics to infographics using pre-designed styles.

Automatic visualization approaches can be extended beyond single
visualizations to more narrative forms of information dissemination.
Shi et al. [32] presented Calliope, a system for automatically generating
visual data stories from a spreadsheet. Their system progressively
generates story points using a Monte-Carlo tree search algorithm, then
assembles these into a single data story. Tang et al. [34] described
PlotThread, an AI-assisted system for designing storyline visualizations.
Their system provides an AI agent that works alongside the user to
collaboratively produce a visual design, one of many examples of
AI-assisted visualization generation systems [37].

Users are generally trusting such (semi-)automatically produced
visualizations [40]. Using such systems can lower the entry costs to
visualization by simplifying the design process for the end user, or by
taking them out of the loop entirely. However, as we will discuss in
Section 3, a new approach was needed when creating a VIS infras-
tructure where bespoke visualizations (e.g., for epidemiologists and
modeling scientists) needed to be rapidly deployed across a significant
data infrastructure in a fast and cost-effective way.

2.2 Ontology-Supported Visualization

Ontologies can be a powerful tool in a data infrastructure, supporting the
creation of visualizations through their structured representation of data,
concepts, and relations [9]. Ontologies and their encoded knowledge
may also need to be visualized and there are many techniques for doing
this. In this paper we focus on the use of an ontology to support visual
design, rather than visualizing an ontology. For an overview of the
latter, see surveys by Katifori et al. [18] and Dudáš et al. [12].

Carpendale et al. [7] presented a viewpoint on ontologies in bio-
logical data visualization, taking inspiration from their widespread
use in biology research. They reflected on the technical challenges of
ontology-based visualization in this domain and identified promising
future research directions for the visualization community. Among
these were ontology-supported visualization generation, leveraging the
structure of an ontology to simplify visual design and exploration.

Ontology-supported automatic visualization was explored by Gilson
et al. [15], who presented an pipeline approach that combined ontology
mapping and probabilistic reasoning to produce new visualizations.
Their SemViz system exemplified this process, using three ontologies
to automatically visualize music chart data. Khan et al. [21] used an
ontology in an enterprise search system to capture search provenance,
using the ontology to visualize collaborative search graphs.

Yu and Silva [38] presented VisFlow, a visualization framework
where a data flow diagram is used to support exploration and visualiza-
tion of tabular data. Whilst this work did not use an ontology, its use of
structured data representation for visualization is relevant and shows
the value in using such representations to support the creation of new
visualizations. Their FlowSense system [39] extends this with a natural
language interface for editing the data flow diagrams. Its semantic
parser with special utterance tagging and placeholders are used to allow
generalization to different datasets and data flow diagrams, simplifying
visualization creation for the end user.

Our work uses an ontology to support the creation of new visualiza-
tions. We leverage the ontology in our data infrastructure to support
propagating visual designs across many datasets, through a search-and-
review workflow. Our streamlined workflow reduces the time-cost and
volunteer effort necessary to scale the RAMPVIS system and support
its domain experts with new visual designs.

3 PROBLEM STATEMENT AND SYSTEM OVERVIEW

When the VIS volunteers first joined the SCRC effort for combating
COVID-19 in May 2020, the SCRC data infrastructure was under de-
velopment. From some example datasets in spreadsheets, we were
overwhelmed by the amount of data. There were time series for differ-
ent regions, genders, age groups, key indicators (e.g., number of tests,
number of ICU patients, etc.), fatality locations (i.e., care homes, hos-
pitals, etc.). There were different models being developed and tested,
each of which would produce several time series for different transition
states, and hundreds of multiples of such time series for uncertain or
sensitivity analysis. Meanwhile, analytical algorithms, e.g., for com-
paring different datasets, were expected to result in even more datasets,
potentially in a combinatorial manner. The scale of such an operation
was already significant and would only grow over time.

Although the RAMPVIS generic support team consists of all VIS
volunteers who offered to help engineer VIS systems and support others
in the SCRC, there was only a very limited amount of programming
resource: four VIS volunteers, about 2–15 hours per week per person,
totaling 20–30 person-hours per week. Due to the nature of volunteer-
ing, we also had to assume that some VIS volunteers might become
unavailable from time to time. This required us to devise a highly cost-
effective approach, technically as well as operationally. We considered
several optional approaches:
• Using an existing platform that would allow us to create plots and

dashboards without programming. � We could not use this approach
because (i) the generic support team had to implement novel and
nuanced visual designs produced by other teams [8]; (ii) we did
not have any funds to purchase a server license and consultancy for
database connection; and (iii) creating and managing numerous plots
and dashboards would be challenging.

• Programming plots and dashboards with a UI for browsing suitable
data. � We did not use this approach because (i) it burdens domain
experts with browsing hundreds or thousands of data streams; (ii) it
burdens each VIS volunteer with knowing all relevant data streams,
programming interaction, and being responsible for the full data
and visualization pipeline; and (iii) it would demand substantial and
consistent availability of resources.

• Programming with an advanced development framework (freeware).
� We tried this approach for two weeks but stopped because (i) we
realized that only one person was knowledgeable about the suggested
framework and libraries, and the learning curve for other volunteers
was too high; and (ii) we had doubts about how this would scale to
numerous plots and dashboards.

• Programming reference plots and dashboards using a familiar plat-
form and developing an infrastructure to propagate reference visual
designs to work with all similar datasets. � After some discussion,
we took this approach because (i) each developer needed to cover a
narrow spectrum of software development, facilitating a streamlined
workflow; (ii) because all developers knew D3.js, development could
start immediately without the burden of retraining or raising funds;
and (iii) it reduces the development time for producing hundreds of
plots and dashboards, ideal for a time-critical volunteer effort.
Within two months the team developed several plots and dashboards

and were able to propagate all plots with a single data stream. While
this rapid development helped convince domain experts in the SCRC to
make VIS the fourth pillar in combating COVID-19 (in addition to data,
models, and policies), it also encouraged our team to develop more
advanced propagation methods for more complex plots and dashboards.

Fig. 2 gives an overview of the main VIS infrastructure components
and illustrates the overall workflow, from obtaining data, to creating
plots and dashboards, to propagating these across all datasets and
making them available to the domain experts. There are three main op-

erations in the workflow overseen by VIS volunteers with distinct roles:
data manager, visualization developer, and infrastructure manager:
1. Obtaining data streams—Fig. 2 (1): When a new data product

needs to visualized, a data manager writes a manifest to obtain data
streams, assigns appropriate keywords, and enters metadata into
the ontology via a simple web form.

2. Writing VIS functions—Fig. 2 (2): A VIS function is an imple-
mentation that visualizes data streams in a single web page, e.g., as
a plot or dashboard. When domain experts require new designs, a
visualization developer is given a code template, implements the
visual design and binds with reference data streams, creating a
reference visualization accessible as a new web page.

3. Propagating to other streams—Fig. 2 (3): An infrastructure man-
ager uses our search UI to find data similar to the reference data
in a VIS function then activates propagation for appropriate results,
propagating that design across numerous data streams.
These operations that are performed by VIS volunteers are supported

by key technical components of the infrastructure:
a. Download agent—Fig. 2 (a): Periodically obtains data streams

from the SCRC data infrastructure without human input.
b. Ontology—Fig. 2 (b): A knowledge representation of data

streams, VIS functions, and their combinations as web pages.
Supports search activities during propagation and general use for
supporting the domain experts’ activities.

c. Web-based visualization service—Fig. 2 (c): Hosts numerous
visualization plots and dashboards in a scalable manner.

d. Algorithmic support—Fig. 2 (d): Supports propagation by
searching for similar data streams registered in the ontology, rank-
ing similarity levels, and ordering the search results.

e. Propagation service—Fig. 2 (e): Propagation is supported by a
specialized UI for searching and activating propagation.

Components (a)–(c) are essential parts of the VIS infrastructure, but
were enhanced to support components (d) and (e) which were specially
developed for propagating visualizations. All components have been
developed as open-source software and the code is available [20,22,23].
The design and development of (d) and (e) took 200∼400 person-hours.

3.1 VIS Infrastructure Ontology
In our VIS infrastructure, an ontology is used to organize data and
visualizations, and to support propagation.We argue that an ontology is
a suitable method to deal with the sheer number of diverse data streams
and visualisations that we have in our problem context. Considering
also that the set of data and designs are constantly evolving over time,
a well-designed ontology not only forms the basis of the infrastructure
design but also provides versatile and robust means to manage the
propagation process. Fig. 3 shows a schema of our ontology. OntoData,
OntoVis, and OntoPage are the three main classes, representing data
streams, VIS functions and web pages, respectively (as in Fig. 2).
The ontology is implemented as a graph data structure: objects are
mapped to nodes, relationships between objects are mapped to edges,
and directed edges distinguish start/end nodes. In the following sections,
we discuss data streams (Section 4), visualization functions (Section 5),
and our novel propagation process for binding these to create new
visualizations (Sections 6 and 7).

4 DATA STREAM

Data streams are units of data in our infrastructure, with associated
keywords and metadata. Our infrastructure provides access to data
streams via a RESTful API. The OntoData class in our ontology stores
registered data streams and their attributes (see Fig. 3). From these
attributes, endpoint, description, and keywords are most relevant: the
endpoint is an RESTful API endpoint used for accessing the data;
the description should describe the data and is used for search and
discovery; and the keywords describe the stream contents, and are used
for searching, grouping, and propagation.

We create data streams using data from the SCRC infrastructure [31],
which includes a wide range of COVID-19 data. SCRC data is orga-
nized into data products (e.g., testing, hospital, mortality), each further
divided into components (e.g., deaths per council area, deaths per age

...ontology

Va

Pa

Vb

Pb

Da1 Db1 Vc

Pc

Dc1 Vx

Px

Dx1Vd

Pd

Dd1

data product

dow
nload

agentD1 D3D2

data streams

+

{ keywords, metadata }

1

reference binding

Va Da1 DanDa2 ...{ }

VIS function

Va2
results

D1 DnD2 ...{ }
D1 DnD2 ...{ }

D1 DnD2 ...{ }

search query

propagation

service

propagation

Px

3
e

a

b

VIS

developer

infrastructure

manager

data

manager

algorithmic support web pagesdata streams VIS functionsd c

Fig. 2. An illustration of our streamlined workflow, data infrastructure and VIS volunteer roles. (1) When new data products become available,
a developer writes a manifest to extract data streams, add them to the ontology (b), and keep data up to date via a download agent (a) that
periodically queries the data product for new data. (2) When a new visualization is needed, a developer creates a visualization function (e.g., in
D3.js) using a template and binds it to reference data stream(s) in the ontology; this new visual design is accessible as a web page, visualizing
the reference data. (3) To propagate the reference visualization to other related data streams, the infrastructure manager uses a search UI to
find suitable data streams then performs quality assurance on search results, produced by algorithmic support (d). When a decision is made
to propagate a visualization function to data stream(s), a propagation service (e) operates using the ontology. Propagated visualizations are
immediately published as interactive web pages (c) for domain experts. The supplementary video walks through this workflow.

OntoPage

+ id: UUID

+ ontoVisId: UUID

+ ontoDataIds: Array<UUID>

+ ontoPageIds: Array<UUID>

+ date: Date

P OntoData

+ id: UUID

+ endpoint: String

+ description: String

+ keywords: Array<String>

+ dataType: Enum

+ date: Date

D

OntoVis

+ id: UUID

+ visFunctionName: String

+ description: String

+ type: Enum

+ dataTypes: Array<Enum>

V

1 1..N

10..N

1

1..N

Fig. 3. Schema showing the core classes in our ontology and their
relationships to each other.

group). To fetch data, a VIS volunteer writes a download agent to ex-
tract data from the SCRC infrastructure and transform it if needed (e.g.,
to normalize per 100,000 people). Relevant keywords are assigned,
then the stream is registered in our ontology. Data products are updated
periodically by SCRC, so download agents update data daily.

Data streams can be searched using the OntoData description and
keyword attributes, in O(n) time. To improve efficiency, the Lucene [4]
open-source text search engine is used to create an inverted index [27]
that maps description and keywords attributes to their matching in-
stances. The inverted index is a hash map-based data structure, allowing
searches in O(1) time complexity. An indexing agent periodically scans
the ontology database logs for changes and keeps the index updated.

Description fields are broken into individual words, 2-grams and
3-grams for indexing. The words and their n-grams support partial
matching in a search and allow hints while typing queries, simplifying
infrastructure manager operations. For example, a description with
“positive cases” would have all its components indexed: “positive” and
“cases”; a query for either word would return this string. Keywords are
indexed as-is and are not broken down for partial matching.

5 VISUALIZATION FUNCTIONS

5.1 Visual Design Workflow
In our infrastructure, a VIS function is an implementation of a visual
design (e.g., plots, dashboards). These functions are created by a VIS
volunteer using familiar libraries (in this instance, D3.js [1]). The
OntoVis class in our ontology stores visualization functions and their
attributes (see Fig. 3). From these attributes, visFunctionName is most
important: this is an identifier for a Javascript function that will create

an interactive visualization for given data streams.
A visualization function will be linked to a set of data streams and

rendered on a web page for domain experts and visualization viewers.
The OntoPage class in our ontology represents a web page, establishing
a link between one VIS function (an OntoVis instance) and a set of
data streams (one to many OntoData instances), as shown in Fig. 3.
Note that each OntoPage instance may also be linked to other OntoPage
instances; for example, a dashboard may show several plots and be
linked to their individual OntoPage instances.

When a VIS developer needs to implement a new visual design (e.g.,
to support domain expert requirements), they liaise with the infrastruc-
ture manager, who will: (1) create an OntoVis instance, registering
the function in the ontology; then (2) create an OntoPage instance, by
binding the new OntoVis instance to an appropriate set of reference
data streams (i.e., instances of OntoData). The new OntoPage instance
results in a web page ‘template’ with placeholder code that the VIS
developer can use to implement the visual design. The reference data
serves two purposes: providing test data for the developer to support
implementation, and providing an initial binding between the VIS
function and data streams in the ontology.

Our visual design workflow is based on the core concept that visual-
ization implementation is decoupled from the rest of the infrastructure.
When the infrastructure manager creates the reference ‘template’ in
the ontology, it appears in the development instance; VIS developers
then implement their VIS function and push their code to the repos-
itory, making it available immediately. This streamlines the process
because developers do not need to know about, or work directly with,
the underlying data infrastructure. This makes our approach suited
for volunteering operations. It also facilitates efficient propagation for
producing numerous plots and dashboards with minimized time-cost.

5.2 Creating Web Pages
Each OntoPage instance in our ontology yields an interactive web
page that domain experts can use to access a plot or dashboard. Our
implementation uses the Flask Jinja template engine [2] to extract
information from an OntoPage instance and generate a web page:
1. Title and description are extracted from OntoPage attributes;
2. HTTP requests fetch data from each OntoData API endpoint;
3. The visualization function is identified from the OntoVis instance

and its JavaScript object is retrieved from an object factory;
4. The visualization function is called with the fetched data streams,

rendering the visualization on the page;

5. If the OntoPage is linked to other OntoPages, these attributes create
hyperlinks to their web pages.

Fig. 4. Example dashboards for Scotland and a regional health board.
The nation cartogram links to dashboards for the health board regions.

5.3 Template-Based VIS Function Design

Our template-based approach to visualization implementation supports
a variety of visual designs, which we categorize as plots (single vi-
sualizations) or dashboards (bespoke composite visual designs with
multiple plots, annotations, etc). We briefly discuss how these are
implemented in our infrastructure.

Plots—We implement a variety of visualizations (e.g., line chart, bar
chart, area chart, chord diagram, matrix, map) for many different data
types (e.g., time series, cumulative time series, matrix, geographic data).
Our infrastructure and propagation process is agnostic to the detailed
visualization design and implementation, so is able to accommodate all
of the domain experts’ visualization needs.

Plots can visualize multiple data streams, as illustrated in Fig. 1.
In that example, a stacked bar chart shows weekly location of death
in a region of England, with a unique data stream for each of the
six locations. The relationships between the VIS function and its
six data streams are in the ontology (via the OntoPage instance). By
implementing plots in this way, a single VIS function can be propagated
across hundreds of data streams. As shown in Fig. 1, we created this plot
with reference data streams from Oxford (left plot), then propagated
that single function to all regions in England (e.g., Birmingham, City
of Bristol, and Westminster in the right plots). When this propagation
occurs, each data stream needs to be replaced by the appropriate data
stream for the other regions (e.g., replacing Oxford deaths in hospital
with Birmingham deaths in hospital).

Plots may also have links to other plots (OntoPage→OntoPage). For
example, a plot showing small multiples of COVID-19 patients in ICU
of all national health boards can link to each health board.

Dashboards—As well as individual plots, our approach is also ca-
pable of supporting composite dashboards with several complementary
plots drawing from different data streams. Dashboards summarize
important data about multiple data streams, such as current data and
trends from recent days. Dashboards serve the following purposes: (i)
they provide quick access to frequently-used plots; (ii) they provide
rapid access to critical information to inform daily decision making
(e.g., deciding to call an emergency meeting, or checking if model

predictions match current data); and (iii) they avoid unnecessary search
activities, simplifying decision making and review processes.

Fig. 4 shows two of our implemented dashboard visualizations.
These summarize data from all of Scotland (top) and one region of Scot-
land (bottom). Each dashboard has been carefully designed to give an
immediate and accurate overview over relevant data, satisfying domain
expert requirements. Importantly, each component in a dashboard is
linked to the corresponding web page for the individual plot: a viewer
can click any of the numbers, arrows, or trend charts to open the full
detail view. The cartogram in the nation overview (top) shows each of
the NHS Scotland health boards; each region in the cartogram is linked
to the dashboard for that health board region, so that clicking a region
will lead to regional dashboard, e.g., NHS Lothian in Fig. 4 (bottom).

In total we designed five dashboards each centering about a specific
topic such as: a particular region a nation in the UK, hospitals, schools,
places of death. Using our propagation mechanism we can propagate
these dashboard designs to all Scottish regions, ensuring that each data
stream is replaced by the appropriate data stream for the other region.

Dashboards are implemented using the same process as individual
plots. Each dashboard has an OntoPage instance, a single VIS func-
tion that produces the visual design and page layout, and a set of all
associated data streams. Each component in the dashboard is linked to
its individual visualization web page: e.g., New Cases in the Nation
Overview is linked to the web page visualizing daily cases and the
cartogram regions in Nation Overview are linked to the web page for
the regional dashboards. These links are stored in the OntoPage at-
tributes and are linked by the VIS function. Consequently, propagating
dashboards is more complex than propagating simple visualizations, as
the data streams and links need to be correctly matched.

6 PROPAGATION SERVICE

In our ontology (Fig. 3), OntoPage objects create a binding between
visualization functions (OntoVis), data streams (OntoData) and other
web page links (OntoPage). VIS functions can be propagated to other
relevant data streams and links, a process that results in new OntoPage
instances with the same VIS function and a new set of data streams
and links. This is a novel aspect of our ontology-based approach
to visualization, as existing VIS functions can be used to visualize
numerous data streams, without any action from VIS developers.

Propagating a VIS function to generate plots and dashboards for
other data streams is not straightforward. This requires actions from
the infrastructure manager to ensure all appropriate data streams are
correctly mapped and linked in the propagated visualizations. Whilst
visual designs in our system are implemented by volunteer VIS devel-
opers, the infrastructure manager is a volunteer responsible for overall
infrastructure management and visualization propagation. The infras-
tructure manager faces several challenges: (i) there are numerous data
streams in the infrastructure and knowing which streams are available
is difficult; (ii) some plots and dashboards have multiple data streams
and links that need to be correctly matched, but searching for match-
ing data streams and links is a group-based multi-criteria decision;
(iii) when there are many possible matching results, quality-assurance
is a mission-critical and demanding task.

Our propagation workflow (Fig. 2) has two tasks, carried out by the
infrastructure manager: first, they need to formulate a query for data
streams that can be part of a sensible binding with the chosen visual-
ization; second, they must perform ‘quality assurance’ by reviewing
search results, to determine whether to propagate the visualization and
have it published. Our system has a search user interface to support
these two tasks, which we now discuss separately.

6.1 User Interface for Search and Ranking
When a VIS function needs to be propagated, the infrastructure manager
first needs to search for appropriate data streams. We have a significant
number of data streams (e.g., dozens of metrics stratified by dozens
of local authority regions) and reviewing every permutation of data
streams for a new visualization will be time-consuming and impractical.
The search process and user interface aims to help the infrastructure
manager find good candidates for propagation. An effective search

Fig. 5. Screenshot of the search user interface with an example query
consisting of keywords for six data streams about weekly mortality rates
in England. Keywords can be quickly added to a query via the search UI.

interface will help with quality assurance by reducing the potential for
inappropriate bindings, reducing the volunteer time-cost. It will also
help reduce the workload required to disseminate new visualizations,
especially as the system scales with new data streams and more complex
visualizations (e.g., dashboards with several plots).

Search and result ranking operates on keywords in the ontology.
Since every VIS function is defined with reference data streams, our
system extracts keywords from those references and uses them to search.
When starting a new search for a chosen visualization function, the
infrastructure manager is shown the keywords for the reference visu-
alization and data streams (as in Fig. 5). There are four search bars
for building a query: for identifying keywords that (1) must appear
in every data stream, (2) must appear at least once within a group of
results, (3) must not appear, and (4) for limiting data types.

Clicking on a keyword in the list of reference data streams will add it
to the first search bar (i.e., must appear in every stream) and subsequent
clicks will move them to the next bar, cycling through the three keyword
criteria. Keywords are shown with a colored background, both in their
original location and in the search bar (e.g., Fig. 5): dark green means
the keyword is in every stream, pale green means a keyword must
appear at least once in a group of results, and a red border and text
means a keyword must be excluded. Keywords may be excluded
because they are expected to vary or be omitted (e.g., when propagating
a dashboard for one region to other regions). Data type filters are shown
in their own search bar with a blue background.

Overall, this user interface supports query construction by using a
visualization’s reference data binding as the ‘template’ for building
queries from ontology keywords. This reduces the need for text entry
and ensures keywords are entered correctly. The user interface visu-
alizes the search parameters in situ in the reference visualization by
highlighting keywords in its data stream(s), helping the infrastructure
manager verify the search criteria are formulated correctly. Search
results are then presented in ranked order. Parameters for the ranking
algorithm can also be adjusted via the UI if necessary, e.g., to specify
the required number of matching keywords within a group of streams.

6.2 User Interface for Quality Assurance
Search results are presented with grouped and highlighted keywords so
the infrastructure manager can see at a glance if a visualization function
should be propagated to a set of results. This quality assurance is
necessary to ensure that visualization functions are only propagated and
published if they are appropriate for the underlying data. Importantly,
this only happens once for each visualization function and data stream
permutation: once a visualization is propagated and a new binding
has been established, no further review is required. This allows the
system to scale, without the need for frequent and time-consuming
quality assurance. Downloader agents and propagation agents ensure
visualizations on web pages are automatically kept up to date.

Having a human in the loop is vital as this is a complex decision
process. The infrastructure manager needs to evaluate each search
result. For a visualization for a single data stream, this is a straightfor-
ward check to decide if the data types match and the data would make
sense for that visualization. For complex visualizations of multiple data
streams (e.g., regional or national dashboards, multi-series plots), this
requires more nuance. Data streams, types, and ontology keywords
must be compared with the vis. function reference data streams, to

Fig. 6. Screenshot of the search results user interface for propagation
quality assurance, showing three results with six data streams (for the
Fig. 5 query). Keywords are grouped and highlighted by match type,
so the infrastructure manager can glance at the results keywords and
decide quickly if propagation should be activated (via the tick icon).

decide if propagation makes sense for each permutation of streams.
Propagation only takes place once; i.e., if a visualization is propagated
to a set of data streams, then that result is not shown in future.

Our search result user interface helps the infrastructure manager
make these decisions using keyword grouping and highlighting. Whilst
our search and ranking process reduces inappropriate matches, there
is still a considerable amount of results to review. A good user inter-
face thus has a large positive impact on reducing workload, which is
important when dealing with data and visualizations of this nature.

Fig. 6 shows how search results are presented. Each result is a set
of data streams that satisfy the query constraints. Each data stream is
shown with its keywords, data type, and description. Keywords have the
most significant influence on infrastructure manager’s decisions about
whether to propagate a visualization to a set of data streams, so we
structured the keyword presentation to facilitate efficient comparison
between the visualization reference data keywords and the result data
stream keywords. If keywords appear in all reference and result streams
they are not shown, since their presence is implicit from the query.
Keywords that do not appear in the reference streams are shown first
with a gray background to help identify differences. If keywords match
a query term and appear in the correct order, they are shown with a pale
green background. By grouping and presenting keywords like this, the
infrastructure manager can decide if propagation should occur.

As an illustrated example, Fig. 6 shows three search results for a
query (shown in Fig. 5) for a stacked bar chart with six data streams
(shown in Fig. 1). Each result is a set of six data streams that meet the
query constraints. The first column shows keywords that do not match
the query terms, highlighted in gray. In the three search results, these
unmatched keywords are for three other regions of England, so it is
expected that they do not match query terms, as we want to propagate
this design to other regions. In this example, the visualization shows
data per region, so the infrastructure manager will see that these data
streams are grouped by one region and valid for this visual design.

The second column shows keywords that matched query terms. In
the first two results, all keywords in the second column are green,
showing a complete match: these keywords appear in the query and
correspond with the ordering in the visualization reference. Since these
two results are correctly grouped by region and the data streams match,
the infrastructure manager would choose to propagate (using the green
check-mark icon). In the third result, all six keywords match the query

UI

extract reference data streams

extract data stream type and keywords

search for matching data streams

create list of data stream groups

rank data stream groups

sort data stream groups

VIS function

list of data streams

list of data stream groups

search parameters,

data types, keywords

ordered list of data streams

a

1

2

3

c

b

d

e

infrastructure manager

Search
Q

uality A
ssurance

Fig. 7. A flowchart showing the search and ranking process. When the
infrastructure manager selects a VIS function (a), its reference data
streams and their attributes are retrieved and shown in the search UI.
They then construct a query (b) by clicking on, or manually entering, key-
words then search. Search algorithms find matching data streams (c),
create stream groups (d), sort them, then present an ordered list (e)
through the results UI, highlighted to support fast visual scanning.

terms, but the last two appear in the incorrect place (and are highlighted
gray to show this). Propagation should not take place for this result, as
some data would appear incorrectly.

7 PROPAGATION TECHNICAL INFRASTRUCTURE

Our propagation process is supported by a technical infrastructure of
search, grouping, and ranking algorithms. Fig. 7 shows the operations
and algorithms underlying the search and quality assurance interfaces
described in the previous section. When the infrastructure manager is
ready to propagate a VIS function, its reference data stream keywords
and metadata are extracted from the ontology.

Those reference data streams, keywords, and metadata are presented
in the search UI (Section 6.1), to help the infrastructure manager con-
struct their query. Keywords are assigned one of three categories: must
appear in every stream, must appear at least once within a group of
streams, or must be excluded. Additional keywords and search terms
can also be provided via the search UI.

When the query is ready, a series of algorithms process all data
streams in the ontology. There are three algorithms: Searching (Fig. 7–
(1)), Grouping (Fig. 7–(2)), and Ranking (Fig. 7–(3)); the final sorting
process is trivial based on ranks. By searching then sorting results in the
quality assurance UI (Section 6.2), the infrastructure manager is shown
the best candidates for propagation at the top of the search results.

In the following sections we discuss the Searching, Grouping, and
Ranking algorithms. We focus on plot propagation as a simple example.
When propagating a plot that consists of several data streams, the
priority is to find matching data stream groups such that the semantic
ordering of streams is correct (e.g., so that the correct categories of data
appear in the same order). Propagating a dashboard is more complex,
because web page links (i.e., OntoPage instances) also need to be
grouped and ordered correctly. This is a more complicated process,
which we describe in the supplementary material.

7.1 Data Stream Search
Keywords are important when searching for data streams, as they are
used to identify similar data streams appropriate for the chosen visual
design (e.g., the plot or dashboard being propagated). Once a query is
constructed in the search UI, it is converted into the declarative query
language DSL [13], for searching the database underlying the ontology.

As an illustrated example, consider Fig. 1. This shows stacked bar
plots of regional weekly mortality data in England, which is split into
six location types (care home, communal establishment, elsewhere,
home, hospice, hospital) and provided for 336 regions. The Reference
Visualization is for the Oxford region. Underlying this is an OntoPage
instance, linked to the OntoVis instance for the VIS function and six
OntoData instances for Oxford’s mortality data streams.

Suppose the infrastructure manager wishes to propagate this plot to
the other 335 regions of England. They construct the query shown in
Fig. 5 which specifies: keywords that must appear in every data stream
(e.g., england, weekly, mortality, place of death, etc), keywords that
should appear in at least one data stream in the group (i.e., keywords
for each place of death); keywords that should be excluded (i.e., for the
Oxford region). It also specifies stream data type (i.e., time series).

Let the reference data streams for the visualization function be
R1,R2,R3, . . . ,Rk (where k = 6 reference streams). We search for all
data streams in the ontology that match the search criteria using the
specified keywords. This results in a set of m discovered data streams
D(i,1),D(i,2), . . . ,D(i,m). In total, there are m = 335 sets of data streams
(and each set containing k data streams) discovered by our search
algorithm, for all regions of England excluding Oxford.

7.2 Data Stream Grouping
The reference data streams for a visualization function form a group,
where the order of data streams is important. Let the reference data
streams be R1,R2, . . . ,Rk; we would like to create similar groups that
match this. Discovered data streams (total n) therefore need to be
grouped in a similar way to the reference streams. In our example from
Fig. 1, there are over 300 groups taken from thousands of data streams
matching the query and, inevitably, there will be unwanted streams in
the ontology that are discovered by the search algorithm.

Our grouping algorithm constructs groups from discovered data
streams, aiming to maximize similarity with the reference stream group,
outlined in Fig. 8. To do this, we compute two similarity matrices, Srd
and Sdd , which are of size k×n and n×n respectively. We compute
a similarity measure γ(Ri,D j) (i = 1..k, j = 1..n) for each discovered
data stream D j. We compute another similarity measure λ (Du,Dv)
(u = 1..n,v = 1..n) for each pair of discovered streams Du and Dv.

The similarity functions γ() and λ () consider the similarity between
data type, keywords, API endpoint and the description field. API
endpoint and description similarity is computed using a text comparison
algorithm, data type similarity is simple string matching function, and
keyword similarity is based on comparison of sets. The three similarity
measurement algorithms and computation of Srd and Sdd are provided
as Supplementary Material.

After computing the similarity matrices, the grouping algorithm
examines the set of discovered data streams D1,D2, . . . ,Dn and finds
all permutations that meet a set of grouping requirements. Given a
subset of data streams [D′1,D

′
2, . . . ,D

′
k]⊂ [D1,D2, . . . ,Dn], the grouping

requirements are defined using both similarity matrices Srd and Sdd :
1
k

k

∑
i=1

γ(Ri,D′i)> Tgroup ∧ ∀i = 1..k, γ(Ri,D′i)> Tstream

∧ 2
k(k−1)

k−1

∑
i=1

k

∑
j=i+1

λ (D′i,D
′
j)> Sallpair

∧ ∀i = 1..k, j = 1..k, i 6= j, λ (D′i,D
′
j)> Spair

where Tgroup, Tstream, Sallpair, and Spair are control parameters defined
by the infrastructure manager. As a result, the grouping algorithm gives
m groups G1,G2, . . . ,Gm, each with k data streams.

Grouping Data Streams. In Section B of the supplementary mate-
rial, we described two grouping algorithms, each with certain trade-offs.
Algorithm 1 is based on a brute-force approach, which iterates through
each row of the similarity matrix Sdd to find the k closest elements,
and keeps iterating until all m groups are discovered. This works well
in a situation where there exists exactly k closest elements in each row.

Algorithm 2 is based on a graph spectral method described in [24].
Graph spectral methods are applied to divide a graph’s closest vertices
into equal size components. The similarity matrix Sdd can be seen
as an adjacency matrix of a weighted undirected graph: each element
of Sdd represents a node of the graph, and the similarity between any
two elements is the weight of an edge between them. This algorithm
takes Sdd as an input and returns m different groups G, and each group
containing k data streams. This algorithm performs efficiently when
the matrix is sparse and there exists only a small number of clusters.

1

Sort groups

score
2.5 2.4 2.4

score
2.4 2.5 2.4

G

‘

Group3

Order each group’s data

streams and rank groups

D1

D7

D8

D2

D3

D10

D11

D4

D5

D9

D12

D6

D4

D11

D10

D3

D1

D7

D8

D2

D5

D9

D12

D6

D1

D7

D8

D2

D4

D11

D10

D3

D5

D9

D12

D6

2
Σ

Σ
4 5

G

Fig. 8. Illustrates an example grouping, ordering and ranking workflow with four reference data streams (R1, R2, R3, R4) and 12 discovered
data streams (D1, D2 ... D12). (1) We derive a similarity matrix Srd measuring similarity between reference data streams and discovered data
streams. First we derive feature vectors from reference data streams (e.g., API endpoint r(a), description r(d), keywords r(w), and data type r(t)) and
discovered data streams (e.g., API endpoint d(a), description d(d), keywords d(w), and data type d(t)). Next, we compute a pairwise similarity matrix:
ω(r(a),d(a))), ω(r(d),d(d)), ψ(r(w),d(w)), and φ(r(t),d(t)). Finally, we aggregate by taking a weighted average of the matrices. (2) We derive the
similarity matrix Sdd for discovered data streams using a similar process. (3) Grouping algorithm group similar data streams into uniform groups.
(4) Data streams are ordered within each group, to match the reference stream order, then compute ranking scores. (5) Sort groups by ranking score.

The infrastructure manager can select which grouping algorithm to
use when searching. Each performs better in different contexts and the
decision to change will be ad hoc based on the results. For example, if
there are a lot of data streams in the query then better results may be
obtained by switching algorithm, whereas the graph spectral method
will typically perform better for smaller numbers of groups.

Ordering Data Streams. In Section B of the supplementary mate-
rial, we outline the process where streams within a group are ordered
(Fig. 8—(4)). We iterate over each column of the derived matrix, G, to
sort its streams, such that they match the reference group data streams
based on the degree of similarity in similarity matrix Srd .

7.3 Group Ranking
The ranking algorithm assigns a score to each group of data streams
to indicate the likelihood that it may be suitable for propagation. The
ranking score is computed based on both similarity matrices Srd and
Sdd described before. Given a group Ga (a = 1..m) that contains k data
streams [Da

1,D
a
2, . . . ,D

a
k], the ranking score is defined as:

S(Ga) =
W
k

(k

∑
i=1

γ(Ri,Da
i)

)
+

2(1−W)

k(k−1)

(k−1

∑
i=1

k

∑
j=i+1

λ (Da
i ,D

a
j)

)
where W is a control parameter in the range of [0, 1] for controlling the
contributions of the two types of similarity measures. Once a ranking
score is assigned to each group, sorting them is trivial to determine the
presentation order. The m sorted groups, each with k data streams, are
sent to the results UI for quality assurance (Section 6.2).

8 EVALUATION

We conducted a qualitative evaluation of the propagation interface and
workflow during the development process, to reflect on our design
and formatively evaluate the workflow effectiveness. There were six
participants: two visualization researchers (our infrastructure and data
managers respectively, co-authors), two experienced analytics devel-
opers (Power BI, Salesforce Einstein Analytics, and Tableau), one
software developer, and one postgraduate student specializing in visu-
alization. Each session began with a tutorial, after which participants
were asked to complete two propagation tasks using real COVID-19
data and existing visualization functions. The session ended with a
semi-structured interview. Each session lasted 60–90 minutes.

We asked participants to reflect on the overall process of propagating
plots to new data streams. As visualization researchers and developers,

all understood the problem that propagation addresses. All participants
recognised the time that propagation could save: some noted the time
needed to search and group sets of data streams manually then integrate
into new visualizations. Others highlighted the risk of costly errors in
a manual process and said that the grouped and ranked results meant
propagation was about “sanity checking” rather than making complex
decisions. None of them had seen propagation-like features in other
visualization platforms or tools, whilst those with industry experience
suggested that the platforms they use, and their own working practice,
could benefit from such features.

We also discussed the search and results user interface designs.
When constructing queries, all used the quick keyword selection fea-
ture rather than type keywords; some said during the interview that
this helped them create their search terms more quickly and meant
they would not need to memorize keywords. The keyword colour cod-
ing in the search form seemed intuitive, although was most useful to
participants when viewing the search results. Colour-coded keywords
helped them decide which results to propagate visualization functions
to, with users finding the keyword grouping to be especially useful;
this meant they could scan and identify suitable groups, such that they
could complete the tasks with less time and cognitive demand.

9 DISCUSSION

This work was motivated by the significant need for visual analytics to
support the emergency response to COVID-19. A significant volume
and diversity of visual designs were required to support epidemiologists,
modeling scientists and other domain experts in the SCRC, but we
needed an approach that was feasible for a team of VIS volunteers in a
context where timeliness was critical. As discussed in Section 3, we
considered a number of solutions such as using existing visualization
platforms, but the need for bespoke visualization and dashboard designs,
and for strategically efficient use of volunteer resources, led us to the
streamlined development and propagation approach outlined here.

9.1 What did We Achieve?
We observed, during our ongoing research project, a number of no-
table benefits of our method. We were able to: (i) re-purpose and
reuse a given visualization design in various contexts by propagating
across numerous data streams, both for individual plots and composite
dashboards, in an efficient yet controlled manner, thereby responding
to the need for volume and diversity in visualizations; (ii) ensure the

suitability and efficacy of the visualizations offered through a semi-
automatic propagation process that facilitates visualization quality
assurance; (iii) streamline the visualization development process by
separating visualization development from infrastructure management;
and (iv) strategically target our limited volunteer and development
resources to where they can make the most impact in a short time. We
open up these points to further discussion in the following.

When visualizations are propagated across numerous different data
streams or re-purposed within various dashboards, quality assurance
is of paramount importance; visualizations need to be checked to
ensure data streams (via their data types and keywords in our ontology)
are suitable for the given plot and/or dashboard. This is especially
important in the case of a visualization system developed to support
the response to the pandemic, since the visualizations are involved
in critical inference and decision-making scenarios. One can argue
that automated visualization generation [41] could be an alternative to
streamline the visualization propagation process, but we have observed
in our solution that a fully automated approach is not always reliable and
can lead to unsuitable propagation. Given the importance of this task
and such potential limitations in algorithmic methods, we developed
a semi-automated approach that uses an ontology with algorithmic
support for searching and ranking data streams for propagation, with a
user interface that supports a infrastructure manager in assessing and
approving the recommendations from the algorithms.

9.2 Importance of Roles and Separation of Concerns
Throughout this project (and in our ongoing efforts), we were faced
with a growing need for plots and dashboards for a range of data
sources, while the resources for developing these were limited. Our
approach addresses this in two ways. First, by limiting demand on VIS
developer time by propagating a visual design to all datasets that will
be useful to the domain experts. Second, by enabling a more strategic
approach to resource management by decoupling visualization design
from data management. This keeps visualization developers away
from the complexities of the infrastructure and gives them more time
to focus on designing and developing novel visualization capability.
Meanwhile, the data infrastructure and propagation workflows are
managed by dedicated developers who are well-versed in the data
streams and infrastructure, and are skilled at ensuring the quality of the
propagation via quality assurance. These volunteers are not responsible
for VIS design. This separation of roles is not only an effective use of
developer time, but ensures the integrity of the final product. While we
present these roles as distinct individuals in the paper, in reality, there
may be overlaps and the same individual might be wearing multiple
hats, e.g., a developer who is comfortable in designing and developing
visualizations could also contribute to data management.

Our template-based propagation framework enables the sepa-
ration of visualization design and implementation. Following on
from the growing trend of visualization specification languages [30],
this enables the design of plots to be explicitly specified and formulated
without the constraints of the data infrastructure. This has a number of
advantages, in that it is easier to ensure consistency across numerous
plots and dashboards, and provides consistency in how visualizations
are presented over the web, e.g., consistency in naming, titles, de-
tails of descriptions. Such an approach also makes the designs more
transferable to contexts where new data streams and visual analytic
needs may arise in short time. For instance, with the introduction of
vaccination, it is possible to propagate several existing visualizations
used for case/hospitalization numbers to this new context.

9.3 Upfront Costs
Our approach to designing and developing a propagation mechanism
did take significant time and resources to get the system in operation.
The implementation of the data and propagation infrastructure
was a significant development effort and, for a while, most of the
development had to happen in the “backstage” with limited progress
to demonstrate to domain experts in terms of visualization selection.
However, our novel approach is a result of overcoming these technical
challenges. Once the propagation system was functional, our approach

was able to multiply the designs to various context and enable the rapid
deployment a wide portfolio of visualizations. While initial progress
in terms of visualization offering would be slow, our scalable and
flexible approach “future-proofs” the system as new data products
become available, to meet the varying VIS needs of domain experts.

9.4 Generalizing Our Approach
While our approach has been motivated by the ongoing pandemic, the
proposed propagation approach and the workflow that our framework
supports is transferable to different data-intensive settings, where there
is demand for diverse and abundant visualization designs with large
collections of data streams. The ontology-supported approach and
underlying schema can be generalized and adapted to new data con-
texts. Our ontology models the data and VIS infrastructure, but domain
knowledge exists via data stream attributes (i.e., keywords, descrip-
tions), decoupled from the infrastructure implementation. Our system
can rapidly transfer to a new domain by adding new data streams and
capturing domain knowledge in their attributes, while a set of generic
visualizations (plots and dashboards) would be already available.
One potential benefit in such a “transfer” would be the ability to prop-
agate the visualization designs and re-use them in suitable combina-
tions within dashboards tailored for the specifics of the new application
context. The transferability is also key for ensuring the preparedness of
the visualization response in future situations where time-critical VIS is
essential and could provide a solid foundation for further development.

10 CONCLUSION

This paper presents an ontology-based visualization development and
propagation framework, with a streamlined workflow developed in
response to the significant development challenges faced by the RAM-
PVIS volunteer visualization effort while responding to the COVID-19
pandemic. Our key challenge was to meet the need for a large number
of diverse plots and dashboards, to meet the constantly evolving visual
analytic requirements of domain experts in the Scottish COVID-19
Response Consortium. Meeting this challenge with scarce development
and volunteer resources was only possible through a carefully designed
infrastructure that streamlines the development process.

We do this through a visual design workflow that separates VIS
development from the data infrastructure. Our ontology plays a key
role in our infrastructure, capturing the relationships between data
streams, VIS functions and web pages. We used an ontology-supported
propagation process to allow a particular visualization to be rapidly
deployed across numerous suitable data streams, instantly deploying
them as interactive web pages. This enables a workflow that allows
VIS volunteers focus their efforts on tasks they are most effective in.

Our approach now enables the RAMPVIS consortium to offer a
wide range of quality-assured plots and dashboards within a consistent
presentation framework. With the changing demands of the ongoing
pandemic management efforts (e.g., attention shifting to vaccination
campaigns), our approach makes the visualization response from the
consortium more resilient, responsive, and sustainable. We are currently
working closely together with SCRC to adapt our system to the rapidly
changing nature of the pandemic and to improve our visualizations,
dashboards, and user interfaces for use through the domain experts. In
conclusion, we argue that our approach could serve as a blueprint for
similar volunteer VIS efforts in future. In situations where the timely
delivery of large-scale visualization is mission-critical, frameworks
like these strengthen the key role that visualization plays in informing
critical inference and decision-making.

ACKNOWLEDGMENTS

This work was supported by EPSRC (EP/V054236/1). We would like to thank
all volunteers from the SCRC and all VIS volunteers [3]. We would also like to
thank Prof. N. W. John (U. Chester) and Dr H. C. Purchase (U. Glasgow) for
their involvement in work of the generic support team. We are grateful to Dr R.
Reeve (U. Glasgow) and A. Brett (UKAEA) for their leadership in creating the
SCRC data infrastructure that the VIS infrastructure depends on, and A. Lahiff
and his STFC colleagues for maintaining the RAMP VIS VMs, and S. Michell
(U. Glasgow) for offering valuable advice on data products.

REFERENCES

[1] D3.js: Data-Driven Documents. https://d3js.org/. Accessed on 31
March 2021.

[2] Jinja Template Documentation. https://jinja.palletsprojects.
com/en/2.11.x/templates. Accessed on 31 March 2021.

[3] RAMPVIS Volunteers. https://sites.google.com/view/rampvis/
volunteers. Accessed on 31 March 2021.

[4] Apache Software Foundation. Lucene. https://lucene.apache.org,
2021. Accessed on 15 March 2021.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011. doi: 10.1109/TVCG.2011.185

[6] K. Brodlie, J. Brooke, M. Chen, D. Chisnall, A. Fewings, C. Hughes,
N. John, M. Jones, M. Riding, and N. Roard. Visual supercomputing –
Technologies, applications and challenges. Computer Graphics Forum,
24(2), 2005.

[7] S. Carpendale, M. Chen, D. Evanko, N. Gehlenborg, C. Görg, L. Hunter,
F. Rowland, M.-A. Storey, and H. Strobelt. Ontologies in biological data
visualization. IEEE Computer Graphics and Applications, 34(2):8–15,
2014.

[8] M. Chen, A. Abdul-Rahman, D. Archambault, J. Dykes, A. Slingsby, P. D.
Ritsos, T. Torsney-Weir, C. Turkay, B. Bach, A. Brett, H. Fang, R. Jianu,
S. Khan, R. S. Laramee, P. H. Nguyen, R. Reeve, J. C. Roberts, F. Vidal,
Q. Wang, J. Wood, and K. Xu. RAMPVIS: Towards a new methodol-
ogy for developing visualisation capabilities for large-scale emergency
responses. arXiv:2012.04757, 2020.

[9] M. Chen, G. Grinstein, C. R. Johnson, J. Kennedy, and M. Tory. Pathways
for theoretical advances in visualization. IEEE Computer Graphics and
Applications, 37(4):103–112, 2017. doi: 10.1109/MCG.2017.3271463

[10] Y. Chen, S. Barlowe, and J. Yang. Click2annotate: Automated insight
externalization with rich semantics. In 2010 IEEE Symposium on Visual
Analytics Science and Technology, pp. 155–162, 2010. doi: 10.1109/VAST
.2010.5652885

[11] W. Cui, X. Zhang, Y. Wang, H. Huang, B. Chen, L. Fang, H. Zhang, J. G.
Lou, and D. Zhang. Text-to-viz: Automatic generation of infographics
from proportion-related natural language statements. IEEE Transactions
on Visualization and Computer Graphics, 26(1):906–916, 2020. doi: 10.
1109/TVCG.2019.2934785

[12] M. Dudáš, S. Lohmann, V. Svátek, and D. Pavlov. Ontology visualization
methods and tools: a survey of the state of the art. The Knowledge
Engineering Review, 33, 2018.

[13] Elastic NV. Query DSL. https://www.elastic.co/guide/en/

elasticsearch/reference/current/query-dsl.html, 2021. Ac-
cessed on 17 March 2021.

[14] S. M. Falconer, R. I. Bull, L. Grammel, and M. Storey. Creating visual-
izations through ontology mapping. In 2009 International Conference on
Complex, Intelligent and Software Intensive Systems, pp. 688–693, 2009.
doi: 10.1109/CISIS.2009.40

[15] O. Gilson, N. Silva, P. W. Grant, and M. Chen. From web data to visualiza-
tion via ontology mapping. In Proceedings of the 10th Joint Eurographics
/ IEEE - VGTC Conference on Visualization, pp. 959–966, 2008. doi: 10.
1111/j.1467-8659.2008.01230.x

[16] L. Grammel, C. Bennett, M. Tory, and M.-A. Storey. A Survey of Visual-
ization Construction User Interfaces. In M. Hlawitschka and T. Weinkauf,
eds., EuroVis - Short Papers, 2013. doi: 10.2312/PE.EuroVisShort.Euro-
VisShort2013.019-023

[17] P. Jaccard. The distribution of the flora in the alpine zone. New Phytologist,
11(2):37–50, 1912. doi: 10.1111/j.1469-8137.1912.tb05611.x

[18] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Gi-
annopoulou. Ontology visualization methods—a survey. ACM Comput.
Surv., 39(4):10–es, Nov. 2007. doi: 10.1145/1287620.1287621

[19] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[20] S. Khan, A. Abdul-Rahman, P. H. Nguyen, and B. Bach. RAMPVIS ui.
https://github.com/ScottishCovidResponse/rampvis-ui. Ac-
cessed on 31 March 2021.

[21] S. Khan, U. Kanturska, T. Waters, J. Eaton, R. Bañares Alcántara, and
M. Chen. Ontology-assisted provenance visualization for supporting
enterprise search of engineering and business files. Advanced Engineering
Informatics, 30(2):244–257, Apr. 2016. doi: 10.1016/j.aei.2016.04.003

[22] S. Khan and P. H. Nguyen. RAMPVIS api. https://github.com/
ScottishCovidResponse/rampvis-api. Accessed on 31 March 2021.

[23] S. Khan and P. H. Nguyen. RAMPVIS ontology manage-
ment and propagation UI. https://github.com/saifulkhan/

rampvis-ontology-management-ui. Accessed on 31 March 2021.
[24] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2020.
[25] J. Mackinlay. Automating the design of graphical presentations of rela-

tional information. ACM Transactions on Graphics, 5(2):110–141, Apr.
1986. doi: 10.1145/22949.22950

[26] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presenta-
tion for visual analysis. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1137–1144, Nov. 2007. doi: 10.1109/TVCG.2007.70594

[27] C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008. doi: 10.1109/LPT.
2009.2020494

[28] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive construction of
bespoke chart layouts. IEEE Transactions on Visualization and Computer
Graphics, 25(1):789–799, 2019. doi: 10.1109/TVCG.2018.2865158

[29] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum, 33(3):351–360, 2014. doi: 10.
1111/cgf.12391

[30] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017. doi: 10.1109/TVCG.2016.
2599030

[31] Scottish Covid Response Consortium. SCRC Data Registration and Man-
agement System. data.scrc.uk, 2021. Accessed on 31 March 2021.

[32] D. Shi, X. Xu, F. Sun, Y. Shi, and N. Cao. Calliope: Automatic visual data
story generation from a spreadsheet. IEEE Transactions on Visualization
and Computer Graphics, 27(2):453–463, 2021. doi: 10.1109/TVCG.2020.
3030403

[33] Y. Sun, J. Leigh, A. Johnson, and S. Lee. Articulate: A semi-automated
model for translating natural language queries into meaningful visual-
izations. In Proceedings of the 10th International Conference on Smart
Graphics, pp. 184–195. Springer-Verlag, Berlin, Heidelberg, 2010.

[34] T. Tang, R. Li, X. Wu, S. Liu, J. Knittel, S. Koch, T. Ertl, L. Yu, P. Ren,
and Y. Wu. PlotThread: Creating expressive storyline visualizations using
reinforcement learning. IEEE Transactions on Visualization and Computer
Graphics, 27(2):294–303, 2021. doi: 10.1109/TVCG.2020.3030467

[35] Tanimoto T.T. An Elementary Mathematical theory of Classification and
Prediction. Technical report, IBM Corporation, 1958.

[36] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. IEEE Transactions on Visualization and Computer
Graphics, 22(1):649–658, 2016. doi: 10.1109/TVCG.2015.2467191

[37] A. Wu, Y. Wang, X. Shu, D. Moritz, W. Cui, H. Zhang, D. Zhang, and
H. Qu. Survey on artificial intelligence approaches for visualization data,
2021. Pre-print: arXiv cs.HC 2102.01330.

[38] B. Yu and C. T. Silva. VisFlow - Web-based visualization framework for
tabular data with a subset flow model. IEEE Transactions on Visualization
and Computer Graphics, 23(1):251–260, 2016.

[39] B. Yu and C. T. Silva. FlowSense: A natural language interface for
visual data exploration within a dataflow system. IEEE Transactions on
Visualization and Computer Graphics, 26(1):1–11, 2019.

[40] R. Zehrung, A. Singhal, M. Correll, and L. Battle. Vis Ex Machina: An
analysis of trust in human versus algorithmically generated visualization
recommendations, 2021. Pre-print: arXiv cs.HC 2101.04251.

[41] S. Zhu, G. Sun, Q. Jiang, M. Zha, and R. Liang. A survey on auto-
matic infographics and visualization recommendations. Visual Informatics,
4(3):24–40, 2020. doi: 10.1016/j.visinf.2020.07.002

https://d3js.org/
https://jinja.palletsprojects.com/en/2.11.x/templates
https://jinja.palletsprojects.com/en/2.11.x/templates
https://sites.google.com/view/rampvis/volunteers
https://sites.google.com/view/rampvis/volunteers
https://lucene.apache.org
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://github.com/ScottishCovidResponse/rampvis-ui
https://github.com/ScottishCovidResponse/rampvis-api
https://github.com/ScottishCovidResponse/rampvis-api
https://github.com/saifulkhan/rampvis-ontology-management-ui
https://github.com/saifulkhan/rampvis-ontology-management-ui
data.scrc.uk

SUPPLEMENTARY MATERIAL
Propagating Visual Designs to Numerous
Plots and Dashboards

Saiful Khan, University of Oxford, UK
Phong H. Nguyen, Redsift Ltd., UK
Alfie Abdul-Rahman, King’s College London, UK
Benjamin Bach, Edinburgh University, UK
Min Chen, University of Oxford, UK
Euan Freeman, University of Glasgow, UK
Cagatay Turkay, University of Warwick, UK

A ALGORITHMS FOR COMPUTING SIMILARITY MATRICES

In this section we will describe the process of computing similarity
matrices Srd and Sdd defined in the paper and shown in Fig. 8. Ma-
trix Srd represents the pairwise similarity between the reference data
streams and discovered data streams, and matrix Sdd represents pair-
wise similarities between each discovered data stream.

As described in the paper, each data stream (an OntoData instance)
has several attributes: i.e., description, keywords, data type and API
endpoint. Each attribute is a feature and we denote the number of
features as f . The reference data streams (an ordered list) is denoted as
a matrix R ∈ Rk× f , where k is the number of reference data streams.
Discovered data streams are denoted as a matrix D ∈Rn× f , where n is
the number of discovered data streams.

A.1 Computing Matrix Srd

The ordering algorithm will use Srd to sort the data streams within
each group. To compute Srd , we first create a similarity matrix for
each data stream feature and discovered data streams, then aggregate
the four matrices.

Data type similarity. We derive a feature vector r(t) ∈ Rk, where
r(t) corresponds to the data type column of R; r(t) = [r(t)1 ,r(t)2 , . . .r(t)k].
We derive another feature vector d(t) ∈ Rn, where d(t) corresponds to
the data type column of D; d(t) = [d(t)

1 ,d(t)
2 , . . .d(t)

n].
A function φ computes the pairwise similarity matrix between the

feature vectors r(t) and d(t) and is defined in Equation 1.

φ(r(t),d(t)) ∈ Rk×n =

{
1, if data types are similar
0, otherwise

(1)

Keyword similarity. Similar to the data type vectors, we derive
keyword feature vectors r(w) and d(w) which corresponds to the key-
word column of matrix R and D respectively. The keywords attribute
of a data stream contains a subset of a set of all keywords used to
define data streams in the system. Therefore, Jaccard [17,35] similarity
measurement function is used to compute the pairwise similarity matrix.
A function ψ computes the size of the intersection divided by the size
of the union of two keywords sets, defined in Equation 2.

ψ(r(w),d(w)) ∈ Rk×n =
(r(w)∪d(w))

(r(w)∩d(w))
(2)

Description similarity. A description field is free-form text and
can be represented as a collection of words or terms. Therefore, term
frequency (tf) and inverse document frequency (idf) similarity measure-
ment algorithms [27] will be suitable here.

We derive feature vectors r(d) and d(d) which corresponds to the
description column of R and D respectively.

Next, we derive a matrix U , where each vector ui ∈U is a tf-idf
vector [27] of i-th element of r(d). Similarly, we derive another matrix
V , where each vector v j ∈ V is a tf-idf vector of j-th element d(d).

A function ω computes similarity by measuring Cosine similar-
ity [27] between U and V ; defined in Equation 3.

ω(r(d),d(d)) ∈ Rk×n =
UV

‖U‖‖V ‖
(3)

Given any two row vectors u ∈U and v ∈ V the Cosine similarity
between the vectors can be computed by Equation 4.

u ·v
‖u‖‖v‖

=
∑

q
x=1 uxvx√

∑
q
x=1 u2

x

√
∑

q
x=1 v2

x

(4)

where ux and vx are components of vector u and v respectively; and q
is the number of components (all possible words from the description
fields).

API endpoint similarity. We derive two feature vectors r(a) and
d(a), which correspond to the API endpoint attribute columns of R
and D respectively. RESTful API endpoints contain textual features
such as a data stream server address, API route, and URL encoded
parameters. An API endpoint can provide information about a data
stream, such as its data product, component, source, and type (described
in Section 4). We tokenize the endpoint fields to extract their terms
(words) and use similar functions used for description field similarity
measurement, ω(r(a),d(a)) ∈ Rk×n, to compute a similarity matrix.

Aggregated similarity. We aggregate the four similarity matrices
computed above. An aggregation function γ , defined in Equation 5,
computes the aggregated matrix, Srd ∈ Rk×n. This function takes a
weighting average of the input matrices.

Srd = γ(R,D) = [αψ(r(w),d(w))+βω(r(d),d(d))

+θω(r(a),d(a))]�φ(r(t),d(t))
(5)

where α , β , and θ are scalar constants that define the relative weights
of keywords, description, and endpoint fields in the similarity mea-
surement, where α +β +θ = 1. The pairwise similarity between any
data type field is 0 or 1; therefore, for the keywords type we use the
element-wise product (or Hadamard product), �, in the aggregation
function.

A.2 Computing Matrix Sdd

The matrix Sdd ∈ Rn×n computes pairwise similarities between each
discovered data streams. We use this matrix for creating uniform groups
of similar data streams.

Computation of the matrix Sdd is almost similar to the computation
steps applied for deriving the matrix Srd in previous Section A.1. For
each feature, e.g., keyword, description, and API endpoint of the matrix
D, we derive three similarity matrices: ψ(d(w),d(w)), ω(d(d),d(d)),
and ω(d(a),d(a)) (using Equation 2 and 3). Finally, the aggregation
function, λ (D,D) aggregates the three matrices, defined in Equation 6.
A group can consist of data stream of different data types; therefore,
we excluded the data type feature from the computation of Sdd .

Sdd = λ (D,D) = αψ(d(w),d(w))+βω(d(d),d(d))

+θω(d(a),d(a))
(6)

B ALGORITHMS FOR GROUPING AND ORDERING

Algorithm 1 outlines the brute-force grouping approach described in
Section 7.2. Algorithm 2 outlines the graph spectral grouping approach
described in Section 7.2. Algorithm 3 outlines the procedure for sorting
and ranking groups.

Algorithm 1: A brute-force algorithm for grouping data
streams

Input: A matrix Sdd ∈ Rn×n; size of each group k
Output: Groups G ∈ Rk×m

n←‖Sdd‖
/* Number m groups to construct */

m =
∣∣ n

k

∣∣
G← Null
p← 1

for i← 1 to n do
visited[i]← False

end
for i← 1 to n do

if visited[i] == True then
continue

else
/* Indices of k max items of i-th row of Sdd */

max k idx← MaxIndices(Sdd [i], k)
G[p]← max k idx
p← p+1

/* Mark the grouped items as visited */

for j← 1 to k do
idx← max k idx[j]
visited[idx]← true

end
end

end

Algorithm 2: Spectral graph partitioning algorithm for group-
ing data streams

Input: A similarity matrix Sdd ∈ Rn×n; size of each group k
Output: Groups G ∈ Rk×m

• Number m groups to construct, m =
∣∣ n

k

∣∣.
• Compute diagonal matrix D of Sdd .
• Compute Laplasian matrix, L=D−Sdd .
• Given m number of groups to create; compute the first m

eigenvectors v1, v2 . . .vm of L, such that Lv = λDv.
• Let V ∈ Rn×m be the matrix containing the vectors v1, v2,

. . .vm as columns.
• For i = 1,2, . . .n, let di ∈ Rm be the vector corresponding to the

i-th row of V .
• Finally, use K-means algorithm to cluster d, d, . . . , dn into m

groups g,g, . . .gm ∈G and G ∈ Rk×m.

C PROPAGATING DASHBOARDS WITH LINKS

In the paper, we described the process for propagating a visualization
function with multiple data streams. Propagating a dashboard is more
complicated, because of the need to match data streams (OntoData
instances) and web page links (OntoPage instances). If incorrectly
matched, the visual designs in the dashboard would not be linked to the
correct webpage.

Fig. 9 shows the process used to propagate a dashboard with data
streams and links. After the infrastructure manager selects a VIS func-
tion for propagation, its reference data streams and links are retrieved
from the ontology. The metadata of the data streams and links are
forwarded to the UI. While, the process of propagation for data streams
is described in Section 7, the process of propagating links involves
additional steps.

Links are web pages (i.e., OntoPage instances) and their attributes
include a VIS function and data streams (described in Section 5.1).
Following the process described earlier in Section 6.1, the infrastructure

Algorithm 3: Algorithm for sorting and ranking groups

Input: Groups G ∈ Rk×m; matrix Srd ∈ Rk×n

Output: Sorted and ranked G
′ ∈ Rk×m

m←‖G‖
k←‖Srd‖
/* Priority queue for queuing based on ranking */

G
′ ← Null

/* For each group */

for i← 1 to m do
group←G[i]
group sorted← Null
group score← 0

for j← 1 to k do
col idx← group[j]
col vec← Srd [:,col idx]
/* The index of max element in col vec */

row idx← MaxIndices(col vec, 1)
similarity← col vec[row idx]
group score← group score + similarity
group sorted[row idx]← col idx

end
/* Add the sorted group to priority queue */

PriorityQAdd(G
′
, group sorted, group score)

end

manager formulates a search query and discover a possible list of data
streams. From the discovered data streams, a function (a) creates
possible groups of data streams and orders each group (as described
in Section 7 and Section A). For discovered data streams, another
function scans the ontology to retrieve (b) all possible pages or bindings
visualizing the groups of (a). From the (a) and (b) list of possible
groups, both data stream groups and page groups are created. We then
use similar grouping, ordering, and ranking algorithms (described in
Section 7 and Section A).

UI

extract reference data streams

extract data stream type and keywords

extract reference links or page ids

search for matching data streams

create (data stream, page) groups

rank (data stream, page) groups

sort (data stream) groups

VIS function

list of data streamslist of data streams

list of (data stream, page) groups

search parameters,

data types, keywords

ordered list of groups

find corresponding page details

extract VIS function from page

extract reference data streams

extract data stream type and keywords

search for all pages binding the streams

list of pages

infrastructure manager

Search
Q

uality Assurance

Fig. 9. A flowchart illustrating a search and ranking workflow for finding
relevant links and propagating the links to a dashboard.

	Introduction
	Related Work
	Automatic Visualization
	Ontology-Supported Visualization

	Problem Statement and System Overview
	VIS Infrastructure Ontology

	Data Stream
	Visualization Functions
	Visual Design Workflow
	Creating Web Pages
	Template-Based VIS Function Design

	Propagation Service
	User Interface for Search and Ranking
	User Interface for Quality Assurance

	Propagation Technical Infrastructure
	Data Stream Search
	Data Stream Grouping
	Group Ranking

	Evaluation
	Discussion
	What did We Achieve?
	Importance of Roles and Separation of Concerns
	Upfront Costs
	Generalizing Our Approach

	Conclusion
	Algorithms for Computing Similarity Matrices
	Computing Matrix Srd
	Computing Matrix Sdd

	Algorithms for Grouping and Ordering
	Propagating Dashboards with Links

