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Microstructure-based equivalent visco-hyperelastic model of 

viscoelastic damper 

Qiang-Qiang Li1, Zhao-Dong Xu, A. M. ASCE2*, Yao-Rong Dong3, Zhen-Hua He4, Jia-Xuan He5, 

Yong Lu, F. ASCE 6 

Abstract: Mechanical properties of viscoelastic (VE) dampers directly affect the aseismic 

performance of viscoelastically damped structures, it is of great significance to accurately describe the 

nonlinear mechanical characteristics of VE dampers in the aseismic design and analysis of structures. 

However, most of the existing mathematical models for VE dampers have been established from a 

macroscopic perspective, and there is a general lack of a comprehensive connection to the 

microstructure characteristics of VE materials and external influence factors such as loading frequency, 

ambient temperature, and strain amplitude.   In this paper, inspired by the molecular chain network 

models and fractional derivative theory, a microstructure-based equivalent visco-hyperelastic model is 

proposed for VE dampers with consideration of the temperature dependence and the filler 

reinforcement effect. To verify the characterization capacity of the proposed model, laboratory 
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experiments on the dynamic property of VE dampers were carried out with varying frequencies, 

temperatures, and strain amplitudes, the proposed model is then employed to predict the experimental 

results. Finally, the model parameter analysis is conducted to clarify the relationship between material 

microstructure and its macroscopic performance. The experiments indicate that the VE damper 

possesses an excellent energy dissipation capability, and characteristic parameters of VE dampers tend 

to be more sensitive in the low ranges of frequency and temperature than that in the high ranges. 

Comparisons between the experimental and numerical results suggest that the proposed model can 

describe the mechanical properties of VE dampers at different frequencies, temperatures, and strain 

amplitudes with good accuracy. Parameter analysis demonstrates that the proposed model can reflect 

the influence of material microstructure on the macroscopic mechanical properties of VE damper. 

 

Keywords: viscoelastic damper; microstructure of viscoelastic material; dynamic property tests; 

mathematical model; parameter analysis.  

 

Introduction 

VE dampers have been widely used in building structures for mitigating vibrations from earthquake. 

The vibration mitigation effects of VE dampers have typically been studied at the device level through 

experiments and simulations. Chang et al. (1992) tested the dynamic performance of VE dampers 

under different frequencies and temperatures. To study the temperature and frequency dependence of 

VE dampers and the phenomenon of self-heating in the working process, Kasai (2001) conducted a 

series of experiments on the mechanical properties of VE dampers. Xu et al. (2020) tested the dynamic 



 

 

mechanical properties of Acryl-rubber VE dampers. Min et al. (2004) and Chang and Lin (2004) 

experimentally demonstrated that the installation of VE dampers significantly enhanced the overall 

aseismic performance of structures. Dong et al. (2020) found that VE haunch bracing-damper can 

observably upgrade the seismic performance of RC frames. 

On the other hand, the VE dampers are well recognized to exhibit complex nonlinear mechanical 

behaviors under dynamic loads. As the main energy-dissipation component in the damping system, it 

is important to establish a sound theoretical model to describe the mechanical properties of the VE 

dampers so as to guide their continued development. Classical rheological models are capable of 

describing the dynamic properties of VE dampers by combining different numbers of spring elements 

and Newton pots (Zhou et al. 2016). Considering that VE dampers exhibit different kinds of non-

standard gradient rates, the fractional differential operators, which can well reflect this phenomenon in 

a wide frequency domain, have been incorporated, and some rheological fractional derivative models 

are then developed, such as fractional Kelvin model, fractional Zener model, and generalized fractional 

derivative model (Lewandowski and Przychodzki 2018; Li et al. 2021; Xu et al. 2013). However, these 

models are all macroscopic phenomenological models, the model parameters generally lack clear 

physical meaning, and there is no direct connection among the macroscopic mechanical properties and 

damping mechanism of VE dampers and the microstructure of VE material.  

To demonstrate the underlying mechanical behavior of VE dampers more clearly, some mathematical 

models based on the multi-scale method have been developed. Li et al. (2012) proposed a multi-scale 

calculation strategy to describe the dynamic mechanical properties of VE materials. Tomita et al. (2006) 

presented a constitutive model with the consideration of the interactions between the molecular chains 

of the carbon black-filled rubber based on the assumption of homogeneity. To facilitate engineering 



 

 

applications of multi-scale models, Kroon (2011) and Xu et al. (2016) presented microscopic chain 

models by combining the molecular chain models and rheological models. Xu et al. (2019) proposed 

a polyhedral network chain model based on the statistical theory of molecular dynamics. The 

aforementioned studies indicate that the microstructure of VE material can greatly affect the 

mechanical properties of VE dampers, thus it is beneficial for the development of VE dampers to study 

the mechanical behaviors of VE materials from a microscopic standing point of view. However, most 

of existing microscopic models are only based on assumptions of specific behaviors of VE materials 

and are not capable of comprehensively considering the effects of the material microstructure, such as 

geometric entanglement of molecular chain, statistical difference of molecular chain configurations, 

filler-rubber matrix structure, as well as external factors that influence the material behaviors, including 

temperature, loading frequency, and strain amplitude. 

In the present paper, a microstructure-based mathematical model for describing the mechanical 

properties of VE dampers is developed with consideration of its temperature-, frequency-, and strain-

dependence. This model is based on the macroscopic rheological models and molecular chain models 

from the microscopic perspective, so that it is capable of fully reflecting the relationship between the 

microscopic characteristics of VE material and the macroscopic mechanical behaviors of VE dampers 

with clear physical meanings under varying temperature, frequency, and strain conditions. In 

conjunction with the above model development, laboratory experiment on the dynamic properties of 

the VE dampers have also been conducted, and the accuracy and applicability of the proposed model 

are verified by the test data, based on which the parameter analysis are finally carried out. The results 

indicate that the microstructure-based equivalent visco-hyperelastic model can accurately represent the 

mechanical properties of VE dampers in a physically meaningful manner. 



 

 

Microstructure-based equivalent visco-hyperelastic model  

VE material usually needs to be vulcanized to enhance its mechanical properties. In the vulcanization 

process with high temperature and high pressure, elastic network chains and free chains can form inside 

the VE material. The elastic network chain is closely related to the elastic properties of the VE material, 

and the free network chain, which includes uncrosslinked chain and side chain without network 

structure, on the other hand, is the primary source of the viscosity for the energy dissipation of the 

matrix rubber (Miehe and Göktepe 2005; Tang et al. 2012). Under dynamic loads, VE material 

simultaneously shows the hyperelastic characteristics, including large elongation and recoverable 

deformation, and the viscosity characteristics, such as rate dependence, loading history memory, and 

relaxation. For the above reasons, most mathematic models describing the constitutive behaviors of 

VE materials are formulated from consideration of these two aspects (Boccaccio et al. 2015; Shim et 

al. 2010; Xu et al. 2016; Xu et al. 2019; Xu et al. 2019; Yang et al. 2000).  

However, it should be pointed out that the elastic network chains and free chains usually do not exist 

alone, and each contributes to the elasticity and viscosity of materials simultaneously. Besides, these 

two types of molecular chains always interlace with each other and form a very complicated geometric 

topological network structure. With the influence of filler structures, a single molecular chain is often 

significantly constrained by surrounding molecular chains, thus the VE material gets strengthened. 

Figure 1 shows the actual microstructure of the VE material obtained by using the scanning electron 

microscope (SEM) technology and its simplified model of the molecular chain topological structure. 

However, this effect is barely considered in the common microscopic chain models (Boyce and Arruda 

2000; Marckmann et al. 2002; Treloar 1946; Treloar and Riding 1979). 



 

 

To reflect the influence of material microstructure on its macroscopic mechanical properties, the stress 

of VE material, �, is divided into three parts, namely hyperelastic stress ��, viscous stress ��, and 

constraint stress ��, as:  

� = �� + �� + �� (1) 

where �� and �� represent the contributions of network chain and free chain to the elasticity and 

viscosity of VE material, respectively; �� introduced here, in particular, is utilized to account for the 

influences of constraints from surrounding molecular chain network on the elasticity and viscosity of 

VE material. The following section will focus on the derivation of the three stresses and the 

establishment of the mathematical model for VE dampers used in structural earthquake resistance. 

Statistical evolution model for characterizing the hyperelasticity behavior 

Assuming that the end-to-end distance between each crosslinking point of the molecular chain network 

conforms to the Gaussian distribution, Treloar (1946) proposed the Gauss model to describe the 

mechanical behavior of elastomer, as: 


� = 1
2 ���� � ���� − 1��

��� (2) 

where � is the number of elastic chains per unit volume, � is the Boltzmann constant, �� is the 

absolute temperature, ��(� = 1,2,3)  is the principal elongation in three directions, 
�  is the 

Gaussian stitastics based strain energy in the isothermal condition. Hereinafter, in the derivation of 

other strain energies, it naturally assumed that the VE damper is in an isothermal condition, and there 

is no heat exchange with the outside for the whole system.  

The stress-strain relationship of VE material can be obtained by: 

�� = �

��� �� − � (3) 



 

 

where �� is the principal stress in the direction of principal elongation, 
 is the strain energy of VE 

material, � is the hydrostatic pressure calculation based on boundary conditions.  

For the shear-deformation mode, based on Equation (2) and (3), the stress described by the Gauss 

model can be determined by ignoring the hydrostatic pressure, as: 

�� = ����(�� − � �) (4) 

Replacing � by the engineering strain " in Equation (4), and applying the Taylor expansion on the 

polynomial of ", the corresponding shear stress �� can be obtained by omitting the higher-order term 

of ": 

�� = 4����" (5) 

However, the radial distribution of the end-to-end distance for the molecular chains may no longer 

conform to the Gaussian distribution once the end distance reaches 40% of the total elongation (Boyce 

and Arruda 2000; Marrucci 1988), and some non-Gaussian models are then introduced. Among them, 

the latest and most widely used is the 8-chain model based on Langevin's statistical theory (Boyce and 

Arruda 2000). For simplification in the actual application, the Maxwell element is incorporated here 

to describe the entropy-elastic characteristics of each chain segment in the 8-chain model, of which 

the force-displacement relationship can be expressed as: 

$%�& = '()� + ()*
1 + '�)� (+ − +�) = ,%�&(+ − +�) (6) 

where $%�& is the corresponding force at the end of molecular segment force under deformation, ,%�& 

is the corresponding equivalen stiffness of a single chain, ' and ( are material parameters, ) is the 

loading frequency, *  is the imaginary unit, +�  and +  are the end-to-end distances of molecular 

chains before and after deformation, respectively, which are employed here to represente the relative 



 

 

deformation at both ends of molecular chain. The strain energy of a single molecular chain in the 8-

chain model after deformation /%�& is then obtained, as: 

/%�& = 1
2 ,%�&(+ − +�)� (7) 

Considering that the volume of cube represented by the 8-chain network is 
%√�

2 +��, based on Equation 

(7), the total energy of a single molecular chain per unit volume for the Maxwell 8-chain model 8ch
W  

is expressed as:  


%�& = �
3√3
2+��

∙ 1
8 /%�& (8) 

Assuming the deformation mode of molecular chain conforms to the affine deformation, the 

displacement of a single molecular chain during deformation can be described as |+ − +�|� =
6(�� − 1)� + (�� − 1)� + (�� − 1)�7+��.  

Substituting Equation (8) into (3) yields the non-Gaussian-based shear stress �%�&, as: 

�%�& = 3√3�4+�
'()� + ()*

1 + '�)� " (9) 

Comparing to the Gauss model, the 8-chain model can well reflect the influence of ultimate elongation 

on the conformation of the molecular chain network in large deformation, but it becomes deficient in 

the small deformation stage (Boyce and Arruda 2000; Wu and Van Der Giessen 1993). To solve this 

problem, some hybrid models based on different statistical methods are developed to approximate the 

radial distribution characteristics of material molecular chains. Boyce and Arruda (2000) and Wu and 

Van Der Giessen (1993) proposed mixed models to characterize the elastic behavior of polymer based 

on the linear superposition of two different non-Gaussian models, and found that the predictive 

performance of mixed models are much better than the single two models. However, a single chain 



 

 

distribution assumption is not in line with reality from a statistical point of view. Elı ́as-Zúñiga and 

Beatty (2002) proposed a composite model through the linear superposition of an amended 3-chain 

model and amended 8-chain model, in which these two sub-models can reduce to the Gaussian model. 

Lim (2005) introduced a nonlinear evolution function and presented a hybrid model by combining a 

Gaussian model and a non-Gaussian model. 

In fact, the configuration distribution of molecular chains in the VE material is variable with the change 

of deformation state. The two ideal extremes of distribution evolution for molecular chains are the 

complete Gaussian distribution at small deformation and the complete non-Gaussian distribution at 

large deformation, respectively, and there exists a critical deformation to distinguish these two states 

beyond which the non-Gaussian model should prevail (Lim 2005), which can be visualized as Figure 

2.  

This means the constructed statistical evolution function should be able to smoothly transform between 

two different distributions according to the strain state. Based on this, considering that a single chain 

distribution assumption is not in line with reality from a statistical point of view, a linear combination 

of the Gaussian chain and 8-chain models in accordance with the simple mixture rule is dopted in the 

present study to express the hyperelasticity of VE material, as:  

�� = 9�%�& + (1 − 9)�� (10) 

where 9  is a transition function introduced herein to describe the evolution of chains statistic 

distribution under different strain states. It can be seen that the selection of transition equation ξ is very 

important in the establishment of specific mixed distribution model. Considering the above description, 

when the displacement exceeds ";< , the non-Gaussian distribution should dominate, while the 



 

 

Gaussian distribution should dominate when ";< is not exceeded. Therefore, transition function ξ in 

Equation (10) should satisfy the following conditions: 

=9 ⟶ 0 " < ";<9 ⟶ 1 " > ";< (11) 

where " is the actual deformation state, and the arrow means approaching. In the specific construction 

of 9, different forms of transition equation have been proposed in previous studies (Elı ́as-Zúñiga and 

Beatty 2002; Lim 2005), and a comparison with the present proposal with ";< = 0.1, respectively, as 

shown in Figure 3. 

It can be seen that the transition equation shown in Figure 3(a) and (c) do not show a gradual trend at 

both ends, but shows a monotonous increase or decrease, which seriously deviate from the 

requirements of Equation (2) within the common strech range of 0~5 for VE material. Based on these, 

herein we introduct an new transition function by incorporating the generalized logic function, as:  

9 = 1
(1 + BCDE C)F (12) 

The order of the generalized logic function is determined as 5 by satisfying the function range for 9, 

that is, satisfying Equation (11), with the corresponding transition equation curve shown in Figure 3(b). 

As observed, this S-type curve can describe the evolution of two statistical distributions of molecular 

chains under different deformation states in a smooth manner, which is more reasonable than the other 

two. In practice, the determination of ";< is complex and difficult to be carried out through direct tests. 

Therefore, we use the method of fitting the test data to obtain ";<, which is also a common practice at 

present.  

The fractional derivative 3-chain model for Characterizing the viscosity property 



 

 

VE material exhibits the mechanical properties between the ideal solid and Newtonian fluid, and the 

fractional differential theory has been proved to be suitable for describing this abnormal physical 

phenomenon. For this reason, Lewandowski and Pawlak (2011) introduced the Abel fractional element 

to describe the behaviors of VE material, the constitutive relation of which is expressed as: 

�� = GHI"(J) (13) 

where G is the viscosity of VE materials, "(J) represents the time-dependent strain function, and HI 

is the fractional derivative operator, K is the order of the derivative. 

However, these existing fractional derivative models are all macroscopic mathematical models and 

they do not explain the underlying microstructure processes. Therefore, with considering the 

superiority of the 3-chain model (Hubert et al. 1943) in connecting the macroscopic mechanical 

behavior with the microstructure of VE material, the Abel fractional element is herein coupled into the 

framework of 3-chain model to describe the force-displacement relationship of a single chain in the 3-

chain model, as: 

$��& = G(*))I(+ − +�) = ,��&(+ − +�) (14) 

where $��&  is force at the end of molecular segment force in 3-chain model, and ,��&  is the 

equivalen stiffness of a single chain. The corresponding strain energy for a single chain /� then is 

determined, as:  

/� = 1
2 ,��&(+ − +�)� (15) 

According to the geometric characteristics of 3-chain model, the volume of cube represented by the 3-

chain network is +��. Based on Equation (15), the contribution of a single free chain per unit volume 

to the viscosity of VE material can be represented by the resulting Abel 3-chain model, and the viscous 

strain energy 
� is then formulated as:  



 

 


� = �
2+��

∙ 1
3 � G(*))I�+� − +����

��� (16) 

where � is the number of free chains per unit volume, +� . Based on Equation (3)-(4), the viscous 

stress �� for characterizing the viscosity of VE material is then determined as: 

�� = 1
3+� �G(*))I" (17) 

Consideration of the constraints from ambient molecular chains  

Because of the constraint effect among the molecular chains, the macroscopic mechanical behavior of 

VE material is significantly strengthened. To describe the phenomenon associated with such constraint, 

the tube model (Doi et al. 1988) is introduced here to reflect the constraint strain energy function for 

VE material, which can be simplified as shown in Figure 4.  

The constraint probability density of a single molecular chain in a tube under finite deformation can 

be expressed by (Miehe and Göktepe 2005): 

�� = ��� ∙ BL' M−N O +�PQR;QSTU� VW (18) 

where ��� is the normalized parameter, PQR;QST is the tube diameter in the initial configuration, N is 

the material constant related to the crosssection of the tube, and V is the shrinkage ratio of the tube’s 

cross section. Based on Boltzmann's law, the relationship between the change of strain energy and its 

entropy is expressed as:  

Δ/ = −��ΔY (19) 

According to Equation (18) and Equation (19)，the free energy constrained by a single molecular chain 

tube /� can be obtained by 

/� = N��� O +�PQR;QSTU� V + /� (20) 



 

 

where /� is a constant. Assuming that the unit vector of a single molecular chain is Z = 6[\, [], [^7, 
where [\, [] and [^ are the coordinates of the molecular chain vector, the relationship between the 

constraint variables of the tube model V and the macro elongation of the molecular chain � can be 

described by the following equation based on Nanson formula (Miehe et al. 2004): 

V = _ � ∙ (Z` �Z)�/� (21) 

where b  is the right Cauchy-Green deformation tensor. _� = 1  under incompressible condition. 

Assuming c = N d <e
fghDgijk

�
, the reinforcement of the constraint from molecular chain network to the 

material mechanical property can be equivalently reflected by the constraint strain energy 
�, which 

is 


� = ���c(l�)� �⁄ + 
� (22) 

where 
� is a constant,  = � + � is the total number of molecular chains per unit volume, l� =
������ + ������ + ������ is the invariant of right Cauchy-Green strain tensor. As a result, constraint stress 

from the surrounding molecular chains �� is represented as: 

�� = 4√3
3 ���c" (23) 

Mathematical model of VE damper 

According to the theoretical derivations in the aforementioned sections, it can be observed that the 

procedure of model establishment is a process of cross-scale characterizing the mechanical behavior 

of VE damper, which can be summarized as shown in Figure 5. 

  
Substituting Equation (10), (17), and (23) into Equation (1) yields the shear dynamic modulus of the 

unfilled VE material G
∗ , as: 

n̅∗ = 3√39�4+�
'()� + ()*

1 + '�)� + (1 − 9)4���� + �G
3+�

(*))I + 4√3
3 ���c (24) 



 

 

where the first and second parts of Equation (24) represent the influence of non-Gaussian and Gaussian 

statistics of molecular chains on the mechanical behaviors of VE damper, and another two parts reflect 

the chain viscosity and network structure constrain to a single chain.  

However, the macroscopic mechanical performance of VE material is not only related to its internal 

molecular chain structure but also affected by the filling condition. The addition of fillers makes the 

molecular chains gather on the fillers and form a physically cross-linked structure, further constraining 

the deformation and movement of the molecular chains. Besides, due to the difference of stiffness 

between filler particles and the matrix rubber, fillers may amplify the deformation of the rubber matrix, 

introducing a significant discrepancy in the stiffness and energy dissipation capacity between the filler 

and the filler-free system. The actual filler-matrix structure of VE material can be seen in Figure 1. 

Generally, the enhancement of fillers can be considered by modifying the modulus of the unfilled 

matrix as:  

n∗ = qn̅∗ (25) 

where n∗ is the modulus of the filled VE material, and q is the modulus amplification function, 

which can be determined by (Shaw and MacKnight 2018; Wang et al. 2015):  

q = = 1 + 2.5r + 14.1r� r < 0.3
61/(1 − r/rsSt)7�.Fuviw r > 0.3 (26) 

where r is the volume fraction of the fillers, rsSt is the maximum volume fraction of the filler 

with the value of 0.637 in case of random filling.  

Substituting *I = cos(K{/2) + * sin(K{/2) into Equation (25), the energy-dissipation parameters of 

VE damper can be determined by separating the real part and the imaginary part of n∗, as: 

n� = 3√3�q9'()�
4+�(1 + '�)�) + �qG )Icos(K{/2)

3+� + 4�q���(1 − 9) + 4√3
3 q���c (27) 



 

 

n� = 3√3�q9()
4+�(1 + '�)�) + �qG)I sin(K{/2)

3+� (28) 

~ = n�n� (29) 

where n� , n� , and ~  are storage modulus, loss modulus, and loss factor for VE damper. With 

considering the effect of ambient temperature on the material dynamic property, the temperature-

frequency equivalent principle (Kasai 2001; Li et al. 2021; Xu et al. 2011) is introduced to reflect the 

temperature sensitivity of VE materials, as.  

=n�(), �) = n�(N�)< , �<)~(), �) = ~(N�)< , �<) (30) 

where N� = 10 ��(� �E) 6F�F�(� �E)7⁄   is the temperature shift factor, )�  is the corresponding 

circular frequency, �  and �<  are real-time ambient temperature and reference temperature, 

respectively.  

Substituting Equation (30) into Equation (27)-(29), the microstructure-based equivalent visco-

hyperelastic model for describing the mechanical properties of VE damper is finally completed, as:  

n� = 3√3�q9'(N��)�
4+�(1 + '�N��)�) + �qG N�I)Icos(K{/2)

3+� + 4�q���(1 − 9) + 4√3
3 q���c (31) 

n� = 3√3�q9(N�)
4+�(1 + '�N��)�) + �qGN�I)I sin(K{/2)

3+� (32) 

~ = n�n� (33) 

where Equations (31), (32), and (33) can explain the energy-dissipation mechanism of VE dampers 

from a microstructural level.  

Dynamic property tests of VE dampers 

Test protocols 



 

 

To evaluate the prediction capacity and applicability of the proposed model, a series of experiments 

on the VE dampers at different temperatures and frequencies have been carried out. The experimental 

VE dampers were of classical sandwich configuration with two VE layers and three steel plate layers 

connected by vulcanization. The thickness of the VE layer of the tested VE damper is 10 mm with a 

shear area of 3000 mm2. The volume fraction of the filler for the testing VE damping material is 0.2. 

A sinusoidal displacement loading protocol, " = "�BQ�;, was adopted in the testing process, where ", 
"�, J are the actual strain, the applied strain amplitude, and time. Each loading condition consisted of 

5 cycles, and the average of the middle three cycles is taken to represent the experimental result. The 

actual test setup is shown in Figure 6.  

Considering the possible ambient temperature that may occur during the service process in practice, 

the test temperature range was controlled at 0 ~ 50 °C with a customized temperature-controlled 

chamber. In practice, seismic motion to which the structure is subjected to belongs to low-frequency 

load, so the loading frequency is set within 0~6 Hz. In addition, in order to avoid the influence of the 

VE nonlinearity of VE damper on its mechanical properties under large displacement (Li et al. 2021), 

which is not the focus of this study, the loading strain amplitude is kept within 50% in the test process. 

The experiment protocols are listed in Table 1. The whole experiments were divided into two groups, 

group 1 was employed for the latter model parameter identification, whereas group 2 was subsequently 

used for the assessment of the proposed model. 

Test results and analysis 

Figure 7 presents the measured hysteresis curves of VE dampers at different loading conditions. It can 

be observed that all the VE dampers exhibit plump hysteresis curves, indicating that their energy 

dissipation capacity is excellent. On the other hand, the variation of hysteresis curves under different 



 

 

ambient temperatures, loading frequencies, and strain amplitudes are different. With the increase of 

loading frequency, the hysteresis curves become increasingly plump and tend to be flat with the 

increase of ambient temperature. With the strain amplitude experienced by VE dampers increasing, the 

plumpness of hysteresis curves keeps the visible increase. Similarly, from the macroscopic qualitative 

point of view, it can be seen from Figure 7 that the ambient temperature has the greatest influence on 

the area of the hysteresis curves, the strain amplitude contributes the second, and the frequency is 

relatively the smallest. 

Figure 8 quantitatively presents the energy dissipation of a single hysteresis loop at different loading 

conditions. It can be concluded that the increase of loading frequency significantly promotes the 

energy-dissipation capacity of VE dampers, and the strain amplitude is positively correlated with the 

energy dissipation of VE dampers in approximately power-function form, whereas high temperature 

drastically reduces its energy dissipation capacity. Also, it can be observed that the energy-dissipation 

capacity of VE dampers shows a non-linear increase trend with the increase of frequency, and the 

increase rate at the low-frequency range is higher than that at the high-frequency range. For instance, 

when the loading frequency increases from 0.1 Hz to 2.0 Hz, the increment of energy consumption per 

cycle is 1.601 J, and this value changes to 0.330 J with the frequency increases from 4.0 Hz to 6.0 Hz. 

As for the ambient temperature, the reduction rate in the low-temperature range is also more 

pronounced than that in the high-temperature range. However, this rule does not apply to the strain 

amplitude, the energy dissipation of VE damper of a single cycle keeps a continuously increasing trend 

with the increase of strain amplitude.  



 

 

The storage modulus n�  and loss factor ~  are important parameters to represent the mechanical 

characteristics of VE dampers. The experimental results for these parameters are determined by the 

following equations: 

n� = $�ℎ������� (34) 

~ = $�$� (35) 

where $�  and $�  are the corresponding force at the maximum displacement ��  and zero 

displacements respectively, ��  is the number of VE layers, ��  and ℎ�  are the shear area and 

thickness of the VE layer. For the tested specimens, the corresponding parameters are calculated and 

shown in Table 2 and Figure 9.  

Figure 9 shows the variation of the characteristic indicators, including n�  and ~ , with ambient 

temperatures, loading frequencies, and strain amplitudes. It can be seen that with the increase of 

loading frequency, the storage modulus and loss factor of VE damper all exhibit an increasing tendency, 

and the change rate of these parameters in the lower-frequency range is remarkably higher than that in 

the high-frequency range. For example, when the frequency increases from 0.1 Hz to 2 Hz, the changes 

of n� and ~ are 0.257 MPa and 0.209, respectively, whereas these values become 0.031 MPa and 

0.078 with frequency increasing from 4 Hz to 6 Hz. This indicates that the improvement in the energy 

consumption and stiffness caused by the increasing frequency tends to become stable with the increase 

of frequency under a high-frequency condition. This phenomenon may be explained by the fact that 

under high-frequency loading the cyclic period of the loading becomes much shorter than the material 

relaxation time, which is determined by the motion state of molecular chains inside material, rendering 

the material to be less frequency-sensitive. From the relationship between the characteristic parameters 

and the varying ambient temperature, it can also be seen that the degradation rates of these two 



 

 

parameters are more significant in the low-temperature range than that in the high-temperature range, 

and this is can be contributed to the consolidation state of molecular chain and the difficulty of its 

corresponding motion at different temperature. As for the strain amplitude, the overall reduction 

tendency of n� and ~ are similar to that of temperature, which may be caused by the accumulated 

damage of the VE damper during the process of loading. 

Validation and parameter analysis of the proposed model 

Comparison with experimental data 

The parameter identification process is to search a set of undetermined parameters to minimize the 

objective function Φ. Based on the test results in Section 3.2, the model parameters are identified by 

the genetic algorithm toolbox in MATLAB. Objective function Φ  used in the fitting process is 

constructed as:  

Φ = ∑ �n�,�ST� (), �, ", �) − n�,;��;� �� +RD��D,���� ∑ �~�ST� (), �, ", �) − ~;��;� ��RD��D,�����;��;,� + �;��;,� (36) 

Where )，� , " , n�,;��; , ~;��;  are the test values of measured loading frequency, ambient 

temperature, strain amplitude, storage modulus, and loss factor, respectively. � represents the � th 

test value. n�,�ST� (), �, ", �) and ~�ST� (), �, ", �) are the predicted values of the � th storage modulus 

and loss factor. �;��;,�  and �;��;,�  are the number of n�,;��;  and ~;��; . �  is the undetermined 

parameter vector of the proposed model, which is 

� = (�, �, ', (, G, ��, K, c, +�, "��) (37) 

The model coefficients so identified for the test VE dampers, based on the tested data in experimental 

group 1, are listed in Table 3. 



 

 

To illustrate the accuracy of the microstructure-based equivalent visco-hyperelastic constitutive model 

on describing the macroscopic mechanical behaviors of VE dampers, the proposed model with the 

above-identified parameters is employed to predict the experimental results of test group 2 in Table 1. 

The calculated results are listed in Table 4~Table 6, and Figure 10. As observed, almost all the absolute 

errors of predicted values for the storage modulus and loss factor are within the 20% tolerance given 

in this paper according to the literature (Li et al. 2021; Xu et al. 2016; Xu et al. 2019; Xu et al. 2019; 

Xu et al. 2013), from which the maximum calculated errors are generally within 20%. Therefore, it is 

suggested that a model be considered as producing has a good prediction accuracy when its numerical 

error is less than 20%. In fact, the averages prediction error of the proposed model in this paper are 

quite small, being 6.06% and 5.84% for n� and ~, respectively. The maximum prediction errors for 

n� and ~ under different frequencies are just 8.49% and 12.61%, and change to 18.91% and 6.13% 

at different temperatures, while the maximum errors at different strain amplitudes are 15.58% and 

12.17%, respectively. Thses results are markedly better than the maximum predicted errors of the 

proposed mathematical model in some previous studies (Xu et al. 2016; Xu et al. 2020; Xu et al. 2019).  

Besides, to clarify the effectiveness of the minimization scheme on the parameter identification process, 

regression analysises are conducted based on the numerical results. The average residuals for n� and 

~ are then calculated, which are only -0.001 and 0.002 and are close to zero. On the other hand, the 

goodness of fit is employed to measure the degree to which the predicted value fits the experimental 

results, and the corresponding determination coefficients for n� and ~ are computed up to 0.65 and 

0.97, respectively, which further proofs the effectiveness of the model parameter determine stratage. It 

can also be seen that, in general, the predictive error of ~ is higher than that of n�.This is because 

that n� is calculated directly, ~ is calculated indirectly, and the error in the calculation process will 



 

 

gradually accumulate into the calculation results of ~ . Based on the numerical results, it can be 

concluded that the proposed model possesses a remarkable predictive accuracy and robustness in the 

description of storage modulus and loss factor for VE dampers under various loading frequencies, 

temperatures, and strain amplitudes.  

In the sinusoidal shear deformation mode, the force-displacement curve of VE damper under various 

working conditions will exhibit as a standard ellipse, as shown in Figure 7. (Xu et al. 2016; Xu et al. 

2020) present the force-displacement curve equation for VE dampers, which is  

Oσ − ��"
~��"� U� + O "

"�U� = 1 (38) 

where �� = R�����
&�   is the equivalent stiffness of the VE damper. Based on Equation (38) and the 

proposed model, the experimental hysteretic curves at different testing conditions can be calculated, 

as shown in Figure 11.  

As observed, with varying loading frequencies, ambient temperatures and max strains, the 

experimental points basically fall on the numerical curves, indicating that the numerical hysteretic 

curve is generally in good agreement with the experimental results. On the other hand, considering that 

the hysteretic energy dissipation is an important indicator to describe the capacity of VE damper on 

mitigating the structural seismic response, the comparisons of energy dissipation per hysteresis loop 

between experimental and numerical results for the above numerical cases are conducted, and are listed 

in Table 7. It can be seen that almost all the calculation errors of the predicted values are no more than 

14%, and the maximum prediction errors is only 13.72%, which can be concluded that the proposed 

mathematical model posesses significant accuracy and applicability in describing the hysteretic energy 

dissipation of VE dampers. 



 

 

Also, it should be pointed out that the occurrence of some errors is inevitable and this can be attributed 

to the experimental error, discreteness of test data, and the simplifications made in the establishment 

of the proposed model. Although the complex microstructure and external factors that could affect the 

mechanical properties have been considered in this paper, other factors such as the specific distribution 

of fillers and cumulated damage in the loading process are still not accounted for. However, all the 

predicted errors are basically within an acceptable range, and the model proposed in this paper may be 

regarded as reasonably reflecting the mechanical behavior of VE dampers in applications. 

Analysis of the microstructure-based parameters 

As can be seen, microstructure parameters in this model can relate the macro mechanical properties of 

VE damper to the microstructure of VE material from micro-perspectives. Among them, the number 

of molecular chains, the initial end-to-end distance of the molecular chain, and the constrain coefficient 

are three essential microscopic parameters for the proposed model to characterize the mechanical 

behavior of VE damper from a cross-scale perspective. To further study the influence of material 

microstructure on its macroscopic performance, these three microscopic model parameters are selected, 

and then normalized with the above-identified parameters to make the same numerical simulation on 

the experiments with other parameters keeping constant. Considering the effects of loading frequency, 

ambient temperature, and strain amplitude on the mechanical properties of VE dampers have been 

experimentally investigated in Section 3.2, in this section, the characteristic parameters of VE damper 

under different frequencies are predicted by the proposed model, and the influence of microstructure-

based parameters on the prediction results is then analyzed quantitatively. The calculation results under 

are graphed in Figure 12 ~ Figure 14. 



 

 

Figure 12(a) shows that the storage modulus increases with the increase of �/�, and the increase 

rate at high frequency is significantly higher than that at low frequency. Generally speaking, the 

increase of the number of free chains can lead to the reduction of the elastic chain by assuming that 

the total number of molecular chains per unit volume is constant. In fact, the elastic chains and free 

chains contribute to both elasticity and viscosity of VE material as mentioned earlier. When the 

increase of the free chain to the material elasticity is enough to compensate for the decrease of the 

material elasticity caused by the decrease of the elastic chain, the VE material could show the trend of 

increasing the storage modulus instead. Besides, due to the high entropy elasticity of the elastic 

network chain, the natural vibration frequency of a single elastic molecular chain is high, leading it is 

more sensitive to high frequency. So that the vibration of a single molecular chain at high frequency is 

fierce than that at low frequency, the VE damper hence shows the phenomenon of modulus enhanced. 

Figure 12(b) demonstrates that the loss factor increases with the increase of �/�, the reason may 

be that the energy consumption of the VE material is mainly due to the friction between the free 

molecular chains itself and with the elastic chain, and the increase of the number of free chains then 

cause the increase of the loss modulus of VE dampers. 

It can be observed from Figure 13 that, both the storage modulus and loss factor increase with the 

decrease of +�. This is because that the smaller +� is, the higher the curl degree of molecular chain is. 

Thus, the molecular chain possesses higher configuration entropy and friction with the surrounding 

chains, leading to the macroscopic performance of strong elasticity and viscosity. Besides, the 

promotion rate of the material modulus and loss factor show the trend of degradation with the increase 

+�. This phenomenon may be explained that the entropy elasticity can be very low due to the low-level 

curl degree of molecular chain, and the molecular chain in the matrix is in a highly loose free state, 



 

 

similar to a dilute polymer solution, resulting in that the material is not sensitive to the change of +�. 

On the other hand, Figure 13 also demonstrates that increase rates of the storage modulus and loss 

factor at high frequency is more significant than that at low frequency at different +�, this may because 

that the vibration period of molecular chain is close to the high frequency in the calculations so that 

the VE damper shows higher stiffness and dissipation capacity. 

As seen from Figure 14, with the increase of c, the storage modulus of VE damper remarkablely gets 

enhanced with its loss factor slightly decreasing. The reason may be that the elasticity provided by the 

elastic network chain mainly comes from the entropy elasticity of a single molecular chain, which is 

not only related to its curl degree but also related to its surrounding network constraints. Raw rubber 

is usually vulcanized and crosslinked in engineering so that more crosslinking points are formed 

between the molecular chains in the material, which increases the mutual constraints between the 

molecular chains, and finally improves the storage modulus of VE material. However, higher curl and 

crosslink of molecular chain can obtain higher material strength, but it will sacrifice the dissipation 

capacity of the VE material. For a given material, the more elastic chains formed, the fewer free chains 

left, and the weaker the energy dissipation capacity of the VE damper, which is not conducive to the 

energy dissipation of the actual structure.  

Conclusions 

In this paper, a microstructure-based equivalent visco-hyperelastic model is presented. A series of 

dynamic property tests on VE dampers are carried out. The accuracy and applicability of the proposed 

model are verified by the test data, sensitivity analysis on the microstructure parameters is conducted. 

The following conclusions may be drawn: 



 

 

(1) The comparative results demonstrate that the model is capable of reflecting the energy dissipation 

and stiffness characteristics of VE dampers under varying loading frequency, ambient temperature, and 

strain amplitude. The parameters of the proposed model have clear physical meanings, allowing a 

rubust representation of the relationship between the macroscopic mechanical characteristics of VE 

dampers and the complicated microstructure of VE materials. 

(2) The initial configuration, composition, and network topology of molecular chain have a significant 

effect on the macroscopic mechanical behaviors of VE dampers. For a given material, with the increase 

of the ratio of the number of free chains to elastic network chains, the storage modulus and the loss 

modulus simultaneously increases in the test frequency ranges. With the decrease of the initial end-to-

end distance of molecular chain, both the storage modulus and loss modulus significantly increase. 

With the increase of the constraint between molecular chains, the storage modulus of VE dampers gets 

enhanced, whereas its loss factors observably decrease. 

(3) VE dampers possess an excellent energy dissipation capability, which is remarkably affected by 

the varying temperature, frequency, and strain amplitude. Increasing loading frequency significantly 

promotes the energy dissipation capacity of VE dampers, whereas high temperature causes drastic 

degradation in its energy dissipation capacity. The change rates of the characteristic parameters tend 

to be more pronounced in the lower ranges of frequency and temperature than that in the higher ranges. 

(4) It should be pointed out that, although the proposed model has considered the complex structural 

characteristics of the macromolecular chain and other external factors that may affect the macroscopic 

mechanical properties of VE dampers, several simplifications have also been made and this tends to 

lead to increased prediction errors in some situations. In future studies, other pertinent factors, such as 



 

 

the internal damage of materials, the Payne effect, and the Mullins effect, should be examined and be 

appropriately included in the prediction model.  
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Tables 

Table 1 Experiment protocols 

Test group Temperature (°C) Frequency (Hz) Strain amplitude 

1 

15 0.3, 1.0, 2.0, 3.0, 4.0, 6.0 20% 

0, 10, 20, 30, 40 2.0 20% 

15 2.0 10%, 20%, 30%, 40% 

2 

15 0.1, 0.5, 1.5, 2.5, 3.5,5.0 20% 

5, 15, 25, 35, 45 2.0 20% 

15 2.0 5%, 15%, 25%, 35% 

 

 

Table 2 Characteristic parameters at different loading conditions  

)(Hz) 0.1 0.3 0.5 1 1.5 2 2.5 3 3.5 4 5 6 

n1(MPa) 0.701 0.802 0.824 0.876 0.923 0.958 0.972 1.015 0.99 1.021 1.037 1.052 

~ 0.101 0.122 0.164 0.250 0.284 0.310 0.329 0.354 0.387 0.401 0.452 0.479 � (°C)  0 5 10 15 20 25 30 35 40 45 / / 

n1(MPa) 1.56 1.01 1.076 0.958 0.872 0.817 0.779 0.755 0.733 0.688 / / 

~ 0.856 0.429 0.388 0.310 0.235 0.201 0.160 0.156 0.136 0.129 / / 

Max strain 5% 10% 15% 20% 25% 30% 35% 40% / / / / 

n1(MPa) 1.056 0.997 0.974 0.958 0.927 0.904 0.882 0.846 / / / / 

~ 0.353  0.336  0.318  0.310  0.307  0.303  0.291  0.279  / / / / 



 

 

 

Table 3 Model parameters 

The proposed model 

Model parameter � = 3.21 × 10��, � = 1.32 × 10��, ' = 5.56, q= 0.88, G = 0.99,  �< = 29.0, K = 0.70, c = 1.24 × 10�, +� = 8.07 × 10��, ";< = 0.01 

 

Table 4 The experimental and numerical result comparisons for different frequencies when  ¡¢ £¤¥¡¦§ =
]¨% and © = \ª«` 

)(Hz) 
n1(MPa) ~  

Experimental 

data 

Numerical 

results 

Calculation 

error 

Experimental 

data 

Numerical 

results 

Calculation 

error 

0.1 0.701  0.761  8.49% 0.101  0.094  7.31% 

0.5 0.824  0.826  0.18% 0.161  0.141  12.61% 

1.5 0.923  0.889  3.72% 0.284  0.257  9.49% 

2.5 0.972  0.938  3.51% 0.329  0.344  4.55% 

3.5 0.990  0.981  0.88% 0.387  0.415  7.18% 

5 1.037  1.040  0.29% 0.452  0.501  10.92% 

 

 

Table 5 The experimental and numerical result comparisons for different temperatures when 

 ¡¢ £¤¥¡¦§ = ]¨% and ¬ = ]. ¨® 

(°C) 

n1(MPa) ~  

Experimental 

data 

Numerical 

results 

Calculation 

error 

Experimental 

data 

Numerical 

results 

Calculation 

error 

5 1.010  0.982  2.74% 0.429  0.416  2.95% 

15 0.958  0.914  4.57% 0.310  0.303  2.37% 

25 0.817  0.870  6.45% 0.175  0.182  3.77% 

35 0.755  0.840  11.21% 0.156  0.165  6.13% 

45 0.688  0.818  18.91% 0.129  0.129  0.55% 

 

Table 6 The experimental and numerical result comparisons for different max strains when ¬ = ]. ¨® and 

© = \ª«` 

Max 

strain 

n1(MPa) ~  

Experimental 

data 

Numerical 

results 

Calculation 

error 

Experimental 

data 

Numerical 

results 

Calculation 

error 

5% 1.056  0.892  15.58% 0.353  0.310  12.17% 

15% 0.974  0.906  6.99% 0.318  0.305  4.03% 

25% 0.927  0.923  0.41% 0.307  0.300  2.09% 

35% 0.882  0.944  6.98% 0.291  0.295  1.45% 

 

Table 7 Comparison of energy dissipation per hysteresis loop  

T



 

 

Numerical cases 
Energy dissipation per hysteresis loop (J) 

Experimental results Numerical results Calculation error 

(a) 1.373  1.361  0.87% 

(b) 3.260  3.303  1.31% 

(c) 2.467  2.128  13.72% 

(d) 0.876  0.972  10.90% 

(e) 1.456  1.273  12.52% 

(f) 6.474  6.639  2.55% 

 

Figure Captions: 

Figure 1 Microstructure of VE material: (a) Actual micromorphological structures; (b) Simplified 

molecular chain network. 

Figure 2 Evolution of statistical distribution for molecular chains 

Figure 3 Different forms of transition equation: (a) Lim 2005; (b) the present paper; (c) Elı ́as-Zúñiga 

and Beatty 2002 

Figure 4 Tube model for describeing the constraints between molecular chains: (a) Initial 

configuration; (b) Immediate configuration after tension 

Figure 5 Procedure of model establishment: Microscale: (a) Gaussian statistical model, (b) 8-chain 

statistical model, (c) 3-chain statistical model; Macroscale: (d) Maxwell element, (e) Abel fractional 

element 

Figure 6 The actual testing status 

Figure 7 Hysteresis curves of VE dampers at different frequencies, different temperatures and different 

Max strains: (a), (c), (e) group 1; (b), (d), (f) group 2. 

Figure 8 Energy dissipation per hysteresis loop at different loading conditions 



 

 

Figure 9 n� and ~ at different loading conditions 

Figure 10 Experimental prediction of the proposed model at different conditions 

Figure 11 Comparison of hysteretic curves between experimental and numerical results at different 

loading conditions; (a) and (b) Max strains = 20%, T = 15�C; (c) and (d) Max strains = 20%, 

ω = 2Hz; (e) and (f) T = 15�C, ω = 2Hz. 

Figure 12 Influence of ratio of �/� 

Figure 13 Influence of model parameter +� 

Figure 14 Influence of model parameter c 

 

 

 

 

 



 

 

Figures 1 

 2 

Figure 1 Microstructure of VE material: (a) Actual micromorphological structures; (b) Simplified molecular 3 

chain network. 4 

 5 

 6 

Figure 2 Evolution of statistical distribution for molecular chains 7 

 8 

    9 

(a)                            (b)                             (c)  10 

Figure 3 Different forms of transition equation: (a) Lim 2005; (b) the present paper; (c) Elı́as-Zúñiga and 11 

Beatty 2002 12 
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 13 

 14 

Figure 4 Tube model for describeing the constraints between molecular chains: (a) Initial configuration; (b) 15 

Immediate configuration after tension 16 

 17 

 18 

Figure 5 Procedure of model establishment: Microscale: (a) Gaussian statistical model, (b) 8-chain statistical 19 

model, (c) 3-chain statistical model; Macroscale: (d) Maxwell element, (e) Abel fractional element 20 

 21 
 22 

 23 

Figure 6 The actual testing status 24 
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 26 
 27 
 28 

(a)  (b)   29 

(c)  (d)  30 

(e)  (f)  31 

Figure 7 Hysteresis curves of VE dampers at different frequencies, different temperatures and different Max 32 

strains: (a), (c), (e) group 1; (b), (d), (f) group 2.  33 
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Figure 8 Energy dissipation per hysteresis loop at different loading conditions 36 

 37 

 38 

Figure 9 ¶\ and · at different loading conditions 39 
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Figure 10 Experimental prediction of the proposed model at different conditions 42 
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(a)  (b)  52 

(c)  (d)  53 

(e)  (f)  54 

Figure 11 Comparison of hysteretic curves between experimental and numerical results at different loading 55 

conditions; (a) and (b) Z¸¹ º»¼¸½¾º = ]¨%, ¿ = \ª«`; (c) and (d) Z¸¹ º»¼¸½¾º = ]¨%, À = ]®; (e) 56 

and (f) ¿ = \ª«`, À = ]®. 57 
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(a) (b)   59 

Figure 12 Influence of ratio of Á]/Á\; (a) ¶\; (b) ·. 60 

 61 

(a)   (b)   62 

Figure 13 Influence of model parameter ¥¨; (a) ¶\; (b) ·. 63 
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(a)  (b)   65 

Figure 14 Influence of model parameter Â; (a) ¶\; (b) ·. 66 
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