

Edinburgh Research Explorer

Level Graphs: Generating Benchmarks for Concurrency
Optimizations in Compilers

Citation for published version:
Goens, A, Ertel, S, Adam, J & Castrillon, J 2018, 'Level Graphs: Generating Benchmarks for Concurrency
Optimizations in Compilers', Paper presented at 11th International Workshop on Programmability and
Architectures for Heterogeneous Multicores (MULTIPROG-2018), Manchester, United Kingdom, 24/01/18 -
24/01/18. <https://research.ac.upc.edu/multiprog/multiprog2018/papers/MULTIPROG-2018_Goens.pdf>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://research.ac.upc.edu/multiprog/multiprog2018/papers/MULTIPROG-2018_Goens.pdf
https://www.research.ed.ac.uk/en/publications/38c550d4-172a-48a0-8390-c0260abc6ffc

Level Graphs
Generating Benchmarks for Concurrency Optimizations in Compilers

Andrés Goens, Sebastian Ertel, Justus Adam, Jeronimo Castrillon
Chair for Compiler Construction
Technische Universität Dresden

Dresden, Germany
{first}.{last}@tu-dresden.de

Abstract
Benchmarks are needed in order to test compiler and language-
based approaches to optimize concurrency. These have to
be varied, yield reproducible results and allow comparison
between different approaches. In this paper, we propose a
framework for generating synthetic benchmarks that aims at
attaining these goals. Based on generating code from random
graphs, our framework operates at a high level of abstraction.
We test our benchmarking framework with a usecase, where
we compare three state-of-the-art systems to optimize I/O
concurrency in microservice-based software architectures.
We showhowusing our benchmarkswe can reliably compare
between approaches, and even between the same approach
using different coding styles.

1 Introduction
Modern computing systems, especially heterogeneous ones,
are parallel and rely on concurrency for ensuring an efficient
execution. As such, both industry and academia spend a con-
siderable effort in tools that identify, extract and optimize
concurrency in applications. In order to asses the efficacy of
a tool or framework, however, we have to evaluate it using
benchmarks. Unfortunately, to the best of our knowledge,
there are no satisfactory benchmarking options that are var-
ied, yield reproducible results and allow a fair comparison
between approaches, all at the same time.

When testing a tool or approach, we should ideally use am-
ple benchmarks, spanning a wide range of typical usecases.
Without variety in the benchmarks, we cannot guarantee
the applicability of a tool being evaluated. Similarly, results
obtained through a benchmark should be reproducible. Com-
puter science should be treated as an empirical science, and
without reproducibility, the scientific rigor of a test is lost.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
MULTIPROG’18, January 24, 2018, Manchester, UK
© 2018 Copyright held by the owner/author(s).

Optimizing concurrency is a very important topic. As such,
there is a myriad of different approaches and solutions to
problems of optimizing concurrency. Thus, it is imperative
that we are able to compare fairly between the different
approaches. For benchmarks this means that they need to be
portable and allow comparison between such approaches.

Existing benchmarks, like PARSEC [1] or SPLASH-2 [10],
are limited to a small set of problems and inputs which can
quickly become dated [1]. Furthermore, they are limited to
an implementation of concurrency, e.g. a specific threading
library, making it difficult to compare to other approaches.
On the other hand, companies commonly use priopietary
code and input as a benchmark (e.g. [6]). While these bench-
marks are representative of a problem domain and usually
up-to-date, they make results impossible to reproduce for
other researchers, and much less to compare to other ap-
proaches. All of this is not surprising, since companies usu-
ally spend several person-decades to produce a codebase that
efficently leverages the concurrency in their problems. Any
good benchmark that is varied and up-to-date would need
to reflect this effort.
In this paper we propose an alternative solution to the

problem of missing benchmarks. Our proposed solution
involves generating synthetic benchmarks from random
graphs, in a way that we believe captures the general struc-
ture of complex applications with considerable amounts of
concurrency. We do this at a high level of abstraction, which
we believe is enough to evaluate the efficacy of general ap-
proaches. By releasing the tool to the public domain and
using deterministic pseudo-random-number-generation, we
can achieve reproducible results. Furthermore, by using a
two-tiered approach, generating a graph first and then code
from it, we can produce comparable code for different frame-
works, allowing us to compare between them. This is the
other advantage of our graph-based approach, besides cap-
turing the structure of the applications.
To evaluate our benchmarks, we look at a usecase from

the domain of microservices. In this domain, performance is
heavily influenced by the concurrent execution of I/O calls.
We generate code to evaluate and compare three frameworks
for extracting and exploiting this concurrency in I/O from
microservice-based applications. Additionally, using the high
level of abstraction of our tool, we show howwe can produce

1

MULTIPROG’18, January 24, 2018, Manchester, UK Andrés Goens, Sebastian Ertel, Justus Adam, Jeronimo Castrillon

code with the same structure using different abstractions
for concurrency. Experiments show how this can affect the
optimization potential from these frameworks.
The rest of the paper is structured as follows: Section 2

introduces the ideas and foundations of our code-generating
framework. Section 3 introduces the usecase and its eval-
uation. Finally, Sections 4 and 5 discuss related work and
conclude the paper, respectively.

2 Random Code Generation
In this section we explain the design of a tool that generates
random code following a specific structure. In our bench-
mark tool, we generate programs that aim to resemble the
typical structure of applications with complex concurrent in-
teractions, as motivated by the usecases. While we based our
tool on concurrent applications as ocurring in microservice-
based architectures, we believe the concepts aremore general
and apply to most types of concurrent applications. We hope
that companies building such architectures will find our tool
appealing for their testing and enrich it with their insights
to make the generated programs capture more real-world
characteristics, even in different domains. For this reason,
the code described in this section has been released1 under
an open-source license.

For this tool we derive the structure of the target programs
from applications which process data from different sources
in multiple layers. To build such benchmark programs, our
tool generates source code out of random graphs. We do this
in two steps, first generating the graph and then, the source
code out of it. This allows us to generate code variants in
different languages with the same structure.
For the purpose of code generation, we first introduce a

special type of graph, a Level Graph. We believe this reflects
the layered structure of our target applications. Afterwards,
we explain its concept and present an algorithm to generate
random Level Graphs.

2.1 Level Graphs
Generic graphs are too general to describe the call graphs
of the typical concurrent applications. In order to better de-
scribe their structure we need a concept that is more specific.
By analyzing call-graphs in usecases from the microservice
domain, we noticed that most applications can usually be
described by trees with a small amount of edges, compared
to the size of the graphs themselves. In particular, edges
are local in a sense that we will try to formalize. We call
our approach to formalizing graphs with this structure Level
Graphs. Since not all call-graphs are trees, we take rooted
directed acyclic graphs as a base instead. A Level Graph is
thus a rooted, directed acyclic graph with integer labels in
the vertices. These labels are called levels, and we require

1https://github.com/goens/rand-code-graph

that edges only go from a lower to a higher level. In partic-
ular, there can be no edges between two nodes that are at
the same level. The levels in a Level Graph are a means of
formalizing the data-locality observed in call-graphs, e.g. by
bounding the level-difference between two nodes where an
edge is present. They also impose constraints on the sched-
uling of the nodes, representing those imposed by the way
the code is written.

2.2 Random Graph Generation
To generate random Level Graphs, we base our algorithm on
a basic graph construction, the join of two graphs, usually
denoted byG1 +G2. IfGi = (Vi ,Ei),i = 1,2, then it is defined
as:

G1 +G2 := (V1 ∪̇V2,E1 ∪ E2

∪{(v,w) | v ∈ V1,w ∈ V2} ∪ {(v,w) | v ∈ V2,w ∈ V1}),

where V1 ∪̇V2 denotes the disjoint union of V1 and V2.
Similarly, we can define the graph join of two Level Graphs

by changing the additional edges included in the join so that
they respect the Level Graph structure. Let Li = (Vi ,Ei),li :
Vi → N,i = 1,2 be two Level Graphs, where li denotes
the level label function, and L1 + L2 = (V1+2,E1+2) be the
(conventional) graph join of them. Then we define the Level
Graph join as:

L1 ⊕ L2 := (V1+2, {e = (v,w) ∈ E1+2 | l (v) < l (w)})

To generate random Level Graphs we create levels and
join them together using a construction similar to the graph
join construction. The graph join construction gives us all
possible edges between two Level Graphs. However, we do
not want to have all possible edges. Instead, we want to have
only a random subset of them.

Our basic approach for random Level Graphs follows the
philosophy of the Gilbert approach [4]. This means that for a
given probabilityp ∈ [0,1] every (possible) edge is present in-
dependently with probability p. If our random Level Graphs
are to represent the call graphs of typical applications pro-
cessing data, our model needs to consider that data is used
much more in a local fashion. Thus, instead of a fixed proba-
bility p, we assign a probability function based on the levels.
More precisely, we have a set pi,j ∈ [0,1] for i, j ∈ N and the
independent probability of the edge e = (v,w) in the Level
Graph join is given as:

p ((v,w)) = pl (v),l (w) .

This means, in particular, that pi,j = 0 for i ≥ j. For
example, for the tests in this paper we used the probabilities
pi,j = 2i−j for i < j. This makes sure that edges spanning
several levels become increasingly less likely the more levels
they span.
Using the random Level Graph join construction we can

combine null Level Graphs (a Level Graph with one level,
2

https://github.com/goens/rand-code-graph

Level Graphs MULTIPROG’18, January 24, 2018, Manchester, UK

local-1 local-2

local-3

local-4 local-5 local-7local-6

subfunction

getData

compute
level 1

level 0

level 3

level 2

Figure 1. An example of a Level Graph.

and thus, no edges) multiple times to obtain a Level Graph
with multiple levels.

Note that this graph is not guaranteed to be connected. It
might also have several “root-like” nodes, i.e. nodes without
predecessors. We fix these two issues by making the graph
rooted. We do this by creating a root node one level below
all current existing levels and connecting all nodes without
predecessors to this root node.
Figure 1 illustrates a Level Graph with four levels. The

nodes have been labeled with code types, which will be
introduced in the next subsection.

2.3 Code Generation
To generate code, we first extend Level Graphs to have la-
bels for the type of code that each node will represent and
randomly assign labels to a generated Level Graph. The
annotations depend on the usecase, of course. For the pur-
poses of illustration, consider the following five different
annotation types: computation, data-source, data-fetch (side-
effect), subfunction and map. The first three generate code
that simulates external function calls, involving I/O and pure
computations. Subfunction/map nodes generate a call to/a
map over a local function, for which a new random graph is
generated in turn. The choice of these annotation types is, to
some extent, arbitrary. They could be replaced by a similar
set of code annotations in a different setting.

In order to generate code from a rooted and code-annotated
Level Graph, we only need to traverse the nodes and gener-
ate functions with dependencies in accordance to the graph.
If there are subfunctions labeled as such in the graph, we
need to do this recursively for all corresponding subgraphs
as well.

To traverse a graph, we sort the nodes in it by levels. This
sorting is also a topological sort, by the defining properties
of Level Graphs. We traverse the graph bottom-up, starting
at the highest level, i.e. in reverse-topological order. At every
level, we serialize the nodes in that level as function calls, as
well as all predecessors of a node as the arguments of the
function call.
The example of Figure 1 can be converted into the fol-

lowing Clojure code. It shows only the code for the graph
depicted, omitting the subfunction generated for subfun-3.
(let [local-4 (get-data "source" 100)

local-5 (compute 100)
local-6 (get-data "source" 100)

local-7 (compute 100)]
(let [local-3

(subfun-3 local-4 local-5 local-7)]
(let [local-1 (compute 100 local-4)

local-2 (get-data "source" 100 local-3)]
(get-data "source"

100 local-1 local-2 local-6))))

This approach is not limited to Clojure nor to functional
languages. For example, the same graph could generate Java
code similar to the following snippet:
{

Object loc4 = get_data("source",100);
Object loc5 = compute(100);
Object loc6 = get_data("source",100);
Object loc7 = compute(100);
{

Object loc3 = subfun_3(loc4,loc5,loc7);
{

Object loc1 = compute(100,loc4);
Object loc1 =

get_data("source",100,loc1,loc2,loc6);
}

}
}

3 Evaluation
In order to evaluate our code-generation framework, we
generate code for usecases from the microservice domain.
Using this code we evaluate and compare three frameworks
with similar aims: To improve I/O in microservice architec-
tures by leveraging concurrency in I/O calls and batching
them together. The frameworks we evaluate are Haxl, by
Facebook [6], which is an EDSL in Haxl, and two open-
source academic frameworks inspired by Haxl, Muse [5]
and Ÿauhau [3], which are both based on Clojure. Thus, we
need to generate Haskell code for Haxl, and Clojure code for
Muse and Ÿauhau.
Since our Level Graphs have a high level of abstraction,

there are different ways we can serialize them as code for
Haskell and Clojure. In particular, we can use a style using
monads, or use a more direct approach with applicative func-
tors. In the following we discuss these different ways, which
we will call code-style variants.

3.1 Code-Style Variants
In the following we use the example of Figure 1 to depict the
code that we generate for all different frameworks. Again,
we omit the subfunction generated for subfun-3.

3.1.1 Applicative Code Style
The applicative code style makes explicit use of the applica-
tive functor or the respective concept thereof.

Haxl The applicative version of the Haxl code executes the
functions of a single level using the applicative functor and

3

MULTIPROG’18, January 24, 2018, Manchester, UK Andrés Goens, Sebastian Ertel, Justus Adam, Jeronimo Castrillon

uses a single do block to connect the levels with each other
via variables. This is also the version of code favored by the
authors of the Haxl paper, since at the time there was no
support for desugaring do into applicative functors [6]. This
only became available with GHC version 8 [7].
do
-- level 3
(local4, local5, local6, local7) <- (,,,)

<$> getData "source" [100] <*> compute [100]
<*> getData "source" [100] <*> compute [100]

-- level 2
local3 <- subfun3 [100, local4, local5, local7]
-- level 1
(local1, local2) <- (,)

<$> compute [100, local4]
<*> getData "source" [100, local3]

-- level 0
getData "source" [100,local1,local2,local6]

Note that the parameters to the function calls are also con-
trolled by the code generation framework. For the compute
function the parameter controls the execution time and in
the case of the getData function the parameter is the ID
of the data source to be queried. The choice of 100 here is
arbitrary. In future work we plan to find accurate models
for timings, including timing variations. However, this bears
no consequence in the evaluation of this paper, since we
only care about the number of I/O operations, not the total
execution time.

Muse The syntactically equivalent Muse code uses a sin-
gle mlet-block of the Cats library which is equivalent to
Haskell’s do block2.
(cats/mlet

[; level 3
[local-4 local-5 local-6 local-7]
(cats/<$>

clojure.core/vector
(get-data "source" 100)
(cats/<$> (compute (cats/return 100)))
(get-data "source" 100)
(cats/<$> (compute (cats/return 100))))

; level 2
local-3
(subfun-3 local-4 local-5 local-7)

; level 1
[local-1 local-2]

(cats/<$>
clojure.core/vector
(cats/<$>

(compute (cats/return 100)
(cats/return local-4)))

(get-data "source" 100 local-3))]
; level 0
(get-data "source" 100 local-1 local-2

local-6))))

2https://funcool.github.io/cats

The implications to the programming style are quite im-
pacting because the programmer has to make use of monadic
concepts which is uncommon in Clojure.

Ÿauhau In contrast to Muse, Ÿauhau uses Clojure code
with the normal let construct.
(let

[; level 3
[local-4 local-5 local-6 local-7]

(vector (get-data "source" 100)
(compute 100)
(get-data "source" 100)
(compute 100))

; level 2
local-3 (subfun-3 local-4 local-5 local-7)
; level 1
[local-1 local-2]

(vector (compute 100 local-4)
(get-data "source" 100 local-3))]

; level 0
(get-data "source" 100 local-1 local-2

local-6))))

3.1.2 Monadic Code Style
The monadic version of the code uses no applicative functor
or any other similar abstractions. It is, among those sup-
ported by the frameworks, the code style that is most natural
to the developer.

Haxl Themonadic Haxl code binds the result of every node
in the graph in a single large do block.
do
-- level 3
local7 <- compute [100]
local6 <- getData "source" [100]
local5 <- compute [100]
local4 <- getData "source" [100]
-- level 2
local3 <- subfun3 [100, local4, local5,

local7]
-- level 1
local2 <- getData "source" [100, local3]
local1 <- compute [100, local4]
-- level 0
getData "source" [100,local1,local2,local6]

Note that the order of serialization still remains the same
as in the case of the applicative code style. Therefore, the
code preserves the concept of variable locality.

Muse The syntactically equivalent Muse code uses nested
mlet-bindings, one for each level.
(cats/mlet [; level 3

local-4 (get-data "source" 100)
local-5 (compute 100)
local-6 (get-data "source" 100)
local-7 (compute 100)]

(cats/mlet [; level 2
local-3 (subfun-3 local-4 local-5 local-7)]

4

Level Graphs MULTIPROG’18, January 24, 2018, Manchester, UK

(cats/mlet [; level 1
local-1 (compute 100 local-4)
local-2 (get-data "source" 100 local-3)]

; level 0
(get-data "source" 100 local-1 local-2 local-6))

We generate nested mlet blocks because it is a more nat-
ural “Clojure-resque” style of programming that one would
typically find. The runtime effect is the same as defining all
variables in a single mlet block. The code shows that a lot of
the monadic aspects are gone from the code and it is much
more readable than its applicative counterpart.

Ÿauhau Once more, the code for Ÿauhau is the same as
for Muse but with a plain Clojure style using nested let
expressions instead of mlet.

3.2 Experimental Setup
To compare the frameworks, we execute comparable code
generated for all three frameworks and measure their perfor-
mance. In order to do so, out of the same graph we produce
code for all six presented combinations of framework and
code variant. Our experiment framework provides imple-
mentations for the functions getData and compute. These
functions are no-ops for the experiments that count the total
number of performed I/O calls. We use this as a measure
of the efficacy of the framework, as was established by the
evaluation in [3, 6] (lower is better). In particular, the total
execution time is irrelevant.
In our experiments, we vary the number of levels in a

graph from 1 to 20. For each fixed number of levels we gener-
ate 20 different random graphs. Thus, for each fixed number
of levels, we report the average number of I/O calls executed
by each framework in the corresponding 20 runs, which we
denote as #I/O calls (avg.).

3.3 Results
Figure 2 shows the difference in batching between the dif-
ferent frameworks, and for each framework, between the
monadic and the applicative versions. Neither Haxl (pre
GHC 8) nor Muse have support for batching requests in
the monadic code style. Therefore, we observe the same per-
formance for both frameworks when using a monadic code
style. Code written in this form does not benefit from request
batching and display the efficiency of a sequential execution
(which we omitted from the plot for readability).

We also ran both frameworks with the same code graphs
transformed into code which heavily favors the applicative
code style.
In terms of batching, Ÿauhau is superior than Haxl and

Muse even when following the applicative style. In this set
of experiments, Ÿauhau outperforms the monadic versions
by 49% for programs with more than a single level. This is
due to the fact that finding the minimal number of rounds
with the maximum number of fetches per round requires

non-trivial code analysis and changes. Ÿauhau provides such
a data dependency analysis at compile time, which enables
it to find the most efficient solution, whereas Haxl and Muse
only provide a mechanism for optimizing this at runtime
that is less efficient.
The difference in performance, i.e., number of I/O calls,

for both implementations in Haxl and in Muse display a clear
tradeoff. Code executes most efficiently when written in an
applicative form, but the monadic code style is necessary to
make the code understandable, i.e., concise and maintainable.
In Ÿauhau, in turn, the algorithms are independent of the
structure of the code itself. For that reason, the new Haskell
compiler (GHC version 8) desugars monadic binds into ap-
plicative functor. Therefore, we used the monadic variant
of the created code and compiled it with GHC 8.0.1. The
plot in Figure 2 shows that this increases performance but
only up to the level of applicative Haxl code, still below the
performance of Ÿauhau. This is due to the structure of the
source graph (Level Graph). As a direct result, when we ap-
ply applicative do to the monadic version it has to insert at
least one bind per level. The resulting code is essentially the
same as the applicative style code that we generate because
of a reordering limitation that comes about by conservative
optimizations not knowing the exact dependencies. There-
fore, applicative-do code inherits the same performance as
the applicative style. We argue that our level graph encapsu-
lates the notion of variable locality, i.e., a variable is used in
the code close to where it is was created, as a natural way
of writing code. Reordering the statements such that Haxl
performs as good as Ÿauhau would entirely break this notion
and produce code that is hard to maintain.

We see how our level graphs framework provides means
of comparing different frameworks based on different lan-
guages in a meaningful way. In particular, it allowed us in
this usecase to determine how the code style affects perfor-
mance in the frameworks. This is a virtue of the high level
of abstraction in the graphs.

4 Related Work
As explained in the introduction Benchmarks, like PAR-
SEC [1] or SPLASH-2 [10] are limited to a small set of prob-
lems and inputs which can quickly become dated [1]. Further-
more, they are limited to an implementation of concurrency,
making it difficult to compare to other approaches.
However, several approaches also exist to generate syn-

thetic benchmarks through graphs with the typical structure
of software applications. The most prominent ones include
TGFF [2] or SDF3 [9]. These tools are designed to test meth-
ods for scheduling these graphs, but do not generate code
from the graphs. Similarly, there is previous work on gen-
erating random programs for particular languages [11] or
from grammars [8]. However, these tools are very usecase
specific. In praticular, they operate at a much lower level of

5

MULTIPROG’18, January 24, 2018, Manchester, UK Andrés Goens, Sebastian Ertel, Justus Adam, Jeronimo Castrillon

0 5 10 15 20

graph levels

I/O

 c
al

ls
 (

av
g.

)

haxl−app haxl−ghc−8 haxl−monad muse−app muse−monad yauhau−app yauhau−monad

Figure 2. Monadic vs. Applicative Code Style

abstraction, which allows only to generate code for a specific
language, and not benchmarks that can be used to compare
approaches implemented in different languages. Addition-
ally, the low level of abstraction makes it difficult to adapt
the approach to a particular problem domain, like I/O in
microservice architectures. To the best of our knowledge,
our Level Graphs approach is the first high-level framework
that can be adapted to a particular problem, while producing
actual code for different languages, which can be used to
compare different approaches.

5 Conclusion
In this paper, we introduced a methodology to generate code
from random graphs at a high level of abstraction. We argued
why our Level Graph approach captures concepts like data
locality and allows to extract the structure of the use case.
We then also show with an experiment, how our method
provides means of comparing different frameworks based on
different languages in a meaningful way. In particular, the
high level of abstraction allowed us to produce code in dif-
ferent styles. This in turn permitted us to determine how the
code style affects performance in different frameworks for
optimizing I/O calls in microservices. We see thus that using
our approach with Level Graphs we can generate synthetic
benchmarks that are varied and yield reproducible results,
while allowing different tools based on different languages
to be compared.

5.1 Future Work
An issue that is still open is how closely the graphs resemble
actual applications, as well as how many different types of
applications can be covered by such an approach. To deal
with this, we plan to extend our work by validating the struc-
ture of the graphs. We plan to mine from different codebases
and abstract the high-level information in an automated fash-
ion. This way, we can use a learning approach to find typical
Level Graph structures in real code from real benchmarks.

Acknowledgments
This work was supported in part by the German Research
Foundation (DFG) within the Collaborative Research Center
HAEC and the Center for Advancing Electronics Dresden
(cfaed).

References
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:

Characterization and architectural implications. In Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, pages 72–81. ACM, 2008.

[2] R. P. Dick, D. L. Rhodes, and W. Wolf. Tgff: task graphs for free. In
Proceedings of the 6th international workshop on Hardware/software
codesign, pages 97–101. IEEE Computer Society, 1998.

[3] S. Ertel, A. Goens, J. Adam, and J. Castrillon. Compiling for con-
cise code and efficient i/o. In Proc. of the 27th Int. Conf. on Compiler
Construction (CC 2018), CC 2018, New York, NY, USA, Feb. 2018. ACM.

[4] E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics,
30(4):1141–1144, 1959.

[5] A. Kachayev. Reinventing haxl: Efficient, concurrent and concise data
access. Technical report, 2015. URL https://www.youtube.com/watch?
v=T-oekV8Pwv8. [Online; accessed 4-May-2017].

[6] S. Marlow, L. Brandy, J. Coens, and J. Purdy. There is no fork: An
abstraction for efficient, concurrent, and concise data access. In Pro-
ceedings of the 19th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’14, pages 325–337, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2873-9. doi: 10.1145/2628136.2628144.
URL http://doi.acm.org/10.1145/2628136.2628144.

[7] S. Marlow, S. Peyton Jones, E. Kmett, and A. Mokhov. Desugaring
haskell’s do-notation into applicative operations. In Proceedings of the
9th International Symposium on Haskell, Haskell 2016, pages 92–104,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4434-0. doi: 10.1145/
2976002.2976007. URL http://doi.acm.org/10.1145/2976002.2976007.

[8] B. McKenzie. Generating strings at random from a context free gram-
mar. 1997.

[9] S. Stuijk, M. Geilen, and T. Basten. SDF3: Sdf for free. Application
of Concurrency to System Design, International Conference on, 0:276–
278, 2006. ISSN 1550-4808. doi: 10.1109/acsd.2006.23. URL http:
//dx.doi.org/10.1109/acsd.2006.23.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2
programs: Characterization and methodological considerations. In
Computer Architecture, 1995. Proceedings., 22nd Annual International
Symposium on, pages 24–36. IEEE, 1995.

[11] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in c compilers. In ACM SIGPLAN Notices, volume 46, pages
283–294. ACM, 2011.

6

https://www.youtube.com/watch?v=T-oekV8Pwv8
https://www.youtube.com/watch?v=T-oekV8Pwv8
http://doi.acm.org/10.1145/2628136.2628144
http://doi.acm.org/10.1145/2976002.2976007
http://dx.doi.org/10.1109/acsd.2006.23
http://dx.doi.org/10.1109/acsd.2006.23

	Abstract
	1 Introduction
	2 Random Code Generation
	2.1 Level Graphs
	2.2 Random Graph Generation
	2.3 Code Generation

	3 Evaluation
	3.1 Code-Style Variants
	3.2 Experimental Setup
	3.3 Results

	4 Related Work
	5 Conclusion
	5.1 Future Work

	Acknowledgments
	References

