

Edinburgh Research Explorer

Embeddings of Task Mappings to Multicore Systems

Citation for published version:
Goens, A & Castrillon, J 2021, 'Embeddings of Task Mappings to Multicore Systems', Paper presented at
21st International Conference on embedded computer Systems: Architectures, MOdeling and Simulation,
Samos, Greece, 4/07/21 - 8/07/21. <https://samos-conference.com/wp/wp-
content/uploads/2021/07/R_38_PDF.pdf>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://samos-conference.com/wp/wp-content/uploads/2021/07/R_38_PDF.pdf
https://samos-conference.com/wp/wp-content/uploads/2021/07/R_38_PDF.pdf
https://www.research.ed.ac.uk/en/publications/b37a15a7-24ed-4ecc-b834-a5c87db36b2a

Embeddings of Task Mappings to Multicore
Systems?

Andrés Goens and Jeronimo Castrillon

Chair for Compiler Construction,
Center for Advancing Electronics Dresden (cfaed), TU Dresden, Germany

{andres.goens,jeronimo.castrillon}@tu-dresden.de

Abstract. The problem of finding good mappings is central to design-
ing and executing applications efficiently in embedded systems. In het-
erogeneous multicores, which are ubiquitous today, this problem yields
an intractably large design space of possible mappings. Most methods
explore this space using heuristics, many of which implicitly use geo-
metric notions in mappings. In this paper we explore the geometry of
the mapping problem explicitly, for finding embeddings of the mapping
space that capture its structure. This allows us to formulate new map-
ping strategies by leveraging the geometry of the mapping space, as well
as improving existing heuristics that do so implicitly. We evaluate our
approach on a novel mapping heuristic based on gradient descent, as
well as multiple existing meta-heuristics. For complex architectures, our
methods improved the results of established exploration meta-heuristics
by about an order of magnitude in average.

1 Introduction

As the complexity of hardware systems increases, the problem of efficiently pro-
gramming them not only becomes harder but also more crucial. For Cyber-
Physical System (CPS) and embedded systems in general, there is a family of
methods called software synthesis [6,3]. Inspired by hardware design flows, it
aims to bridge the ensuing software productivity gap by integrating knowledge
of the application and target multicore architecture into the compilation process.

A central concept in software synthesis is that of mappings, which divide
the tasks in an application between the different processing elements (PEs) of
the target architecture. Using mappings allow the compiler to produce code
for heterogeneous Instruction-Set Architectures (ISAs), find especially efficient
configurations and even increase the predictability in systems with homogeneous
ISAs like ARM big.LITTLE [11]. The mapping problem, of finding such efficient
mappings, is a difficult yet crucial step in this process. Because of the sheer size of
the mapping space, which grows prohibitively large with increasing architecture

? This work has been funded in part by the German Research Council (DFG) through
the TraceSymm project (number 366764507) and the Studienstiftung des deutschen
Volkes.

2 A. Goens and J. Castrillon

and application complexities, exploring it exhaustively is intractable. Moreover,
there is a complex relationship between a mapping and its performance, which
in general cannot be modeled well analytically, which is why we need simulation
to estimate it.

A great deal of research has focused on the mapping problem, spawning
many sophisticated heuristics and meta-heuristics to find mappings with differ-
ent characteristics. A survey of mapping approaches can be found in [29]. Many
of these mapping meta-heuristics are based on an intuitive notion of a geom-
etry of the mapping space. For example, the Tabu Search algorithm proposed
in [18] relies on exploring neighboring mappings in order to improve their perfor-
mance. Other similar principles underly methods like Simulated Annealing [22],
Lp-adaptation [15] or genetic algorithms [9,24]. This is usually done in an ad-
hoc fashion, without explicitly considering how to best endow the mapping space
with such a geometric notion. Mappings are simply considered as integer vectors
where the components represent the tasks, and the values represent the PEs
these tasks are mapped to.

Fig. 1. A visualization of the mapping space. The axes are random proyections in the
multi-dimensional space and have no direct interpretation.

Figure 1 shows a rendering of the design space of mappings for an audio filter
C for Process Networks (CPN) benchmark onto the MPPA3 Coolidge architec-
ture [16]. We generate this rendering using the methods of [17], generating a
smoothening from a triangulation of a random projection of 1000 random map-
pings as an artistic interpretation that we can visualize with ParaView [1]. The
height of the mountains and valleys in this landscape, as well as their coloring,
represent the value of the execution time for the mappings being visualized. We
see how the mapping space has multiple local minima and maxima, and generally
a complex structure. The complexity of this structure is a direct consequence of
the geometry we endow it.

Embeddings of Task Mappings to Multicore Systems 3

In this paper we argue that we can find better geometries for the mapping
space, simplifying the mapping problem by construction. We do this by consid-
ering a systematic approach to reason about the geometry of the mapping space.
We also present some concrete alternative geometric structures for the mapping
space, and discuss methods to find embeddings of these geometries to real vector
spaces for computation. Since these embeddings can have a very high dimension,
we also discuss and evaluate methods to reduce their dimension.

We show how this geometric structure can be leveraged by proposing a map-
ping algorithm based on the simple and well-known gradient descent method.
Other algorithms which implicitly assume an underlying geometric structure also
benefit from our approach, and we show how we can improve them as well. Fi-
nally, we evaluate these methods on their effect on multiple benchmarks, showing
how the geometric structure plays an important role in the mapping problem
and can be used to find novel mapping methods as well as improving established
ones.

2 Related Work

Many flows exist that enable model-based design in a software synthesis
flow [30,23,31,10,5]. In this paper we focus on the mapping problem addressed
in these systems. As mentioned in the introduction, many such mapping algo-
rithms implicitly use geometric structures of the mapping space [18,22,15,9,24].
These approaches do not explicitly model and reason about the geometry of the
mapping space, this is done in an ad-hoc fashion.

In [32], Thompson and Pimentel exploit the mapping space structure explic-
itly, making explicit considerations of the geometry for defining operators in a
genetic algorithm. These can both be seen as special cases of the methods pre-
sented in this paper, albeit for a simpler case with homogeneous architectures.
In a related idea, in [33] they also introduce the concept of “shapes”, which is
also an explicit consideration of some geometric aspects.

The work from Richthammer and others [26,27,25] is very similar in nature to
the applications discussed in this paper. They also aim to improve Design-Space
Exploration (DSE) methods by statically exploiting the architectural structure,
although the concrete structure they exploit is different. They leverage the con-
crete structure of NoC meshes, by considering sub-structures in the architecture.

In previous work we have considered the geometry explicitly [12] but did
not apply it to design-space exploration. Similarly, in [13] we discussed some
geometric aspects of Network on Chip (NoC)-based architectures. This paper
can be seen as an extension on the geometric considerations in these previous
works.

3 Mapping Tasks to Multicores

As motivated in the introduction, the mapping problem [19] is the decision prob-
lem of assigning physical resources (hardware) to the logical tasks and data

4 A. Goens and J. Castrillon

(software) of an application. We formulate this problem mathematically as find-
ing graph morphisms. We model the architecture as a graph A = (VA, EA).
Here, the nodes VA represent the PEs in the architecture and annotated with
core types. The edges EA represent communication primitives [7], an abstraction
that models any method for communicating between PE, like caches, scratchpad
memories or Direct Memory Access (DMA). The application we model as a graph
K = (VK , EK), where the nodes represent computation tasks (actors, processes)
and the edges EK represent data flow or dependencies. We model mappings as
functions m : K → A, i.e. assigning physical resources to the logical ones. A map-
ping also needs to be consistent. If it assigns two tasks t1, t2 ∈ VK to different
PEs, when these tasks exchange data (i.e., (t1, t2) ∈ EK), the data communica-
tion channel needs to be mapped to a physical channel that respects the task
assignment: we require that m((t1, t2)) = (m(t1),m(t2)) ∈ EA. This condition,
mathematically, means precisely that a mapping respects the graph structure of
K and A. In other words, a mapping is a morphism of graphs m : K → A.

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2
t1

t2

t1 t2

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

T1 mapping (PE)

T
2

m
a
p
p
in

g
(P

E
)

time

Fig. 2. An example of the mapping space for a simple two-task application.

Figure 2 depicts the mapping problem on a very simple example. The ex-
ample is based on a telecom application of the E3S benchmark suite [8], chosen
specifically because it consists of exactly two tasks, which allows the mapping
space to be visualized in two dimensions. The mappings are plotted by encoding
the mapping of each of the two tasks as the x and y coordinates of the grid, and
the color of the squares in the grid encodes the (simulated) execution time on an
Odroid-XU4 architecture. The actual values of the execution time are irrelevant
here and have been deliberately omitted. In the figure it is clear that the minimal
execution time is obtained by mapping the two tasks to two distinct Cortex-A15
(big) cores.

The example in Figure 2 is chosen deliberately to be so simple that it can be
depicted in a figure. There are exactly 82 = 64 mappings in the mapping space.
For the audio filter application from the introduction, this space has already
88 = 16777216 mappings and finding the minimal execution time is much less

Embeddings of Task Mappings to Multicore Systems 5

tractable. In general, the mapping space has cardinality |VA||VK |, and thus grows
exponentially with the number of tasks |VK |. For an 85-core architecture like the
MPPA3 Coolidge [16], the mapping space of a moderately-large application with
42 tasks has more than 1081 possible mappings, more than there are atoms in
the observable universe.

4 Metric Spaces

We endow the mapping space with a geometric structure by using the concept
of metric spaces. In mathematics, metric spaces are an abstract structure that
describes a space where distances can be measured. As such, it is described as a
tuple (M,d), with a set M , the space, and a (non-negative) “distance” function
d : M×M → R≥0, called the metric. To be a metric space, this distance function
d has to follow the following axioms:

1. The distance of any object to itself is 0:

d(x, x) = 0, for all x ∈M.

2. The distance metric is symmetric:

d(x, y) = d(y, x), for all x, y ∈M.

3. A version of the triangle inequality:

d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈M.

Traditionally, we encode mappings as vectors m =
(
a1, . . . , a|VK |

)
where

ai ∈ VA are the PEs where task i is mapped. If we interpret these vectors as
being (real) vectors in R|VK |, we can endow them with a vector distance, like the
Euclidean distance dEuclidean(v, w) =

√∑
i(vi − wi)2. This can be generalized

to other p-norms, as dLp
(v, w) =

∑
i((|vi −wi|)p)1/p, which is a norm for p ≥ 1.

For p = 1, this norm is also known as the Mathattan distance, in allusion to the
distance between buildings in a regular mesh like the streets of Manhattan. We
can endow the space of mappings with a metric also by using the Hamming dis-
tance, which counts only the number of differing entries in the vector. However,
none of these metrics are ideal for the mapping space, as we will now explain.

4.1 Metrics

In the example illustrated in Figure 3 we saw intuitively how mappings can be
more or less similar. This intuitive notion clearly depends on the underlying
architecture. It is the hardware architecture that determines the cost of commu-
nicating data between processes. In order to endow the space of mappings with
a metric space structure, we should first do so with the architecture.

We can use the intuition behind the example to define a metric that takes
latency into account this way [12]. The fundamental observation here is that in

6 A. Goens and J. Castrillon

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2 PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1

t2

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1 t2

dist = |(2, 1)− (2, 4)| =
√

(4− 1)2 = 3 dist = |(2, 4)− (2, 5)| =
√

(4− 5)2 = 1

Fig. 3. An intuitive example of distance between mappings.

a multicore architecture, communication between different PEs takes different
amounts of time. There are multiple problems with using the communication
time between PEs directly as a distance between PEs. Firstly, communication
times depend on multiple factors: the latency and bandwidth of the communi-
cation resources used, the amount of data being sent, the (software) communi-
cation protocol, clock synchronization between hardware resources like the PEs
and buses, arbitration or other contention issues, etc. Of course, we can model
these to various degrees. However, the distance between PEs needs to be a fixed
number and not a function of all these factors. As an approximation, however,
we can use the expected latency for a package of a standardized size (e.g. 8
bytes). As an expected value, this is a fixed number, but through its statistical
nature it can include as much complexity in the model as required1.

The second issue we run into when using communication times for defining a
distance is that, by definition, the distance between a point and itself has to be 0,
but usually a PE has to communicate with itself using an L1 cache, scratchpad
memory or similar, which has a small but non-zero latency. In this sense, the
expected communication latency between cores is not a metric space distance,
but it approximates one well. We propose thus to ignore this latency and set the
distance to 0, to obtain the mathematical metric space structure.

Finally, this metric space structure depends strongly on the unit used to
measure latency (e.g. cycles, milliseconds, etc), as well as on the absolute speed
of the communication sub-architecture. Since the goal of exposing this structure
is to leverage it for algorithmic decisions like finding good mappings, it is useful to
have comparable distances between different architectures. For this, we propose
to norm the metric distance function such that the average distance between
PEs is 1.

Put together, these principles yield the following definition:

Definition 1 (Architecture Metric Space). Let A = (VA, EA) be an archi-
tecture graph and lat : VA → VA be the expected latency between PEs. Then we

1 If communication in the architecture is asymmetric, this will not define a metric.
We can average the communication from p to q and from q to p to fix this, but we
should probably consider this case separately.

Embeddings of Task Mappings to Multicore Systems 7

set

dA : VA × VA, (p, q) 7→
{

lat(p, q), if p 6= q
0, otherwise

(1)

Remark 1. For an architecture graph A = (VA, EA), the tuple (VA, dA) is a
metric space.

Proof. Obviously dA(p, p) = 0 for all p ∈ VA, by definition, and dA(p, q) > 0
for p 6= q since the expected latency between PEs is always greater than 0. For
p, q, r ∈ P we have dA(p, q) + dA(q, r) ≥ dA(p, r) since the expected latency of
moving data from p to q and then to r will always be at least as much as moving
it from p to r directly.

In this way we endow M with a discrete metric space structure, with a metric
that reflects the memory subsystem of the architecture, or more generally, its
communication. This is the metric introduced in [12], which has some issues.
In particular, it does not distinguish between core types on heterogeneous sys-
tems. To fix this, we propose an alternative metric space structure on M , by
adding extra dimensions for the communication and the computation. This is
fundamentally very similar to adding channels in the mapping vectors. We thus
define a metric on the channels, based on the metric defined by Definition 1.
The distance between two channels c, c′ ∈ EA is defined as | lat(c1)− lat(c2)| for
the communication channel between the cores. We then apply a similar concept
for the cores, and take relative values of the expected runtime. Disregarding
the ISA or micro-architecture, we can use the frequencies as a first estimation,
which is what we do here. Thus, we set the distance between two cores p, p′ as
| freq(p) − freq(p′)|. Obviously the frequency is not the best estimation of the
expected differences in execution times between PEs, but we restrict our consid-
eration to this for the scope of this paper. Future work should focus on finding
better metrics for the mapping space.

This definition would not produce a metric, since distinct cores with the
same frequency will have a distance of 0, and similarly channels with the same
latency. To deal with this, we add a minimal distance between distinct cores and
channels (e.g. 0.1 times the distance between the next two core types).

Application distances To go from A to M , we can use the same principle as
the Lp norms and define d(m,m′) = (

∑
i d(mi,m

′
i)

p)1/p, which can immediately
be checked to be a metric on M . This way we can consider, as a metric space
(embedding), the structure of A to be

M ⊥ . . .⊥︸ ︷︷ ︸
×|VK |

M, i.e. M × . . .×︸ ︷︷ ︸
×|VK |

×M with d(Mi,Mj) = {0} for all i 6= j. (2)

There are multiple issues with this as well. A very crucial problem with it
is that this does not consider the dependencies between tasks in the application
graph A, nor does it consider how multiple tasks might be more or less relevant.
Many methods can be considered to account for this fact, like having factors for
the dimensions of the copies of M in the orthogonal sum.

8 A. Goens and J. Castrillon

5 Low-Distortion Embeddings

We have seen so far how we can endow the mapping space with multiple metrics
dM : M ×M → R≥0 to define distances between mappings. A problem with
this is that the mapping space is a discrete space, with a very large cardinality.
To algorithmically do any computation in this space, e.g. in DSE, we need to
iterate through the whole space. For example, we might have a mapping m0, for
which we want to find all mappings that are within a radius r of it, i.e. compute
the ball Br(m0) with radius r around m0. For this we need to iterate over all
m ∈ M and calculate if dM (m0,m) ≤ r, which is intractable for all but the
simplest examples.

To deal with this, we use established methods from discrete geometry to
calculate low-distortion embeddings. A mapping ι : M ↪→ Rn such that there
exists a D > 0 with

D−1d(x, y) ≤ ‖ι(x)− ι(y)‖ ≤ d(x, y) (3)

is called an embedding with distortion D. In other words, the relative error of
the distances is at most D. Using convex optimization [20], we can calculate
a low-distortion embedding for a finite metric space. This allows us to work
with vectors of real numbers which make many algorithmic tasks scalable, e.g.
computing random points in a ball.

Since the size of the mapping space grows exponentially with the number
of tasks and changes for every application, computing such an embedding for a
large mapping space every time we want to do DSE would also be intractable.
We can avoid this by using the orthogonal sum construction from Equation 2.
Given an embedding ι : A ↪→ Rk with distortion D for the architecture with a
given metric dA, we can construct an embedding ιk of the mapping space defined
as in Equation 2 with distortion D [12].

The mapping space can still have a very high dimension, a problem usually
called the curse of dimensionality. With this construction, for the metric without
the extra dimensions, the dimension of the embedding ιk is k|VA| = |VK ||VA|.
The Johnson-Lindenstrauss lemma can be used to reduce the dimension with a
projection [20]. We do this with an iterative method, described in Algorithm 1

Algorithm 1 exponentially increases the dimension, running
numIterationPerDim iterations of a Johnson-Lindenstrauss transform and
testing the distortion to see if a target distortion has been reached. Using this
algorithm, or variants thereof, we can control the trade-off between the distance
and the dimension of the embedding.

To compare the different metrics and embeddings, for each of them we calcu-
lated 1000 mappings of an audio filter benchmark from the MAPS framework [5]
on the Odroid XU4 platform. For a random subset of the 10002 = 106 pairs of
mappings we calculated the (relative) distance between two mappings and the
relative runtime of the simulation on these two mappings.

There is basically no correlation between mappings distance and the (relative)
runtimes. Two mappings can be very far apart and have (almost) the same

Embeddings of Task Mappings to Multicore Systems 9

Algorithm 1 Iterative dimensionality reduction via the Johnson-Lindenstrauss
lemma.
input: A discrete metric space M , a low-distortion embedding ι : M ↪→ Rn and a

target distortion D.
output: An embedding with dimension ≤ n and distortion at most D.
1: dim ← 1
2: while dodim ≤ n
3: for ∈ numIterationsPerDim do
4: ι̃← JLReduction(ι,dim)
5: D̃ ← CalculateDistortion(ι̃)
6: if D̃ ≤ D then return ι̃

7: dim ← 2dim
return ι

execution time. This seems very plausible if we consider the symmetries of the
problem [14], where multiple mappings are equivalent yet distinct. There are also
other similarities in mappings. For example, audio filter benchmark computes
an Fast Fourier Transform (FFT) and inverse FFT (IFFT) which are virtually
identical, yet not precisely so.

A perhaps better assessment of the metrics is to ask what is the maximal
relative execution time possible for a given distance. While we understand why
two similar mappings that are far apart will have similar results, we would expect
two mappings that are close to each other to have similar execution times with a
good metric. To test this, we just consider the maximal relative execution time
for two mappings which are (at most) the given distance apart. In the figure, the
metrics described in this section are labeled as follows: We call SimpleVector the
Euclidean norm on the mappings described as simple vectors. The metric based
on the latencies as motivated from Figure 3 we denote as Emedding, whereas we
add the annotation ED for the metric with extra dimensions which accounts for
heterogeneous PEs.

Figure 4 shows this maximal relative execution times for the data of the
Odroid XU4. It also includes a linear regression of the points for each metric
and embedding. We can see that indeed, most of the metrics are pretty good as
an upper bound on the relative runtime, as seen by the linear behavior on the
figure.

The Odroid XU4 architecture is comparatively small, which obviously has
consequences for the mapping space. The smaller (discrete) space results in an
embedding space that is not as high-dimensional. Figure 5 shows how this situ-
ation changes for the MPPA3 Coolidge.

Similar to the case for the Odroid XU4, Figure 6 shows the same comparison
with the maximal run-time difference for the MPPA3 Coolidge. Again we see
that many metrics seem to be a decent bound for the difference in execution
time, although less so than for the simple Odroid XU4 platform. The Euclidean
norm on the simple vector mappings, for example, is considerably worse than
in this case than in the Odroid XU4. We can quantify more precisely how good

10 A. Goens and J. Castrillon

Embedding
No-ED

Embedding
ED

SimpleVector

0 2 4 6 0 1 2 3 4 0 5 10

1

2

3

4

1

2

3

4

0

1

2

3

4

5

relative distance

re
la

ti
v
e

ru
n
ti

m
e

(target) distortion
1.001
1.1

1.2
1.3

2
NA

Fig. 4. Comparison of multiple distance metrics as predictors of the maximal run-time
difference on the Odroid XU4 platform.

PE1

Secure&
Mngt.C.

SECURE BUS

Cluster1 Cluster2

Cluster3 Cluster4

Cluster5

Fig. 5. The topology of the MPPA3 Coolidge platform, which consists of five clusters
fully connected with a NoC, each cluster consisting of 16 identical general-purpose
cores, as well as a secure and managment core..

metrics are as a bound for the execution time by comparing the R2 value as
goodness of fit assessment of the depicted linear regressions.

Figure 7 shows the R2 value, comparing the predictive power of the different
distance metrics and their embeddings. Here it is also very clear that the Eu-
clidean norm on simple vectors is not so good for the MPPA3 Cooldige, while it
is comparable to other metrics in the Odroid XU4. We also see how the curse of
dimensionality yields a trade-off not only in the computation time (for larger-
dimensional spaces), but also in the predictive quality of the different norms.
This is more visible on the MPPA3 Coolidge. We see that the trade-off between
the predictive power and the distortion is not very clear from this preliminary
results. Future work should investigate this trade-off more in-depth.

Embeddings of Task Mappings to Multicore Systems 11

Embedding
No-ED

Embedding
ED

SimpleVector

0 1 2 3 4 0.0 0.5 1.0 0 50 100 150

1.0

1.5

2.0

1

2

3

4

0

1

2

3

relative distance

re
la

ti
v
e

ru
n
ti

m
e

(target) distortion
1.001
1.1

1.2
1.3

2
NA

Fig. 6. Comparison of multiple distance metrics as predictors of the maximal run-time
difference on the MPPA3 Coolidge platform.

Odroid XU4

S
im

p
.

V
ec

.

E
m

b
ed

d
in

g
E

D

E
m

b
ed

d
in

g
N

o
-E

D

0.00

0.25

0.50

0.75

L
in

ea
r

R
eg

re
ss

io
n
R

2

(target)
distortion

1.001
1.1

1.2
1.3

2
NA

MPPA3 Coolidge

S
im

p
.

V
ec

.

E
m

b
ed

d
in

g
E

D

E
m

b
ed

d
in

g
N

o
-E

D

0.00

0.25

0.50

0.75

(target)
distortion

1.001
1.1

1.2
1.3

2
NA

Fig. 7. Comparison of the predictive power of multiple distance metrics.

6 A Heuristic for Design-Space Exploration

Having defined a geometric interpretation for the mapping space, we show how
we can leverage this in DSE. For this, we proposed a simple mapping algorithm
based on the geometric structure of the mapping space. We discuss and evaluate
our methods on the example objective of execution time, but do not use its
structure directly. As such, we expect them to generalize to other objectives,
like energy consumption.

Our algorithm is based on an observation of the geometry mapping space. The
design spaces of mappings seem to consist of multiple islands of performance with
similar properties, separated by poorly-performing mappings. Our “performance
islands” hypothesis implies the mapping space is full of local minima. Guiding
a local search towards an optimum should thus not be as conducive to good
results. Instead, we can use a simple and fast meta-heuristic to find a local min-
imum quickly and apply it to multiple points spread around the design space’s
geometry. As meta-heuristic for finding local minima we use the well-known gra-
dient descent optimization algorithm with the momentum method [28]. For the
step-size we use the Barzilai-Borwein [2] method.

12 A. Goens and J. Castrillon

In its regular form, this heuristic will quickly get stuck in a local minimum
and produce poor mapping results, as confirmed by experiments (which we omit
here). However, we can add a simple additional meta-heuristic to leverage the
“performance islands” hypothesis. We start the heuristic at multiple random
points, uniformly distributed in the design space, as defined the distance metric.
In these spread-out locations we execute (parallel) gradient descent optimiza-
tions which we cancel as soon as they reach a local minimum, which empirically
happens after a handful of iterations. The meta-heuristic returns the fastest
mapping found in any of the different starting locations.

We can also improve other meta-heuristics by changing the vectors on which
they operate, instead of the simple vectors of an ad-hoc geometry, we use our
embeddings [12].

7 Evaluation

To evaluate our methods, we implemented the Tabu Search [18] and Simulated
Annealing [22] mapping heuristics in mocasin [21], a framework for evaluating
mapping algorithms. We also implemented our gradient-descent-based mapper.
We configure the meta-heuristic to run on 5 different locations with a maximum
of 20 iterations each, even though this maximum is almost never reached in
practice in the experiments. We compare the results of these two heuristics on
two benchmark suites, one being the Embedded System Synthesis Benchmarks
Suite (E3S) [8] and another one based on MAPS (based on a language called
CPN) [5]. The E3S suite consists of task graphs for 20 benchmarks from 5 differ-
ent domains: auto-indust., networking, telecom, consumer and office-automation.
The CPN benchmarks, on the other hand, are three benchmarks: a two-channel
audio filter, a Histogram of Oriented Gradients (HOG)-based pedestrian recogni-
tion application and speaker recognition application [4]. For each meta-heuristic,
each representation and each benchmark application, we measure the results of
10 runs with different random seeds.

Figure 8 shows the results of these experiments for the Odroid XU4 platform.
The columns labeled as SimpleVector correspond to the Euclidean norm on the
simple mapping vectors used commonly in most mapping scenarios. On the other
hand, the label MetricSpaceEmbedding corresponds to the algorithms using the
embedding as discussed here. Concretely, the embedding of the metric with the
extra dimensions, without dimensionality reduction.

The logarithmic scale of the figure shows two different comparison criteria,
the relative results of the mapping and the relative exploration time of the
DSE. Both are normed to the results of the simulated annealing heuristic with
the SimpleVector representation. For the DSE results, we summarize execution
time as the geometric mean of the relative times of the benchmark, as simulated.
The other metric is the relative exploration time. This is the time that the DSE
needed to explore the design space. The error bars show the variance between
the different benchmarks and the 10 different runs with different random seeds.

Embeddings of Task Mappings to Multicore Systems 13

CPN E3S

Sim. Annealing

Tabu Search

Grad. Descent

Sim. Annealing

Tabu Search

Grad. Descent

0.5

1.0

3.0

5.0
R

el
.

m
a
p
p

er
re

su
lt

s
(l

o
g
)

CPN E3S

Sim. Annealing

Tabu Search

Grad. Descent

Sim. Annealing

Tabu Search

Grad. Descent

1

3

10

R
el

.
ex

p
lo

ra
ti

o
n

ti
m

e
(l

o
g
)

SimpleVector MetricSpaceEmbedding

Fig. 8. The effect of embedding-based representations on the Odroid XU4 platform.

We see that changing geometry of the design space is not very effective for
this simple architecture, although it does show more improvement for the E3S
benchmarks. The gradient descent meta-heuristic with our performance island
hypothesis is on par with the other meta-heuristics, which is already a strong
result given the simplicity of the algorithm. As was seen before on the comparison
of the metrics, the Euclidean norm on the simple vector representation is a
decent metric for this space, which explains the results. On the other hand,
using embeddings increases the execution time. This is because of the large
dimension, and the necessity to do a nearest-neighbor approximation. In future
work, applying methods for improving nearest-neighbor algorithms like in the
Annoy library 2 could improve this time. We also did not reduce the dimension
for this evaluation, to see the effects on the algorithm. In future work this trade-
off could be exploited to improve the execution time.

Figure 9 summarizes the results of this experiments for the MPPA3 Coolidge
platform, for which we showed that the metric space structure of our embedding-
based representations is better than the canonical metric in the SimpleVector

representation. We see that the results of the exploration are significantly better
for both meta-heuristics with the representations based on this better distance
metric. More importantly, the gradient-descent-based heuristic performs consid-
erably better even. In some cases, the results of this simple heuristic are on aver-
age over an order of magnitude better than the other unmodified meta-heuristics.
This is perhaps a statement about how poorly established meta-heuristics per-
form on a very complex design space, more so than a testament in favor of our
gradient-descent-based heuristic. It shows thus, that our geometric representa-
tions are particularly useful in more complex architectures . Additionally, the
effect on the exploration time is much less pronounced in this case, since the

2 https://github.com/spotify/annoy

https://github.com/spotify/annoy

14 A. Goens and J. Castrillon

CPN E3S

Sim. Annealing

Tabu Search

Grad. Descent

Sim. Annealing

Tabu Search

Grad. Descent

0.03

0.10

0.30

1.00
R

el
.

m
a
p
p

er
re

su
lt

s
(l

o
g
)

CPN E3S

Sim. Annealing

Tabu Search

Grad. Descent

Sim. Annealing

Tabu Search

Grad. Descent

0.1

1.0

10.0

R
el

.
ex

p
lo

ra
ti

o
n

ti
m

e
(l

o
g
)

SimpleVector MetricSpaceEmbedding

Fig. 9. The effect of embedding-based representations on the MPPA3 Coolidge plat-
form.

overhead of the linear algebra involved becomes a smaller portion of the total
exploration time.

8 Conclusions

In this paper we have seen how to endow the space of mappings to multicores
with a geometric interpretation, and defined some metrics that might be bet-
ter suited to describe the space than the ad-hoc simple vector structure used
commonly. We have seen from experiments that this structure helps especially
well in the DSE of more complex architectures. Importantly, it allows us to use
simple algorithms like gradient descent for mapping, which otherwise was in-
feasible. For two different sets of benchmark suites, our heuristic armed with
this geometric interpretation managed to find good mappings much more re-
liably than established heuristics on the complex architecture topology of the
MPPA3 Coolidge.. Mapping heuristics based on tabu search and simulated an-
nealing produced mappings about an order of magnitude worse on average for
this architecture.

We believe the main contribution of this paper is the geometric view of the
mapping space, not the metrics themselves. Future work should focus on finding
better metrics. This might be especially conducive to machine learning algo-
rithms for mapping, which usually work with embeddings as the ones described
in this paper.

References

1. Ahrens, J., Geveci, B., Law, C.: Paraview: An end-user tool for large data visual-
ization. The visualization handbook 717(8) (2005)

Embeddings of Task Mappings to Multicore Systems 15

2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA journal of
numerical analysis 8(1), 141–148 (1988)

3. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software synthesis from dataflow
graphs, vol. 360. Springer Science & Business Media (2012)

4. Bouraoui, H., Castrillon, J., Jerad, C.: Comparing dataflow and openmp program-
ming for speaker recognition applications. In: Proceedings of PARMA-DITAM’19.
pp. 1–6 (2019)

5. Castrillon, J., Leupers, R., Ascheid, G.: Maps: Mapping concurrent dataflow ap-
plications to heterogeneous mpsocs. IEEE Transactions on Industrial Informatics
9(1), 527–545 (2011)

6. Castrillon, J., Sheng, W., Leupers, R.: Trends in embedded software synthesis. In:
2011 International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation. pp. 347–354. IEEE (2011)

7. Castrillon, J., Tretter, A., Leupers, R., Ascheid, G.: Communication-aware map-
ping of kpn applications onto heterogeneous mpsocs. In: DAC Design Automation
Conference 2012. pp. 1262–1267. IEEE (2012)

8. Dick, R.: Embedded systems synthesis benchmark suite (e3s) (2008), http://ziyang.
eecs.umich.edu/∼{}dickrp/e3s/

9. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolu-
tionary algorithms for the application mapping problem in multiprocessor system-
on-chip design. IEEE Transactions on Evolutionary Computation 10(3), 358–374
(2006)

10. Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A framework for system-level
modeling and simulation of embedded systems architectures. EURASIP Journal on
Embedded Systems 2007, 1–11 (2007)

11. Goens, A., Khasanov, R., Hähnel, M., Smejkal, T., Härtig, H., Castrillon, J.: Tetris:
a multi-application run-time system for predictable execution of static mappings.
In: Proceedings of the 20th International Workshop on Software and Compilers for
Embedded Systems (SCOPES’17). SCOPES ’17 (2017)

12. Goens, A., Menard, C., Castrillon, J.: On the representation of mappings to mul-
ticores. In: Proceedings of the IEEE 12th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC-18) (2018)

13. Goens, A., Menard, C., Castrillon, J.: On compact mappings for multicore systems.
In: Pnevmatikatos, D., Pelcat, M., Jung, M. (eds.) Proceedings of the IEEE Inter-
national Conference on Embedded Computer Systems Architectures Modeling and
Simulation (SAMOS). vol. 11733, pp. 325–335. IEEE, Springer, Cham (Jul 2019)

14. Goens, A., Siccha, S., Castrillon, J.: Symmetry in software synthesis. ACM Trans-
actions on Architecture and Code Optimization (TACO)

15. Hempel, G., Goens, A., Asmus, J., Castrillon, J., Sbalzarini, I.F.: Robust mapping
of process networks to many-core systems using bio-inspired design centering. In:
Proceedings of the 20th International Workshop on Software and Compilers for
Embedded Systems (SCOPES ’17). SCOPES ’17 (2017)

16. inc, K.: Kalray mppa3 coolidge anouncement (2020), https://www.kalrayinc.com/
release-of-third-generation-mppa-processor-coolidge/

17. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. In: Neural Information Processing Systems (2018)

18. Manolache, S., Eles, P., Peng, Z.: Task mapping and priority assignment for soft
real-time applications under deadline miss ratio constraints. ACM Transactions on
Embedded Computing Systems (TECS) 7(2), 1–35 (2008)

http://ziyang.eecs.umich.edu/~{}dickrp/e3s/
http://ziyang.eecs.umich.edu/~{}dickrp/e3s/
https://www.kalrayinc.com/release-of-third-generation-mppa-processor-coolidge/
https://www.kalrayinc.com/release-of-third-generation-mppa-processor-coolidge/

16 A. Goens and J. Castrillon

19. Marwedel, P., Bacivarov, I., Lee, C., Teich, J., Thiele, L., Xu, Q., Kouveli, G.,
Ha, S., Huang, L.: Mapping of applications to mpsocs. In: 2011 Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ ISSS). pp. 109–118. IEEE (2011)

20. Matoušek, J.: Lectures on discrete geometry, vol. 212. Springer Science & Business
Media (2002)

21. Menard, C., Goens, A., Hempel, G., Khasanov, R., Robledo, J., Teweleitt, F., Cas-
trillon, J.: Mocasin – rapid prototyping of rapid prototyping tools: A framework
for exploring new approaches in mapping software to heterogeneous multi-cores.
In: Proceedings of the 13th RAPIDO Workshop on Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools, co-located with 16th International Confer-
ence on High-Performance and Embedded Architectures and Compilers (HiPEAC).
RAPIDO ’21, ACM, New York, NY, USA (Jan 2021)

22. Orsila, H., Kangas, T., Salminen, E., Hämäläinen, T.D., Hännikäinen, M.: Auto-
mated memory-aware application distribution for multi-processor system-on-chips.
J. of Sys. Arch. 53(11), 795–815 (2007)

23. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., Aridhi, S.: Preesm: A
dataflow-based rapid prototyping framework for simplifying multicore dsp pro-
gramming. In: 2014 6th european embedded design in education and research con-
ference (EDERC). pp. 36–40. IEEE (2014)

24. Quan, W., Pimentel, A.D.: Towards exploring vast mpsoc mapping design spaces
using a bias-elitist evolutionary approach. In: 2014 17th Euromicro Conference on
Digital System Design. IEEE (2014)

25. Richthammer, V., Fassnacht, F., Glaß, M.: Search-space decomposition for system-
level design space exploration of embedded systems. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 25(2), 1–32 (2020)

26. Richthammer, V., Glaß, M.: On search-space restriction for design space explo-
ration of multi-/many-core systems. In: MBMV (2018)

27. Richthammer, V., Glaß, M.: Efficient search-space encoding for system-level de-
sign space exploration of embedded systems. In: 2019 IEEE 13th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). pp.
273–280. IEEE (2019)

28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. nature 323(6088), 533–536 (1986)

29. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core
systems: survey of current and emerging trends. In: 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC). pp. 1–10. IEEE (2013)

30. Stuijk, S., Geilen, M., Basten, T.: A predictable multiprocessor design flow for
streaming applications with dynamic behaviour. In: 2010 13th Euromicro Confer-
ence on Digital System Design: Architectures, Methods and Tools. IEEE (2010)

31. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping applications to tiled multi-
processor embedded systems. In: Seventh International Conference on Application
of Concurrency to System Design (ACSD 2007). pp. 29–40. IEEE (2007)

32. Thompson, M., Pimentel, A.D.: Exploiting domain knowledge in system-level mp-
soc design space exploration. Journal of Systems Architecture

33. Weichslgartner, A., Wildermann, S., Götzfried, J., Freiling, F., Glaß, M., Teich, J.:
Design-time/run-time mapping of security-critical applications in heterogeneous
mpsocs. In: Proceedings of the 19th International Workshop on Software and Com-
pilers for Embedded Systems. pp. 153–162 (2016)

	Embeddings of Task Mappings to Multicore Systems

