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A B S T R A C T   

The potential of genomic selection (GS) to improve production traits has been widely demonstrated in many 
aquaculture species. Atlantic salmon breeding programmes typically consist of sibling testing schemes, where 
traits that cannot be measured on the selection candidates are measured on the candidates’ siblings. While 
annual testing on close relatives is effective, it is expensive due to high genotyping and phenotyping costs. 
Accurate prediction of breeding values in distant relatives could significantly reduce the cost of GS. This study 
aimed to evaluate the impact of decreasing the genomic relationship between the training and validation pop
ulations on the accuracy of genomic prediction for two key traits; body weight and resistance to sea lice; and to 
assess the interaction of genetic relationship with SNP density. Phenotype and genotype data from two year 
classes of a commercial breeding population of Atlantic salmon were used. The accuracy of genomic predictions 
were close to zero when the prediction was performed across year class, albeit this may reflect a lack of genetic 
correlation between the same traits measured in the different year classes. Within a year class, systematically 
reducing the relatedness between the training and validation populations resulted in decreasing accuracy of 
genomic prediction; when the training and validation populations were set up to contain no relatives with 
genomic relationships > 0.3, the accuracies decreased by 44% for sea lice count and by 53% for body weight. 
Less related training and validation populations also tended to result in highly biased predictions. No clear 
interaction between decreasing SNP density and relatedness between training and validation population was 
found. These results confirm the importance of close genetic relationships between training and selection pop
ulations in salmon breeding programmes, and suggests that prediction across generations using existing ap
proaches would severely compromise the efficacy of GS.   

1. Introduction 

Genetic improvement of aquaculture species has a major and 
increasing role in providing sustainable seafood to meet the demands of 
a growing human population (Gjedrem, 2012). With increasing avail
ability and affordability of genomic tools, molecular genetic markers can 
be routinely incorporated to improve the efficiency of aquaculture 
breeding programmes (Houston et al., 2020). The incorporation of such 
markers to improve prediction of breeding values for target traits occurs 
via two primary methods: marker-assisted selection and genomic se
lection. Marker-assisted selection has been successful for a limited 
number of traits where the genetic variation is controlled by major 
quantitative trait loci (QTL), e.g. resistance to Infectious Pancreatic 

Necrosis Virus (IPNV) in Atlantic salmon (Houston et al., 2008; Moen 
et al., 2009). Genomic selection (GS) is suitable for polygenic traits, and 
uses genome-wide genetic marker data to predict the genetic merit of the 
selection candidates (i.e. their breeding value) for target traits. In GS, 
genotype and phenotype data are typically collected in a training pop
ulation and used to train a genomic prediction model, which is then used 
to predict the breeding values of selection candidates with genotype 
data only (Goddard and Hayes, 2007; Meuwissen et al., 2001). GS is 
routinely applied in advanced livestock and aquaculture breeding pro
grammes, with notable benefits in terms of genetic gain and control of 
inbreeding (Boudry et al., 2021; Houston et al., 2020; You et al., 2020; 
Zenger et al., 2019). For any given trait, the accuracy of genomic pre
diction is highly dependent on the ability of the markers to accurately 
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capture the genetic relationship between individuals from the training 
and selection candidate populations (Habier et al., 2007; Hayes et al., 
2009; Villanueva et al., 2005). As such, in practice, the accuracy of 
genomic prediction is known to depend on the relationship between the 
training and selection populations (e.g. Wientjes et al., 2013). 

With the recent development and availability of medium to high- 
density SNP arrays for most of the major aquaculture species (Griot 
et al., 2021; Houston et al., 2014; Liu et al., 2014; Palti et al., 2015; 
Peñaloza et al., 2021, 2020; Yáñez et al., 2014b), GS has begun to be 
widely applied in aquaculture breeding programmes. In recent years, 
both simulated and empirical data have shown that GS performs better 
than standard pedigree-based selection in test populations similar in 
structure to aquaculture breeding programmes (Houston et al., 2020; 
Zenger et al., 2019). The high fecundity of aquaculture species enables 
the production of large full and half sibling families, which facilitates 
selection for traits that cannot be easily measured in the selection can
didates, such as disease resistance or fillet quality, via their measure
ment on full- and half-siblings of the candidates. 

The typical primary target of most aquaculture breeding pro
grammes is growth rate, generally measured as the fish body weight or 
length. This trait can be easily measured throughout the life of the fish 
and has been reported to be moderate to highly heritable with a poly
genic architecture (Baranski et al., 2010; Gutierrez et al., 2012; Sae-Lim 
et al., 2017; Tsai et al., 2015). Growth is easy to measure on the selection 
candidates themselves, however the rearing condition of the breeding 
nucleus can be quite different from the production environment result
ing in different growth performance, thus, GS would be an efficient 
approach to select for improved growth in the production environment. 
Additionally, disease resistance traits are of the utmost importance in 
aquaculture breeding programmes since disease outbreaks represent a 
major economic threat, and often few biosecurity and treatment options 
exist (Houston, 2017). Among the numerous pathogens threatening the 
Atlantic salmon industry, sea lice is probably the most important, a 
marine parasite causing millions of loses to the salmon industry 
worldwide (Abolofia et al., 2017; Costello, 2009), with Caligus roger
cresseyi being the main species affecting the Southern Hemisphere, 
including Chile (Lhorente et al., 2019). Encouragingly, resistance to sea 
lice is moderately heritable and controlled by a polygenic architecture, 
and previous studies have shown the benefit of genomic selection over 
family selection (e.g. Correa et al., 2017a; Ødegård et al., 2014; Tsai 
et al., 2016). 

However, genotyping large number of individuals using medium to 
high-density (HD) SNP platforms is still expensive, and therefore routine 
collection of genotype and phenotype data on large numbers of in
dividuals each generation is expensive. In the past few years, a number 
of studies have focused on systematically testing low-density (LD) 
marker panels to help reduce the cost of GS (e.g. Lillehammer et al., 
2013; Palaiokostas et al., 2019; Tsai et al., 2016; Tsairidou et al., 2020). 
Kriaridou et al. (2020) recently used four different datasets from four 
different species to demonstrate that SNP densities between 1000 and 
2000 result in genomic prediction accuracies close to those obtained 
with HD panels. Previous studies in salmonid species suggest that be
tween 1 K and 20 K SNPs are needed to reach genomic prediction ac
curacies close to those obtained using HD SNP panels in these species 
(Bangera et al., 2017; Correa et al., 2017a; Tsai et al., 2016; Yoshida 
et al., 2018a), with LD panels containing prioritised variants showing 
promise (Vallejo et al., 2018; Yoshida and Yáñez, 2021). 

Most salmon breeding programmes rely on successive year classes 
composed of related individuals, and therefore combining information 
of two successive generations or “skipping” the data collection of one 
generation could be alternative strategies to reduce the cost of GS. While 
the impact of reducing the number of SNPs in GS prediction accuracy has 
been widely investigated, the impact of the genetic relationship between 
training and validation populations has not yet been widely studied in 
aquaculture species. Initial studies using Atlantic salmon (Tsai et al., 
2016), rainbow trout (D’Ambrosio et al., 2020) and common carp 

(Palaiokostas et al., 2019) suggest that prediction accuracy drops 
dramatically as the relationship between training and validation pop
ulations becomes more distant. This is a scenario previously demon
strated in crop and livestock breeding (Clark et al., 2012; Habier et al., 
2010). However, this has not yet been systematically studied in aqua
culture species. 

To assess the feasibility of potential new cost-effective GS strategies 
to improve traits of interest, the impact of different training population 
structures and genotyping strategies on the genomic prediction accuracy 
needs to be better understood. The aim of this study was to evaluate the 
impact of decreasing the genomic relationship between the training and 
validation populations on the accuracy of genomic prediction for two 
traits of major importance in Atlantic salmon breeding programmes, and 
at varying SNP densities. Body weight and sea lice count data from two 
year classes of the same commercial breeding programme were used to 
systematically test the effect of decreasing SNP density (from 32 K to 100 
SNPs) and decreasing genomic relatedness between fish from training 
and validation sets on the accuracy of genomic prediction. 

2. Material and methods 

2.1. Fish production, infectious challenge and phenotyping 

The Atlantic salmon (Salmo salar) population used in this study was 
composed of two year classes (2010 and 2014) from the breeding pop
ulation of AquaChile (formerly Salmones Chaicas, Xth Region, Chile). 
The origin of this farmed Atlantic salmon population, as well as the 
establishment of the breeding programme, including the introduction of 
ova to Chile for farming purposes, subsequent management and repro
duction, breeding goal, and selection criteria are described in detail by 
Barria et al. (2018) and López et al. (2019). Details on reproduction 
tagging, rearing conditions, disease challenge and management of fish 
used in the present work are previously described in Correa et al. 
(2017a, 2017b) for year class 2010 and Robledo et al. (2019, 2018) for 
year class 2014. Two traits were investigated in this study: resistance to 
sea lice measured as the number of parasite on the fish after an exper
imental challenge (sea lice count, SLC) and body weight (BW). Briefly, 
fish from both year classes were individually Passive Integrated tran
sponder (PIT)-tagged, body length and weight were measured at 
different time points and fish were experimentally challenged with sea 
lice (Caligus rogercresseyi). For each year class, fish were separated into 
three tanks and infestation with the parasite was carried out by depos
iting 13–24 (2010) or 50 (2014) lice per fish in the tank and stopping the 
water flow for 6 h after infestation. Six (2010) or eight (2014) days after 
challenge, fish were euthanized, individually removed from the tank and 
the number of lice attached to the fins was counted under a magnifying 
lamp (recorded as sea lice count, SLC). At the end of the challenge, fin 
clip was taken from each fish for DNA extraction and genotyping. 
Several BW measurements were taken at different time points for the 
two year classes. For year class 2010, BW was recorded at tagging and at 
the end of the challenge. For year class 2014, BW was recorded at the 
start and at the end of the challenge. The two year classes are related as 
fish from year class 2010 are the aunts and uncles of fish from year class 
2014. The parents of fish from year class 2014 were not challenged and 
thus had no sea lice resistance phenotype recorded. 

2.2. Ethic statement 

The challenge experiments and sampling procedures were performed 
under local and national regulatory systems and were approved by The 
Comité de Bioética Animal, Facultad de Ciencias Veterinarias y Pec
uarias, Universidad de Chile (Santiago, Chile), under the certificate No. 
08-2015 for fish from year class 2010 and the certificate No. 01-2016 for 
fish from year class 2014. The Comité de Bioética Animal based its de
cision on the Council for International Organizations of Medical Sci
ences standards, in accordance with the Chilean standard NCh-324- 
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2011. 

2.3. Genotyping, imputation and quality controls 

DNA from 2404 and 2668 fish for 2010 and 2014, respectively, was 
extracted from tissue samples using a commercial kit (Wizard R 
Genomic DNA Purification Kit, Promega) following manufacturer’s in
structions. Fish from year class 2010 were genotyped using a custom 50 
K Affymetrix Axiom SNP array developed from a higher density (200 K) 
SNP panel. The SNP discovery, filtering and construction of the 200 K 
and 50 K arrays are described in detail by Yáñez et al. (2016) and Correa 
et al. (2015), respectively. Fish from year class 2014 were genotyped 
using a custom-made 965 SNP panel and imputed to the same 50 K SNPs 
of the 2010 year class using FImpute software (v2.2, Sargolzaei et al., 
2014) with an average imputation accuracy of 95% as described in 
Robledo et al. (2019). 

Standard quality control procedures were performed using the Plink 
software (version 1.9, Purcell et al., 2007) for the two year classes 
separately. Briefly, for year class 2010, SNPs with a call rate under 98%, 
a minor allele frequency (MAF) below 0.05 and deviating from 
Hardy-Weinberg equilibrium (p-value > 1 . 10-6) were removed from the 
dataset, resulting in 2258 fish with an individual call rate over 95% and 
genotyped for 35,479 SNPs. For year class 2014, SNPs with a MAF below 
0.05 and deviating from the Hardy-Weinberg equilibrium (p-value > 1 . 
10-6) after imputation were removed from the dataset, resulting in 2345 
fish genotyped for 35,833 SNPs. Finally, only the 32,579 SNPs in com
mon between the two year classes were retained in the dataset. Sepa
rately, the same quality controls were performed on the non-imputed 
low-density SNP panel of year class 2014, resulting in 2345 fish with 873 
SNPs. 

2.4. Estimation of genetic parameters and genomic-based BLUP model 

Variance components, heritability and genomic breeding values 
(GEBV) for both sea lice count (SLC) and body weight (BW) were esti
mated using the following linear mixed model: 

y = μ+ Xb+Zg+ e (1)  

where y was the vector of phenotype (SLC or BW), μ is the overall mean 
of phenotypes, b is the vector of fixed effects and X the corresponding 
incidence matrix, g is the vector of random additive genetic effect 
following the normal distribution N ∼ (0,Gσ2

g ) with σ2
a the additive 

genetic variance and G the genomic relationship matrix (GRM) as 
described in VanRaden (2008) and Z the corresponding incidence ma
trix. ei is the vector of residual effects following the normal distribution 
N ∼ (0, Iσ2

e ) with σ2
e the residual variance and I the identity matrix. For 

year class 2010 the tank number was used as a fixed effect for both SLC 
and BW, and age at weighting (in days) was used as covariate for BW. 
For year class 2014, tank number was used as a fixed effect for both SLC 
and BW, initial body weight and age at recording (in days) were 
included as covariate for SLC and BW, respectively. 

Genetic parameters were estimated by Average Information 
Restricted Maximum Likelihood algorithm (AI-REML) implemented in 
GCTA software (Yang et al., 2011). For this analysis, the GRM was built 
directly by GCTA with the following equation where the gjk term of the 
matrix (genomic relationship between jth and kth fish) is estimated 
using the following equation: 

gjk =
1
N

∑N

i=1

(
zij − 2pi

)
(zik − 2pi)

2pi(1 − pi)
(2)  

where N is the total number of SNP, zij and zik are numbers of copies of 
the reference allele for the ith SNP for the jth and kth fish, respectively, 
and pi is the frequency of the reference allele estimated from the 
markers. 

GEBVs were estimated using the blupf90 programme from BLUPf90 
software (version 1.68, Misztal et al., 2002). 

2.5. The impact of genetic relationship on genomic prediction 

The accuracy of genomic prediction for resistance to sea lice as 
measure by sea lice counts (denoted SLC) and BW was assessed by 
replicates of a k-fold cross-validation (CV) procedure under three 
different scenarios (see below). For each scenario, the population was 
separated into k groups; one group was designated as the validation set 
and the phenotypes of the animals assigned to that group were masked, 
their genomic breeding values (GEBVs) were predicted from the 
remaining k-1 groups that composed the training set. The efficiency of 
genomic selection was assessed by the accuracy and bias of predicted 
GEBVs. The accuracy (r) of genomic prediction was calculated as the 
Pearson correlation coefficient between GEBVs and true phenotypes of 
the validation set fish divided by the square root of the trait heritability 
[r = Corr(GEBV,y)/h] (Legarra et al., 2008). 

The selection bias (b) was estimated as the regression coefficient of 
the phenotypes on the predicted values. This coefficient is expected to be 
equal to 1 in the absence of bias. A coefficient below 1 indicates an over- 
dispersion of the GEBVs, on the contrary a coefficient above 1 indicates 
an under-dispersion of the GEBVs. The cross-validation process was 
replicated 10 or 20 times, depending on the scenario, and for each 
replicate a new randomisation of the fish into k-groups was performed. 
For each scenario, the average and standard deviation of both the ac
curacy and bias were obtained for each k-fold and replicate. 

To estimate the impact of the relationship between the training and 
the validation sets the following three scenarios were tested:  

1. Within year class. Five groups of equal size (n = 451 and 469 fish per 
group for year classes 2010 and 2014, respectively) were created by 
randomly assigning fish from one year class to groups using the 
CVrepGPAcalc package (v1.0/R version 3.6.3) from Tsairidou et al. 
(2020). The validation set was composed of fish from one group 
(20% of the population) with their phenotypic values masked and 
their GEBVs predicted using the genomic and phenotypic values of 
the training set comprising the remaining four groups (80% of the 
population, n = 1806 and 1876 for year class 2010 and year class 
2014, respectively). This procedure was performed 10 times.  

2. Across year classes. To assess the efficiency of using phenotypic values 
from a previous year class to predict the values of the next genera
tion, the full dataset from year class 2010 was used as training set to 
predict the GEBVs of all fish from year class 2014.  

3. Within year class 2014, using genomic relationship threshold. To assess 
the effect of the genomic relationship between training and valida
tion sets within year class 2014, three groups of equal size were 
created so that the genomic relationship (obtained from the GRM 
estimated with GCTA software) between two fish assigned to two 
different groups was below a predefined kinship threshold. In this 
scenario, all fish with a genomic relationship above the predefined 
threshold could be assigned to the same group. Due to the family 
structure of the population and the important number of half-sib, the 
number of groups in the cross-validation analysis had to be reduced 
to three as, for the lowest kinship threshold, it was impossible to 
create more groups containing fish with a kinship level below the 
threshold. Nine different genomic kinship thresholds were used: 0.3, 
0.33, 0.35, 0.37, 0.4, 0.45, 0.5, 0.55 and no threshold. The GEBVs of 
fish from one group (1/3rd of the population, n = 781) were pre
dicted using the genomic and phenotypic values of the remaining 
group (2/3rd of the population, n = 1563). This procedure was 
performed 20 times. 

The impact of reducing the SNP density on genomic prediction ac
curacy was tested only in year class 2014 with nine randomly generated 
low to medium density SNP panels. For each panel, SNPs were randomly 
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sampled from the 32 K SNPs (common SNPs between the two year- 
classes) of the HD panel using the CVrepGPAcalc package (Tsairidou 
et al., 2020). The sampling was performed within each chromosome, 
with the number of SNP from a given chromosome being proportional to 
the physical length of the chromosome in the S. salar reference genome 
assembly (Lien et al., 2016, Genbank accession GCA_000233375.4). 
Because the number of SNPs was proportional to chromosome length, 
the total number of SNP selected to build a panel was allowed to differ 
slightly from the target density (Supplementary Table S1). For each 
target density, 10 panel replicates were generated, which were allowed 
to overlap by chance. Genetic parameters were estimated as described 
above (Eq1) with a new GRM built for each low-density panel. 

Finally, the impact of reducing the SNP density combined with the 
analysis of the genomic relationship between training and validation 
populations was analysed only within year class 2014, using five 
different SNP density panels (10 K, 5 K, 1 K, 500, 100) and five kinship 
thresholds (0.3, 0.33, 0.35, 0.37 and 0.4). 

For the BW trait, since measurements were taken at different time 
points for the two year classes, two traits were used in these analyses: 
initial BW and BW at the end of the challenge. For scenarios 1, and 2 BW 
at the end of the challenge was used as it was recorded for both gener
ations. For the scenarios explored only in year class 2014, initial body 
weight was used to avoid any potential confounding effects caused by 
the disease challenge. However, note that the genetic correlation be
tween weight at the start and the end of the challenge in year class 2014 
is 0.96, so the impact of the disease challenge is minimum. 

3. Results and discussion  

3.1. Genetic parameters estimates 

Estimates of genetic parameters for the two traits and the two year 
classes are summarised in Table 1. Heritability estimates for SLC were 
low to moderate and quite different between the two year classes with a 
heritability of 0.11 (± 0.025 se) for year class 2010 and a heritability of 
0.29 (± 0.035 se) for year class 2014. Those values were within the 
range of what has been previously reported for resistance to sea lice 
(0.10–0.27); (Cáceres et al., 2021; Correa et al., 2017a, 2017b; Ødegård 
et al., 2014; Tsai et al., 2016; Tsairidou et al., 2020; Yáñez et al., 2014a). 
For BW, heritability estimates were slightly higher, 0.39 (± 0.034 se) 

and 0.42 (± 0.036 se) for year classes 2010 and 2014, respectively. For 
year class 2014, the genetic correlation between BW measured before 
and after the challenge was very high (0.96 ± 0.009 sd), and the heri
tability estimate for initial BW was just slightly lower than the herita
bility estimated at the end of the challenge (see Table 2). Previous 
studies reported pedigree based heritability estimates of 0.2–0.49 for 
BW (Gutierrez et al., 2015; Tsai et al., 2015; Yáñez et al., 2014a) and 
genomic based estimates of 0.27–0.6 for standardised or log transformed 
BW (Sae-Lim et al., 2017; Tsai et al., 2015; Tsairidou et al., 2020; 
Yoshida et al., 2017). 

It should be noted that the average number of lice per fish was 
substantially lower for fish from year class 2010 (5.12 ± 4.43 sd) than 
for fish from year class 2014 (39.0 ± 16.40 sd). This difference in the 
final number of sea lice per fish is potentially linked to the difference in 
the experimental challenge protocol. Similarly, BW measured after the 
challenge was different between the two year-classes, with fish from 
year class 2010 (280.8 g ± 92.97 sd) being bigger than fish from year 
class 2014 (142.6 g ± 49.14 sd). These differences in the trait values 
between the year groups may affect the ability to predict breeding values 
across year groups (scenario 2), in addition to the impact of the low 
genetic relationship between the two year class. 

3.2. Accuracy of genomic predictions within and across year class 

The results of genomic selection for predictions (1) within year 
classes and (2) across year classes using the full density SNP panel are 
summarised in Table 2. For both traits, the highest accuracy of genomic 
prediction was obtained when the training and validation sets were 
created with just animals of the same year class (scenario 1). For sce
nario 1, genomic prediction accuracies were higher for BW than for SLC 
for both year classes with accuracy of genomic predictions for SLC lower 
for year class 2010 than year class 2014. These values were in the range 
of previously reported accuracies for similar SNP density panels in 
Atlantic salmon (Tsai et al., 2016, 2015) and slightly below those found 
by Yoshida et al. (2018b) for BW. 

Predictions for SLC showed little evidence of bias under scenario 1 
and were slightly more biased (variance of GEBVs overestimated) under 
scenario 2. For BW, using only fish from year class 2010 to predict 
GEBVs of fish from year class 2014 (scenario 2) resulted in highly biased 
prediction values. Two previous publication by D’Ambrosio et al. (2020) 

Table 1 
Genetic parameters estimates for sea lice count and body weight for the two year classes 2010 and 2014.  

Trait Year class Va (mean ± se) Vp (mean ± se) Ve (mean ± se) h2 (mean ± se) 

SLC  2010 1.41 ± 0.33 12.33 ± 0.39 10.92 ± 0.38 0.11 ± 0.03 
SLC  2014 61.31 ± 8.48 213.36 ± 6.75 152.05 ± 7.24 0.29 ± 0.04 
BWini  2014 618.2 ± 66.52 1554.8 ± 51.06 936.62 ± 49.04 0.40 ± 0.04 
BWend  2010 3422.7 ± 403.03 8847.7 ± 351.29 5425.0 ± 225.77 0.39 ± 0.03 
BWend  2014 942.24 ± 99.08 2263.4 ± 75.07 1321.1 ± 71.10 0.42 ± 0.04 

SLC = sea lice count, BWend = body weight measured at the end of the challenge for year classes 2010 and 2014, BWini = body weight measured prior to infection for 
year class 2014, Vg = genetic variance, Ve = residual variance, Vp = phenotypic variance (Vg + Ve), h2 = heritability estimated as Vg/(Vg + Ve). 

Table 2 
Genomic prediction accuracy and bias for sea lice count and body weight estimated under three scenarios using different training sets.   

2014 predicted with 2014 (scenario 1) 2010 predicted with 2010 (scenario 1) 2014 predicted with 2010 (scenario 2) 

Accuracy Bias Accuracy Bias Accuracy Bias 

SLC 0.49 ± 0.087 0.99 ± 0.203 0.39 ± 0.131 0.92 ± 0.330  0.057 0.88 (0.593) 
BW 0.59 ± 0.072 1.01 ± 0.174 0.78 ± 0.061 1.03 ± 0.108  -0.083 -0.003 (0.051) 

SLC = sea lice count, BW = body weight measured at the end of the challenge for both year classes. 
Accuracy = Correlation (GEBV, phenotype)/h, for year class 2014 predictions: SLC h2 

= 0.287 and BW h2 
= 0.416 and for year class 2010 predictions: SLC h2 

= 0.114 
and BW h2 = 0.387. 
Bias = regression coefficient of (phenotype – prediction). 
Mean ± standard deviation of accuracy and bias over 5 folds and 10 cross validation sets. 
For bias in scenario 2, standard error in brackets. 
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for several female reproduction traits in rainbow trout and by Palaio
kostas et al. (2019) for common carp resistance to Koi Herpesvirus 
disease similarly reported that distantly related training and validation 
populations were also associated with highly biased predictions. 

The accuracy of the genomic prediction of fish from year class 2014 
using only phenotyped fish from year class 2010 (scenario 2) was close 
to zero for both traits which may reflect the relatively distant relation
ship between the two year classes, since the two generations are only 
second-degree relatives (year class 2010 was composed of uncles and 
aunts of fish from year class 2014). These results are consistent with the 
findings of Tsai et al. (2016), that estimated very low genomic predic
tion accuracies, close to zero, across two year groups of the same com
mercial salmon population. 

More recently, using single-step approaches, Vallejo et al. (2021) 
showed that predicting the genomic values of rainbow trout using a 
previous generation without retraining the model would result in a 
significant but relatively small decrease of the accuracy of genomic 
prediction. In their study, the phenotype was measured in the exact 
same condition in every year class, resulting in a very reproducible trait. 
However, in the current study, the two traits were measured in different 
conditions in each generation (different challenge protocols, at different 
age) and might show a slightly different genetic basis. Indeed, the ge
netic correlations between the two year-classes were very low and 
non-significant, with a correlation of 0.08 (0.115 sd) for BW and of 0.01 
(0.213 sd) for SLC. Thus, the null prediction accuracy obtained under 
scenario 2 may be due to the fact that traits in both year classes are 
different, rather than due to the low genetic relationship between the 
groups. Note that the estimates of genetic correlation should be treated 
with caution since they have a high standard deviation, potentially due 
to the low relationship between year classes. Nonetheless, in practice, 
breeders may decide to skip a generation of phenotyping, and predict 
the breeding value of the selection candidates using a previous 

generation without retraining the model. The results herein suggest that 
this approach will not be effective, and should certainly only be 
considered with highly standardised and reproducible trait measure
ments. Due to aforementioned issues, in the subsequent scenarios (i.e. 3 
and reducing LD), fish from year class 2014 only, with phenotypes 
measured at the same time point and under the same protocol, were used 
to test the effect of systematically decreasing the relationship between 
training and validation sets. 

3.2.1. Impact of genomic relationship on prediction accuracy 
The relationship between training and validation populations ap

pears to be critical for efficient genomic selection but, to the best of our 
knowledge, its impact has never been systematically tested within a 
typical aquaculture population. The impact of progressively decreasing 
the relationship between training and validation sets, within one year 
class (2014), on the accuracy and bias of genomic prediction (scenario 
3) for both SLC and BW are presented in Fig. 1. In this study, genomic 
relationship thresholds were used to systematically exclude close re
lationships from the training and validation populations. Genomic 
relationship thresholds from 0.55 to 0.3 were tested. Due to the family 
structure of the population, it was not possible to reduce the threshold 
between fish in the training and validation sets below 0.3. As expected, 
when the training and validation sets were less related the genomic 
predictions were less accurate for both traits. When the genomic rela
tionship threshold was set at 0.4 or higher (i.e. equivalent to a full-sib 
relationship) the accuracy of genomic prediction was similar to the ac
curacy that can be expected for the trait based on a random cross vali
dation set (no kinship threshold). With genomic relationship threshold 
between the two sets equal or below 0.37, the prediction accuracy 
started to decrease dramatically, reaching a minimum when the 
genomic relationship between training and validation sets was 0.3 
(approximately equivalent to the relationship between half-siblings). 

Fig. 1. Accuracy of genomic prediction for 
sea lice count (A) and body weight (B) 
within the generation 2014 estimated with 
decreasing values of genomic relationship 
between training and validation sets, the 
dark line represent the mean accuracy of 
GBLUP obtained with random cross validation 
sets (10 simulation 5 groups), Fish from year 
class 2014 were assigned to three groups ac
cording to their genomic relationship in order 
to keep the genomic relationship between in
dividuals of two different groups below a 
certain kinship threshold.   

C. Fraslin et al.                                                                                                                                                                                                                                  



Aquaculture Reports 23 (2022) 101033

6

When the relationship threshold between training and validation sets 
was 0.37, the accuracy of genomic prediction was only reduced by 4% 
for BW whereas it was reduced by 12% for SLC. When the relationship 
threshold was 0.3, the accuracy of genomic prediction was 44% lower 
for SLC (0.27 ± 0.048) and 51% lower for BW (0.30 ± 0.107). 

While decreasing the SNP density did not seem to result in increased 
prediction bias, decreasing the degree of relationship between training 
and validation populations did induce an over-dispersion of the variance 
of the GEBVs, with a bias of 0.73 (± 0.231) for SLC and 0.69 (± 0.232) 
for BW (See Supplementary Table S3) for the lowest genomic kinship 
threshold. Interestingly, for BW the predictions were less biased (value 
closer to 1) with a kinship degree threshold of 0.33, whereas for that 
same threshold SLC prediction variance was still overestimated (bias of 
0.84). Those results are in accordance with a genomic selection study in 
common carp where Palaiokostas et al. (2019) tested several scenarios 
based on pedigree relationship. When only half-sibs of the selection 
candidates were included in the training set, they observed a small 
decrease (6–8%) of the genomic prediction accuracy, but predictions 

based on non-sibs (i.e. separate families) highly reduced the accuracy 
(up to a 72% decrease). 

3.3. Impact of SNP density on prediction accuracy 

Decreasing the SNP density used to build the GRM for the GBLUP 
analysis caused a decrease in the accuracy of genomic selection, with the 
lowest accuracy values (0.26 ± 0.096 for SLC, 0.27 ± 0.076 for BW) 
obtained for the lowest SNP density (100) (see Supplementary Fig. S1). 
For both traits the genomic prediction accuracy was less than 10% lower 
when estimated with 3 K SNPs compared to the full imputed 32 K SNPs 
and it was about 6% lower for 5 K SNPs compared with 32 K. For SNP 
densities of 1 K or lower the accuracy dropped and was at least 20% 
lower. These results are in agreement with previous studies in salmonid 
species, which indicate that a range between 1 K and 20 K are needed to 
reach accuracies of genomic predictions close to those obtained using 
HD SNP panels (Bangera et al., 2017; Correa et al., 2017a; Tsai et al., 
2016; Vallejo et al., 2018; Yoshida et al., 2018a). SNP panels with 

Fig. 2. Accuracy of genomic prediction for sea lice count (A) and initial body weight (B) estimated within the generation 2014 with different SNP density 
panels and genomic relationship between training and validation sets, Box plot of accuracy of genomic prediction (GBLUP), estimated using various SNP 
density panels after 20 simulations with three cross-validation groups constructed to keep the genomic relationship between individuals of two different groups 
below a threshold, for sea lice count (A) or initial body weight (B). 
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densities lower than 3 K can also be applied without losing any accuracy 
when prioritising variants based on their effect on a particular trait 
(Vallejo et al., 2018; Yoshida and Yáñez, 2021). As previously reported 
in Tsairidou et al. (2020) the variability in prediction accuracy between 
SNP panel replicates was substantially larger at lower SNP densities. 
Variation patterns were similar between the two traits with the excep
tion of the accuracy of the 1 K density panels, which was more variable 
for SLC than for BW (Supplementary Fig. S1). However, regardless of the 
SNP density of the panel used, the genomic predictions did not show any 
sign of bias (Supplementary Table S2). 

3.4. Interaction between SNP density and genetic relationship 

The interaction between reduced density SNP panels and the genetic 
relationship between training and validation sets was also investigated 
(Fig. 2A and B, Supplementary Table S4). In this scenario, a reduced 
number of SNP densities (5) were tested and only the lowest genetic 
relationship threshold (from 0.3 to 0.4) were used as over 0.4 no dif
ferences were observed (Fig. 1). The accuracy obtained with the highest 
density panel (10 K SNPs) and lowest (0.3) genomic relationship was in 
the same range (0.25 ± 0.050 for SLC, 0.30 ± 0.103 for BW) as the ac
curacy obtained with the smallest density panel (100 SNPs) and highest 
(0.4) genomic relationship (0.25 ± 0.068 for SLC, 0.25 ± 0.060 for BW). 
For SLC, regardless of the tested SNP density, when the genomic rela
tionship threshold between the training and validation sets was reduced 
from 0.4 to 0.3, the accuracy decreased by 49.4% on average. Whereas, 
when comparing accuracy between the highest and the lowest SNP 
density (10 K vs 100 SNPs), accuracy decreased by 47.5% on average 
across all genomic similarity thresholds. For body weight, the decrease 
in accuracy was more striking when the SNP density decreased (64.9% 
on average across genomic relationship for 10 K vs 100 SNPs), than 
when the genomic relationship decreased (58.8% on average for 0.4 vs 
0.3 genomic relationship). The simultaneous decrease of both parame
ters resulted in a major drop in accuracy, which was reduced by 74% for 
SLC and by 89% for BW with 100 SNPs and a genomic relationship 
threshold between training and validation sets of 0.3. 

When the relationship degree between training and validation pop
ulations was the lowest (0.3 or 0.33), predictions for both traits were 
highly biased regardless of the SNP density (Supplementary Table S5), 
with the most extreme bias values (variance of GEBV highly over
estimated) obtained for the lowest densities. 

4. Conclusion 

In this study, the impact of systematically decreasing the genomic 
relationship between training and validation populations on the accu
racy of genomic prediction was tested for two traits of major importance 
in Atlantic salmon breeding programmes. There was near zero predic
tion accuracy across year classes, albeit this may reflect a lack of genetic 
correlation between the same trait measured in the different year clas
ses. Within a year class, decreasing the relationship between the training 
and the validation population within a year class resulted in less accu
rate and more biased genomic prediction, which confirms the impor
tance of building a testing population that contains close relatives (i.e. 
full and half siblings) of the selection candidates, as is typically done by 
salmon breeding companies. Although there was no clear interaction 
between decreasing SNP density and relatedness between training and 
validation population, the simultaneous decrease of both parameters 
resulted in a major drop in accuracy. Therefore, the use of low density 
markers panels for cost-effective selection, although appropriate when 
genomic relationships are high, should be considered with care when 
genomic relationships are more distant. 
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Acknowledgment 

We would like to thanks the contribution of Benchmark Genetics 
Chile and AquaChile for providing the biological material and pheno
typic records of the experimental challenge. 

Author contribution 

RDH, DR, and JMY were responsible for the concept and design of 
this work. CF performed bioinformatics and statistical analyses. CF, RH, 
DR, and JMY drafted the manuscript. All authors read and approved the 
final manuscript. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.aqrep.2022.101033. 

References 

Abolofia, J., Asche, F., Wilen, J.E., 2017. The cost of lice: quantifying the impacts of 
parasitic sea lice on farmed Salmon. Mar. Resour. Econ. 32, 329–349. https://doi. 
org/10.1086/691981. 

Bangera, R., Correa, K., Lhorente, J.P., Figueroa, R., Yáñez, J.M., 2017. Genomic 
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genomic information increases the accuracy of breeding value predictions for sea 
louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar). Genet. Sel. 
Evol. 49, 15. https://doi.org/10.1186/s12711-017-0291-8. 
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Peñaloza, C., Manousaki, T., Franch, R., Tsakogiannis, A., Sonesson, A.K., Aslam, M.L., 
Allal, F., Bargelloni, L., Houston, R.D., Tsigenopoulos, C.S., 2021. Development and 
testing of a combined species SNP array for the European seabass (Dicentrarchus 
labrax) and gilthead seabream (Sparus aurata). Genomics 113, 2096–2107. https:// 
doi.org/10.1016/j.ygeno.2021.04.038. 
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